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ABSTRACT 

The present work is about the application of Artificial Intelligence and in particular Computer Vision ap-
proaches for the analysis and classification of Ground Penetrating Radar (GPR) B-Scan radargrams gathered 
during a GPR data acquisition campaign for the diagnostic study, for the assessment of the preservation state 
of the Holy Aedicule of the Holy Sepulchre in Jerusalem. The analysis of those data revealed the Aedicule’s 
structural layers and most important indicated the cause of the historical building pathology. The objective of 
this study is to extract the knowledge coming from the typical analysis of B-Scan radargrams, based on which 
the various structural layers derived, omitting this way several manual data pre-processing and time-consum-
ing steps. The study employs a Deep Learning architecture, known as U-Net, where an image segmentation 
approach has been followed to build and train a classifier able to discriminate the various structural layers 
detected by the original measurements of radargrams.  
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1. INTRODUCTION 

Non-Destructive Testing (NDT) comprise of a wide 
group of techniques finding use in the science, tech-
nology, and industry sectors mainly for the evalua-
tion of the material/component/system properties 
by causing the minimum possible damage (Cartz, 
1995). When it comes to cultural heritage assets (e.g., 
monuments), one of the most prominent aspects to be 
considered for the assessment of the preservation 
state, is its integrity affection to the minimum possible 
extend throughout the diagnostic process. Thus, NDT 
approaches are widely utilized for minimal invasion 
as they could provide important knowledge regard-
ing the current preservation state of the monument 
(Anzani et al., 2006; Martini et al., 2017; Moropoulou 
et al., 2018). Even though that such techniques play an 
important role to the historic building diagnostics and 
monitoring, each one of them presents certain limita-
tions that could be overcome even by combining with 
various NDTs or/and with Artificial Intelligence (AI) 
and Machine Learning (ML) approaches. On the one 
hand, combining various Non-Destructive Tech-
niques (NDTs) has been already managed for diag-
nostic, maintenance, and monitoring purposes for 
various case studies (Alexakis et al., 2018; Vidovszky, 
2016), suggesting the NDTs as an ideal tool to deter-
mine pathology before any interventions and monitor 
the effects after it will take place. On the other hand, 
the emergence of AI has provided researchers with 
new innovative tools to enhance traditional ap-
proaches (Fiorucci et al., 2020; Garrido et al., 2021).  

 Ground Penetrating Radar (GPR) technique, 
seem to gather great interest as an NDT approach 
considering the various applications from imple-
menting archaeo-geophysical methods of prospection 
over buried ancient structures (Savvaidis et al, 1999; 
Levy et al., 2018; Jaén-Candón et al., 2019) to ob-
ject/target detection and identification of structural 
patterns in monuments (Lampropoulos et al., 2017; 
Aydıngün et al., 2020) where complex computational 
techniques are applied highlighting the GPR’s im-
portance throughout the diagnosis process over com-
plex historical structures that is practically demon-
strated in cases such as: revealing structural layers, 
defect areas and voids etc. This is due to GPR’s ad-
vantages such as portability, low cost and reasonable 
budget of the initial investment, ease of data acquisi-
tion, high versatility in terms of multipurpose appli-
cations, as it can be utilized from infrastructure 
maintenance and large area surveys to environmental 
investigations and cultural heritage protection. 

On top of those, the ascent of AI and ML have 
brought evolution in the NDTs and subsequently the 

GPR research sector. For example, GPR data enhance-
ment by generating high-precision GPR images utiliz-
ing Least Square Generative Adversarial Networks 
(Yue et al., 2021). Moreover, regarding the GPR data 
interpretation process for semi-automatic feature ex-
traction (Leckebusch, J. et al., 2008), underground ob-
ject classification with the use of GPR 3D data. Last 
but not least, an interesting study is about the auto-
matic feature extraction from archaeo-geophysical 
GPR B-Scans, utilizing deep learning approaches and 
particularly a U-Net Neural Network (NN) architec-
ture way similar to the one used in the present study 
(Küçükdemirci and Sarris, 2019). The outcome of this 
study regarding the prediction of the patterns (anom-
alies) and the background, is quite satisfying, but still 
the amount of annotated/labeled data needed to effi-
ciently train the model is not enough.  

Despite the advances, the most prominent disad-
vantage of GPR is the need of data post processing not 
only during their acquisition but also later at the in-
terpretation and assessment phase (Travassos et al., 
2020) whereas utilizing AI and ML approaches for 
data interpretation is quite challenging due to the 
great amount of data needed to train and validate a 
well performing Artificial Neural Network (Manataki 
et al., 2021). Signal processing is a prerequisite step to 
filter out irrelevant and keep useful information and 
is not advisable to be automated as different use cases 
might have different needs (i.e., increased resolution 
instead of high penetration depth) whereas pattern 
recognition automation could enhance human inter-
pretation for efficient detection and characterization 
with the utilization of AI approaches.  

The purpose of the present work is to develop a ge-
neric approach for the automatic identification of the 
various structural layer lying within GPR B-Scan ra-
dargrams. The novelty of this study is substantiated 
through the amalgamation of three components: first, 
the methodology followed to acquire the data, create 
the ground truth dataset and pre/post-process of the 
data, second the classifier utilized for developing the 
predictive model and third the use case itself as it en-
abled the creation of a high-quality ground truth da-
taset. Compared to other approaches found in litera-
ture study, the present one manages a sufficient 
model performance for 3 out of the 5 classes with us-
ing a very small dataset for model training and vali-
dation, suggesting that the approach followed is at 
least promising and the model performance could 
dramatically get improved with the inclusion of some 
more data. 
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2. USE CASE: THE HOLY AEDICULE OF 

THE HOLY SEPULCHRE 

Α unique monument located in Jerusalem (the 
south side before the rehabilitation works is pre-
sented in Figure 1) being the most important site of 
Christianity, as it is the place where Jesus Christ was 
buried and resurrected is the Holy Aedicule of the 
Holy Sepulchre (Lavas, 2009). It is actually a complex 
structure, embedding remnants of the original struc-
ture (Holy Rock) and the Tomb of Christ, as well as 
the many construction phases, of its rich history of al-
most two millennia, throughout which it was de-
stroyed, reconstructed restored and rehabilitated 
many times (Biddle 1999; Mitropoulos, 2009; 
Moropoulou et al., 2013). Some years after the latest 
restoration works took place to amend the destruction 
caused by a catastrophic fire in the Church of Resur-

rection in 1808, the Holy Aedicule of the Holy Sepul-
chre confronted with deformation issues upon its fa-
cades. The Holy Aedicule rehabilitation that was 
completed in March 2017 by NTUA aimed to address 
the deformation problems encountered, according to 
the findings and proposals of NTUA’s diagnostic 
study (Moropoulou et al., 2016). The phases of the re-
habilitation works, follow a strict timeline starting 
from the dismantling of the facades building stones, 
the cleaning of the disintegrated mortars, the repoint-
ing of the joints, and the grouting and reinforcement 
of the structure, to the cleaning, protection and repo-
sitioning of the building stone (Alexakis et al., 2018). 
The GPR B-Scan radargrams acquired during the di-
agnostic study were analyzed and the results were 
validated through the respective rehabilitation 
phases resulting in a high-quality ground truth da-
taset utilized in the present study.  

 

Figure 1. The south side of the Holy Aedicule prior to the rehabilitation works (photo courtesy of A. Moropoulou) 

3. GROUND PENETRATION RADAR IM-
AGE GENERATION 

3.1. The GPR technique 

Ground penetrating radar (GPR) is a non-destruc-
tive geophysical technique which is based on the 
propagation and spatial/temporal analysis of electro-
magnetic radiation transmitted through the pro-
spected structure. A typical GPR con-sists of two an-
tennae (one emitting and one receiving, often in-
cluded in the same casing), a main unit that controls 
the electromagnetic pulse and a display unit. Short 
electromagnetic waves (pulses) are emitted from the 
GPR antenna located on the surface of a structure and 
are transmitted through low-loss dielectric mate-rials 
within the prospected volume. As presented in Figure 

2 The receiving GPR antenna (co-located with the 

emitting antenna) detects the reflected electromag-
netic wave from within the prospected volume which 
corresponds to primary reflections, multiple echoes 
from secondary reflections or wave interference phe-
nomena (Daniels (Ed.), 2004). 

GPR can detect variations in the dielectric proper-
ties of the materials which can be used to identify sub-
surface features, structures and layers or different hu-
midity levels within the structures or soil investi-
gated. The GPR surveys are typically conducted ei-
ther in 2-D or 3-D approaches. The most common ap-
proach and the one utilized in this study, is the 2-D 
approach where the GPR antenna (typically combines 
emitting and receiving dipoles) moves along a profile, 
whereas the spatial position of the antenna is rec-
orded. At, regular intervals, at each point along the 
path, the GPR transmitter antenna emits a short elec-
tromagnetic pulse. The co-located receiving antenna 
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records the intensity of the receiving pulse for the du-
ration of a pre-set time window (in the order of nano-
seconds). As a result, at each point a point-trace is re-
ceived which records the intensity of the received 
pulse vs the two-way time. As the antenna casing 
moves along the path, the procedure is repeated, and 
corresponding point traces are received.  

For ease of display, the point traces are not pre-
sented as “wiggle” traces (i.e., much like a oscillo-
graph). Instead, each wiggle trace is converted by the 
GPR software into a pixelized line, where the color or 
the gray-scale intensity of each pixel corresponds to 
the intensity (positive or negative) of the received 
pulse whereas the pixel’s location along this line cor-
responds to the two-way time that the pulse was re-
ceived. By placing each of these pixelized lines next to 
each other, an “image” of the prospected section is re-
ceived. The horizontal axis of this image corresponds 
to the position of the GPR antenna, whereas the verti-
cal axis of the image corresponds to the two-way time 

for the pulse. The color or gray-scale intensity of each 
pixel of this image corresponds to the intensity of the 
received signal. The location of each pixel defines the 
position of the antenna over the surface (x-axis) and 
the two-way time that the intensity of the pixel corre-
sponds to. Note that since the vertical axis of such an 
image is not scaled in distance unit, but in units of 
time, it is not readily convertible to distance units. The 
reason is that the electromagnetic pulse propagates 
with different velocities depending on the electro-
magnetic properties of the materials. Thus, if the lay-
ering of the prospected structure is not known in de-
tail, exact pulse velocities per layer cannot be easily 
attributed, and thus the conversion of the vertical axis 
from time-units into distance-units is not easily per-
formed. Often, however, an average pulse velocity is 
assigned, to aid in the conversion of the vertical axis 
into depth. 

 
Figure 2. Left: Principle of operation and configuration of GPR. Right: Schematic overlay of 1-D point traces, as the 

GPR antenna moves along the horizontal path over the prospected surface, to create a 2-D section of the soil (schematic 
courtesy of K. Lampropoulos). 

After the application of various signal filters (e.g. 
time-zero adjustment, background removal, gain en-
hancement, band pass filtering, predictive deconvo-
lution) a radargram is created in the form of a 2-di-
mensional tomographic section of the prospected 
area like the one presented in Figure 3. This data post-
processing is due to the low resolution (decreased 
sensitivity in centimeter-sized targets) GPR signals 
and the frequency of the GPR transmitted electromag-
netic waves (the higher the pulse frequency the more 
intense the wave amplitude attenuation). Thus, signal 
processing improves the interpretation of the GPR 
raw data by increasing temporal resolution (with the 

use of deconvolution and denoising filters) (Daniels 
(Ed.), 2004). On the one hand, signal processing is a 
prerequisite manual step to filter clutter and noise out 
of useful information and cannot be automated as dif-
ferent use cases might bring different needs (i.e., in-
creased resolution instead of high penetration depth). 
On the other hand, pattern recognition automation 
could enhance human interpretation for efficient de-
tection and characterization with the utilization of AI 
approaches. This is more evidently presented in the 
following section where after the signal processing 
step, the various structural layers are recognized and 
denoted before feeding in the classification model.  
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Figure 3. A) Typical non-processed radargram over the Marble relief of Christ resurrection within the burial chamber of 
the Holy Aedicule; B) After application of the data processing filters; C) Application of predictive deconvolution to ra-

dargram; D) Application of the Stolt F-K Migration routine to radargram (Lampropoulos et al., 2017). 

3.2. Structural layers identification in GPR 
analysis – Input data for Deep Learning 

A typical radargram over the façade panel S4 
of the Holy Aedicule with a horizontal west-east 
orientation at a height level of 120cm is pre-
sented in Figure  4. The blue-colored wiggle trace 
indicates the temporal variation of the received 
pulse when the GPR antenna was over a position 
10cm from the starting point. The higher inten-
sity values of the pulse signal at certain depths 
corresponds to the presence of interfaces within 
the masonry (or alternatively of very different 
electrical properties of the materials) which re-
sult in significant reflections originating from 
these locations. 

The GPR user studies each radargram (scan) 
and based on their experience as well as availa-
ble documentation (plans, descriptions etc.) tries 
to identify and mark each target observed 

within. Those 2-D scans are then “connected” in 
a 3-D software to describe identified features 
(e.g. underground pipes, or masonry layers). In 
cases where extensive and well overlapping 2-D 
scans are not feasible, the 3-D imaging of the pro-
spected structure is not a trivial task. The use 
case of the Holy Aedicule (Lampropoulos et al., 
2017) is exactly that, as its structure has exterior 
surfaces that did not allow the conduction of ex-
tensive long parallel and/or transverse GPR 
scans. Instead, due to the morphology of the ex-
terior surfaces, GPR prospection was limited to 
small, isolated areas of each façade, allowing the 
implementation of small-length horizontal or 
vertical scans. Moreover, there was no prior in-
formation regarding the internal layering of this 
structure, especially regarding the potential 
presence of remnants of the original rock. 
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Figure  4. Radargram at façade panel S4, with a horizontal west-east orientation, at a height level of 120 cm, after pro-
cessing and depth conversion. A single wiggle trace is displayed above the radargram which facilitates the discrimina-

tion of the various surface layers. 

A series of 19 selected distance vs. time GPR 
scans, coming from two façade panels (N3 and 
N4, as presented in Fig.5, were processed (signal 
filters) and target identification was performed 
for each scan aiming to annotate the main ma-
sonry layers, i.e. the exterior stone panel, the 

filler mortar, the masonry, the Holy Rock and an 
unidentified area, as presented with colors in 
Fig.4. This is a typical image segmentation prob-
lem and the approach and methodology fol-
lowed to resolve it is described in the coming ses-
sion.  

 

Figure  5. The North side of the Holy Aedicule before the rehabilitation works. In the white frames the two panels where 
the GPR measurements took place (photo courtesy of A. Moropoulou) 
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4. METHODOLOGY  

4.1. Data pre-processing 

As described in the previous section, the even-
tual dataset utilized for the needs of this study 
consists of 19 images illustrating the Holy Ae-
dicule of the Holy Sepulchre masonry multilayer 
patterns examined during the diagnostic survey 
campaign, took place prior to the rehabilitation. 
Those layers have been revealed during the re-
habilitation works and the certain scans meas-
urement (ground truth images) have been vali-
dated on hands. The ground truth images con-
tain at most 5 different areas, corresponding to 
the various material layers: 1) external stone 

panel, 2) filler mortar, 3) masonry, 4) Holy Rock 
and 5) an area where the interpretation of GPR 
radargrams is not considered reliable due to the 
increased depth and pulse attenuation. This is 
described as a typical computer vision image 
segmentation problem where there are 5 differ-
ent colors/masks each of those depict a different 
ground pattern found in the original image; red 
for stone panel, white for filler mortar, green for 
masonry, blue for Holy Rock and black for the 
area where GPR measurements are not consid-
ered reliable due to wave attenuation. A pair of 
source - ground truth images is presented in 
Fig.6. 

 

Figure 6. The left figure shows the original image of the ground pattern, while the right one depicts the ground truth la-
bels. The red, white, green, blue and black colours depict the stone panel (surface), filler mortar, masonry, Holy Rock and 

unidentified area structural layers, respectively.  

The first section of the data processing is de-
scribed in Figure 7 and is related to the preparation 
of the data used for the training/validation of 
the model. The initial size of both the source and 
the ground truth images is approximately 
339x528 pixels. Since the number of the source 
images was small, it was necessary to break the 
images into several patches in order to train the 
model appropriately. Below, the pre-processing 
stages are presented shortly: 

In this stage, both the source and the ground 
truth images were cropped perimetrically to en-
sure the absence of potential border abnormali-
ties and to achieve a common shape among the 
images. The new shape of the image is approxi-
mately 310x510. 

In this step, the images were split in a certain 
number of patches. The exact size of the patches 

along with the distribution of the patches in the 
image area was determined using trial and error 
techniques. 

At this point, a multichannel image/array was 
created for each ground truth image. Each chan-
nel of the new array corresponds to a single label 
of the initial ground truth image. Thus, the mul-
tichannel image/array has the following shape: 
patch Width x patch Height x 5. 
Finally, the train, validation and test sub-da-
tasets are produced by using 70%, 20% and 10% 
of the initial number of patches respectively. 

The training and validation datasets are used 
to train and validate the model, described in the 
coming section, whereas test dataset is utilized 
for the assessment of the model. 



 
102 E. ALEXAKIS et al. 

 

SCIENTIFIC CULTURE, Vol. 8, No 2, (2022), pp. 95-107 

 

Figure 7. Data pre-processing workflow followed to conclude in the train, validation and test datasets for training vali-
dating and evaluating the model performance  

4.2. Convolutional Neural Network U-Net 
Architecture 

The core of our approach is the deep convolu-
tional network of U-Net, successfully applied for 
segmentation and classification of medical im-
age data (Ronneberger et al., 2015) which in fact 
is the structure of the model applied for data 
classification in the present study. The novelty in 
the present approach is summarized in the suc-
cessful application of a model initially developed 
for another type of data, on a very small of ap-
propriate pre-processed data coming from a his-
toric monument. The reason why U-Net has cho-
sen is that the model implements convolutional 
kernels for global-local data processing and 
therefore, increasing classification performance 
with just a few training images.  

The main concept behind these networks, 
compared to common convolutional neural net-
works, is to supply the latter by successive lay-
ers, utilizing up-sampling operators resulting in 
the increase of the output resolution, making the 

successive layer to learn to assemble a precise 
output. The large number of feature channels 
within up-sampling operators allow the network 
to propagate context information to higher reso-
lution layers. In this way, the contracting path is 
less or more symmetric to the expansive part, 
giving a U-shaped architecture. To make a pixel 
prediction in the border region of the image, the 
input image is mirrored, and the missing context 
is extrapolated. The utilized UNet model archi-
tecture is illustrated in Figure 8 summarizing its 
major features in:  

• Blue arrows depict the combination of 
convolution and ReLU operations. 

• Red arrows represent the Max-Pooling 
operations, resulting in the decreasing of 
the patch size. 

• Yellow arrows symbolize the up-sam-
pling operations. 

Copy and concatenation procedures take 
place across the green arrows. 

 

Figure 8. U-Net model Architecture (Ronneberger et al., 2015) 
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After the training of the model on the corre-
sponding training data of the dataset, the U-Net 
model is assessed on the test dataset. The proce-
dure of evaluation is summarized in the follow-
ing steps: 

• The model generates the multichannel 
prediction of the current image patch. 
Each channel represents the correspond-
ing color of the different ground truth 
layers. 

• The multichannel patch is being con-
verted to a single RGB patch. 

• The predicted image is being recon-
structed by the corresponding predicted 
patches. 

• The original ground truth image is being 
reconstructed by the corresponding 
ground truth patches. 

• Both the original and the predicted re-
constructed images are combined to gen-
erate the evaluation metrics. 

The learning curve, generated during the 
training process, is presented in Figure 9. On the 
one hand, the validation loss stops improving af-
ter the 3rd epoch and begins to decrease after-
ward making a kind of oscillation. On the other 
hand, the training metric continues to improve 
as the model seeks to find the best fit for the 
training data. Thus, the best model fit is achieved 
when the validation error is at its’ lowest level 
(3rd epoch), after which overfitting takes over, 
suggesting the need for training the model with 
more data. 

 

Figure 9. Model learning curve where best fit is achieved at the 3rd training epoch 

4.3. Model Assessment 
The model assessment pipeline is presented in 

Fig. 10, where after the model is trained and vali-
dated over the train and validation sets, respec-
tively, the test dataset is used to generate the 

model predictions. Model predictions then are 
compared with the original test dataset in pixel 
level and the model performance is evaluated 
upon the accuracy, precision, recall and f1 score 
metrics for each one of the 5 different classes. 

 

Fig. 10. Model assessment pipeline 
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The evaluation results for every class are illus-
trated in Figure 11. Classes 0, 1, 2, 3, 4 correspond 
to the colors black, red, green, white, blue and 
subsequently to the respective structural layer of 
the original ground truth image, presented ac-
cordingly in Table 1. The model achieves great 
performance for classes 0 and 1 (black, red) espe-
cially with regards to the accuracy and precision 
metrics whereas performance for classes 2 and 3 
(green, white) is more mediocre. In particular, 
the accuracy for class 2 is almost 99% suggesting 
that the model has correctly predicted observa-
tion over the total observations for this class but 
as this class lacks symmetry with respect to the 
other classes (this area correspond to the stone 

panel which is smaller compared to the others) 
the other metrics has to be accounted for the as-
sessment. The ratio of correctly predicted posi-
tive observations to the total predicted positive 
observations (precision) is almost 80% while re-
call (the ratio of correctly predicted positive ob-
servations to all observations in the actual class) 
and f1 score (the weighted average of precision 
and recall.) is above 80% suggesting a very high 
model performance for the specific class. More 
mediocre model performance is achieved for 
classes 2 and 3 while model seem to underper-
form for class 4 having approximately 60% accu-
racy and less than 50% for all the other metrics. 

 

Figure 11. Test set evaluation metrics. Classes 0, 1, 2, 3, 4 correspond to the colors black, red, green, white, blue of the 
original ground truth image accordingly 

Table 1. Allocation of classes, colors and the RGB values with the respective structural layers 

Class ID Color  RGB Value Structural 
Layer 

0 Black  (0, 0, 0) Unidentified 
area 

1 Red (255, 0, 0) Stone panel 

2 Green (0, 255, 0) Masonry 

3 White (255, 255, 255) Filler mortar 

4 Blue (0, 0, 255) Holy Rock 

 
5. DISCUSSION AND CONCLUSION 

The main purpose of the present work is the devel-
opment of a tool for enhancing, supporting and sub-
sequently manage automatic structural pattern recog-
nition within GPR B-Scan radargrams. Thus, the out-
come of the applied methodology shall be evaluated 
as a supporting “tool” for the GPR user to aid them in 
pattern recognition. GPR is a geophysical method, 
and as such relies heavily on the materials di-electric 

properties of the prospected area and structure under 
examination. The identified features/patterns are in 
effect differentiation of materials’ electrical proper-
ties, and not necessarily true interfaces. Moreover, 
like most NDTs applied on CH assets benefit from 
prior knowledge of some basic information regarding 
their structural layers; However, in CH applications 
this is more than often the exception rather than the 
norm. Nonetheless, the current work emphasizes the 
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potential for pattern recognition in GPR as a support-
ing tool for GPR analysis.  

The use case selected (Holy Aedicule) in fact 
demonstrates the feasibility of the developed method-
ology, despite the limited performance of the classi-
fier for certain classes. It should be emphasized that 
the pre-processing of the GPR raw data is still neces-
sary since filtering of the raw data actually “brings-
out” useful information hitherto “hidden” within the 
instrument “noise”. Specialized GPR software is used 
for this, therefore the raw data cannot, yet, be used 
directly for this methodology. 

Moreover, at this stage of development, the GPR 
scans used are distance vs. time scans and not the 
more user-friendly distance vs. depth scans. The rea-
son is that the conversion of timescale into depth-
scale, requires the definition of appropriate velocity 
models in the GPR software used. These velocity 
models, nonetheless, require knowledge of the actual 
layering of the structure examined as well as the val-
ues for the pulse velocity per layer, so that the time-
depth transformation can proceed. This, arguably, 
seems to contradict the main scope of this attempt, in 
the sense that if the user already knows the layering 
of the structure, then they do not potentially need this 
methodology, but this does not actually have an im-
pact on the ability of the model to learn from the 
radagrams as the aim to manage to discriminate the 
classes from another (structural layers) no matter 
what their size. However, this regards the second 
level (future work) of analysis, where deep learning 
will identify layers in time-scaled GPR radargrams, 
suggest appropriate velocity models, with which the 

GPR software can convert the radargrams in depth-
scaled tomographies. The user may then either fine 
tune the velocity models, or alternatively use these re-
sults to identify the required features in the examined 
structure and assess its layering or state of preserva-
tion. 

Another aspect that needs consideration is the lim-
ited number of images used to train the model as 19 
images in a computer vision image segmentation clas-
sifier with 5 classes are considered few. This, in turn, 
highlights the importance of the validation and test 
datasets and especially the way they are determined 
for the model evaluation as an inappropriate choice 
of validation (3 images) and test (1 image) datasets 
could lead to radical different model performance. 
Despite the fact that the cross-validation approach 
followed did not raise any concern regarding the 
model predictive performance, the need of including 
more data for model training is imperative and it will 
be served in future work supplementing this study. 
As there are enough data coming from the rest of ex-
ternal stone panels that first need to be manually pre-
processed after examining the possibility of using the 
distance vs. depth GPR scans, as described in the pre-
vious paragraph.  

To summarize, despite the limitations and draw-
backs, the models’ classification performance is quite 
promising as it manages remarkable classification ac-
curacy and precision for at least 3 (out of 5) classes 
utilizing a very small dataset. Accounting and resolv-
ing some or all of the limitations will certainly lead to 
drastic model performance improvement. 
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