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Abstract
Neural networks are composed of multiple layers
arranged in a hierarchical structure jointly trained
with a gradient-based optimization. At each op-
timization step, neurons at a given layer receive
feedback from neurons belonging to higher lay-
ers of the hierarchy. In this paper, we propose to
complement this traditional ’between-layer’ feed-
back with additional ’within-layer’ feedback to
encourage diversity of the activations within the
same layer. To this end, we measure the pairwise
similarity between the outputs of the neurons and
use it to model the layer’s overall diversity. By pe-
nalizing similarities and promoting diversity, we
encourage each neuron to learn a distinctive rep-
resentation and, thus, to enrich the data represen-
tation learned within the layer and to increase the
total capacity of the model. We theoretically and
empirically study how the within-layer activation
diversity affects the generalization performance
of a neural network and prove that increasing the
diversity of hidden activations reduces the gener-
alization gap.

1. Introduction
Neural networks are a powerful class of non-linear function
approximators that have been successfully used to tackle a
wide range of problems. They have enabled breakthroughs
in many tasks, such as image classification (Krizhevsky
et al., 2012), speech recognition (Hinton et al., 2012a), and
anomaly detection (Golan & El-Yaniv, 2018). However,
neural networks are often over-parameterized, i.e., have
more parameters than data. As a result, they tend to overfit
to the training samples and not generalize well on unseen
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examples (Goodfellow et al., 2016). While research on
double descent (Belkin et al., 2019; Advani et al., 2020;
Nakkiran et al., 2020) shows that over-parameterization
does not necessarily lead to overfitting, avoiding overfit-
ting has been extensively studied (Neyshabur et al., 2018;
Nagarajan & Kolter, 2019; Poggio et al., 2017) and vari-
ous approaches and strategies have been proposed, such as
data augmentation (Goodfellow et al., 2016; Zhang et al.,
2018), regularization (Kukačka et al., 2017; Bietti et al.,
2019; Arora et al., 2019), and dropout (Hinton et al., 2012b;
Wang et al., 2019; Lee et al., 2019; Li et al., 2016), to close
the gap between the empirical loss and the expected loss.

Diversity of learners is widely known to be important in
ensemble learning (Li et al., 2012; Yu et al., 2011) and, par-
ticularly in deep learning context, diversity of information
extracted by the network neurons has been recognized as
a viable way to improve generalization (Xie et al., 2017a;
2015). In most cases, these efforts have focused on mak-
ing the set of weights more diverse (Yang et al.; Malkin &
Bilmes, 2009). However, diversity of the activations has not
received much attention.

To the best of our knowledge, (Cogswell et al., 2016) is
the only work in neural network context which considers
diversity of the activations directly. They propose an ad-
ditional loss term using cross-covariance of hidden acti-
vations, which encourages the neurons to learn diverse or
non-redundant representations. The proposed approach,
known as DeCov, has empirically been proven to allevi-
ate overfitting and to improve the generalization ability of
neural network, yet a theoretical analysis to prove this has
so far been lacking. Moreover, modeling diversity as the
sum of the pair-wise cross-covariance, it can capture only
the pairwise diversity between components and is unable to
capture the higher-order “diversity”.

In this work, we start by theoretically showing that the
within-layer activation diversity boosts the generalization
performance of neural networks and reduces overfitting.
Moreover, we propose a novel approach to encourage acti-
vation diversity within a layer. We propose complementing
the ’between-layer’ feedback with additional ’within-layer’
feedback to penalize similarities between neurons on the
same layer. Thus, we encourage each neuron to learn a dis-
tinctive representation and to enrich the data representation
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learned within each layer. We propose three variants for
our approach that are based on different global diversity
definitions.

Our contributions in this paper are as follows:

• Theoretically, we analyse the effect of the within-layer
activation diversity on the generalization error bound of
neural network. As shown in Theorems 1-6, we express
the upper-bound of the estimation error as a function
of the diversity factor. Thus, we provide theoretical
evidence that the within-layer activation diversity can
help reduce the generalization error.

• Methodologically, we propose a new approach to en-
courage the ’diversification’ of the layers’ output fea-
ture maps in neural networks. The main intuition is
that by promoting the within-layer activation diversity,
neurons within a layer learn distinct patterns and, thus,
increase the overall capacity of the model.

• Empirically, we show that the proposed within-layer
activation diversification boosts the performance of
neural networks.

2. Generalization error analysis
In this section, we analyze how the within-layer activation
diversity affects the generalization error of a neural network.
Generalization theory (Zhang et al., 2017; Kawaguchi et al.,
2017) focuses on the relation between the empirical loss and
the expected risk defined as follows:

L(f) = E(x,y)∼Q[l(f(x), y)], (1)

where Q is the underlying distribution of the dataset. Let
f∗ = argminf L(f) be the expected risk minimizer and
f̂ = argminf L̂(f) be the empirical risk minimizer. We
are interested in the estimation error, i.e., L(f∗) − L(f̂),
defined as the gap in the loss between both minimizers
(Barron, 1994). The estimation error represents how well an
algorithm can learn. It usually depends on the complexity
of the hypothesis class and the number of training samples
(Barron, 1993; Zhai & Wang, 2018).

In this work, we are interested in the effect of the within-
layer activation diversity on the estimation error. In order
to study this effect, we assume that with a high probability
τ , the distance between the output of each pair of neurons,
(φn(x)−φm(x))2, is lower bounded by d2min for any input
x. Intuitively, if two neurons n and m have similar outputs
for many samples, their corresponding similarity dmin will
be small. Otherwise, their similarity dmin is small and they
are considered “diverse”. By studying how dmin affects the
generalization of the model, we can theoretically understand
how diversity affects the performance of neural networks.

To this end, we derive generalization bounds for neural
networks using dmin.

Several techniques have been used to quantify the estimation
error, such as PAC learning (Hanneke, 2016; Arora et al.,
2018), VC dimension (Sontag, 1998; Harvey et al., 2017;
Bartlett et al., 2019), and the Rademacher complexity (Xie
et al., 2015; Zhai & Wang, 2018; Tang et al., 2020). The
Rademacher complexity has been widely used as it usually
leads to a tighter generalization error bound (Sokolic et al.,
2016; Neyshabur et al., 2018; Golowich et al., 2018). In this
work, we also rely on the Rademacher complexity to study
diversity. We seek a tighter upper bound of the estimation
error and show how the within-layer diversity, expressed
with dmin, affects the bound. We start by deriving such an
upper-bound for a simple network with one hidden layer
trained for a regression task and then we extend it for a
general multi-layer network and for different losses. The
proofs are provided as supplementary material.

2.1. Single hidden-layer network

Here, we consider a simple neural network with one hidden-
layer with M neurons and one-dimensional output trained
for a regression task. The full theoretical characterization of
the setup can be summarized in the assumptions presented
in Appendix 6.1

Our main goal is to analyze the estimation error bound of
the neural network and to see how its upper-bound is linked
to the diversity, expressed by dmin, of the different neurons.
The main result is presented in Theorem 1.
Theorem 1. Under Assumptions 1, there exist a constant A,
such that with probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤
(√
J + C2

)
A

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (2)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0).

Theorem 1 provides an upper-bound for the estimation error.
We note that it is a decreasing function of dmin. Thus, we
say that a higher dmin, i.e., more diverse activations, yields a
lower estimation error bound. In other words, by promoting
the within-layer diversity, we can reduce the generalization
error of neural networks.

2.2. Binary classification

We now extend our analysis of the effect of the within-layer
diversity on the generalization error in the case of a binary
classification task, i.e., y ∈ {−1, 1}. The extensions of
Theorem 1 in the case of a hinge loss and a logistic loss are
presented in Theorems 2 and 3, respectively.
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Theorem 2. Using the hinge loss, there exist a constant A,
such that with probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A+ (1 +
√
J )
√

2 log(2/δ)

N
, (3)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0).
Theorem 3. Using the logistic loss l(f(x), y) = log(1 +
e−yf(x)), there exist a constant A such that, with probability
at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A

1 + e
√
−J

+ log(1 + e
√
J )

√
2 log(2/δ)

N
, (4)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0).

As we can see, also for the binary classification task, the
error bounds of the estimation error for the hinge and logistic
losses are decreasing with respect to dmin. Thus, employing
a diversity strategy can improve the generalization also for
the binary classification task.

2.3. Multi-layer networks

Here, we extend our result for networks with P (> 1) hidden
layers. We assume that the pair-wise distances between the
activations within layer p are lower-bounded by dpmin with
a probability τp. In this case, the main theorem is extended
as follows:
Theorem 4. There exist a constant A such that, with proba-
bility of at least

∏P−1
p=0 (τ

p)Q
p

(1− δ), we have

L(f̂)− L(f∗) ≤ (
√
J P + C2)A

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N
, (5)

where Qp is the number of neuron pairs in the pth layer,
defined as Qp = Mp(Mp−1)

2 , and J P is defined recur-
sively using the following identities: J 0 = C0

3C1 and
J p = MpCp2

(
Mp2(LφC

p−1
3 J p−1 + φ(0))2 −M(M −

1)
dpmin

2

2 )
)
, for p = 1, . . . , P .

In Theorem 4, we see that J P is decreasing with respect
to dpmin. Thus, we see that maximizing the within-layer
diversity, we can reduce the estimation error of a multi-layer
neural network.

2.4. Multiple outputs

Finally, we consider the case of a neural network with a
multi-dimensional output, i.e., y ∈ RD. This yields the
following two theorems:

Theorem 5. For a multivariate regression trained with the
squared error, there exist a constant A such that, with prob-
ability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ (
√
J + C2)A

+
D

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (6)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0).

Theorem 6. For a multi-class classification task using the
cross-entropy loss, there exist a constant A such that, with
probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A

D − 1 + e−2
√
J

+ log
(
1 + (D − 1)e2

√
J
)√2 log(2/δ)

N
, (7)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0).

Theorems 5 and 6 extend our result for the multi-
dimensional regression and classification tasks, respectively.
Both bounds are inversely proportional to the diversity fac-
tor dmin. We note that for the classification task, the upper-
bound is exponentially decreasing with respect to dmin.
This shows that increasing diversity within the layer yields a
tighter generalization gap and, thus, theoretically guarantees
a stronger generalization performance.

3. Within-layer activation diversity
As shown in the previous section, promoting diversity of
activations within a layer can lead to tighter generalization
bound and can theoretically decrease the gap between the
empirical and the true risks. In this section, we propose a
novel diversification strategy, where we encourage neurons
within a layer to activate in a mutually different manner,
i.e., to capture different patterns. To this end, we propose
an additional within-layer loss which penalizes the neurons
that activate similarly. The standard loss function L̂(f)

is augmented as follows: L̂aug(f) = L̂(f) + λ
∑P
i=1 J

i,
where J i expresses the overall similarity of the neurons
within the ith layer and λ is the penalty coefficient for the
diversity loss. Our proposed diversity loss can be applied to
a single layer or multiple layers in a network. For simplicity,
let us focus on a single layer.

Let φin(xj) and φim(xj) be the outputs of the nth and mth

neurons in the ith layer for the same input sample xj . The
similarity snm between the the nth and mth neurons can be
obtained as the average similarity measure of their outputs
for N input samples. We use the radial basis function to



ICML 2021 workshop on Information-Theoretic Methods for Rigorous, Responsible, and Reliable Machine Learning

express the similarity:

snm =
1

N

N∑
j=1

exp
(
− γ||φin(xj)− φim(xj)||2

)
, (8)

where γ is a hyper-parameter. The similarity snm can be
computed over the whole dataset or batch-wise. Intuitively,
if two neurons n and m have similar outputs for many sam-
ples, their corresponding similarity snm will be high. Other-
wise, their similarity smn is small and they are considered
“diverse”. Based on these pair-wise similarities, we propose
three variants for the overall similarity J i:

• Direct: J i =
∑
n6=m snm. In this variant, we model

the global layer similarity directly as the sum of the
pairwise similarities between the neurons.

• Det: J i = −det(S), where S is defined as Snm =
snm. This variant is inspired by the Determinantal
Point Process (DPP) (Kulesza & Taskar, 2010; 2012).

• Logdet: J i = −logdet(S)1. This variant has the same
motivation as the second one. We use logdet instead
of det as logdet is a convex function over the positive
definite matrix space.

It should be noted here that the first proposed variant, i.e., di-
rect, similar to Decov (Cogswell et al., 2016), captures only
the pairwise diversity between components and is unable
to capture the higher-order “diversity”, whereas the other
two variants consider the global similarity and are able to
measure diversity in a more global manner.

4. Experiments
To demonstrate the effectiveness of our approach and its abil-
ity to reduce the generalization gap in neural networks, we
conduct image classification experiments on the ImageNet-
2012 dataset (Russakovsky et al., 2015) using the ResNet50
model (He et al., 2016). The diversity term is applied on the
last intermediate layer, i.e., the global average pooling layer.
The training protocol is presented in the appendix 6.3.

We analyse the effect of the two parameters: γ, which is
the RBF parameter used to measure the pair-wise similarity
between two units, and λ, which controls the contribution
of the global diversity term to the global loss, on both the
final performance of the models and its generalization abil-
ity, i.e., generalization gap. The analysis is presented in
Figure 1. As it can be seen, promoting the within-layer
diversity consistently reduces overfitting and decreases the
generalization gap for most of the hyperparameters values.

1This is defined only if S is positive definite. It can be shown
that in our case S is positive semi-definite. Thus, in practice we use
a regularized version (S + εI) to ensure the positive definiteness.

Moreover, we note that global modeling of diversity, i.e.,
det and logdet variants, yield tighter generalization gaps
between the train and test errors compared to the non-global
direct approach. In fact, while direct variant decreases the
generalization gap compared to the standard approach, it
decreases it only by 0.5% for most hyperparameter values,
whereas, for the more global approaches, i.e., det and logdet,
the generalization gap is less than 1.1% in multiple cases
compared to the gaps 2.87% and 2.50% achieved by the
standard approach and the direct variant, respectively.

For the direct variant (the curves in blue), we note that the
performance of the method is not sensitive the hyperparam-
eters, and the method achieves its best performance for low
values of λ and γ. For the det variant (the curves in orange),
we note that it significantly improves the generalization abil-
ity of the model. However, there is a trade-off between the
generalization gap and the final error. In fact, emphasizing
diversity and using a high weight for the diversity term sig-
nificantly decreases the generalization gap. This damages
the performance of the model compared to the standard
approach. For example, with λ = 0.01 and γ = 10, the
generalization gap of the model is 0.9% compared to 2.87%
of the standard. However, the test error for this model gets
up to 24.42% compared to 23.87% for the standard. For
lower values of λ, the model is able to significantly outper-
form the standard approach on both the test error and the
generalization gap. For the logdet variant (green curves),
we note that, in terms of generalization gap, the approach
consistently outperforms the standard approach. Using a
small value for λ, the model yields lower error rates than
the standard approach. For high values of λ, the error rates
become similar to the standard approach but with a lower
generalization gap. This variant is not sensitive to the hyper-
parameter γ. Additional empirical results are presented in
appendix 6.4.

5. Conclusions
In this paper, we proposed a new approach to encourage
‘diversification’ of the layer-wise feature map outputs in
neural networks. The main motivation is that by promoting
within-layer activation diversity, neurons within the same
layer learn to capture mutually distinct patterns. We pro-
posed an additional loss term that can be added on top of
any layer. This term complements the traditional ‘between-
layer’ feedback with an additional ‘within-layer’ feedback
encouraging diversity of the activations. We theoretically
proved that the proposed approach decreases the estimation
error bound and, thus, improves the generalization ability
of neural networks. This analysis was further supported by
experimental results showing that such a strategy can indeed
improve the performance of state-of-the-art networks.
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Figure 1. Sensitivity analysis of λ and γ on both the model accuracy and its generalization ability
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6. Appendix
6.1. Theoretical assumptions

The full theoretical characterization of the setup can be
summarized in the following assumptions:

Assumptions 1.

• The activation function of the hidden layer, φ(t), is a
positive Lφ-Lipschitz continuous function.

• The input vector x ∈ RD satisfies ||x||2 ≤ C1.

• The output scalar y ∈ R satisfies |y| ≤ C2.

• The weight matrix W = [w1,w2, · · · ,wM ] ∈
RD×M connecting the input to the hidden layer satis-
fies ||wm||2 ≤ C3.

• The weight vector v ∈ RM connecting the hidden-
layer to the output neuron satisfies ||v||2 ≤ C4.

• The hypothesis class is F = {f |f(x) =∑M
m=1 vmφm(x) =

∑M
m=1 vmφ(w

T
mx)}.

• Loss function set is A = {l|l(f(x), y) = 1
2 |f(x) −

y|2}.

• With a probability τ , for n 6= m, (φn(x)−φm(x))2 =
(φ(wT

nx)− φ(wT
mx))

2 ≥ d2min.

6.2. Section 2 proofs:

We recall the following two lemmas related to the estimation
error and three Rademacher complexity:

Lemma 1. (Bartlett & Mendelson, 2002) For F ∈ RX , as-
sume that g : R −→ R is a Lg-Lipschitz continuous function
and A = {g ◦ f : f ∈ F}. Then we have

RN (A) ≤ LgRN (F). (9)

Lemma 2. (Xie et al., 2015; Bartlett & Mendelson, 2002)
With a probability of at least 1− δ

L(f̂)− L(f∗) ≤ 4RN (A) +B

√
2 log(2/δ)

N
(10)

for B ≥ supx,y,f |l(f(x), y)|, where RN (A) is the
Rademacher complexity of the loss set A.

Lemma 3. (Xie et al., 2015) Under Assumptions 1,
the Rademacher complexity RN (F) of the hypothe-
sis class F = {f |f(x) =

∑M
m=1 vmφm(x) =∑M

m=1 vmφ(w
T
mx)} can be upper-bounded as follows:

RN (F) ≤ 2LφC134

√
M√

N
+
C4|φ(0)|

√
M√

N
, (11)

where C134 = C1C3C4 and φ(0) is the output of the acti-
vation function at the origin.
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Lemma 2 bounds the estimation error using the Rademacher
complexity and the supremum of the loss class Lemma 3
provides an upper-bound of the Rademacher complexity for
the hypothesis class.

In the following proofs, we use Lipschitz analysis. In par-
ticular, a function f : A → R, A ⊂ Rn, is said to be
L-Lipschitz, if there exist a constant L ≥ 0, such that
|f(a)−f(b)| ≤ L||a−b|| for every pair of points a, b ∈ A.
Moreover:

• supx∈A f ≤ sup(L||x||+ f(0)).

• if f is continuous and differentiable, L = sup |f ′(x)|.

6.2.1. PROOF OF THEOREM 1

In order to find an upper-bound for our estimation error, we
start by deriving an upper bound for supx,f |f(x)|;

Lemma 4. Under Assumptions 1, with a probability at least
τQ, we have

sup
x,f
|f(x)| ≤

√
J , (12)

where Q is equal to the number of neuron pairs defined
by M neurons, i.e. Q = M(M−1)

2 , and J = C2
4

(
MC2

5 +

M(M − 1)(C2
5 − d2min/2)

)
and C5 = LφC1C3 + φ(0).

Proof.

f2(x) =

(
M∑
m=1

vmφm(x)

)2

≤

(
M∑
m=1

||v||∞φm(x)

)2

≤ ||v||2∞

(
M∑
m=1

φm(x)

)2

≤ C2
4

(
M∑
m=1

φm(x)

)2

= C2
4

(∑
m,n

φm(x)φn(x)

)
= C2

4

∑
m

φm(x)2 +
∑
m 6=n

φn(x)φm(x)


(13)

We have supm w,xφ(x) < sup(Lφ|wTx|+φ(0)) because
φ is Lφ-Lipschitz. Thus, ||φ||∞ < LφC1C3 + φ(0) = C5.
For the first term in equation 13, we have∑
m φm(x)2 < M(LφC1C3 + φ(0))2 = MC2

5 .
The second term, using the identity φm(x)φn(x) =
1
2

(
φm(x)2 + φn(x)

2 − (φm(x)− φn(x))2
)
, can be

rewritten as∑
m 6=n

φm(x)φn(x) =
1

2

∑
m 6=n

φm(x)2+φn(x)
2−
(
φm(x)−φn(x)

)2
.

(14)
In addition, we have with a probability τ , ||φm(x)− φn(x)||22 ≥
dmin for m 6= n. Thus, we have with a probability at least τQ:∑

m 6=n

φm(x)φn(x) ≤
1

2

∑
m 6=n

(2C2
5 − d2min)

=M(M − 1)(C2
5 − d2min/2). (15)

By putting everything back to equation 13, we have with a proba-
bility τQ,

f2(x) ≤ C2
4

(
MC2

5 +M(M − 1)(C2
5 −d2min/2)

)
= J . (16)

Thus, with a probability τQ,

sup
x,f
|f(x)| ≤

√
sup
x,f

f(x)2 ≤
√
J . (17)

Note that in Lemma 4, we have expressed the upper-bound
of supx,f |f(x)| in terms of dmin. Using this bound, we
can now find an upper-bound for supx,f,y |l(f(x), y)| in
the following lemma:

Lemma 5. Under Assumptions 1, with a probability at least
τQ, we have

sup
x,y,f

|l(f(x), y)| ≤ 1

2
(
√
J + C2)

2 (18)

Proof. We have supx,y,f |f(x) − y| ≤ supx,y,f (|f(x)| +
|y|) = (

√
J + C2). Thus supx,y,f |l(f(x), y)| ≤ 1

2 (
√
J +

C2)
2.

The main goal is to analyze the estimation error bound of
the neural network and to see how its upper-bound is linked
to the diversity, expressed by dmin, of the different neurons.
Now we can prove our main Theorem 1:

Theorem 1 Under Assumptions 1, there exist a constant A,
such that with probability at least τQ(1− δ), we have

L(f̂)−L(f∗) ≤
(√
J+C2

)
A+

1

2
(
√
J+C2)

2

√
2 log(2/δ)

N
(19)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
, and

C5 = LφC1C3 + φ(0).

Proof. Given that l(·) is K-Lipschitz with a constant K =
supx,y,f |f(x)−y| ≤ (

√
J +C2), and using Lemma 1, we

can show thatRN (A) ≤ KRN (F) ≤ (
√
J +C2)RN (F).

For RN (F), we use the bound found in Lemma 3. Using
Lemmas 2 and 5, we have

L(f̂)−L(f∗) ≤ 4
(√
J+C2

)(
2LφC134+C4|φ(0)|

)√M√
N

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(20)

whereC134 = C1C3C4, J = C2
4

(
MC2

5+M(M−1)(C2
5−

d2min/2)
)
, and C5 = LφC1C3 + φ(0). Thus, taking A =

4
(
2LφC134 + C4|φ(0)|

)√
M√
N

completes the proof.
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6.2.2. PROOF OF THEOREMS 2 AND 3

Similar to the proofs of Lemmas 7 and 8 in (Xie et al., 2015),
we can show the following two lemmas:

Lemma 6. Using the hinge loss, we have with probability
at least τQ(1− δ)

L(f̂)− L(f∗) ≤ 4
(
2LφC134 + C4|φ(0)|

)√M√
N

+ (1 +
√
J )
√

2 log(2/δ)

N
(21)

whereC134 = C1C3C4, J = C2
4 (MC2

5+M(M−1)(C2
5−

d2min/2)
)
, and C5 = LφC1C3 + φ(0).

Lemma 7. Using the logistic loss l(f(x), y) = log(1 +
e−yf(x)), we have with probability at least τQ(1− δ)

L(f̂)−L(f∗) ≤ 4

1 + e
√
−J

(
2LφC134+C4|φ(0)|

)√M√
N

+ log(1 + e
√
J )

√
2 log(2/δ)

N
(22)

whereC134 = C1C3C4, J = C2
4 (MC2

5+M(M−1)(C2
5−

d2min/2)
)
, and C5 = LφC1C3 + φ(0).

Taking A = 4
(
2LφC134 +C4|φ(0)|

)√
M√
N

in Lemma 6 and
Lemma 7 completes the proofs.

6.2.3. PROOF OF THEOREM 4

Theorem 4 There exist a constant A such that, with proba-
bility of at least

∏P−1
p=0 (τ

p)Q
p

(1− δ), we have

L(f̂)− L(f∗) ≤ (
√
J P + C2)A

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N
(23)

where Qp is the number of neuron pairs in the pth layer,
defined as Qp = Mp(Mp−1)

2 , and J P is defined recur-
sively using the following identities: J 0 = C0

3C1 and
J p = MpCp2

(
Mp2(LφC

p−1
3 J p−1 + φ(0))2 −M(M −

1)
dpmin

2

2 )
)
, for p = 1, . . . , P .

Proof. Lemma 5 in (Xie et al., 2015) provides an upper-
bound for the hypothesis class. We denote by vp denote
the outputs of the pth hidden layer before applying the
activation function:

v0 = [w0T

1 x, ....,w
0T

M0x] (24)

vp = [

Mp−1∑
j=1

wpj,1φ(v
p−1
j ), ....,

Mp−1∑
j=1

wpj,Mpφ(v
p−1
j )] (25)

vp = [wp
1
T
φp, ...,wp

Mp

T
φp], (26)

where φp = [φ(vp−11 ), · · · , φ(vp−1Mp−1)]. We have

||vp||22 =

Mp∑
m=1

(wp
m
Tφp)2 (27)

and wp
m
Tφp ≤ Cp3

∑
n φ

p
n. Thus,

||vp||22 ≤
Mp∑
m=1

(Cp3
∑
n

φpn)
2 =MpCp3

2
(
∑
n

φpn)
2

=MpCp3
2
∑
mn

φpmφ
p
n. (28)

We use the same decomposition trick of φpmφ
p
n as in the

proof of Lemma 4. We need to bound supx φ
p:

sup
x
φp < sup(Lφ|wp−1

j

T
vp−1|+ φ(0))

< Lφ||W p−1||∞||vp−1||22 + φ(0). (29)

Thus, we have

||vp||22 ≤MpCp2
(
M2(LφC

p−1
3 ||vp−1||22 + φ(0))2

−M(M − 1)d2min/2)
)
= J P . (30)

We found a recursive bound for ||vp||22, we note that for
p = 0, we have ||v0||22 ≤ ||W 0||∞C1 ≤ C0

3C1 = J 0.
Thus,

sup
x,fP∈FP

|f(x)| = sup
x,fP∈FP

|vP | ≤
√
J P . (31)

By replacing the variables in Lemma 2, we have

L(f̂)−L(f∗) ≤ 4(
√
J P+C2)

(
(2Lφ)

PC1C
0
3√

N

P−1∏
p=0

√
MpCp3

+
|φ(0)|√
N

P−1∑
p=0

(2Lφ)
P−1−p

P−1∏
j=p

√
M jCj3

)

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N

Taking A = (
(2Lφ)

PC1C
0
3√

N

∏P−1
p=0

√
MpCp3 +

|φ(0)|√
N

∑P−1
p=0 (2Lφ)

P−1−p∏P−1
j=p

√
M jCj3) completes the

proof.

6.2.4. PROOFS OF THEOREMS 5 AND 6

Theorem 5 For a multivariate regression trained with the
squared error, there exist a constant A such that, with prob-
ability at least τQ(1− δ), we have

L(f̂)−L(f∗) ≤ (
√
J+C2)A+

D

2
(
√
J+C2)

2

√
2 log(2/δ)

N
(32)
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where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0)

Proof. The squared loss ||f(x)− y||2 can be decomposed
into D terms (f(x)k − yk)

2. Using Theorem 1, we can
derive the bound for each term and thus, we have:

L(f̂)−L(f∗) ≤ 4D(
√
J+C2)

(
2LφC134+C4|φ(0)|

)√M√
N

+
D

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (33)

where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M −
1)(C2

5 − d2min/2)
)
, and C5 = LφC1C3 + φ(0). Taking

A = 4D
(
2LφC134 + C4|φ(0)|

)√
M√
N

completes the proof.

Theorem 6 For a multi-class classification task using the
cross-entropy loss, there exist a constant A such that, with
probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A

D − 1 + e−2
√
J

+ log
(
1 + (D − 1)e2

√
J
)√2 log(2/δ)

N
(34)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LφC1C3 + φ(0).

Proof. Using Lemma 9 in (Xie et al., 2015), we have
supf,x,y l = log

(
1+ (D− 1)e2

√
J ) and l is D−1

D−1+e−2
√
J -

Lipschitz. Thus, using the decomposition property of the
Rademacher complexity, we have

Rn(A) ≤
4D(D − 1)

D − 1 + e−2
√
J

(
2LφC134

√
M√

N
+
C4|φ(0)|

√
M√

N

)
.

(35)

Taking A = 4D(D − 1)
(

2LφC134
√
M

√
N

+ C4|φ(0)|
√
M√

N

)
com-

pletes the proof.

6.3. Experimental protocol

we conduct image classification experiments on the
ImageNet-2012 classification dataset (Russakovsky et al.,
2015) using the ResNet50 model (He et al., 2016). The
diversity term is applied on the last intermediate layer, i.e.,
the global average pooling layer for both DeCov and our
method. We use the standard augmentation practice for
this dataset as in (Zhang et al., 2018; Huang et al., 2017;
Cogswell et al., 2016). All the models are trained with a
batch size of 256 for 100 epoch using SGD with Nesterov
Momentum of 0.9 and a weight decay of 0.0001. The learn-
ing rate is initially set to 0.1 and decreases at epochs 30, 60,
90 by a factor of 10.

6.4. Additional experiments

We start by evaluating our proposed diversity approach on
two image datasets: CIFAR10 and CIFAR100 (Krizhevsky
et al., 2009). They contain 60,000 (50,000 train/10,000 test)
32× 32 images grouped into 10 and 100 distinct categories,
respectively. We split the original training set (50,000) into
two sets: we use the first 40,000 images as the main training
set and the last 10,000 as a validation set for hyperparam-
eters optimization. We use our approach on three state-of-
the-art CNNs: ResNext 29-8-16: we consider the standard
ResNext Model (Xie et al., 2017b) with a 29-layer architec-
ture, a cardinality of 8, and a width of 16. DenseNet-12:
we use DenseNet (Huang et al., 2017) with the 40-layer
architecture and a growth rate of 12. ResNet50: we con-
sider the standard ResNet model (He et al., 2016) with 50
layers. We compare against the standard networks as well
networks trained with DeCov diversity strategy (Cogswell
et al., 2016).

All the models are trained using stochastic gradient de-
scent (SGD) with a momentum of 0.9, weight decay of
0.0001, and a batch size of 128 for 200 epochs. The ini-
tial learning rate is set to 0.1 and is then decreased by
a factor of 5 after 60, 120, and 160 epochs, respectively.
We also adopt a standard data augmentation scheme that
is widely used for these two datasets (He et al., 2016;
Huang et al., 2017). For all models, the additional di-
versity term is applied on top the last intermediate layer.
For the hyperparameters: The loss weight is chosen from
{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} for
both our approach and Decov and γ in the radial basis func-
tion is chosen from {0.01, 0.1.1, 10, 50, 100}. For each ap-
proach, the model with the best validation performance is
used in the test phase. Each experiment is repeated three
times and we report the average performance over three
iterations.

Table 1 reports the average top-1 errors of the different
approaches with the three basis networks. We note that,
compared to the standard approach, employing a diversity
strategy generally boosts the results for all the three models
and that our approach consistency outperforms both compet-
ing methods (standard and DeCov) in all the experiments.
For DenseNet-12, our direct and det variants yield the best
performance over CIFAR10 and CIFAR100, respectively.
For ResNext-29-08-16, our approach with det term yields on
average 0.25% accuracy improvement compared to the stan-
dard approach, 0.17% improvement compared to DeCov on
CIFAR10. On CIFAR100, the best performance is achieved
by the direct variant of our approach. For ResNet50, the
three variants of our proposed approach significantly reduce
the test errors over both datasets: 0.36%− 0.54% improve-
ment on CIFAR10 and 1.86%− 1.94% on CIFAR100.

To further demonstrate the effectiveness of our approach
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Table 1. Average classification errors on CIFAR10 and CIFAR100
over three iterations

Top-1 test Error

Model Method CIFAR10 CIFAR100

Standard 07.07 29.25
DeCov 07.18 29.17

DenseNet-12 Ours direct 06.95 29.16
Ours det 07.04 28.78
Ours logdet 06.96 29.15

Standard 06.93 26.73
DeCov 06.84 26.70

ResNext-29-08-16 Ours direct 06.74 26.54
Ours det 06.67 26.67
Ours logdet 06.70 26.67

Standard 08.27 34.06
DeCov 08.03 32.26

ResNet50 Ours direct 07.86 32.15
Ours det 07.73 32.12
Ours logdet 07.91 32.20

Table 2. Performance of ResNet50 with different diversity strate-
gies on ImageNet dataset

Top-1 Errors Generalization

Method Training Testing Gap

Standard 20.97 23.84 2.87
DeCov 20.92 23.62 2.70
Ours direct 20.88 23.58 2.70
Ours det 20.81 23.62 2.77
Ours logdet 22.57 23.64 1.07

and its ability to reduce the generalization gap in neural
networks, we conduct additional image classification ex-
periments on the ImageNet-2012 classification dataset and
ResNet50. For the hyperparameters, we use the best ones
for each approach obtained from CIFAR10 and CIFAR100
experiments.

Table 2 reports the test errors of the different diversity strate-
gies. To study the effect of diversity on the generalization
gap, we also report the final training errors and the general-
ization gap, i.e., training accuracy - test accuracy. As it can
be seen, diversity (our approach and DeCov) reduces the
test error of the model and yields a better performance. The
best performance is achieved by our direct variant. We note
that, in accordance with our theoretical findings in Section
2, using diversity indeed reduces overfitting and decreases
the empirical generalisation gap of neural networks. In fact,
our logdet variant reduces the empirical generalization gap
of the model by 1.8% compared to the standard approach.


