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1 Introduction
Semiconductor nanonstructures have received significant attention over the last decades
as their optical and electronic properties can differ drastically from bulk materials, due
to the reduction in size down to just a few nanometers. One classifies semiconductor
nanostructures by the number of dimensions in which carriers can move freely, leading to
quantum dots (quasi 0D materials), quantum wires (quasi 1D materials), and quantum
wells (quasi 2D materials) [1,2]. Their remarkable and designable optical properties gave
rise to many research areas and are still investigated intensively [3–5]. One of the rather
novel fields is semiconductor quantum optics, in which the light-matter interaction is
described on a fully-quantized level by the coupling to photon states [6]. Since quantum
light includes more degrees of freedom and information than classical light [7, 8], several
aspects in this field are not yet well understood.

In this report, we consider a semiconductor nanostructure in an optical cavity that is
coupled to quantum light. We describe the semiconductor nanostructure with a parabolic
band structure in a 1D k-space, while we assume a single-mode quantum field. The 1D
system is chosen for simplicity in both the analytical and the numerical treatment and
paves the way for the description of 2D structures in the future. Therefore, instead of
using parameters which are realistic for 1D systems, we rather use parameters which
qualitatively correspond to 2D GaAs structures.

2 Theoretical Model
The electronic band structure in k-space is modeled by an arrangement of two-level sys-
tems (TLS) whose transition energy corresponds the difference between conduction and
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valence band energy at the respective k-point. The interaction between the band struc-
ture and the single-mode quantum light field is described by a Jaynes-Cummings type
Hamiltonian for the respective TLS, where the rotating wave approximation (RWA) is
applied. This leads to the following Hamiltonian:

Ĥ =
∑
k

[
ϵvka

†
v,kav,k + ϵcka

†
c,kac,k

]
+ ℏν

[
B†B +

1

2

]
−
∑
k

Mk(B
†a†v,kac,k +Ba†c,kav,k), (1)

where ϵλk is the band energy, a†λ,k (aλ,k) are the creation (annihilation) operators of an
electron in the respective band λ = c, v, while B† (B) is the creation (annihilation)
operator of a photon, and Mk is the light-matter coupling.

When treating N points in k-space (N k-points), it is convenient to introduce the
following notation to denote the respective excitation level:

λ1, λ2, ..., λj, ..., λN = (λ), (2)
λ1, λ2, ..., λj + 1, ..., λN = (λ|λj + 1), (3)
λ1, λ2, ..., λj − 1, ..., λN = (λ|λj − 1), (4)

λ1, λ2, ..., λj−1, λ̃, λj+1, ..., λN = (λ|λj = λ̃), (5)
v, v, ..., v, v = (v), (6)

where λi can either be v for valence band or c for conduction band and denotes whether the
electron at the i-th k-point is in the valence or conduction band. Adding or subtracting a
1 can be understood as promoting or demoting an electron, i.e., v + 1 = c and c− 1 = v.

The state vector of the system can be written as

|Ψ⟩ =
v,c∑
(λ)

∞∑
n=0

c(λ)n e
1
iℏE

(λ)
n t |(λ), n⟩ , (7)

where c(λ)n are the probability amplitudes and E
(λ)
n are the energies for the respective basis

states |(λ), n⟩, n denotes the n-Fock state. Substituting Eq. (7) into the Schrödinger
equation yields equations of motion for the probability amplitudes:

−iℏ∂tc(λ)n =
N∑
i=1

Mki
c
(λ|λi+1)
n−1 e−i∆ki

t
√
nδλi,v,

+
N∑
i=1

Mki
c
(λ|λi−1)
n+1 ei∆ki

t
√
n+ 1δλi,c, (8)

where ∆k = ωk − ν is the detuning between the band structure of the material ωk and
the optical frequency of the quantum field ν.

This energy difference determines the type and dimension of the described semicon-
ductor. We restrict our investigation to 1D materials, such as quantum wires, and proceed
with a parabolic dispersion, which is a good approximation in the vicinity of the band
gap for direct semiconductors:

ℏωk = ℏωg +
ℏ2

2mr

k2 = ℏωg + αk̃2, (9)
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where mr is the reduced electron-hole mass and k is the momentum. We choose α in
such a way that it has the unit of an energy while k̃ is dimensionless. For GaAs-based
semiconductor nanostructures the parabolic dispersion is valid for some 10 meV’s above
the band gap. The reduced electron-hole mass for such systems is mr = 0.056m0, where
m0 is the mass of a free electron [9]. The choice of α = 10 meV and a maximum value for
k̃ of kmax = 1 corresponds to a section of around 4-5% of the first Brillouin zone, centered
around the Γ-point. In our work, we fix the value for α and increase kmax, leading to
energetically higher points, which, however, have only a small influence on the dynamics.
This is done to assure that the features at small energies are covered.

Figure 1 demonstrates the parabolic band structure inside the interval [−kmax, kmax],
leading to a maximum considered energy of Emax = αk2

max.

0

Emax

-kmax 0 kmax
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k
~

Figure 1: Illustration of the parabolic band structure in the interval [−kmax, kmax].

The first sum on the right-hand side of Eq. (8) describes the demotion of an electron
from the conduction to the valence band under the emission of a photon, while the second
sum describes the promotion of an electron from the valence to the conduction band under
the absorption of a photon.

There are several observables that can be studied within this model, obtained by com-
puting expectation values of the respective operators. In this way, the conduction/valence
band occupation for the point ki can be computed from

Oki
c =

∞∑
n=0

∑
λ ̸=λi

|c(λ|λi=c)
n |2, (10)

Oki
v =

∞∑
n=0

∑
λ ̸=λi

|c(λ|λi=v)
n |2 = 1−Oki

c . (11)

The ground-state probability is given by:

Oground =
∞∑
n=0

|c(v)n |2, (12)

which corresponds to the case where no electronic excitation is present.
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2.1 Single Photon

For the case that the quantum field is given by a single-photon Fock state at the initial
moment of time, Eq. (8) can be simplified into the following form:

∂tc
(v)
1 =

i

ℏ

N∑
l=1

Mkl
c
(v|λl=c)
0 e−i∆klt , (13)

∂tc
(v|λj=c)
0 =

i

ℏ
Mkj

c
(v)
1 ei∆kj

t, (14)

where c
(v)
1 is the probability amplitude for all TLS being in the ground state while the

single photon is present, whereas c
(v|λj=c)
0 is the probability amplitude for the state in

which the field is in the vacuum state while the TLS at kj is excited. Eqs. (10)-(12) for
the observables are simplified as follows:

Oki
c = |c(λ|λi=c)

0 |2, (15)

Oground = |c(v)1 |2. (16)

Note that our system, which includes a single photon and a two-band semiconduc-
tor, describes kind of the inverse situation as a system made of a two-level atom and a
photonic band gap which has been discussed in [10]. Since on the level considered here, in-
terchanging the electron and photon operators is possible, Eqs. (13) and (14) are formally
equivalent to those presented in [10], however describe the reverse physical situation.

2.2 Convergence

When describing the continuous k-space with a finite number of discrete points one needs
to make sure to consider a sufficient number of points, so that the continuum is modeled
correctly. However, a different number of k-points corresponds to a different system. The
decisive quantity that needs to be conserved while changing the number of k-points is the
total oscillator strength Ω, which is given by

Ω =
N∑
i=1

|Mki
|2. (17)

Henceforth, we consider a light-matter coupling that does not depend on k. In this case,
one can directly conclude that in order to conserve the total oscillator strength of the
system, the coupling parameter should be rescaled with the number of k-points N as
follows:

M =
M0

√
N

⇒ Ω = |M0|2, (18)

where M0 is a constant and we assume the same coupling parameter for each TLS. Fur-
thermore, it should be noted that the total oscillator strength corresponds to a fixed
interval in k-space, which means that increasing this interval will increase the oscillator
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strength Ω. This becomes relevant when a close vicinity around the Γ-point is considered,
since changing the size of this region will also change the oscillator strength. Taking this
fact into account, we will use the following expression for M :

M =
√

kmax
M0

√
N
. (19)
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Figure 2: Ground-state probability for a single photon and a parabolic band structure with
α = 10 meV. Here and in all further calculations, only the valence band is populated at the
initial moment of time. (a) kmax = 10 and a different amount of k-points N is considered. (b)
N = 104 and different k-intervals [−kmax, kmax] are taken into account.

Figure 2 shows the dynamics of the ground-state probability Oground for different
amounts of k-points N and different k-intervals [−kmax, kmax]. Simulations are performed
for a parabolic dispersion with α = 10 meV and M0 = 1.5 meV, which is a reasonable
choice for GaAs quantum wells confined in a microcavity [11]. In Fig. 2(a) a k-interval
with kmax = 10 is considered, which leads to the maximum energy of Emax = 1 eV. One
can observe that for a small amount of k-points (e.g. N = 250 or N = 500) oscillations
that disrupt the correct dynamics are present. The correct dynamics can be simulated
with a sufficiently large amount of k-points. The required number of k-points depends
on the maximum energy that is considered in the band structure and on the simulation
time. Fig. 2(b) demonstrates the convergence of the ground-state probability dynamics
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Oground with increasing the interval [−kmax, kmax] in k-space, here, the number of k-points
is chosen as N = 10000. One can see that all simulations show a similar dynamics,
while the probability slightly increases for increasing the considered energy range. This
strengthens the suitability of our model, since the relevant contributions are contained
in a small energy range. We proceed with kmax = 10 for all subsequent simulations to
cover all dynamics in the investigated range, while the most important ones are enclosed
in around kmax = 1.5, as can be seen later in Section 4.

3 Analytical approach
We apply a Fourier transform to the linear system Eqs. (13), (14). The secular equation
for determining the quasi-energies of this system can be written in the form

ℏ∆− γ =
L∑

j=−L

M2
j

α(kmaxj/L )2 − γ
= G (γ) , (20)

where γ is the shift of the quasi-energy ℏωg +γ from the band gap ℏωg and N = 2L+1 is
the total number of k-points. Here, ∆ is the corresponding shift of the photon frequency
ν = ωg +∆ from the band gap frequency ωg, Mj =

√
kmaxM

0/
√
2L.

Introducing dimensionless variables

x =
γL2

αk2
max

, δ =
ℏ∆L2

αk2
max

, β =
(M0)

2
L3

2α2k3
max

, (21)

Eq. (20) can be rewritten in the following form:

δ − x =
L∑

j=−L

β

j2 − x
. (22)

The sum in Eq. (22) converges, therefore, for L >> 1 we can neglect the sums
∞∑

j=L+1

1
j2−x

and
−L−1∑
j=−∞

1
j2−x

, and thus can expand the limits to infinity. Then the sum

in Eq. (22) can be calculated as follows:

∞∑
j=−∞

1

j2 − x
=

{
−π cot (π

√
x)/

√
x, x > 0

π coth
(
π
√
|x|
)
/
√
|x|, x < 0.

(23)

Substituting Eq. (23) in Eq. (22), one can find that the last equation has one negative
root x0 and L positive roots xi (taking into account the degeneracy of states with the
same |j|). The equation for negative x < 0 and β >> 1 is reduced to δ + |x| = βπ/

√
|x|.

For δ=0, the negative eigenvalue equals to x0 = −(βπ)2/3 , positive eigenvalues are given
by

xi ≈

(
(i− 1) +

1

π
arccot

(
(i− 1)3

βπ

))2

, (24)
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where i = 1, 2, · · ·L. These quasi-energies are shown in the top-left panel of Fig. 3.
If at the initial moment of time the field is represented by a single photon, while only

the valence band is populated, the ground-state probability amplitude is given by

c
(v)
1 (t) = exp (iωgt)

L∑
m=0

exp (iγmt/ℏ )

1 +
L∑

j=−L

M2

(α(kmaxj/L )2−γm)
2

= exp (iωgt)
L∑

m=0

exp (iγmt/ℏ )

1 + dG(γ)
dγ

∣∣∣
γ=γm

. (25)

.
The weight of the negative eigenvalue can be evaluated as(

1 +
dG (γ)

dγ

)−1
∣∣∣∣∣
γ=γ0

=

(
1 + β

π

2|x|3/2

)−1
∣∣∣∣∣∣
x=−(βπ)2/3

=
2

3
, (26)

while the weights of positive eigenvalues xi can be calculated as follows

(
1 +

dG (γ)

dγ

)−1
∣∣∣∣∣
γ=γi

=

1 + β
π cot (π

√
x)

2x3/2
+ β

π2
(
1 + cot (π

√
x)

2
)

2x

−1
∣∣∣∣∣∣∣
x=xi

=

(
3

2
+ β

π2

2x

(
1 +

x3

π2β2

))−1
∣∣∣∣∣
x=xi

. (27)

In the case of β >> 1, the last equation simplifies to:(
1 +

dG (γ)

dγ

)−1
∣∣∣∣∣
γ=γi

≈ 2y

π(πβ)1/3 (1 + y3)

∣∣∣∣∣
y=(i−1)2/(πβ)2/3

. (28)

This function has a maximum at y ≈ 1 which corresponds to xi ≈ −x0 = (βπ)2/3 .
For a single photon at the initial moment of time, the weights of the "dressed" eigenstates
corresponding to these quasi-energies are shown in the two top panels of Fig. 3.

Combining Eqs. (26- 28) with Eq. (25), the ground-state probability amplitude takes
a form

c
(v)
1 (t) e−iωgt =

2

3
exp (−iµ |x0| t)

+
L∑

m=1

2(m− 1)2/|x0|

π
√

|x0|
(
1 +

(
(m− 1)2/|x0|

)3) exp
(
iµ(m− 1)2t

)
(29)

≈ 2

3
exp (−iµ |x0| t) +

∞∫
0

2z2/|x0|
π
√

|x0|
(
1 + (z2/|x0| )3

) exp (i µz2t) dz (30)

=
1

3

(
exp (−iµ |x0| t) + 2 exp

(
1

2
iµ |x0| t

)
cosh

(√
3

2
µ |x0| t

)

− 2 (1 + i)

√
2

π
(µ |x0| t)3/2 1F3

(
1;

5

6
,
7

6
,
3

2
;
1

27
i(µ |x0| t)3

))
. (31)
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Here µ = αk2
max/ℏL2 and 1F3(a1; b1, b2, b3; z) is a hypergeometric function. Fig. 4 shows

the ground-state probability calculated using the expression given above. The asymptotic
value of the probability at large times is (2/3)2 = 4/9 ≈ 0.4444 (the integral in the
Eq. (30) vanishes due to the interference of distributed positive frequencies). The bottom
panel in Fig. 3 shows the evolution of the electron-hole states with time.
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Figure 3: Distribution of quasi-energies in the case of a single photon at the initial moment
of time, while only the valence band is populated. Top left panel: Green lines present positive
quasi-energies γ versus detuning ∆. Red dots correspond to the negative quasi-energy γ0. The
intensities of the red and green colors indicate the weights of the respective "dressed" states,
which is more clearly illustrated in the top-right figure. Top right: Weights of "dressed" states
for three values of detunings ∆. Bottom panel: Evolution of the square root of the conduction-
band occupation for different energies in the case of ∆ = 0. The calculations were performed for
N=80000, α=10 meV, kmax=10, M0=0.1 meV.
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Figure 4: Ground-state probability
∣∣∣c(v)1 (t)

∣∣∣2 calculated using the analytical result, i.e., Eq. (31).
The axis above the plot refers to dimensionless time, the upper scale below the plot refers to
times calculated for parameters used in Fig. 3, the lower scale below the plot refers to times
calculated for parameters used in numerical calculations in Fig. 5.

4 Numerical results
In correspondence with the analytical treatment, we do our numerical investigation con-
sidering a single photon. While the ground-state probability already yields a characteristic
property of the system, it may not reflect its full complexity. Therefore, it is advantageous
to consider the dynamics at individual k-points. Figure 5(a) shows the time evolution
of the conduction-band occupation Oki

c for different k-points, while Fig. 5(b) shows the
corresponding ground-state probability. Note that only smaller section of the computed
interval with kmax = 10 is presented, since it contains all relevant features. One can see
that the conduction-band occupation oscillates in time, with the frequency ∆ki

. We can
obtain a relation between the ground-state probability and the conduction-band occupa-
tion from the normalization condition:

Oground +
∑
i

Oki
c = |c(v)1 |2 +

∑
i

|c(λ|λi=c)
0 |2 = 1. (32)

Thus, we can conclude that the summation of oscillations with different frequencies will
eventually lead to destructive interference, and therefore results in a cancellation of the
time dynamics of the ground-state probability, as seen in Fig. 5.
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Figure 5: (a) Conduction-band occupations for different k-point indices over time (b) ground-
state probability. (Parameters: α = 10meV, N = 5001, kmax = 10)

Next, we consider our system being excited with different optical frequencies, i.e., the
electronic system is not excited resonantly at the band gap, but we introduce an energetic
offset ℏ∆, so that ν = ωg + ∆. This means, ∆ < 0 describes an excitation below the
band-gap energy, while ∆ > 0 leads to a situation in which the excitation is above the
band-gap energy, allowing to resonantly excite electrons at higher transition energies.

Figure 6 shows Oground for the energetic offsets ℏ∆ = −2 meV, −1 meV, 0 meV,
1 meV, and 2 meV. One can observe that negative offsets lead to a higher ground-state
probability, and a faster dynamics with more oscillations, while the opposite case is found
for positive offsets. Qualitatively, this behavior is clear, since in the case of negative offsets,
the detuning ∆ki

is positive for all k-points, which means that none of the k-points is
excited resonantly, resulting in a less efficient excitation. By contrast, positive offsets
allow for resonant excitations within the band. This behavior can be further analyzed by
considering the conduction-band occupation.
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Figure 6: Ground-state probability for different optical frequencies ν of the quantum field,
measured as a detuning with respect to the band gap frequency ωg, i.e. ∆ = ν−ωg. (Parameters:
α = 10meV, N = 5001, kmax = 10)

Figure 7 shows the conduction-band occupation for different energetic offsets. A neg-
ative offset leads to a larger positive detuning ∆ki

for the respective k-points, resulting in
faster oscillations with a smaller magnitude in time. This is consistent with the ground-
state probability from Fig. 6, which exhibits faster oscillations at a higher value. In
contrast, positive offsets lead to the formation of two stripes, which for large enough off-
sets appear at the resonantly excited k-points, i.e. where ∆ki

= 0. As can be seen in
the top-left graph in Fig. 3, the eigenvalue that is energetically below the band gap (red
curve) tends to zero with the increase in the energetic offset ℏ∆. As it is follows from
the analytical treatment, this eigenvalue is responsible for the long-time dynamics of the
ground-state probability. Therefore, with increasing the energetic offset, the excitation
of this dressed state is less efficient, resulting in a lower probability of populating the
ground state at large times. At the same time, for quasi-energies that are above the band
gap, the peak in the weights is formed with an increase in the energetic offset, as can be
seen in the top-right graph in Fig. 3. The appearance of such a maximum in positive
quasi-energies leads to the formation of the stripes in the conduction-band occupation, as
shown in Fig.7. Thus, the decrease of the ground-state probability and the appearance of
two stripes in the conduction-band occupation with increasing energetic offsets are caused
by new eigenstates that are formed during the light-matter interaction. We note that this
discussion is related to the discussion in Ref. [10], however, in this case for an inverse
system to ours.
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5 Conclusion
We present a model which describes the quantum-optical dynamics of an electronic band
structure which is excitated by a single-photon Fock state both analytically and numer-
ically. We obtain an approximate analytical solution for the ground-state probability,
i.e., the probability that all electronic states remain unexcited. Remarkably, this solution
depends only on a single eigenstate with the energy below the band gap. For a resonant
excitation with respect to the band gap, we find a steady-state probability equals to 4/9,
which does not depend on other parameters. This is accounted to the dressed state that
corresponds to the aforementioned quasi-energy, which has no decay during the dynam-
ics. Complementing, we perform numerical simulations which allow a deeper insight into
the dynamics. Here, we demonstrate that the dynamics of the ground-state probabil-
ity and the formation of stripes in the conduction-band probability strongly depend on
the detuning from the band gap and gained physical understanding by considering the
corresponding conduction-band occupation.

The results shown in this report demonstrate consequences of a microscopic description
of semiconductor nanostructures that exhibit a quantum-optical excitation and pave the
way to further investigations of more complex scenarios. These include the consideration
of multi-photon light states, or systems of different dimensions, where especially the two-
dimensional case is of interest, that allows the description of semiconductor quantum
wells.
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