
flox: distributed GroupBy for dask.array
(inspired by dask.dataframe)

Deepak Cherian
National Center for Atmospheric Research

@dcherian | cherian.net

dcherian/floxFunding:
NASA-ACCESS 80NSSC18M0156 (PI J. Hamman)
NSF / NCAR Earth System Data Science Initiative

https://cherian.net

“GroupBy” or split-apply-combine: a very common pattern
“Binning” or “histogramming”
Or “compositing”

groupby(crop_type).sum(),
groupby_bins(temperature, bins).mean()
groupby(enso_phase).mean()

“Climatology” or monthly means
groupby(“time.month”)

Resampling: daily to monthly
resample(time=”M”).mean()

One Dataset, Two GroupBys

GFDL CM2.6 OCEAN
Monthly means

chunks =
{“time”: 1,
“Z”: 5,
“Y”: 2700,
“X”: 3600}

dcherian/flox

One Dataset, Two GroupBys: Standard Xarray
‘Monthly climatology’
ds.temp.groupby(“time.month”).mean()
8281 tasks

‘Regional mean’: longitudinal bins
ds.temp.groupby(regions).mean()
110401 tasks!

ONE GROUP PER BLOCK MANY GROUPS PER BLOCK

Let’s Try It… maybe… not really…
“Regional mean”: ds.temp.groupby(regions).mean()

Xarray’s GroupBy: communicate + reduce
MANY GROUPS PER BLOCK

“My dask-workers could handle
ten times the chunks if they weren’t
busy apologizing for your codebase”

≈ Gilfoyle,
Silicon Valley

Let’s try map-reduce

blockwise
sum, count

“chunk”

Σsum, Σcount

“combine”

mean
Σsum / Σcount

“finalize”

...

reindex &
concatenate

MANY GROUPS PER BLOCK

dcherian/flox

Does it work? 17Gb memory… 11 mins with 12 workers
dcherian/flox

>> flox.xarray.xarray_reduce(..., func=”mean”)

Works when a blockwise reduction is Effective
‘Monthly mean’ ‘Regional mean’

ONE GROUP PER BLOCK MANY GROUPS PER BLOCK

dcherian/flox

Big Problem: Not Great for TIME Grouping
(1)We know the time vector, so we know where the groups are
(2)The groups have patterns

Example 1: resampling from daily to monthly

Example 2: “monthly climatology”: groupby(“time.month”)

“BLockwise” Resampling (copied from dask.dataframe)
Groups are sequential, approximately equal length
E.g. resampling from daily to monthly frequency

flox.xarray.xarray_reduce(..., method=”blockwise”)
flox.xarray.rechunk_for_blockwise(...)

First rechunk a little,
then apply groupby
blockwise.

Climatologies
e.g. groupby(“time.month”)

- Groups are sequential
- Jan is always before Feb

- And periodic!
- So we can’t use the resampling strategy

The “cohorts” Idea: groups of groups
Idea: Let’s extract groups that tend to occur together: “cohorts”

>>> flox.core.find_group_cohorts(labels, array.chunks[-1]))
[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] # 3 cohorts

for cohort in cohorts:
subset array to pick only groups in cohort
map-reduce

>>> flox.core.find_group_cohorts(labels, array.chunks[-1]))
[[1], [2, 3], [4, 5], [6], [7, 8], [9, 10], [11], [12]] # 8 cohorts

THe Cohorts strategy generalizes nicely
Recreates Xarray’s current strategy when that is optimal.
E.g. one month per block

Can avoid unnecessary communication with “map-reduce”

Works “blockwise” for resampling after rechunking

“Out of phase group pattern”???? map-reduce ????

Could “map-reduce” this distribution of groups, if generalized to nD

This is the same idea! Minimize communication

blockwise blockwise<------- Map-reduce these 3 blocks ------>

Current Status: Try it out!
- https://github.com/dcherian/flox

- Pip / conda-forge
- Beta quality

- Integration into xarray
- https://github.com/pydata/xarray/pull/5734 Tests pass!
- ds.groupby(“time.month”).mean(method=”cohorts”, engine=”numba”)

- There doesn’t seem to be one optimal strategy.
- Depends on how groups are distributed across blocks
- Needs testing / benchmarking
- Document “lessons learned” discourse.pangeo.io

- Are there other common group patterns that we could
optimize for?

https://github.com/dcherian/flox
https://github.com/pydata/xarray/pull/5734

