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ABSTRACT 

A new time-domain probabilistic technique based on hierarchical Bayesian modeling (HBM) framework is 

proposed for calibration and uncertainty quantification of hysteretic type nonlinearities of dynamical systems. 

Specifically, probabilistic hyper models are introduced respectively for material hysteretic model parameters as 

well as prediction error variance parameters, aiming to consider both the uncertainty of the model parameters 

as well as the prediction error uncertainty due to unmodelled dynamics. A new asymptotic approximation is 

developed to simplify the process of nonlinear model updating and substantially reduce the computational 

burden of the HBM framework. This asymptotic approximation is further employed to provide insightful 

expressions on the hyper parameters for both the model and prediction error variance parameters. Given a large 

number of data points within a dataset, the hyper model parameters are formulated to be independent of the 

hyper parameters for prediction error variance parameter. Two numerical examples are conducted to verify the 

accuracy and performance of the proposed method considering Bouc-Wen (BW) hysteretic type nonlinearities. 

Model error is manifested as uncertainty due to variability in the measured data from multiple datasets. Results 

from a five-story numerical structure indicate that the model error is the main source of error that can affect the 

uncertainty in the model parameters due to the variability in the experimental data. It is also demonstrated that 

the parameter uncertainty due to the variability arising from model error depends on the sensor locations. It is 

shown that the proposed approach is robust for not only quantifying uncertainties of structural parameters and 

prediction error parameters, but also predicting the system quantities of interests (QoI) with reasonable accuracy 

and providing reliable uncertainty bounds, as opposed to the conventional Bayesian approach which often 

severely underestimates the uncertainty bounds.  
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MPV Most probable values 

PDF Probability density function 
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HBM Hierarchical Bayesian modeling 

UB Uncertainty bounds 

FS Full sampling 
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iD  The -thi  data set 

ˆ
iY  The -thi  experimental data set 

0N  Number of measured DOF 

iN  Number of the sampled data 

jt  Time instant 

it  Sampling rate 

iX  The -thi  input loading 

θ  Material/structural model parameters 

Nθ  Number of unknown parameters in the set θ  

( )M θ  A parameterized class of nonlinear model 

( )ig θ  Response time histories under the input loading iX  

sN  Number of DOF 

iε  Prediction error corresponding to the -thi  experimental data set  

L  Selection matrix 

Σ  Covariance matrix 
p  Probability 

i  Standard deviation of prediction error corresponding the -thi  data set 

,i la  Intensity of the model predictions in the -thl  DOF corresponding to the -thi  data set 

1  Shape hyper-parameter 

2  Scale hyper-parameter 

θμ  Hyper mean 

θΣ  Hyper covariance matrix 

iθ  The -thi  experiment-specific model parameters 

  Full set of all parameters 

( )iJ θ  Measure of fit function 

( )   Gamma function 

1 2( , , )iL  θ  Objective function 

H  Hessian matrix 

1 2
ˆ( , , )L i  H θ  Hessian matrix of 1 2( , , )iL  θ  with respect to the parameters evaluated at the MPV ˆ

iθ  

ˆ( )iH θ  Hessian matrix of the measure of fit function ( )iJ θ  evaluated at ˆ
iθ  

1 2
ˆ( , , )L i  Σ θ  Inverse of the hessian matrix 1 2

ˆ( , , )L i  H θ  

ˆ
θμ  MPV of hyper mean 

ˆ
θΣ  MPV of hyper covariance matrix 

0Σ  Average of the identification uncertainty 

ˆˆ( , )θ θΣ μ  Uncertainty of hyper parameters  

  Kronecker tensor product 

1 2
ˆ ˆ( , )  Σ  Uncertainty of hyper parameters 1 2

ˆ ˆ( , )   

( )   Digamma function 

1( , )k   k-th derivative of the digamma function at 1  

,pre la  Intensity of the predicted response time histories in the -thl  DOF 

preY  Predicted response time history 

M  Mass matrix 

C  Damping matrix 
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( )tu  Relative displacement response 

( )tz  Virtual hysteretic displacement 

( ( ), ( ))R t tF u z  Nonlinear restoring force vector 

( )tP  Input force vector 

k  Linear stiffness parameter 
α  Nonlinear parameter 

A  Nonlinear parameter 
β  Nonlinear parameter 
γ  Nonlinear parameter 

n  Nonlinear parameter 

( )ty  State vector 

( )ty  Derivatives of the response vector with respect to a model parameter 

  Damping ratio 

 

1. Introduction 

Finite element (FE) models are extensively employed for representing structural systems and predicting their 

responses to dynamic loads [1–4]. Discrepancies between the predicted responses from FE models and the 

measured responses from the physical structures are often inevitable. To achieve a more authentic model, model 

updating has received considerable attentions in recent decades using deterministic (e.g. [5–8]) and probabilistic 

approaches (e.g. [9–12]). Updating linear models has been widely applied and is shown to achieve a great 

progress in the field of structural dynamics [6,9,13]. However, most physical structures are inherently 

characterized by nonlinear behaviours with higher uncertainties when subjected to large loads due to material 

and/or geometric nonlinearities. Linear systems often neglect such nonlinearities and therefore cause a 

considerably large modeling error between the real structures and the updated models. Characterizations of such 

nonlinearities may provide more information for accurate and efficient representations of real structures. To this 

end, updating nonlinear models is essential for accurate response and reliability predictions [14–16] and 

assessment of structures subjected to large loads such as earthquakes [17–19].  

The core idea of model updating techniques is to find the most probable values (MPV) of the structural 

model parameters by minimizing the difference between the FE-predicted and the measured responses [20]. The 

non-probabilistic approaches, or refereed as deterministic methods, can be applied to address such problems. 

Several studies have already demonstrated a good performance of the deterministic strategies [21,22]. However, 

a common shortcoming exists in those methods as well. Although the most plausible values of the model 

parameters can be estimated, the effect of the parameter uncertainties is often neglected. Such uncertainties can 

be arisen from the model error, the measurement noise or the changing environmental and ambient conditions. 

Quantifying the uncertainties is necessary for understanding the statistical characteristics of model parameters 

as well as propagating those uncertainties to predict the system quantities of interests (QoI). A remedy for the 

deterministic approaches is to apply the probabilistic means in model updating process. Due to their rigorous 

probabilistic framework, Bayesian inference methods have been widely used for quantifying and propagating 

the uncertainties in model updating [23–27]. Several contributions based on Bayesian strategies have already 

been proposed for nonlinear model updating. Muto and Beck developed a Bayesian updating method for 

estimating the hysteretic material model parameters using stochastic simulation [28]. Ebrahimian et al. presented 

a framework for damage identification of dynamical structures with material nonlinearities using batch Bayesian 

estimations [29]. Song et al. proposed a Bayesian model updating methodology for dynamical systems with 

geometric nonlinearities based on the nonlinear normal modes extracted from broadband vibration data [30]. 

Ceravolo et al. employed a Bayesian uncertainty quantification framework for the identification of hysteretic 

parameters with consideration of the model discrepancy in seismic structural health monitoring [31]. More 

investigations for nonlinear model updating based on the Bayesian techniques can be found in the literature [32–

39].  

Bayesian inference provides a powerful probabilistic tool for updating nonlinear models and handling the 

uncertainties of nonlinear model parameters. However, the conventional Bayesian inference framework cannot 

properly account for an underlying variability in model parameters and uncertainties arising from multiple data 

sets under different excitations, operational, environmental and experimental conditions. The variability in the 

model parameters can originate from the presence of model and experimental error [40]. The uncertainty of the 

model parameters due to these variabilities is irreducible, in contrast to the identification uncertainty which is 
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usually inversely proportional to the amount of data considered in a data set. To properly account for this 

irreducible variability, uncertainties can be embedded in the model parameters by assigning a parameterized 

hyper prior distribution. The hyper parameters in this distribution are assumed to be unknown quantities and to 

be estimated from the available multiple data sets.  

A hierarchical Bayesian modeling (HBM) framework has recently been introduced in various engineering 

fields [41–47]. In the field of structural dynamics, it was initially proposed by Behmanesh et al. for structural 

identification based upon a mainly full simulation HBM approach [42]. For improving the efficiency of the 

HBM framework, Sedehi et al. and Jia et al. respectively developed asymptotic approximation-included HBM 

approaches for model updating based on time-domain [48,49] and frequency-domain linear models [50]. 

Patsialis et al. applied the HBM framework for reduced order structural models in earthquake engineering [51]. 

The hierarchical model has also been introduced in sparse Bayesian learning for damage identification with 

noisy incomplete modal data by Huang and Beck in [52,53]. Later on, this methodology was improved in terms 

of computational efficiency, as well as its applicability where a significant modeling error is present [54]. The 

sparseness of structural damage was successfully implemented within the Bayesian framework in these studies. 

A multi-level model for sparse Bayesian leaning was also proposed for structural damage identification under 

varying temperature conditions by introducing an extra temperature parameter within the Bayesian framework 

[55]. Such improvements have been successfully applied in updating linear models.  

In this paper, a new time-domain hierarchical Bayesian modeling framework is developed for the 

identification of nonlinear models, aiming to quantifying the uncertainties of the nonlinear model parameters 

and the prediction error parameters, and further propagating the overall uncertainties to the system output QoI. 

The contributions of this work are in the following aspects. A methodology is proposed for nonlinear model 

updating using response time history data which can characterize the nonlinear behaviors in the real structures. 

More importantly, the proposed methodology can capture the irreducible uncertainties due to model error by 

embedding uncertainties in the model and prediction error parameters. This is achieved by assigning a 

parameterized distribution in these parameters with hyper parameters to be estimated from the multiple datasets. 

In previous methods [48,49], the uncertainty due to variability was embedded only in the model parameters. 

Assigning in this work a probability distribution in the prediction error parameters and estimating the hyper 

parameters using the available datasets allows one to capture the irreducible uncertainties in the prediction error 

parameters, as well as to properly and objectively propagate uncertainties in the prediction error for the case of 

future excitations not used in the inference process. Moreover, the presented methodology adopts a novel 

asymptotic approximation approach which can significantly improve the computational efficiency of the HBM 

framework. Such approximation extends previous ones [48,49] for the case where the prediction error parameter 

is quantified by a parameterized probability distribution and also offers valuable insights on the hyper 

parameters, which helps to interpret the model parameters uncertainties, as well as the uncertainties from 

prediction error parameter.  

The paper is organized as follows. Section 2 presents the detailed mathematical formulation of the proposed 

HBM framework and the approximations used. Section 3 applies the HBM framework to identify parameters 

of a nonlinear system with nonlinearities modelled by the Bouc-Wen hysteresis law. Section 4 provides two 

numerical examples to demonstrate the effectiveness of the proposed approach to account for uncertainties due 

to model error. Section 5 reports the conclusions of this study.  

 

2. Hierarchical Bayesian Nonlinear Model Updating 

 

2.1. Proposed hierarchical models 

Suppose that DN  data sets of measured vibration time histories { , 1, , }i DD i N D  subjected to DN

known input loadings are available from a nonlinear structure. Let 0ˆ{ ( ) , 1,2, , }
N

i i iD j R j N  Y  be the 

-thi  experimental data set consisting of a sequence of response data measured at 0N  degrees of freedom 

(DOF), where the notation j  corresponds to a time instant j it j t   and iN  is the number of the sampled 

data using the sampling rate it . Let also { ( ), 1,2, , }i i ij j N X X  be the -thi  input loading which 

corresponds to the -thi  data set iD . Consider a parameterized class of nonlinear model ( )M θ  that is used to 

characterize the nonlinear behavior (e.g. material nonlinearities) of dynamical systems, where 
N

R θθ  is the 

set of material/structural model parameters to be estimated using the measured response time histories, and Nθ  

is the total number of the unknown parameters in the set θ . Let also ( )={ ( ; ) , 1,2, , }sN

i i ij R j N g θ g θ  be 
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the response time histories under the same input loading iX  and the same sampling rate it  predicted from 

the model ( )M θ , where sN  denotes the number of DOFs. Subsequently, the discrepancy iε  between the 

-thi  experimental data set and the -thi  predicted response time histories can be defined based on the prediction 

error equation: 

 ˆ ( ) ( ; )i i ij L j ε Y g θ   (1) 

where L  is a selection matrix, usually containing elements of zeroes and ones, that associates the DOF of the 

model with the measured DOF.  

In the analysis that follows, the prediction error is modelled by a random vector with Gaussian probability 

distribution with zero mean and covariance matrix Σ . A probabilistic model ( )p Σ  is used herein to describe 

the uncertainty of the prediction error term. Realization of the prediction error parameters is free to vary across 

the different data sets, with the realization iΣ  that corresponds to the data set iD  considered to be an 

independent sample of the distribution ( )p Σ . For the -thi  data set iD , iΣ is assumed as a diagonal matrix 

with l -th diagonal element 2

,( )i i la , where 
2

,

1

1
( ; )

N

i l i,l

j

a j
N 

 g θ  denotes the intensity of the model 

predictions in the -thl  DOF corresponding to the -thi  data set. Thus, the probabilistic model ( )p Σ  can be 

equally represented as the probabilistic model 2( )p  , and it is modelled by the inverse gamma (IG) distribution 

given by:   

    
 

 
 

1

1 122 2 2 2
1 2 2

1

=IG | , expp


 

    
 

   
  
  

  (2) 

where the parameters 1  and 2  are the shape hyper-parameter and scale hyper-parameter, respectively.  

Similarly, the uncertainty of model parameters θ  is probabilistically modeled using a Gaussian distribution 

[42,48]: 

 ( | , ) ( | , )p Nθ θ θ θθ μ Σ θ μ Σ   (3) 

with unknown mean N
R θμ  and covariance matrix N N

R  
θΣ . The parameter set { , }θ θμ Σ  is 

considered to be an uncertain hyper parameter set to be estimated using the available multiple data sets. 

Realization of θ  from the Gaussian distribution  | ,N θ θθ μ Σ  can vary across the different data set, where 

the realization iθ  is considered to be an independent sample of the distribution ( | , )N θ θθ μ Σ  that corresponds 

to the data set iD .  

This constitutes a hierarchy model that has two classes of parameters. The first class of model parameters 

comprises the ( 1)DN N   experiment-specific parameters iθ  and 2

i , 1, , Di N , while the second class 

model parameters comprises at most 2 ( 1)N N N      hyper-parameters involved in θμ , θΣ , 1  and 

2 . The number of parameters in the first set increases linearly with the number of datasets making the 

parameter estimation problem challenging when the number of data sets increases. The full set   of all 

parameters to be identified is  2

1 1 1 2{ } ,{ } , , , ,D DN N

i i i i    θ θθ μ Σ . 

The graphical representation of the proposed hierarchical Bayesian nonlinear modeling framework, showing 

the hierarchical structure, is depicted in Fig. 1. The arrows show the conditional dependence of parameters. For 

example, the parameters iθ  are conditional on θμ  and θΣ , the prediction error parameters 2

i  are 

conditional on 1  and 2 , while the model predictions 
,i lg  are conditioned on iθ . First the unknown 

hyper-parameters consisting of the set of variables 1 2{ , , , } θ θμ Σ  are identified, where the first two variables 

describe the uncertainty of the model parameters θ  while the other two parameters capture the uncertainty 

corresponding to the prediction error parameter 2 . The structural parameter uncertainty along with the 

prediction error uncertainty can then be propagated to the predictions of quantities of interest (QoI). The 

theoretical details are formulated in the following section.  
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Fig. 1 Graphical representation of the proposed hierarchical Bayesian modeling framework for nonlinear 

model updating 

 

2.2. Formulation for the proposed HBM framework  

 

2.2.1. Posterior distribution of full set of parameters 

The full parameters include the model parameters 
1{ } DN

i iθ , the prediction error parameters 2

1{ } DN

i i 
 and the 

hyper-parameters  1 2, , , θ θμ Σ . In the case of considering DN  independent data sets, the joint prior 

distribution of the full parameters is expressed as: 

          2 2

1 1 1 2 1 2 1 2

1

{ } ,{ } , , , , = , , , | , | ,
D

D D

N
N N

i i i i i i

i

p p p p p        



θ θ θ θ θ θθ μ Σ μ Σ θ μ Σ    (4) 

where 1 2( , , , )p  θ θμ Σ  denotes the prior distribution of hyper-parameters, and ( | , )ip θ θθ μ Σ  and 
2

1 2( | , )ip     are introduced in Eqs. (3) and (2), respectively. In developing Eq. (4), the hierarchy structure 

in Fig. 1 is assumed. Specifically, the experiment-specific parameter set iθ  and 2

i  are independent, the 

distribution of iθ  is independent of the values of the prediction error hyper parameters 1  and 2 , while 

the distribution for 2

i  is independent of the structural model hyper parameters θμ  and θΣ . According to 

Bayes’ theorem, the posterior distribution of full parameters is proportional to the prior distribution and the 

likelihood function:  

      |  |p p pD D     (5) 

Due to the independence of individual data set, and the fact that the -thi  data set iD  depends only on the -thi  

model parameter iθ  and its prediction error parameter 2

i , the likelihood function can be simplified as: 

      2 2

1 1 1 2

1

| |{ } ,{ } , , , , = | ,
D

D D

N
N N

i i i i i i i

i

p p p D    



 θ θD D θ μ Σ θ   (6) 

Herein 2( | , )i i ip D θ  is the likelihood function for a specific data set i , which can be readily obtained based 

on the prediction error equation in Eq. (1):  

    
0

2 2 02
2

| , exp ( )
2

iN N

i
i i i i i

i

N N
p D J 



  
  

 
θ θ   (7) 

where ( )iJ θ  is stated as: 

     
0 2

2
1 10 ,

1 1 ˆ( )= ;
iN N

i i i i

l ji i l

LJ j j
N N a 

 θ Y g θ   (8) 

Note that ( )iJ θ  tends to a finite value representing the average discrepancy between the measurements and 
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the model predictions. Subsequently, using the expressions in Eqs. (2) and (3), and substituting the simplified 

likelihood function from Eq. (6) into Eq. (5) yields: 

 

   

     

2

1 1 1 2

2 2

1 2 1 2

1

| { } ,{ } , , , , |

                 , , , ( | , ) | , | ,

D D

D

N N

i i i i

N

i i i i i

i

p p

p p D N IG

  

     

 





 

θ θ

θ θ θ θ

D θ μ Σ D

μ Σ θ θ μ Σ



  (9) 

 

2.2.2. Marginal posterior distribution of hyper-parameters 

For obtaining the posterior distribution of hyper parameters, the computational procedure proposed by the 

previous study [48] will be followed in this section, namely the joint distribution in Eq. (9) firstly will be 

marginalized over 2

i ’s and then over iθ ’s. 

Marginalizing the joint distribution of full parameters over 2

i ’s, one can obtain:  

      
2

2 2 2

1 1 2 1 2 1 2

1

{ } , , , , | , , , ( | , ) ( | , ) | ,
D

D

i

N
N

i i i i i i i i

i

p p N p D IG d



        



 
 
  

 θ θ θ θ θ θθ μ Σ D μ Σ θ μ Σ θ   (10) 

The integral in Eq. (10) is evaluated analytically in Appendix A, resulting in:  

  
 

 
 

1 1

2

( )

22 2 2 0
1 2 1 2

1

( | , ) | ,  ( ) ( )+
2

i

f

i
i i i i i i

N N
p D IG d f J

 




      





 
     

 θ θ   (11) 

where ( )   is the Gamma function and 1 0 1( )=( +2 ) / 2if N N  . Hence, Eq. (10) can be rewritten as: 

   
 

 
    

1

2

1 1 2 1 2 1 1 2

11

{ } , , , , | , , , ( ) ( | , )exp , ,

D

D

D

N
N

N

i i i i

i

p p f N L




      






 
         

θ θ θ θ θ θθ μ Σ D μ θ μ Σ θ  (12) 

where  1 2, ,iL  θ  is defined in the form:  

   0
1 2 1 2, , = ( ) ln ( )+

2

i
i i

N N
L f J   

 
 
 

θ θ   (13) 

To simplify the analysis and derive analytical expressions for the posterior probability density function (PDF) 

of the hyper parameters, a key asymptotic approximation, valid for large number of data, is next introduced. 

The function   1 2exp , ,iL   θ  can be approximated by using Taylor expansion when a large number of data 

points are available [41]: 

          1 2 1 2 1 2

1ˆ ˆ ˆ ˆexp , , exp , , , ,
2

T

i i i i L i i iL L     
 

      
 

θ θ θ θ H θ θ θ   (14) 

Herein ˆ
iθ  is the MPV computed by minimizing the objective function  1 2, ,iL  θ , while  1 2

ˆ , ,iL  θ  and 

 1 2
ˆ , ,L i  H θ  are respectively the function value and the hessian matrix of the function  1 2, ,iL  θ  with 

respect to the parameters iθ  evaluated at the MPV ˆ
iθ . The calculation of the MPV ˆ

iθ  and the hessian 

matrix  1 2
ˆ , ,L i  H θ  are derived in Appendix B and are shown to be given by 

   ˆ arg min
i

i iJ
θ

θ θ   (15) 

  
 

 0 1
1 2

0 2

( )ˆ ˆ, ,
ˆ +2

i
L i i

i i

N N f

N N J


 


H θ H θ

θ
  (16) 

where    
ˆ

ˆ =
i i

T

i iJ



θ θ

H θ θ  is the hessian matrix of the measure of fit function ( )iJ θ  evaluated at ˆ
iθ . It 

is noted that the MPV value can be readily solved by minimizing the function  iJ θ  which is independent of 

the unknown hyper parameters 1  and 2 . Moreover, an explicit expression is found for the hessian matrix 

 1 2
ˆ , ,L i  H θ  in terms of the hessian of the function  iJ θ  and the hyper-parameters 1  and 2 . Based 

on the calculations of Eq. (15) and Eq. (16), Eq. (14) can be rewritten as:    
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          
1( )

0
1 2 2 1 2 1 2

ˆ ˆ ˆ ˆexp , , + , , | , , ,
2

f

i
i i L i i i L i

N N
L J N



      



 
   

 
θ θ Σ θ θ θ Σ θ   (17) 

where the covariance matrix 

  
 

 
 

 
2

0 2 1 10
1 2

0 1 0
1

0

2ˆ +ˆ +21 2ˆ ˆ ˆ, , =
2( )

1+

i
i i

i
L i i i

i i

i

J
N N J N N

N N f N N

N N


 




 

θ
θ

Σ θ H θ H θ   (18) 

is the inverse of the hessian matrix  1 2
ˆ , ,L i  H θ . One can view expressions (15) and (18) as quantifying the 

most probable value and the identification uncertainty corresponding to Bayesian parameter inference of iθ  

using the dataset iD  under uniform prior distribution for iθ .  

It is noted that for large number of data points 0 iN N , Eq. (18) can be approximately written as: 

        1

1 2

0

2ˆ ˆ ˆ ˆ, ,L i L i i i

i

J
N N

   Σ θ Σ θ θ H θ   (19) 

demonstrating that the covariance matrix    1 2
ˆ ˆ, ,L i L i  Σ θ Σ θ  is independent of the hyper parameters 1  

and 2 . More importantly, Eq. (19) shows the uncertainty in the estimates of iθ  is inversely proportional to 

the square root of the number of data points, reflecting the fact that the identification uncertainty decreases as 

the number of data points in a dataset increases. Substituting the expression from Eq. (17) into Eq. (12) yields: 

         1 1 2 1 2 1 2 1 2

1

ˆ ˆ ˆ{ } , , , , | , , , , , ( | , ) | , , ,
D

D

N
N

i i i i i L i

i

p p T N N       



 
  θ θ θ θ θ θθ μ Σ D μ Σ θ θ μ Σ θ θ Σ θ   (20) 

Herein the function  1 2
ˆ, ,T  θ  is defined as: 

  
 

 
     

1 1( )

2 0
1 2 1 2 1 2

11

ˆ ˆ ˆ, , = ( ) + , ,
2

D

D

N
fN

i
i L i

i

N N
T f J

 


     






   
       

θ θ Σ θ   (21) 

Subsequently, by marginalizing the distribution in Eq. (20) over iθ ’s space for 1, , Di N , and noting that  

      1 2 1 2
ˆ ˆ ˆ ˆ( | , ) | , , , | , , ,

i

i i i L i i i L iN N d N     θ θ θ θ

θ

θ μ Σ θ θ Σ θ θ μ θ Σ Σ θ   (22) 

one readily obtains the posterior distribution of the hyper parameters as follows:  

         1 2 1 2 1 2 1 2

1

ˆ ˆ ˆ, , , | , , , , , | , , ,
DN

i L i

i

p p T N       


  θ θ θ θ θ θμ Σ D μ θ μ θ Σ Σ θ   (23) 

As seen from Eq. (23), the hyper parameters corresponding to both model parameters and prediction error hyper 

parameters can be computed together through the proposed framework. Any Markov Chain Monte Carlo 

(MCMC) algorithm such as the transitional MCMC (TMCMC) [56,57] or the nested sampling algorithm [58] 

can be used to draw the samples from the posterior distribution of the hyper parameters. Note that sampling 

from the posterior distribution  1 2, , , |p  θ θμ D  is not a time consuming operation since it does no longer 

require computationally expensive model runs. The model runs are required only to estimate and store the values 

of ˆ
iθ  and  ˆ

iH θ  before the sampling approach is initiated. 

 

2.2.3. Posterior distribution of hyper parameters for large number of data 

For large number of data ( 0 iN N  is large) within each data set, the values of 1 0( )= / 2if N N  and 

   1 0( ) / 2if N N    are independent of the parameter 1 . Using Eq. (19) and assuming that prior to data 

the hyper parameter sets { , }θ θμ  and 1 2{ , }   are independent, i.e.      1 2 1 2, , , , ,p p p     θ θ θ θμ μ , 

the posterior distribution in Eq. (23) takes the simplified form 

      1 2 1 2, , , | , |   , |p p p     θ θ θ θμ D D μ D   (24) 

where 
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       
1

ˆ ˆ, | | ,   ,
DN

i L i

i

p N p


   θ θ θ θ θ θμ D μ θ Σ Σ θ μ   (25) 

and  

    
 

 
   

1 0 /2

2 0
1 2 1 2 2 1 2

11

ˆ ˆ, | , , + ,
2

D
iD

N
N NN

i
i

i

N N
p T J p




      






   
         

D θ θ   (26) 

According to Eq. (24) the hyper parameter sets { , }θ θμ  and 1 2{ , }   remain independent given the data sets. 

This independence is useful to analytically derive the most probable values and the uncertainties of the hyper 

parameters { , }θ θμ  and 1 2{ , }   by separately considering the distribution  , |p θ θμ D  and  1 2, |p   D .  

It has been shown in [59] that the form in Eq. (25) of the posterior distribution of the hyper parameters 

{ , }θ θμ  yields the most probable values of the hyper parameters to be 

 
1

1 ˆˆ =
DN

i

iDN 

θμ θ   (27) 

and using the assumption that all ˆ( )L iΣ θ  are approximately equal, the hyper-parameter covariance matrix to 

be  

 0

1

1 ˆ ˆˆ ˆ ˆ= ( )( )
DN

T

i i

iDN 

  θ θ θΣ μ θ μ θ Σ   (28) 

where 0

1

1 ˆ( )
DN

L i

iDN 

 Σ Σ θ  is taken as the average of the identification uncertainty of each dataset. The 

uncertainty in the hyper parameters, approximated by the inverse of the hessian of  ln , |p θ θμ D  evaluated 

at the most probable values ˆˆ{ , }θ θμ , can be derived to be 

    11ˆ ˆˆ ˆ, ,h

DN

  θ θ θ θΣ μ H μ   (29) 

where  ,h θ θH μ  is a 2x2 block matrix with the individual blocks given by [59] 
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 
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D

D

D

N

L i
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N
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
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 

                 

        
     

    
 
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



μμ θ θ θ

μΣ θ θ θ θ θ

ΣΣ θ θ θ θ

θ θ

H μ Σ Σ Σ θ

H μ Σ Σ Σ θ Σ Σ θ μ θ

H μ Σ Σ Σ θ Σ Σ θ

Σ Σ θ Σ Σ
1 1

1

ˆ ˆ ˆ) ( )( ) ( )
DN

T

i i i L i

i

 



              
 θ θ θθ μ θ μ θ Σ Σ θ

  (30) 

where   denotes the Kronecker tensor product of two matrices. Note that the matrices in the left-hand-side of 

Eq. (30) tend to finite values as the number of datasets DN  increases.   

Using Eq. (26), the most probable values 1̂  and 2̂  can be obtained by minimizing the 

 1 2ln , |p   D  with respect to the parameters 1  and 2 , while an asymptotic estimate of the uncertainty in 

the estimates of 1̂  and 2̂  can readily be derived by calculating the inverse of the hessian of 

 1 2ln , |p   D , evaluated at the most probable values 1̂  and 2̂ , in the form:  

    1

1 2 1 2

1ˆ ˆ ˆ ˆ, ,
DN

    Σ H  (31) 

where the elements of the 2x2 hessian matrix are  
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

 
 

 







 

  
 

 
 



H

H

H

θ

  (32) 

where ( )   is the Digamma function and 1( , )k   is the k-th derivative of the digamma function at 1 , which 

is readily evaluated by a Matlab-based function ‘psi’. It is noted that Eq. (32) does not explicitly depend on the 

estimates ˆ
iθ  for large number of data per dataset (large 0 iN N ).  

 The aforementioned formulations (29) and (31) for the covariance matrices of the estimates of all hyper 

parameters to be inversely proportional to the number DN  of the datasets suggest that the uncertainties in the 

hyper parameter estimates reduces as the number of datasets increases. Also, the forms (29) and (31) for the 

covariance matrices suggest that the posterior uncertainty in the hyper parameters tends to be approximated by 

a Gaussian distribution as the number DN  increases.  

 

2.2.4. Marginal posterior distribution of model and prediction error parameters 

The marginal posterior distribution of model parameters θ  given the data D  can be simplified to  

 

1 2

1 2 1 2( | ) = ( | , ) ( , , , | ) p p p d d d d
 

      
θ θ

θ θ θ θ θ θ

μ Σ

θ D θ μ Σ μ Σ D μ Σ   (33) 

where we used the fact that 1 2( | , , , ) ( | , )p p  θ θ θ θθ μ Σ θ μ Σ , i.e. the conditional distribution of the model 

parameter θ  given the values of the hyper parameters θμ  and θΣ  is independent of hyper-parameters 

1 2,  . Sampling estimates can be employed to compute the integral in the form: 

    

1

1
( | ) ( | , )

M
k k

k

p N
M 

  θ θθ D θ μ Σ   (34) 

by drawing the samples 
       

1 2, , ,
k k k k

 θ θμ Σ  from the distribution 1 2( , , , | )p  θ θμ Σ D , where M  is the 

number of samples.  

Similarly, the marginal posterior distribution of prediction error parameter 
2  can be computed by 

following the same procedure: 

    

1 2

2 2 2

1 2 1 2 1 2 1 2

1

1
( | ) = ( | , ) ( , , , | ) ( | , )

M
k k

k

p p p d d d d IG
M

 

          


    
θ θ

θ θ θ θ

μ Σ

D μ Σ D μ Σ   (35) 

Thus, the samples of structural parameters and prediction error parameter can be obtained according to Eqs. 

(34) and (35), respectively using any MCMC algorithm.  

 

2.2.5. Predictions of output QoI 

After the structural model is calibrated, the uncertainty of the structural parameters and the uncertainty from 

the prediction error parameter can be used to predict the uncertainty in output QoI using Monte Carlo 

simulations. Specifically, let 
 q
θ  denote the q-th sample of model parameter θ  generated from its 

distribution  |p Dθ  in Eq. (34), 
 2 q

  is the q-th sample of prediction error variance parameter which can 

be generated from its distribution  2 |p D  in Eq. (35), and 
( )q

lε  is the prediction error term sampled from 

a Gaussian distribution with zero mean and covariance matrix  2 2

,( )
q

pre laΣ I , where 
,pre la  is the intensity 

of the predicted response time histories in the -thl  DOF. The uncertainty in a response time history ( )pre jY  

can be obtained by analyzing the samples generated according to the following expression:   

 
     ( )

, ( ) ;
q q q

pre l l lj j Y g θ ε   (36) 

where l  defines the l -th DOF of the system and j  is the data point. Eq. (35) is applied to both the observed 
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and unobserved QoI. Observations of a specific type of response time histories (e.g. accelerations) at a limited 

number of DOF provides estimates of the prediction error parameter 2  which can then be used in (36) to 

make predictions of response time histories (e.g. accelerations) at unobserved DOF of the model. For the 

unobserved QoI of different type (e.g. velocities, strain, displacements) an estimate of the variance 2  

involved in the definition of the zero mean Gaussian error term 
lε  is not available from the observations and 

has to be subjectively postulated. Here, the responses to unobserved QoI of different type than that used for 

parameter estimation are computed based on only the structural parameters uncertainty. This is reasonable as 

the estimates of the prediction error are not available for such unobserved QoI.  

 

2.3. Computational procedure of the proposed algorithm 

The procedure for the parameter identification along with the predictions of QoI is summarized in Algorithm 

1. The computational process of the proposed HBM framework includes two steps for the identification of the 

hyper parameters. In the first step the MPV and the hessian matrix are obtained according to each data set. In 

this step it requires the model runs and thus it is the most computationally expensive step. While in the second 

step, it does not need the model runs, and only the MPV and the Hessian matrix evaluated from the step are 

used for sampling the posterior distribution of the hyper parameters.  

It is reminded that an alternative full sampling (FS)-based HBM approach [43,51] can be also utilized to 

obtain the samples of the hyper parameters. This is achieved by drawing the samples of the model and prediction 

error parameters from the likelihood function for each data set in the first step, and then use all the available 

samples to compute the posterior distribution of the hyper parameters in the second step. Therefore, the 

computational cost of the FS approach is more expensive than the proposed asymptotic approximation approach. 

The comparison of the computational effort between the FS and the proposed methods is conducted in the 

second application of Section 4, where both methods are used for estimating the posterior distributions of the 

hyper parameters. 

  

Algorithm 1: 

Proposed HBM framework for parameter identification and response prediction 

1. Identify hyper parameters 

First Step: Find MPV and hessian of function  1 2, ,iL  θ  for each data set  

1.1)  Minimize  iJ θ  to compute MPV ˆ
iθ  using Eq. (15) 

1.2)  Evaluate Hessian matrix  ˆ
iH θ  at MPV ˆ

iθ  

Second Step: Compute posterior distribution  1 2, , , |p  θ θμ D  using Eq. (23) 

2. Identify model parameters and prediction error parameter 

2.1) Compute marginal posterior distribution ( | )p θ D  of model parameters using Eq. 

(34) 

2.2) Compute marginal posterior distribution 
2( | )p  D  of prediction error parameter    

using Eq. (35) 

3. Predictions of QoI 

3.1) Draw samples  
( 1, )

q

qq Nθ  from ( | )p θ D , and 
 2 q

  from 
2( | )p  D   

3.2) Draw samples from  2 2

,( , )
q

pre lN a0 I  for l  

3.3) Calculate the predictions using Eq. (36) 

3.4) Estimate the statistical properties using Monte Carlo simulations 

 

3. Application to Nonlinear Systems using Bouc-Wen hysteresis  

The Bouc-Wen (BW) model is widely used in dynamical structures to represent the hysteretic behavior of 

nonlinear systems [22,31]. It was initially proposed by Bouc [60], subsequently modified by Wen [61] and 

thereafter extended by other researchers in the literature [62–64]. Details of the formulation in civil 

infrastructure can be found in references [63,65]. Herein, for demonstration purposes, it will be applied to a 

multistory building represented by a shear model with BW hysteretic-type inter-story nonlinearities.  

Specifically, the differential equation of motion is written in the form: 
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           ,Rt t t t t  Mu Cu F u z P   (37) 

where M  and C  are the mass and the viscous damping matrices,  tu  is the relative displacement 

response,     ,R t tF u z  is the nonlinear restoring force vector at time t, and  tP  is the input force vector. 

According to the shear building model, the i -th component of the vector     ,R t tF u z  is given by [28,63]:  

 
1i i i

R r rF F F     (38) 

01, ,i N , with 
1=0i

rF 
 for 0i N . According to the BW model the quantity 

i

rF  in Eq. (38) is the 

nonlinear inter-story restoring force given as [63]: 

      = + 1i

r i i i i i iF k u t k z t    (39) 

where  i i ik u t  corresponds to the elastic component whereas    1 i i ik z t  represents to the hysteretic 

component, ik  denotes the stiffness, i  defines the share of linear part while 1 i  define the share of 

nonlinear hysteretic part, and  iz t  is the virtual hysteretic displacement which comprises the hysteretic 

component of the system. Without including the pinching effect and degradation functions (stiffness or strength 

degradation), the formulation of the implemented hysteretic displacement  iz t  can be simplified as: 

              
1 in n

i i i i i i i i i iz t Au t u t z t z t u t z t 


     (40) 

where the parameter iA  determines the tangent stiffness, and the parameters ,i i   and in  affect the shape 

and smoothness of the hysteretic model, respectively.  

For solving the differential equation of the BW model, the state vector in state space form is given as:  

  

 

 

 

 

 
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  (41) 

The derivative of the state vector  ty  is readily obtained as: 

  

 

 

 

 
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  (42) 

The ordinary differential equations in (42) can then be solved numerically using the fourth-fifth order Runge-

Kutta method [66]. The implemented BW model at each structural element can be fully parameterized by 6 

parameters, namely the linear stiffness parameter  
1

n

i i
k


k  and the nonlinear parameters

     
1 1 1

= , = , =
n n n

i i ii i i
a A β

  
α A β    

1 1
, = , =

n n

i ii i
γ n

 
γ n . Selected parameters can be incorporated into the model 

parameters set θ  and subsequently identified based on the proposed HBM framework.  

In order to find the most probable values ˆ
iθ  needed in the HBM formulation in Eq. (23), one needs to 

solve an optimization problem of minimizing ( )iJ θ  in Eq. (8) with respect to the model parameters iθ . 

Gradient based optimization techniques are used which require the gradient of ( )iJ θ . These gradients require 

the knowledge of the derivatives  ty  of the response vector  ty  in (42) with respect to a model 

parameter   in the set iθ . Using the form in Eq.(42), analytical expressions can readily be developed for 

these derivatives. Specifically, the expressions for the derivatives  ty  constitute a set of differential 

equations that is also solved using the fourth-fifth order Runge-Kutta method. The formulation for the analytical 

derivatives is not included in this work, however, similar study can be found in [67].  

 

4. Illustrative examples 

 

4.1. Case study 1: calibration of a SDOF nonlinear system using a linear model 

This case study aims to demonstrate that uncertainties from processing multiple data sets arise due to model 
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error and to investigate the effectiveness of the HBM framework for quantifying uncertainties in the presence 

of model error. To introduce model error the physical system is assumed to be nonlinear and the model of the 

system to be linear. Specifically, a single degree of freedom (SDOF) nonlinear structure modeled by Bouc-Wen 

hysteretic type nonlinearity is employed as the physical system, as shown in Fig. 2(a). The mass m  and the 

viscous damping ratio   are assigned the nominal values of 1 kg and 2%, respectively. The initial stiffness k  

which corresponds to the linear component is set to the nominal value of 40 N/m. The values of the parameters 

associated with the nonlinear component are set to =0.5, =2, 2, 1n      and 1A  . The excitations are 

Gaussian sequences with mean zero and standard deviation of 5. Recorded measured data consisting of 

acceleration time histories that are simulated from the nonlinear model. Specifically, 100 data sets consisting of 

acceleration time histories are simulated from the nominal nonlinear model using different realizations of the 

white noise excitation. For each data set, the sampling rate is taken as 0.01s corresponding to a sampling 

frequency 100Hz for a total of 10 seconds. The linear model, shown in Fig. 2(b), used to represent the nonlinear 

system is parameterized with 2 model parameters 1 2=( , )T   associated with the stiffness and damping ratio. 

The parameters 1  and 2   multiply the nominal stiffness and damping ratio, respectively.  

 

 
Fig. 2 (a) SDOF system with BW hysteresis (b) SDOF linear model of the system in (a)  

 

The proposed HBM framework is next applied to identify the hyper parameters of the model and to predict 

the responses of the linear model. The MPVs of model parameters i  for each data set is computed according 

to Eq. (15), and the hessian matrix evaluated at i  is then calculated. The posterior distribution of the hyper-

parameters  1 2, , , θ θμ  can then be estimated using Eq. (23). Nested sampling algorithm [58] is employed 

here to draw the samples from the posterior distribution. The number of the initial samples and the tolerance 

value in the sampler are set to 500 and 0.01, respectively. The results of the posterior distribution of the hyper-

parameters corresponding to =100DN  is shown in Fig. 3, where the diagonal figures show the marginal PDF 

of each hyper parameter, and the lower diagonal sub-figures show the contour plots for each pair of the hyper 

parameters. The mean of the hyper parameters are also reported in Table 1. It can be seen from Fig. 3 that a 

clear peak appears for all the hyper parameters. The first two hyper parameters (hyper mean) have mean values 

of 0.9455 and 2.2607, respectively. These values deviate from their nominal values of (1,1)Tθμ  especially 

for the second hyper parameter due to the existence of substantial model error. Regarding the uncertainty of the 

model parameters, the variability of damping ratio with a coefficient of variation (cov) of 13.7% is much larger 

than the variability of the stiffness parameter with a cov of 1.47%. This is reasonable since the model response 

is more sensitive to the stiffness parameter than the damping ratio parameter. Furthermore, the marginal 

distribution of the hyper parameters in Fig. 3 provide the uncertainty in the estimates of the hyper parameters 

 ,θ θμ  with cov, computed from the samples, equal to (0.0015,0.0138) for θμ  and (0.0722,0.0708) for the 

diagonal elements of θ . Such uncertainties are large for the elements of the hyper covariance θ  and are 

expected to affect propagation of uncertainties into output QoI. As mentioned in the theoretical formulation, the 

uncertainty in such estimates is inversely proportional to the square root of the number of datasets and thus is 

expected to be higher for smaller number of datasets used. The last two parameters 1  and 2  aim to capture 

the uncertainty of the prediction error parameter. It is obvious that the two parameters exhibit a strong correlation 

as shown in Fig. 3 by the subplot corresponding to the projection of samples and contour to the two parameter 

space  1 2,  . With those parameters one can calculate the probability of the prediction error based on Eq. 

(35) and the mean of the prediction error is also reported in Table 1.  
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Fig. 3 Posterior distribution of the hyper-parameters 

 

Table 1 

Estimates of mean and standard deviation of the model parameters and prediction error parameters  

 

 Model parameters  Prediction error parameters 

1
ˆ
  

1
ˆ
  Cov, 1

1

ˆ

ˆ








 

2
ˆ
  

2
ˆ
  Cov, 2

2

ˆ

ˆ








 

1̂  2̂  ̂  

HBM 0.9455 0.0139 1.47% 2.2607 0.3105 13.7% 1.2863 0.0007 0.0260 

CBM 0.9390 0.0001 0.01% 2.4410 0.0019 0.078% - - 0.0690 

 

For the purpose of the comparisons between the proposed HBM approach and the conventional Bayesian 

method (CBM), 100 data sets used in HBM are incorporated in a single data set for investigating the 

performance of the CBM. Table 1 includes results of the mean estimates and the identification uncertainty of 

the model parameters obtained from the CBM. As seen, the CBM provides estimates of the mean of the model 

parameters that are quite close to the proposed HBM approach. However, a substantial difference is revealed 

regarding the extent of variability of the model parameters as quantified by the standard deviations in the two 

approaches. Specifically, the proposed HBM framework offers larger uncertainty estimates as opposed to the 

CBM which yields extremely small evaluations of the model parameter standard deviations. This feature of the 

proposed HBM approach is beneficial for predictions of realistic uncertainty bounds of the unobserved 

quantities of interest. Moreover, the proposed approach can predict the hyper parameters of the prediction error, 

elucidating explicitly a probability distribution of the prediction error parameter. It should be noted that the 

mean of the prediction error computed by CBM is larger than that by HBM. This is because the prediction error 

in CBM include both the expected variability to the model parameters due to multiple datasets and uncertainty 

for each data set due to the model error. In contrast, the proposed HBM split the two uncertainties, embedding 

part of the uncertainty in the model parameters, and therefore present a more reasonable framework for model 

predictions and structure assessments.  

The identification uncertainty of model parameter in each data set can be estimated according to Eq. (18), 

where the parameters 1  and 2  are assumed to be their mean evaluations from Table 1. Fig. 4 shows the 

plots of the identification uncertainty ˆ ˆ2
i i    (blue error bars) obtained based on individual data set 

1, , Di N , and the ensemble uncertainty (light blue shaded area) observed over multiple data sets for the 

model and prediction error parameters as a function of the number of data sets DN  with values of DN  

ranging from 1 to 100. Apparently, the identification uncertainty for each dataset is fairly small which is 
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attributed to the fact that a large amount of data points is used here in measurements. Such uncertainties can be 

negligible for further predictions. However, the ensemble uncertainty arising from the variability due to model 

error, is large and irreducible, tending to a constant value after approximately 10 datasets. More importantly, 

this uncertainty covers almost all the mean values of the individual model parameters, representing that the 

model parameter values have significant variabilities due to the presence of model error.  

 

 
Fig. 4 Estimates of identification uncertainty (blue error bars) for each dataset 1, , Di N , and estimates of 

ensemble uncertainty (light blue shaded area) as a function of the number of data sets DN  ranging from 1 to 

100  

 

The above mentioned uncertainties are propagated to predict output quantities of interest. The predictions 

are performed for observed and unobserved QoI in order to highlight the importance of the different 

uncertainties. For comparison purposes, the CBM is also employed to predict the QoI. There are conceptual 

differences between HBM and CBM in quantifying and handling uncertainties. The HBM embeds in the 

structural model parameters a significant part of the uncertainty due to the dataset variability, while CBM 

applied to all data sets results in an underestimation of the uncertainty of model parameters, embedding in the 

prediction error term most of the uncertainty arising from the data set variability. These differences are expected 

to affect differently the estimates of the UB for observed and unobserved QoI. For observed QoI, despite the 

conceptual differences between HBM and CBM, both methods are expected to provide similar uncertainty 

bounds when the overall uncertainties in model and prediction error parameters are considered. However, for 

unobserved QoI, estimates of the prediction error are not available to reliably propagate it in the response 

predictions. In this case, only the uncertainty of the structural model parameters is propagated to the predictions 

of the unobserved QoI. Fig. 5 shows the predictions of acceleration (observed QoI) where the uncertainties from 

both the model parameters and the prediction error parameter are considered. It is seen that by accounting for 

the overall uncertainties, both methods can provide reliable uncertainty bounds (UB) for the observed QoI and 

the actual response (as shown in the red line of Fig. 5(a)) which generates from a new input excitation falls 

inside of the UB. However, a significant difference between the HBM and CBM is shown in Fig. 6 for the 

predictions of displacement (unobserved QoI). Due to the fact that the prediction error is available only for the 

observed QoI, only the uncertainty of the model parameters is propagated to the predictions of the unobserved 

QoI. It is evident that owing to an underestimation of the identification uncertainty of model parameters, the 

CBM provides a thin UB if only the uncertainties of model parameters are considered, and the actual response 

falls outside of the thin UB. In contrast, the proposed HBM approach provides reasonable UB by accounting 



16 

 

for only the uncertainties of the model parameters as most parts of the actual displacement falls within the 

produced UB, as depicted in Fig. 6. 

  

 
Fig. 5 Predictions of acceleration using CBM (top) and HBM (bottom) 

 

 
Fig. 6 Predictions of displacement using CBM (top) and HBM (bottom) 

 

4.2. Case study 2: calibration of a 5 DOF nonlinear system with BW hysteretic model 

Fig. 7(a) shows a 5-DOF shear building model of a structure with mass =1m  kg, stiffness 0 =500k N/m, 

and hysteretic nonlinearities for the inter-story stiffness of each floor. The nominal values of the parameters of 

the nonlinear BW hysteretic model for each story are assumed to be 0 =0.1 , 0 =1 , 0 1  , 2A   and 1n 

, respectively. The physical system is assumed to be the model shown in Fig. 7(a) with the values of the model 

parameters corresponding to mass m , stiffness k  and the nonlinear parameters ,  and   in all five 

floors of the structure independently perturbed by 5% from their nominal values. The perturbed value of each 

parameter is different for each floor of the building. The other two parameters A  and n  are set to be their 

nominal values. The system is excited at the base with =25DN  different earthquake excitations taken from the 

engineering strong motion (ESM) database [68]. One of the earthquake excitations is shown in Fig. 2(b). 25 
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data sets of acceleration time histories are generated and used as measurements for identifying the model of the 

system. Most of the analysis and results that follow are based on time history measurement obtained from a 

single acceleration sensor located at the first story.  

The model of the system is parameterized using the four unknown parameters  1 2 3 4= , , ,   θ  

representing normalized , ,k    and  , denoted with red in Fig. 7(a). The parameters  1 2 3 4= , , ,   θ  are 

assumed to be the same for all stories and are normalized by the nominal values of the corresponding model 

properties such as 1 0k k , 2 0   , 3 0    and 4 0   . Therefore, the identification will involve 

estimating the stiffness parameter 1  and evaluating the material nonlinear parameters 2 3 4( , , )   . The other 

quantities are assumed to be deterministic with their values set to their nominal values. 

 

 

 

(a)  (b) 

Fig. 7 (a) 5-DOF shear model of a building system (b) Base earthquake excitation 

 

 
 

(a) (b) 

Fig. 8 (a) Comparisons between the measured acceleration response and prediction and (b) the actual 

hysteresis loop and prediction from optima model of the first floor.  

 

The proposed hierarchical Bayesian nonlinear model updating approach is applied to identify the stiffness 

and the parameters of the hysteretic nonlinearity. The MPV of the model parameters are estimated from each 

data set according to the first step of the proposed algorithm. To identify whether the updated model can match 

the real structure, the measured accelerations subjected to the base excitation in Fig. 7(b) and the corresponding 
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hysteresis loops of the first floor are plotted along with the responses from its optimal calibrated model, as 

shown in Fig. 8. As seen, there is a mismatch between the measurements and the predictions due to the presence 

of model error. Such discrepancy will be captured by the prediction error term. 

Subsequently, the posterior distributions of the hyper-parameters corresponding to 25 data sets are computed 

based on Eq. (23), and the results by using a single acceleration sensor located at the first story are shown in 

Fig. 9. The deviation of the estimated hyper mean values θμ  from unity indicates their departure from the 

nominal values of the real structure. It is indicated that the hyper means of the model parameters (linear and 

nonlinear) are not fairly close to the nominal values of the real structure due to model error, since the updated 

model cannot match the simulated measurements from the real structure perfectly. It is also noted that the values 

of hyper standard deviations are considerable for all the model parameters, corresponding to coefficient of 

variations ˆ ˆ/
i i    ranging from 1.21% to 13.65%, as shown in Table 2. These values indicate a relatively 

large variability in the model parameters from data set to data set. For the hyper parameters of prediction error, 

again a strong relationship between 1  and 2  is observed since the posterior distribution of prediction error 

depends on both of them.  

 

 
Fig. 9 Posterior distributions of hyper parameters computed based on Eq. (23)  

 

Table 2 

Estimates of means of hyper parameters 

1
ˆ
  0.9838 

2
ˆ
  1.0004 

3
ˆ
  1.0268 

4
ˆ
  1.2661 

1̂  7.2965 

1
ˆ
  0.0121 

2
ˆ
  0.0286 

3
ˆ
  0.0675 

4
ˆ
  0.1728 

2̂  0.0750 

1

1

ˆ

ˆ








 1.23% 

2

2

ˆ

ˆ








 2.86% 

3

3

ˆ

ˆ








 6.57% 

4

4

ˆ

ˆ








 13.65% - - 

 

The posterior distributions of the hyper parameters are also computed according to the analytical solutions 

derived in Eqs. (27)-(32), as shown in Fig. 10. Results from the analytical solutions are in good agreement with 

the ones from Eq. (23). It is also noted that a slightly difference for the uncertainty bounds of the hyper 

parameters can be found between Fig. 9 and Fig. 10. This is due to the fact that the posterior distribution of the 
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hyper parameters computed by the analytical solutions are under the conditions where the posterior distributions 

are approximated as a Gaussian distribution. The uncertainties of the hyper parameters are neglected in the 

analytical solution while the uncertainties of sampling based on Eq. (23) are considered for the hyper 

parameters. However, based on the theoretical results developed in this work, such differences are expected to 

be reduced for large number of data sets.  

 

 
Fig. 10 Posterior distributions of hyper parameters computed based on the analytical solutions 
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Fig. 11 Estimates of identification uncertainty in each dataset and uncertainty due to variability overall 

datasets 

 

Moreover, the identification uncertainty for each data set calculated by the optimization procedure is 

compared to the uncertainty due to variability computed by the whole HBM framework. Results for the marginal 

PDF of the model parameters for each dataset and the marginal PDF of the model parameters estimated from 

HBM are presented in Fig. 11. It is shown that the identification uncertainty of the model and prediction error 

parameters in each data set (with blue) is much smaller than the ensemble uncertainty over all data sets (with 

red), and therefore the identification uncertainty can be negligible with sufficient number of data points. It is 

also seen that the mean of the parameters in each data set varies over different data sets due to the presence of 

model error. However, most of the mean values fall within the ensemble uncertainty bounds derived from the 

proposed HBM framework. 

For the purpose of comparing the proposed method with the full sampling (FS) method [43,51] as well as 

the conventional Bayesian method (CBM), results of the mean values of the hyper parameters alongside the 

prediction error parameters are depicted in Fig. 12. It is clear that the proposed approach can capture the 

ensemble uncertainty of the model parameters and provide clear estimates of the model error while the 

conventional Bayesian approach fails to reach the same values. Although the CBM offers a relatively good 

accuracy in terms of the means of the model parameters, it severely underestimates the uncertainty of the model 

parameters, incorporating such uncertainties into the prediction error term together with the identification 

uncertainty and the model error uncertainty. As a result, CBM overestimates the value of the prediction error 

parameter. The proposed method can accurately estimate almost the same values as the FS approach but at a 

significantly reduced computational effort. The computational effort for the proposed and the FS method, carried 

out in a computer with a 32-core processor, are reported in Table 3. It is clear that the computational effort of 

the proposed method is around 10 times faster than that with the FS approach in the first step, and around 5 

times faster in the second step. Therefore, the proposed method can not only guarantee the computational 

accuracy but also improve the computational efficiency to a great extent.  

 In general, for the asymptotic approximations, the computational complexity in the first step depends on 

the number of floating-point operations 0P  and 1P  required respectively for solving the system of differential 

equations (42) for the response and the system of differential equations for the derivatives of the response with 

respect to a model parameter. This computational complexity scales linearly with the number of parameters N  

to be estimated, the number of iterations iterN  required for convergence of the gradient-based optimization 
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algorithm, and the number of datasets DN , resulting in the in the computational effort of the order of 

0 1 iter( + ) DP P N N N . For the full sampling approach, the computational complexity depends on the number of 

floating-point operations 0P  required to solve the differential equations (42), and it scales linearly with the 

number of samples sN  required in nested sampling algorithm. The computational complexity for all DN

datasets is given by 0 s DP N N . Usually 1P  is of the order of 0P  and iterN  is much smaller than sN  so that 

for small N  the computational effort for the asymptotic approximation is expected to be substantially smaller 

than the one required in full sampling approach. In terms of the parallel efficiency, each dataset in the first step 

can be processed independently, and from this point of view, the algorithm is parallelizable.  

 

 
Fig. 12 Mean estimates of the hyper parameters and prediction error parameters by using the proposed 

method, FS and CBM 

 

Table 3 

Computational effort of the proposed method and FS method 

 Step 1 Step 2 Total 

Proposed 52s 23s 75s 

FS 652s 115s 767s 

 

The estimated uncertainty of the model parameters and the uncertainty from prediction error parameters are 

next used to predict output QoI. Results are presented for two cases. In the first case, relevant to observed QoI 

such as accelerations in this example, the uncertainty in both the structural model and prediction error 

parameters is propagated. In the second case, relevant to unobserved quantities of interest such as displacement, 

only the uncertainty in the structural model parameters is propagated to the responses since the prediction error 

term and its uncertainty is not known. Fig. 13 depicts the predicted accelerations along with the measured 

accelerations of the first floor using CBM and HBM. As expected, both methods can offer a good accuracy and 

most of the actual response is contained within the uncertainty bounds. However, it should be noted that the 

sources of uncertainties from both CBM and HBM are conceptually different, with significant part of the 

uncertainty in the HBM method to be embedded in the structural model parameter, while most of the uncertainty 

in the CBM to be quantified in the model prediction term. Fig. 14 shows uncertainty propagation results of 

considering only the structural model parameter uncertainty for the predictions. The displacements of the first 

floor are predicted as the unobserved quantities using CBM and HBM. Fig. 15 shows the results for the 
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unobserved displacement of the nonlinear part 
iz  of the response using CBM and the proposed HBM. It is 

observed that the proposed method delivers a reasonably accurate uncertainty bound which contains most of the 

measurements while the conventional Bayesian method provides an extremely thin uncertainty bound where 

the measurement falls outside.  

 

 
Fig. 13 Predictions of accelerations of the first floor using CBM (top) and HBM (bottom) 

 

 
Fig. 14 Predictions of displacement of the first floor CBM (top) and HBM (bottom) 

 



23 

 

 
Fig. 15 Predictions of nonlinear displacements of the first floor CBM (top) and HBM (bottom) 

 

Finally, the effect of sensor locations and number of sensors on the estimation of the parameters and 

uncertainties is investigated. Results for the most probable values of the hyper parameters are reported in Table 

4 for one acceleration sensor placed either at first or fifth floor, 2 acceleration sensors placed at first and fifth 

floors, as well as 5 acceleration sensors placed at all the floors. It can be seen that different sensor configurations 

affect the estimates of the hyper parameters. These differences in the estimates from different sensor 

configurations are expected to affect uncertainties in structural and prediction error model parameters. Results 

for the posterior PDF of the model and prediction error parameters, computed according to Eqs. (34) and (35)

, are shown in Fig. 16 for the different sensor configurations considered in Table 4. These results suggests that 

the mean estimate of the parameters as well as the spread of uncertainty in the parameters depend on the number 

and location of sensors. Measurements from different sensor locations may cause different prediction errors and 

thus affect the parameter uncertainty due to the presence of model error. Placing a single sensor at the first floor 

reduces the prediction error. Increasing the number of sensors and thus the number of measurements, although 

is expected to reduce the identification accuracy by reducing the uncertainties in the estimates of the model 

parameters for each data set, it does not significantly affect the spread of uncertainty due to the variability from 

multiple datasets.  

 

  Table 4 

  Statistical information of model parameters and prediction error parameter corresponding to Fig. 16 

Sensor(s) 
1

  
1

  
2

  
2

  
3

  
3

  
4

  
4

    

1st floor 0.9838 0.0121 1.0004 0.0284 1.0261 0.0653 1.2605 0.1728 0.1040 

5th floor 1.0159 0.0173 0.9201 0.0376 0.8594 0.0991 1.8660 0.2486 0.1615 

1st and 5th floors 1.0078 0.0139 0.9728 0.0320 0.9253 0.0720 1.8204 0.2399 0.1582 

All the floors 1.0085 0.0102 0.9880 0.0197 0.9822 0.0926 1.8730 0.2278 0.1686 
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Fig. 16 Probabilistic distributions of the model and prediction error parameters 

 

5. Conclusions 

A nonlinear model updating strategy based on HBM framework is proposed and evaluated when applied to 

two numerical models of nonlinear systems characterized by Bouc-Wen hysteresis type nonlinearities. 

According to the HBM framework, uncertainties due to the variability arising from multiple datasets are 

embedded in the model parameters by assigning a Gaussian prior distribution to the model parameters with 

hyper parameters defined as the mean and the covariance matrix of the Gaussian distribution. The unmodelled 

dynamics are included in Gaussian prediction error by assigning a hyper Inverse Gamma prior distribution to 

the prediction error variance parameter. Introducing such a prior model is reasonable and beneficial since it can 

provide the posterior distribution for the prediction error variance, which is further used for propagating the 

uncertainties to future excitations, not used in the inference process. Asymptotic approximations are introduced 

to obtain insightful analytical expression for the posterior distribution of the hyper parameters. The accuracy of 

the asymptotic approximations is guaranteed due to the large number of data involved in the time history 

measurements for each dataset. Sampling from this posterior distribution of the hyper parameters is 

computationally very efficient since there are no expensive model runs involved at this stage. The resulting 

analytical expressions provide valuable insight into the mean and covariance of the hyper parameters and their 

dependence of the most probable values and identification uncertainty of the model parameters estimated for 

each dataset, as well as the variability in the model parameter estimates arising from multiple datasets. In 

particular, the analytical expressions were used to show that the structural model hyper parameters are 

independent from the model prediction error hyper parameters for large number of data within each data set. 

This feature leads to analytical derivations and interpretations of the MPV and the uncertainties of the overall 

hyper parameters.  

Two numerical examples are used to demonstrate the effectiveness and applicability of the proposed HBM 

framework. It is clearly demonstrated that the irreducible uncertainty arising from the variability of the multiple 

datasets is due to model error, while the identification uncertainty for each dataset can be reduced as the number 

of data in each dataset increases. The HBM framework is capable of accounting for the irreducible uncertainty, 

while conventional Bayesian inference fails to account for such uncertainty, resulting to underestimation of 

uncertainty bounds for the structural model and prediction error parameters. In particular, embedding the 

uncertainties due to variability from multiple datasets to the structural model parameters has the effect of 
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obtaining reasonable uncertainty bounds for unobserved response QoI as opposed to significantly 

underestimated uncertainty bounds obtained from the classical Bayesian inference framework. Moreover, 

although the number and location of sensors seems to slightly affect the values of the hyper parameters and thus 

affect the model parameter estimates and uncertainties, increasing the number of sensors does not substantially 

affect the irreducible uncertainty arising from the variability due to multiple datasets. Finally, the asymptotic 

approximation is shown to provide one order of magnitude reduction of the computational effort compared to 

existing full sampling approach for the considered case study. 
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Appendix A. Calculation for the integral in Eq. (10) 

Substituting the likelihood function 2(D | , )i i ip θ  from Eq. (7) and the inverse gamma distribution form 

Eq. (6) to the integral in Eq. (10) yields: 
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The integral in Eq. (A1) can be obtained analytically as: 

  
1

0 1

2

0
( )

2
2 2 2 0

1 22

( )+
2exp = ( ) ( )+

2
i

i

i
f

i
N N i

i i i

i

N N
J

N N
d f J








   





  

 
   
    

  
 


θ

θ   (A2) 

where     is the Gamma function and 1( )f   is defined as: 
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Substituting (A2) into (A1) one derives Eq. (11).  

 

Appendix B. Calculation for the MPV and hessian matrix in Eq. (15) and Eq. (16) 

The first order derivative of function  1 2, ,iL  θ  in Eq. (13) with respect to parameters iθ  can be 

computed as: 
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Setting the derivatives equal to zero one can obtain the MPV of parameters iθ  as:  
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i
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θ θ   (B2) 

The hessian of the function  1 2, ,iL  θ  can be also calculated as follows: 
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where    =
i i

T

i iJ θ θH θ θ  is the hessian of the function  iJ θ . Substituting ˆ
iθ  calculated from Eq. (B2) 

into Eq. (B3) and noting that  ˆ
i iJ 
θ

θ 0  one can get the hessian matrix evaluated at the MPV ˆ
iθ  of the 

parameters in the form given in Eq. (16).  
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