FLOX: DISTRIBUTED GROUPBY FOR DASK. ARRAY

(INSPIRED BY DASK. DATAFRAME)

AL CENTER FOR
OSPHERIC R.ESEARCH

https://cherian.net

“GROUPBY™ OR SPLLT-APPLY-COMBINE: A VERY COMMON PATTERN

“Binning” or “histogramming?”
Or “compositing”

groupby (crop_type) .sum(),
groupby_bins(temperature, bins).mean()
groupby (enso_phase) .mean()

“Climatology” or monthly means
groupby (“time.month”)

CEEE
T EEE
T EEE
T EEE
e

\

CPEN EEEs

Resampling: daily to monthly
resample(time="M"”) .mean()

O dcherian/flox

ONE DATASET, TWO GROUPBYS

GFDL CM2.6 OCEAN (s]: ds.temp

Mont h 1 y means [8]: xarray.DataArray ‘temp' (time: 240, st_ocean: 50, yt_ocean: 2700, xt_ocean: 3600)
=

C h un k S = = Array Chunk - 1

p . 99 Bytes 466.56 GB 194.40 MB 240

[
{¢*time”: 1 ’ Shape (240,50, 2700, (1,5, 2700, S
I P 3600) 3600) 8
Z ° 5) Count 2401 Tasks 2400 Chunks
¢« Y ” . 2 7 O @ 3 Type float32 numpy.ndarray % 3600

“X”: 3600}

PANG=O

ONE DATASET, TWO GROUPBYS: STANDARD KARRAY

‘Monthly climatology’
ds.temp.groupby (“time.month”) .mean()
8281 tasks

[25]: xarray.DataArray ‘'temp’ (month: 12, st_ocean: 50, yt_ocean: 2700, xt_ocean: 3600)

= Array Chunk ﬂﬂ"‘mm 1
Bytes 23.33 GB 194.40 MB 12
o R ;
Count 8281 Tasks 120 Chunks
Type float32 numpy.ndarray .% 3600

ONE GROUP PER BLOCK

‘Regional mean’: longitudinal bins
ds.temp.groupby(regions).mean()
110401 tasks!

[23]: xarray.DataArray ‘'temp' (time: 240, st_ocean: 50, yt_ocean: 2700, labels: 9)

()

Array Chunk 240
Bytes 1.17 GB 54.00 kB 8
Shape (240, 50, 2700, 9) (1,5, 2700, 1) a
Count 110401 Tasks 21600 Chunks
Type float32 numpy.ndarray % 9

MANY GROUPS PER BLOCK

LET"S TRY 17... MAYBE... NOT REALLY ..

“Regional mean”: ds.temp.groupby(regions).mean()

Bytes stored: 118.59 GB Task Stream

] | I |
|
0 4) 1 1 2 2
C 0Gg 0as '20gg S0 Vogy |

RS B L
| i 1
| | 1] | | |
| ’ Il ’ |
11l 1 :
12 13 14
Progress -- total: 45601, in- y: 8508, pr ing: 15113, waiting: 15106, erred: 0

getitem

FARRAY"S GROUPBY: COMMUNICATE + REDUCE

MANY GROUPS PER BLOCK

p
HEE B
Ll

) —

b
HEEEE

LB

. 1

“My dask-workers could handle
ten times the chunks 71f they weren’t '
busy apologizing for your codebase” E :

-

= Gilfoyle, =
Silicon Valley

C) dcherian/flox

LET"S TRY MAP-REDUCE
MANY GROUPS PER BLOCK

—*llll\\--..

\\3HIIII

/'
— HHEE

mean
Zsum / Zcount

e
R — paem
e | | | Eod L

“finalize”

reindex & Ysum, Xcount

blockwise

sum, count concatenate

“combine”
“chunk”

O dcherian/flox

DOES IT WORK? L/GB MEMORY... 11 MINS WITH 12 WORKERS

>> flox.xarray.xarray_reduce(..., func="mean”)

<

— R QIc

|@

Bytes stored: 13.20 GB Task Stream

t t t t t t t
0.0 4'061'8 B_oG'B ’Q'DG:'B ’6'06‘:‘,9 ZO,OGI.B 24,

Tasks Processing

:07:00 :07:15

8

8

8
&

:06:15
Progress -- total: 4802, in-memory: 745, processing: 1670, waiting: 1657, erred: 0

a
4
=3
3

730 / 2400
743 /2400

1/1

1
ONE GROUP PER BLOCK
1 1]

O dcherian/flox

WORKS WHEN A BLOCKWISE REDUCTION IS EFFECTIVE

Bytes

HEEEREs

‘Regional mean’

Array Chunk

1.17GB 486.00 kB

Shape (240, 50, 2700,9) (1,5, 2700, 9)

Type float32 numpy.ndarray
MANY GROUPS PER BLOCK

HE B EE.

BIG PROBLEM: NOT GREAT FOR TIME GROUPING

(1)We know the time vector, so we know where the groups are
(2)The groups have patterns

Example 1: resampling from daily to monthly

Example 2: “monthly climatology”: groupby(“time.month”)

"BLOCKWISE” RESAMPLING (COPIED FROM DASK.DATAFRAME)

Groups are sequential, approximately equal length
E.g. resampling from daily to monthly frequency

First rechunk a little,

then apply groupby
blockwise.

flox.xarray.xarray_reduce(..., method="blockwise”)
flox.xarray.rechunk_for_blockwise(...)

CLIMATOLOGIES

e.g. groupby(“time.month”)

- Groups are sequential
- Janis always before Feb

- And periodic!
- So we can't use the resampling strategy

~Timeisjalflaticircle.

THE “COHORTS™ IDEA: GROUPS OF GROUPS

Idea: Let's extract groups that tend to occur together: “cohorts”

>>> flox.core.find_group_cohorts(labels, array.chunks[-1]))
[[[1,2,3,4],[5,6,738],[9 10,11, 12]] # 3 cohorts

for cohort in cohorts:
subset array to pick only groups in cohort
map-reduce

>>> flox.core.find_group_cohorts(labels, array.chunks[-1]))
[[11,[2, 3], [4, 5], [6], [7, 8], [9, 10], [11], [12]] # 8 cohorts

THE COHORTS STRATEGY GENERALTZES NICELY

Recreates Xarray’s current strategy when that is optimal.
E.g. one month per block

TEEEEE TEEEEE

Could “map-reduce” this distribution of groups, if generalized to nD

Can avoid unnecessary communication with “map-reduce”

Works “blockwise” for resampling after rechunking

EEEN EEEN HEEEE ' HEEEE | EEEE | 2 BEEEETEEEm

“Out of phase group pattern”???? map-reduce 772?77

THIS 15 THE SAME IDEA! MINIMIZE COMMUNICATION

Optimized groupby aggregations when grouping by a sorted index #8361
2 comments & ~

Q gjoseph92 (Gabe Joseph) 7 days ago Member | (©) -

[*1] When all the rows in a partition have the same index value, then you do need to combine partitions. For example: in

divisions=[@, 1, 2, 2, 4, 5], the partitions containing 1-2, 2-2, and 2-4 would need to be combined, probably using the
normal apply_concat_apply logic. However, since we know the divisions, we can be more selective about where we do this and
reduce some transfer. With well-balanced partitions, this should be a relatively rare case, and there usually shouldn't be more than
a handful of consecutive partitions with the same value.

blockwise <{------- Map-reduce these 3 blocks ------ >

blockwise

CURRENT STATUS: TRY 11 0UT!

https://github.com/dcherian/flox

- Pip / conda-forge
- Beta quality

Integration into xarray
- https://github.com/pydata/xarray/pull/5734 Tests pass!
- ds.groupby(“time.month”) .mean(method="cohorts”, engine="numba”)

There doesn’t seem to be one optimal strategy.
- Depends on how groups are distributed across blocks
- Needs testing / benchmarking
- Document “lessons learned” discourse.pangeo.io

Are there other common group patterns that we could
optimize for?

https://github.com/dcherian/flox
https://github.com/pydata/xarray/pull/5734

