Subject 1: Systematic Review and Meta-Analysis on Risk Factors for Sporadic Food-Borne Illnesses

Part VI: Giardiasis

Ursula Gonzales-Barron and Vasco Cadavez

CIMO Mountain Research Centre, School of Agriculture, Polytechnic Institute of Braganza, Portugal

On request from the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) in coordination with Pauline Kooh and Moez Sanaa

EXECUTIVE SUMMARY

The quality assessment stage was passed by 72 primary studies investigating risk factors for sporadic infection with Giardia duodenalis, which were conducted between 1977 and 2016. From these, forty studies investigated exposures in children/infants, thirty-four in the adult or mixed population while only three studies focused on the susceptible population (elderly and immunocompromised). These primary studies provided 736 ORs categorised for metaanalysis, being 63% of the meta-analytical data produced by case-control and cohort studies from Brazil (8), Malaysia (6), New Zealand (5), UK (5), USA (5), Canada (4), and Cuba (4). Sixty-five case-control studies (~90%) employed an unmatched experimental design and produced a total of 651 ORs. From these, 295 reported ORs were not adjusted by any confounder (i.e., crude ORs by Chi-square test), while the others were adjusted by using either Mantel-Haenzel method (35 ORs) or unconditional logistic regressions (321 ORs). On the other hand, only seven studies (~10%) employed a matched experimental design, providing for meta-analysis a total of 85 ORs. From these, most of them were adjusted ORs estimated by Mantel-Haenzel method (22 ORs) or logistic regressions (54 ORs). After methodological quality assessment, twelve case-control studies were marked as being below standards, which yielded a total of 146 potentially-biased ORs. With regards to the risk factor classes, sporadic illness investigations focused more on the multiple pathways of exposure (594 ORs) than on host specific factors (92) and travel (50).

According to this meta-analysis study, the most important transmission routes of giardiasisis in the mixed population are international travel (overall OR=4.85; 95% CI: 3.30 - 7.12) and the host-specific factors of suffering from a gastrointestinal condition (overall OR=4.28; 95% CI: 2.18 - 8.41) and chronic immunocompromising disease (overall OR=3.93; 95% CI: 1.76 - 8.78). In the mixed population, person-to-person transmission bears a significantly higher association with giardiasis (overall OR=2.54; 95% CI: 1.52 - 4.25) than both dishes/fast-food eaten out (overall OR=2.21; 95% CI: 1.51 - 3.24) and environmental pathways of exposure to

human waste/waste water (overall OR=2.03; 95% CI: 1.57 – 2.63), recreational water (overall OR=1.87; 95% CI: 1.50 – 2.33), drink water (overall OR=1.86; 95% CI: 1.50 – 2.30), day care (overall OR=1.71; 95% CI: 1.21 – 2.44) and camping/gardening (overall OR=1.59; 95% CI: 1.14 – 2.21). In the mixed population, the animal-related pathways, such as contact with wild animals (overall OR=1.66; 95% CI: 1.01 – 2.73) and contact with pets (overall OR=1.30; 95% CI: 1.06 – 1.60) are not as strong determinants of giardiasis as the environmental routes of waste water, recreational water and drink water.

In the children population, the highest associations with giardiasis are posed by person-toperson transmission (overall OR=2.79; 95% CI: 1.48 - 5.25), travel (overall OR=2.38; 95% CI: 1.80 - 3.15) and consumption of fresh/unwashed vegetables (overall OR=2.19; 95% CI: 1.47 - 3.28). Unlike the mixed population, in children, the animal-related routes of transmission of farm animals (overall OR=1.92; 95% CI: 1.35 - 2.73) and pets (overall OR=1.87; 95% CI: 1.38 - 2.53) are, on meta-analysis, at least as important vehicles of giardiasis as the environmental routes of playground (overall OR=1.85; 95% CI: 1.12 - 3.05), drink water (overall OR=1.78; 95% CI: 1.47 - 2.16) and exposure to human waste (overall OR=1.74; 95% CI: 1.35 - 2.25). Other significant pathways of transmission of giardiasis in children were, in decreasing order: living on a farm (overall OR=1.70; 95% CI: 1.24 - 2.34), suffering from chronic disease (overall OR=1.62; 95% CI: 0.97 - 2.70), no handwashing before eating (overall OR=1.57; 95% CI: 1.18 - 2.10), attending day care/kindergarten (overall OR=1.53; 95% CI: 1.12 - 2.08), other medical conditions (overall OR=1.41; 95% CI: 1.00 - 2.00), recreational water (overall OR=1.39; 95% CI: 0.93 - 2.09) and not washing hands after using toilet (overall OR=1.18; 95% CI: 1.03 - 1.35).

Routes of exposure that on meta-analysis were not proven to be significantly associated with giardiasis in the mixed population were: poor hygiene habits (overall OR=1.53; 95% CI: 0.71 – 3.29), consuming fresh or unwashed vegetables (overall OR=1.28; 95% CI: 0.88 – 1.88), contact with farm animals (overall OR=1.25; 95% CI: 0.86 – 1.83) and not washing hands before eating (overall OR=1.11; 95% CI: 0.84 – 1.40); while in children the least important route of exposure to giardiasis was poor hygiene habits (overall OR=1.33; 95% CI: 0.94 – 1.88). Breastfeeding protected children against acquiring giardiasis since, on meta-analysis, children who were breastfed presented approximately half the odds (95% CI: 0.29 – 0.91) of becoming infected than those who were not. Not washing fresh vegetables before consumption was found to pose a significant risk of acquiring giardiasis (p=0.086), since people who admitted having eaten unwashed vegetables had 1.404 (95% CI: 0.954 – 2.065; Table 11) greater probability of acquiring giardiasis than those who stated having consumed *simply* fresh vegetables (without having being specific as to whether it was unwashed).

3. Results

3.6 Giardia duodenalis

3.6.1 Descriptive statistics

In the systematic review of risk factors pertaining to human infection with Giardia duodenalis, a total of 691 bibliographic sources were identified using the keywords in the five search engines, from which 85 passed the full assessment for eligibility comprising casecontrol and cohort studies from both sporadic illnesses and outbreaks (Figure 1). A total of 13 fully-documented case-control studies investigated the source(s) of outbreaks and were kept in the JabRef file as their data can be readily extracted. In this study, meta-analysis was undertaken using 72 primary studies - case-control and cohort studies - with focus on sporadic disease (Figure 1). These published studies were conducted in years spanning from 1977 and 2016. Table 1 compiles a list of the case-control studies along with their main features. The eligible studies jointly provided 736 categorised odds-ratios for meta-analysis. A total of 201 ORs were retrieved from 21 case-control studies performed before the year 2000, while 535 ORs were excerpted from 51 case-control studies performed after 2000. Meta-analytical data were obtained from case-control and cohort studies conducted in 34 countries, although studies from only 10 countries provided ~66% of the ORs retrieved. These were: Brazil (8 studies), Malaysia (6), USA (5), UK (5), New Zealand (5), Canada (4) and Cuba (4) (Figure 2, top left).

Forty studies investigated risk factors for giardiasis in children whereas thirty-two primary studies were conducted in the mixed population. By contrary, only two studies focused on the adult population (Cohen et al., 2008 and Girotto et al., 2013) while three studies attempted to find associations of exposures with disease in the susceptible population: the elderly (Cohen et al., 2008 and Girotto et al., 2013) and the immunocompromised (Mahmud et al., 2014). Because of the very few OR measures available for these two population classes – adult and susceptible (Figure 2, top right), it was not possible to undertake separate meta-analyses on these data. Instead, the adult population data (6 ORs) was merged with the mixed population data (389 ORs) while the susceptible data (15 ORs) was incorporated to the children data (326 ORs). By doing this, two population types were created: the mixed population (395 ORs), made up of 53.7% of the data, and the children/susceptible population (341 ORs), comprising 46.3% of the meta-analytical data. As a rule, because of their distinct routes of exposure, separate meta-analyses were adjusted on the mixed population and children. Data from both age groups were merged only when the number of observations belonging to the children population was too few to run a separate meta-analysis model.

In all of the primary studies, the giardiasis cases were laboratory-confirmed. Only 7 casecontrol studies employed a matched experimental design and produced a total of 85 categorised ORs, which represented 11.5% of the data. Of these, 22 ORs were computed in multivariate analysis whereas 63 were obtained in univariate analysis. ORs from matched designs were mostly estimated using logistic regressions (54) and MH (22), and only a few by the simple chi-square test (9). From the studies that applied an unmatched design (65 studies), mostly cohort studies, a total of 651 ORs were extracted, which constituted 88.5% of the meta-analytical data. A total of 499 ORs were computed in univariate analysis while 152 in multivariate analysis. Most of the ORs from unmatched designs were estimated using chisquare (295) and UL (321) whilst only 35 ORs were MH-estimates adjusted by a confounder's strata within a frequency-matched experimental design. Bringing together the matched and unmatched designs, 430 extracted ORs (58.4% of the data) were not adjusted by any confounder (crude ORs), while only 306 ORs (41.6%) were adjusted using either MH or logistic regressions (Figure 3).

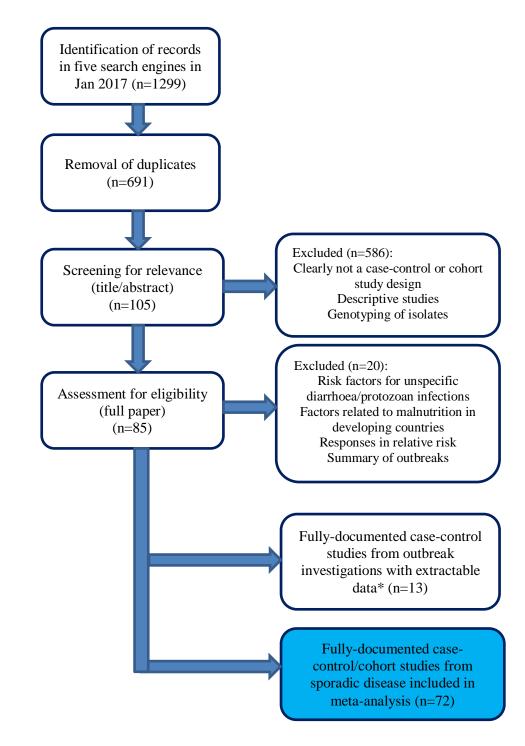


Figure 1. Flow chart of literature search for case-control studies of human giardiasis *Records kept in JabRef with PDFs files annexed

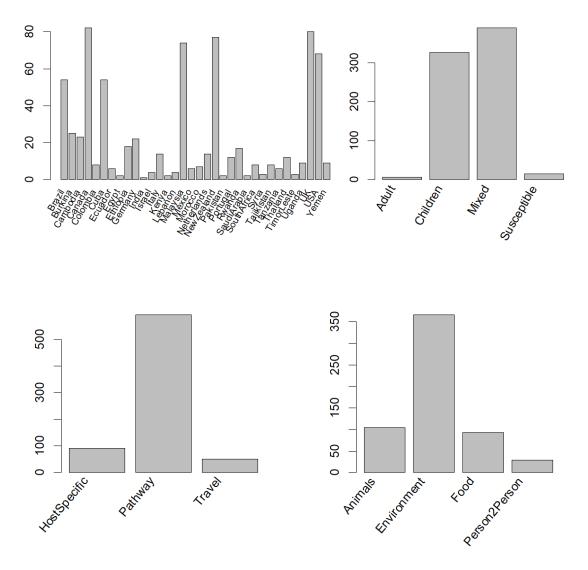


Figure 2. Distribution of the number of odds-ratios (y-axis) extracted from case-control studies of sporadic giardiasis by country (top left), population type (top right), risk factor (bottom left) and pathway of exposure (bottom right)

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

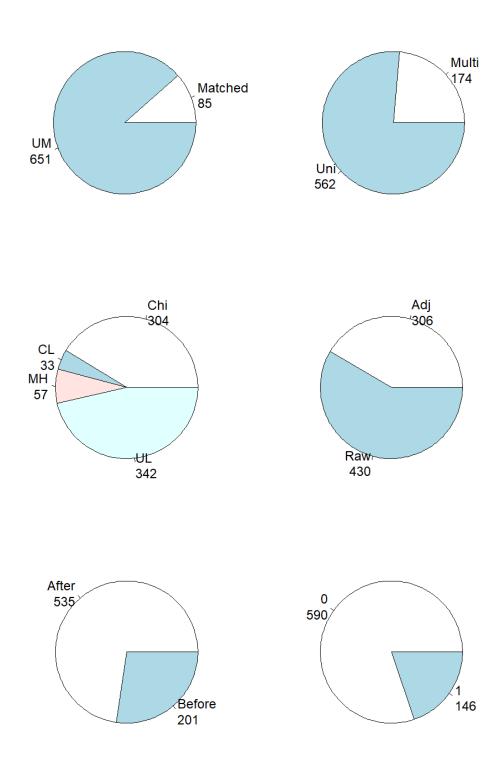


Figure 3. Pie-diagrams of the number of odds-ratios extracted from case-control and cohort studies of sporadic giardiasis by design (top left), analysis type (top right), model type (middle left), odds-ratio type (middle right), study period cut off year 2000 (bottom left) and assigned potential for bias (bottom right)

Table 1. Characteristics of primary studies investigating risk factors for acquiring sporadic giardiasis included in the meta-analysis

Study ID	Country	Study period	Population	Design	Analysis & model	# cases/ controls	Quality Final ORs /removed
Almerie et al. 2008	Syria	Mar-Jun 2006	Children	Unmatched	Uni-UL	206 cases 1263 controls	Good 3
Alyousefi et al. 2011	Yemen	2011	Mixed	Unmatched	Uni-Chi Multi-UL	89 cases 414 controls	Good 9
Anuar et al.	Malayria	Jun-Dec 2011	Mixed	Unmatched	Uni-Chi Multi-UL	62 Assemb A 549 controls	Good
2014	Malaysia	Jun-Dec 2011		Unmatched	Uni-Chi Multi-UL	36 Assemb B 575 controls	23
Anuar et al. 2012	Malaysia	Jun-Dec 2011	Mixed	Unmatched	Uni-UL	100 cases 400 controls	Good 10
Bello et al. 2011	Cuba	2003	Children	Unmatched	Uni-Chi Multi-UL	94 cases 257 controls	Good 17
Boontanom et al. 2011	Thailand	Feb 2007	Children	Unmatched	Uni-Chi Multi-UL	11 cases 178 controls	Good 6/1
Campbell et al. 2016	Timor Leste	May 2012- Oct 2013	Mixed	Unmatched	Multi-UL	111 cases 557 controls	Good 3
Chaves et al. 2007	Colombia	1995, 2001, 2005	Children	Unmatched	Uni-Chi	19 cases 121 controls	Good 5
Choy et al. 2014	Malaysia	Apr 2011-Feb 2013	Mixed	Unmatched	Uni-Chi Multi-UL	154 cases 1176 controls	Good 22
Chute et al. 1987	USA	Jan 1977- Jun 1984	Mixed	Matched	Uni-Chi Uni-UL	171 cases 684 controls	Good 16
Cifuentes et al.	Mexico	Jul-Sep 1990	Mixed	Unmatched	Uni-UL Uni-Chi	601 cases 6147 controls	Poor 4
Cohen et al. 2008	USA	1993-2002	Children Adult Susceptible (elderly)	Unmatched	Uni-UL Multi-UL	? cases ? controls	Good 12
Coles et.al 2009	Israel	Dec 1994- Mar 1997	Children	Unmatched	Uni-Chi Multi-UL	29 c/163 c 55 c/278 c 92 c/307 c	Good 4
Delfino et al. 2016	Brazil	2003 2010 2011	Children	Unmatched	Uni-UL Multi-UL	92 cases 307 controls	Good 6
Dennis et al. 1993	USA	1984	Mixed	Unmatched	Multi-UL	273 cases 375 controls	Good 6
Enserink et al. 2015	Netherlands	2010-2013	Children	Unmatched	Multi-UL	504 cases 4693 controls	Poor 3
Ensink et al. 2006	Pakistan	Aug 2002-Jul 2003	Mixed	Unmatched	Uni-UL Multi-UL	1145 cases 561 controls	Good 2
Erismann et al. 2015	Burkina	Feb 2015	Children	Unmatched	Multi-UL Uni-UL	108 cases 277 controls	Good 25/2
Espelage et al. 2010	Germany	Feb 2007- Jan 2008	Mixed	Matched	Uni-MH Multi-CL	120 cases 240 controls	Poor 22

Esrey et al. 1989	South Africa	Jul 1984- Feb 1985	Children	Unmatched	Uni-Chi Multi-UL	63 cases 204 controls	Poor 8
Faustine et al.	Italy	Jan 2000-	Mixed	Unmatched	Uni-UL Multi-UL	28 cases 54 controls	Good
2006	2	May 2001	Children		Uni-UL	13 cases 11 controls	14
Firdu et al. 2014	Ethiopia	Feb-Aug 2011	Children	Unmatched	Uni-Chi	18 cases 11 cryptosp	Poor 10
Fonseca et al. 2014	Brazil	Apr-May, Oct 2010	Children	Unmatched	Uni-UL Multi-UL	45 cases 531controls	Good 9
Fraser et al. 1991	New Zealand	1986-1988	Mixed	Matched	Uni-Chi	21 cases 63 controls	Poor 1
Gagnon et al. 2006	Canada	2001-2002	Children	Matched	Uni-UL Multi-UL	23 cases 77 controls	Good
2000			Mixed		Uni-UL Multi-UL	113 cases 301 controls 12 cases	13
Girotto et al. 2013	Brazil	2009- 2010	Susceptible (elderly) Adult	Unmatched	Uni-Chi	281controls 3 cases	Good 5
Habbari et al. 1999	Morocco	Jan-Mar 1999	Children	Unmatched	Uni-Chi	60 controls 38 cases 702 controls	Good 5
Heimer et al. 2015	Rwanda	May 2012	Children	Unmatched	Uni-Chi Multi-UL	132 cases 231 controls	Good 9
Heusinkveld et al. 2016	Netherlands	Apr 2013- Oct 2014	Children	Unmatched	Multi-UL	44 cases 913 controls	Good 4
Hoque et al. 2003	New Zealand	Nov 1999- Jun 2000	Children	Unmatched	Uni-UL Multi-UL Uni-MH	69 cases 98 controls	Good 24/1
Hoque et al. 2002	New Zealand	Jul 1998- Jun 1999	Mixed	Unmatched	Uni-MH Uni-UL Multi-UL	183 cases 336 controls	Good 40
Hoque et al. 2001	New Zealand	Jul 1998-Jun 1999	Mixed	Unmatched	Uni-Chi Uni-UL	183 cases 336 controls	Good 4
Ignatius et al. 2012	Rwanda	Jan - Mar 2010	Children	Unmatched	Uni-UL Multi-UL	353 cases 229 controls	Good 8
Jerez-Puebla et al. 2015	Cuba	Jan-Dec 2013	Children	Unmatched	Uni-Chi Multi-UL	76 cases 639 controls	Good 12
Johnston et al. 2010	Uganda	May-Jun 2007	Mixed	Unmatched	Uni-Chi	44 cases 64 controls	Good 9/1
Julio et al. 2012	Portugal	Feb 2002- Oct 2008	Children	Unmatched	Uni-Chi	57 cases 787 controls	Good 12/3
Kettani et al. 2006	Marocco	2005	Mixed	Unmatched	Uni-Chi	28 cases 305 controls	Good 2
Lander et al. 2012	Brazil	Aug-Nov 2010	Children	Unmatched	Uni-UL	42 cases 283 controls	Good 3
Lora-Suarez et al. 2002	Colombia	Jan 2000- Jul 2001	Children	Unmatched	Uni-Chi Uni-MH	131 cases 86 controls	Good 3
Mahdy et al. 2009	Malasysia	Feb-Mar 2006	Mixed	Unmatched	Uni-Chi Multi-UL	32 cases 208 controls	Good 8

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

Mahdy et al. 2008	Malasysia	Feb-Mar 2006	Mixed	Unmatched	Uni-Chi	67 cases 218 controls	Good 7
Mahmud et	Egypt	2000	Children	Unmatched	Uni-Chi	114 cases	Good
al. 2001	-871				Multi-UL	312 controls	2
Mahmud et al. 2014	Ethiopia	2013	Susceptible (immuno-	Unmatched	Uni-Chi Multi-UL	47 cases 327 controls	Good 8
ul. 2011			compromised)		Multi-OL		
Marder 2012	USA	2003-2010	Mixed	Unmatched	Uni-UL	12194 cases 36386 salmon	Poor 19
Mathias et al. 1992	Canada	1990	Mixed	Unmatched	Uni-Chi	180 cases 180 enteric	Poor 4
Matthys et al.					Uni-Chi	157 cases	Good
2011	Tajikistan	2009	Children	Unmatched	Multi-UL	437 controls	8
Mbae et al.					Uni-Chi	90 cases	Good
2013	Kenya	2010-2011	Children	Unmatched	Multi-UL	1810 controls	2
Minetti et al.		Feb 2012-			Uni-UL	118 cases	Good
2011	UK	Aug 2012	Mixed	Unmatched	Multi-UL	226 controls	33/4
Mitra et al.		1109 2010			Multi-OL	30 cases	Good
2016	India	2016	Mixed	Unmatched	Uni-Chi	262 controls	1
Moore et al.	Cambodia	Apr-Jun 2012	Children	Unmatched	Uni-Chi	132 cases	Good
2016	Camboula	Api-Juli 2012	Children	Offinateried	em-em	336 controls	23
Norhayati et	Malaysia	1998	Mixed	Unmatched	Uni-Chi	176 cases	Good
al. 1998	Walaysia	1998	WIIXeu	Ulillatened	Ulli-Clli	741 controls	4
Novotny at al.	USA	1990	Children	Unmatched	Multi-UL	40 cases	Good
1990	USA	1990	Ciliaren	Ulimatched	Uni-Chi	270 controls	15
Nunez et al.	Cuba	2003	Children	Unmatched	Uni Chi	43 cases	Good
2003	Cuba	2005	Ciliaren	Unmatched	Uni-Chi	76 controls	5
Omar et		1002	M ² 1	TT		268 cases	Good
al.1995	Saudi Arabia	1992	Mixed	Unmatched	Multi-UL	1149 controls	2
Osman et al.			<i></i>			71 cases	Good
2016	Lebanon	Jan 2013	Children	Unmatched	Uni-UL	178 controls	4/1
Pereira et al.		Aug 1998-	~ ~ ~ ~ ~			44 cases	Good
2007	Brazil	May 1999	Children	Unmatched	Uni-UL	401 controls	5
		-				62 Assemb A	
Pijnacker et	Netherlands	Mar 2010-	Children	Unmatched	Multi-UL	76 Assemb B	Good
al. 2016		Mar 2013				4789 controls	7
Prado et al.					Uni-Chi	95 cases	Good
2003	Brazil	1998	Children	Unmatched	Multi-UL	618 controls	12
Puebla et al.					Uni-Chi	45 cases	Good
2016	Cuba	Jan-Jun 2013	Children	Unmatched	Multi-UL	372 controls	20
Ratanapo at					Uni-Chi	33 cases	Good
al. 2008	Thailand	Feb 2005	Children	Unmatched	Multi-UL	498 controls	6
Ravel et al.		Jun 2005-				143 cases	Poor
2013	Canada	May 2009-	Mixed	Unmatched	Uni-Chi	54 amoebiasis	36/3
Redlinger et		Aug 1999-				345 cases	Poor
al. 2002	Mexico	Mar 2000	Children	Unmatched	Uni-Chi	298 cryptosp	2
					Uni-Chi	72 cases	Good
Sackey et al. 2003	Ecuador	Jun-Aug. 2000	Children	Unmatched	Multi-UL	172 cases	6 6
					widiu-UL	172 controis	Good
Santos ate al. 2012	Brazil	May 2007- Mar 2008	Children	Unmatched	Uni-Chi	127 cases 118 controls	
							11 Cood
Gray et al. 1994	UK	Jul 1992- May 1993	Mixed	Matched	Uni- CL Multi-CL	74 cases 108 controls	Good 11/2
Stuart et al.		111ay 1775			main-CL		11/2
		1000				192 cases	Good
2003	UK	Apr 1998- Mar 1999	Mixed	Matched	Uni- CL Multi-CL	192 Cases	0000

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

Swirski et al.	Canada	nada 2006-2012 Mixed Unmatched		Uni-UL	220 cases	Poor	
2015						281 cases	29
Takaoka et al.	UK	Sep 2008-	Mixed	Unmatched	Uni-Chi	92 cases	Good
2016	UK	May 2010	Mixed Unmatched N	Multi-UL	3214 controls	14	
Teixeira et	Brazil	2007	Children	Unmatched	Multi-UL	106 cases	Good
al2007	DIazii	2007	Ciliaren	Uninatched	Multi-OL	484 controls	3
Tellevik et al.	Tanzania	Aug 2010-Jul	Children	Unmatched	Uni-Chi	701 cases	Good
2015	Tanzania	2011	Ciliaren	Ulimatched	Multi-UL	558 controls	6
Warburton et	UK	1994	Mixed	Matched	Uni-MH	33 cases	Good
al. 1994	UK	1994	wiixeu	watched		112 controls	2
Wilson et al.	New Zealand	2006	Mixed	Unmatched	Uni-Chi	591 cases	Poor
2008		New Zealand 2006 Mixed		Uninatched	UIII-CIII	5395 campyl	8/1

During methodological quality assessment, twelve case-control studies were marked as being possibly affected by bias. The potential for selection bias status was assigned to six casecontrol studies where the controls were not healthy individuals but affected by another enteric disease such as cryptosporidiosis (Firdu et al., 2014, Redlinger et al., 2002), salmonellosis (Marder, 2012), amoebiasis (Ravel et al., 2013), campylobacteriosis (Wilson et al., 2008), giardiasis domestically acquired (Swirski et al., 2015) or a group of them (Mathias et al., 1992). As it is not clear whether these controls shared routes of exposure with the case patients, the ORs extracted from the aforementioned studies were marked as having potential for selection bias. The ORs obtained from Cifuentes et al. (2000), Espelage et al. (2010) and Esrey et al. (1989) were regarded as potentially having misclassification bias because of the possibility that controls may have been classified incorrectly as negative for Giardia duodenalis. The rationale for assigning potential-for-bias status to the association measures extracted from Enserink et al. (2015) and Fraser and Cooke (1991) related to the statistical approach employed, which, in the former was a Poisson model and, in the latter, the absence of counfounders. These aforementioned case-control studies provided 146 potentially-biased ORs whose influence on the meta-analysed OR estimates was appraised by means of the Cook's distance.

With regards to the risk factor classes, sporadic illness investigations focused much more on the multiple pathways of transmission (594 ORs) than on host specific factors (92 ORs) or travel (50 ORs) (Figure 2, bottom left). Within the pathways of transmission, the environment-related routes were more frequently investigated (367 ORs) than the animal-related (105 ORs), food consumption (93 ORs) and person-to-person routes (29 ORs) (Figure 2, bottom right). General information on the distribution of the number of ORs available for meta-analysis is presented in Figure 3 by study design, type of analysis, model, type of odds-ratio, study period and potential for bias status.

3.6.2 Meta-analysis for host-specific risk factors and travel-, environment-, animal-, food-related and person-to-person pathways of transmission

Assessing the effect of study period on the pooled ORs in the meta-analysis models, it was found that the risks of giardiasis due to travel (p=0.826; Table 2B), host-specific factors (p=0.273; Table 3B), animal-related routes (p=0.556; Table 4B), environmental pathways

(p=0.639; Table 5B) and food consumption (p=0.180; Table 7B), as measured in the earlier studies (before the year 2000), did not change significantly in the most recent years (after 2000). Therefore, in all of the models pertaining to the above data partitions, the variable "study period" was dropped from the full meta-analysis models, and the ORs were pooled to represent data from both study periods. By contrast, study period was found to be significant only in the person-to-person contagion as a risk factor for giardiasis (p=0.058; Table 6B). This meta-analysis revealed that, in recent years, the risk of giardiasis due to person-to-person transmission came down to about half (1/exp(0.740)=0.48; Table 6B) the risk that was estimated two to three decades ago. In the past, person-to-person contagion must have been one of the most important pathways for acquiring giardiasis.

The meta-analysis on travel by geographical region positioned travel as an important risk factor for acquiring giardiasis (p<.01) in the mixed population of North America (pooled OR=3.019), Oceania (pooled OR=3.927) and Europe (pooled OR=2.280; Table 2A). In children, travel was equally an important risk factor of giardiasis (p<.0001) in both regions for which data was available: North America (pooled OR=1.993) and Oceania (pooled OR=3.476; Table 2A).

Parameters	Mean	Standard	n	95% CI	Pr > t , Z
		error			
Mixed					
North America	1.105	0.291	9	[0.536 - 1.675]	<.0001
Europe	0.824	0.276	27	[0.282 - 1.366]	0.003
Oceania	1.368	0.404	6	[0.575 - 2.160]	0.001
Children					
North America	0.690	0.185	3	[0.326 - 1.053]	<.0001
Oceania	1.246	0.197	4	[0.860 - 1.632]	<.0001

Table 2A. Meta-analysis of travel as a risk factor for acquiring giardiasis by geographical region for the mixed (n=42 ORs) and children (n=7 ORs) population

On average, people who travelled recently, either out of or within the country, had 3.158 times (95% CI: 2.075 - 4.802) greater probability of becoming infected with giardiasis than people who did not travel at all (Table 2B). For nationals of USA, Canada, Germany, New Zealand, UK and Italy, travelling abroad increased their odds of infection with *Giardia duodenalis* by an average of 4.845 (95% CI: 3.297 - 7.120). Although still significant, domestic travelling conveyed a lower risk at an overall OR of 1.824 (95% CI: 0.951 - 3.501), as meta-analysed from nationals of Italy, New Zealand, Canada and UK (Table 2B). However, children from USA, Italy and New Zealand who travelled inside the country presented a higher odds of infection (overall OR=2.377; 95% CI: 1.795 - 3.149) than the mixed population (Table 2B). No data was found for children travelling abroad. The meta-analyses conducted on the travel data partition did not suggest any publication bias either in the mixed (p=0.744) or in the children population (p=0.828), which was also supported by the acceptable spread of observations within the funnel plots (Figure 4). Only one potentially-

biased OR was removed from the mixed population meta-analysis after assessing influential observations by Cook's distance.

Рор	Parameters	Mean	Standard error	n	95% CI	$\Pr > t , Z$
Mixed	All Travel	1.150	0.214		[0.730 - 1.569]	<.0001
(12 stud)	Fixed effects					
	Abroad	1.578 ^c	0.197	32	[1.193 – 1.963]	<.0001
	Any	0.903 ^b	0.302	5	[0.309 - 1.496]	0.029
	Inside	0.601 ^a	0.332	5	[-0.050 - 1.253]	0.070
	Before 2000					0.826
	Random effects					
	s ² _u (Intercept)	0.247	QE(df=38)		QM(df=3)	
	s ² (residual)	0.8073	p=0.001		p<.001	
	Publication bias	-0.0000	0.0002			0.744
	Points removed	1				
Children	All Travel*	0.866	0.143		[0.585 - 1.147]	<.0001
(3 stud)	Fixed effects					
	Inside	0.866	0.143	7	[0.585 - 1.147]	<.0001
	Before 2000					0.787
	Random effects					
	s ² _u (Intercept)	0.0000	QE(df=6)			
	s ² (residual)	0.5369	p=0.298			
	Publication bias	-0.0005	0.0024			0.828
	Points removed	0				

Table 2B. Meta-analysis of travel as a risk factor for acquiring giardiasis in the mixed (n=42
ORs) and children (n=7 ORs) population

(*) Pooled OR for All Travel is equal to pooled OR for travel inside since it was the only subcategory for which data was available in the children population

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

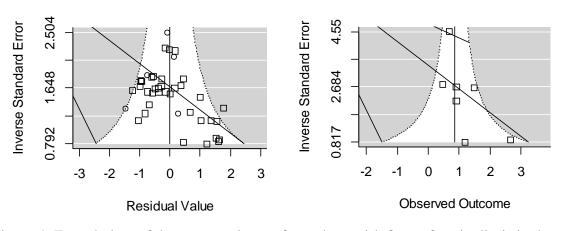


Figure 4. Funnel plots of the meta-analyses of travel as a risk factor for giardiasis in the mixed (left) and children (right) population. Circle markers belong to OR measures with potential for bias

The meta-analysis on host-specific factors revealed that in the North American (pooled OR=6.271) and European countries (pooled ORs from 3.267 to 6.258), suffering from chronic diseases and gastrointestinal conditions exacerbated the risk of acquiring giardiasis to a greater extent than in African and Asian countries (pooled ORs of 1.133 and 1.533, respectively; Table 3A). In the children population, except for North America, all of the other regions (namely, Africa: pooled OR=1.409; Asia: pooled OR=1.349; South America: pooled OR=1.331; and South Europe: pooled OR=1.485) presented comparable overall association between host-specific factors and giardiasis. In North America, the pooled OR was significantly higher (pooled OR=5.073; p<.0001 in Table 3A) because the only host-specific factor meta-analysed (4 data points) was the predisposition of children with HIV to giardiasis. For the full meta-analysis on host-specific factors by subcategory, the data from Africa were removed from the mixed population since their pooled OR was the lowest and the only non-significant among the five geographical regions (Table 3A).

The meta-analysis by subcategory suggested that, in the mixed population, having HIV (chronic) or any gastrointestinal medical condition (Other med) equally predisposed people to acquiring giardiasis, as per the comparable overall ORs of 3.931 (95% CI: 1.761 - 8.776) and 4.284 (95% CI: 2.181 – 8.415), respectively (Table 3B). Poor hygiene habits seemingly barely predisposed the mixed population to acquiring giardiasis (overall OR=1.525; 95% CI: 0.706 -3.293), although this is not conclusive by any means since the extracted ORs in this subcategory were only four (Table 3B). On meta-analysis, children who suffered from any chronic disease or malnutrition, or with poor hygiene habits presented on average 1.412 times (95% CI: 1.114 – 1.790) greater probability of becoming infected with Giardia duodenalis than those who were not exposed by these means (Table 3B). Similar levels of risk of giardiasis were exhibited for children having HIV (Chronic: overall OR=1.621; p=0.064), previous gastrointestinal infections or malnutrition (Other med: overall OR=1.413; p=0.051) and those with poor hand hygiene habits (Hygiene: overall OR=1.332; p=0.102). Infants who were not breastfed presented nearly twice (overall OR=1.945; 95% CI: 1.094 - 3.462) the probability of acquiring giardiasis than those who were breastfed. Thus, breastfeeding had a significant protective effect (p=0.024; Table 3B) against giardiasis. Publication bias was not evident in the children partition meta-analysis given both the lack of effect of study size on the measured ORs (p=0.424), and the scattered distribution of observations within the funnel plot (Figure 5, right). In the mixed population, however, there was evidence of publication bias (p=0.002 in Table 3B), likely to arise from the fewer data points found in the literature (Figure 5, left).

Parameters	Mean	Standard	n	95% CI	Pr > t , Z
		error			
Mixed					
Africa	0.125	0.308	3	[-0.478 - 0.729]	0.684
Asia	0.427	0.100	5	[0.231 - 0.622]	<.0001
North America	1.836	0.370	3	[1.112 - 2.561]	<.0001
North Europe	1.834	0.192	5	[1.459 - 2.210]	<.0001
West Europe	1.184	0.304	3	[0.588 - 1.779]	<.0001
Children*					
Africa	0.343	0.189	25	[-0.028 - 0.713]	0.070
Asia	0.300	0.227	12	[-0.150 - 0.741]	0.194
North America**	1.624	0.471	4	[0.701 - 2.546]	0.001
South America	0.286	0.175	22	[-0.057 - 0.629]	0.102
South Europe	0.396	0.501	2	[-0.585 - 1.377]	0.429

Table 3A. Meta-analyses of host-specific factors for giardiasis by region for the mixed (n=19) and children population (n=65, ORs for breastfeeding removed)

*The breastfeeding category was removed for the meta-analysis to make pooled ORS by region comparable to those of the mixed population; all breastfeeding OR data (protective effect) were evaluated in African studies ** The four data points assessed the predisposition of children with HIV to giardiasis

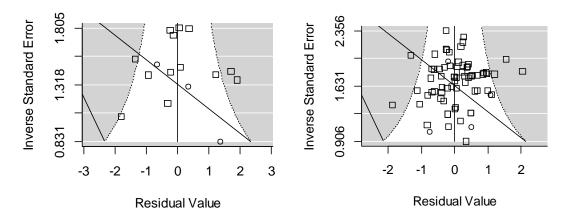


Figure 5. Funnel plot of the meta-analyses of host-specific risk factors for giardiasis in the mixed (left) and children (right) population

Рор	Parameters	Mean	Standard error	n	95% CI	$\Pr > t , Z$
Mixed	All host-specific	1.132	0.267		[0.608 - 1.656]	<.0001
(8 stud)	Fixed effects					
	Chronic	1.369 ^b	0.409	5	[0.566 - 2.172]	0.001
	Hygiene	0.422^{a}	0.393	4	[-0.347 – 1.192]	0.282
	Other med	1.455 ^b	0.344	7	[0.780 - 2.130]	<.0001
	Before 2000					0.273
	Random effects					
	s ² _u (Intercept)	0.424	QE(df=13)		QM(df=3)	
	s ² (residual)	1.1189	p<.001		p<.001	
	Publication bias	0.0003	0.0001			0.002
	Points removed	0				
Children	All host-specific*	0.345	0.121	65	[0.108 - 0.582]	0.004
(25 stud)	Fixed effects					
	Breastfeeding	-0.666^{a}	0.294	7	[-1.2410.090]	0.024
	Chronic	0.483 ^b	0.261	11	[-0.028 - 1.000]	0.064
	Hygiene	0.287^{b}	0.176	19	[-0.057 - 0.631]	0.102
	Other med	0.346 ^b	0.177	35	[-0.001 - 0.693]	0.051
	Before 2000					0.424
	Random effects					
	s ² _u (Intercept)	0.2635	QE(df=68)		QM(df=4)	
	s ² (residual)	0.4545	p<.0001		p=0.005	
	Publication bias	-0.0004	0.0003			0.156
	Points removed	0				

Table 3B. Meta-analysis of host specific factors for giardiasis in the mixed (n=16) and
children population $(n=72)$ – Africa removed from the mixed population

(*) Computed from 23 primary studies since breastfeeding data was excluded for this calculation

Regarding the animal-related pathways of transmission in the mixed population, animal contact appeared to be an important source of giardiasis infection in Europe (pooled OR=1.408; p=0.102) and Asia (pooled OR=1.391; p=0.030 in Table 4A). In the North America mixed population, however, contact with animals did not represent a significant source of transmission of giardiasis (pooled OR=1.096; p=0.566). By contrast, the children from Africa (pooled OR=1.980; p=0.026), Asia (pooled OR=1.592; p=0.038) and South America (pooled OR=1.844; p=0.010) displayed a similar (significant) level of risk when exposed to any contact with animals. Interestingly, in Western European children, the association between animal contact and disease was the highest (pooled OR=3.758; p<.0001) whereas in Southern European children no association between giardiasis and animal contact could be established (pooled OR=0.931; p=0.865 in Table 4A). For the subsequent metaanalysis by animal contact subcategory, the data from Oceania were removed from the mixed population since they produced the lowest pooled OR (1.003; p=0.994) significantly different from that of Europe (Table 4A).

Table 4A. Meta-analyses of pathways related to animal contact for giardiasis by region in the mixed (n=51) and children (n=54) population

Parameters	Mean	Standard	n	95% CI	Pr > t , Z
		error			
Mixed					
Asia	0.330	0.152	12	[0.033 - 0.627]	0.030
North America	0.092	0.160	21	[-0.222 - 0.406]	0.566
Oceania	0.003	0.330	2	[-0.644 - 0.650]	0.994
Europe	0.342	0.209	16	[-0.068 - 0.753]	0.102
Children					
Africa	0.683	0.307	9	[0.082 - 1.284]	0.026
Asia	0.465	0.223	20	[0.027 - 0.904]	0.038
South America	0.612	0.236	10	[0.148 - 1.075]	0.010
South Europe	-0.071	0.416	7	[-0.887 - 0.745]	0.865
West Europe	1.324	0.289	8	[0.757 - 1.890]	<.0001

The risk of transmission of giardiasis posed by any kind of contact with animals is, on average, higher in the children population (overall OR=1.885; 95% CI: 1.409 - 2.512) than in the mixed population (overall OR=1.342; 95% CI: 1.117 - 1.614; Table 4B). Within the mixed population, contact with wild animals, encompassing visiting/working in a zoo and contact with birds, rabbits, reptiles or rodents (pooled OR=1.655; 95% CI: 1.005 - 2.726), bears overall a significantly greater association with giardiasis than having direct contact with livestock/poultry (overall OR=1.252; 95% CI: 0.856 - 1.835) or contact with a pet (overall OR=1.305; 95% CI: 1.064 - 1.600). Yet, in comparison to the mixed population, children are significantly more susceptible to acquiring giardiasis through both animal-related exposures, contact with farm animals (overall OR=1.921; 95% CI: 1.351 - 2.729) and contact with pets (overall OR=1.868; 95% CI: 1.381 - 2.529; Table 4B). Applying the Cook's distance

diagnostics on the animal-contact meta-analyses, one potentially-biased influential OR was deleted from the mixed population data and one from the children data (Table 4B). Furthermore, in both meta-analyses, there was a significant effect of study size on the published OR measures (p=0.009 and 0.042). Thus, despite the funnel plots did not signal any strong evidence of publication bias (Figure 6), the formal test for publication bias evidenced the plausible existence of small case-control studies (or OR values) that remained unpublished given their insufficient power to quantify a significant association between animal exposure and giardiasis.

Рор	Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Mixed	All animal	0.294	0.094		[0.111 - 0.479]	0.002
(17 stud)	Fixed effects					
	Farm	0.225 ^a	0.195	10	[-0.156 - 0.607]	0.245
	Pets	0.266 ^a	0.104	30	[0.062 - 0.470]	0.011
	Wild	0.504 ^b	0.255	9	[0.005 - 1.003]	0.048
	Before 2000					0.556
	Random effects					
	s ² _u (Intercept)	0.0990	QE(df=45)		QM(df=3)	
	s ² (residual)	0.4007	p<.0001		p=0.008	
	Publication bias	-0.0000	0.0000			0.009
	Points removed	1				
Children	All animal	0.634	0.148		[0.343 - 0.921]	<.0001
(18 stud)	Fixed effects					
	Farm	0.653 ^a	0.179	15	[0.301 - 1.004]	<.0001
	Pets	0.625 ^a	0.154	39	[0.323 - 0.928]	<.0001
	Before 2000					0.967
	Random effects					
	s ² _u (Intercept)	0.2477	QE(df=49)		QM(df=2)	
	s ² (residual)	0.6725	p=0.049		p=0.995	
	Publication bias	0.0002	0.0001			0.042
	Points removed	1				

Table 4B. Meta-analyses of pathways related to animal contact for acquiring giardiasis in the mixed (n=49) and children (n=54) population – Oceania removed from the mixed population

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

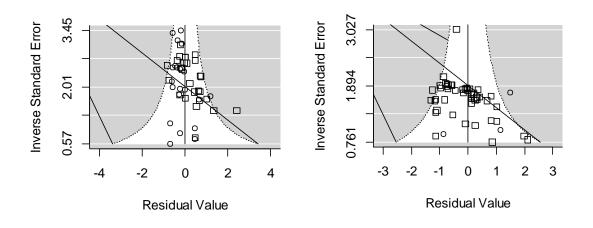


Figure 6. Funnel plots of the meta-analyses of animal contact pathways as risk factors for giardiasis in the mixed (left) and children population (right). Circle markers belong to OR measures with potential for bias

Most of the data recovered from primary studies belonged to the diverse environmental sources of transmission, amounting to 202 ORs for the mixed population and 165 ORs for the children population. In children, the environmental pathways of exposure were strongly associated with giardiasis in nearly all geographical regions: Africa (pooled OR=1.499; p=0.007), Asia (pooled OR=1.336; p=0.094), North America (pooled OR=1.543; p=0.034), Oceania (pooled OR=3.016; p=0.001), South America (pooled OR=1.848; p<.0001) and Western Europe (pooled OR=3.077; p<.0001) (Table 5A). However, in the mixed population, the combined environmental pathways were not proven to be determinant of giardiasis in all of the above geographical regions: while no associations were found in case-control studies from Africa, South America and Western Europe, in the other regions the significant pooled ORs varied from 1.452 (in Asian countries) to 2.707 (Oceanian countries) (Table 5A). Thus, for the general meta-analysis on environmental sources by subcategory, the data from Africa and South America were not included.

The general meta-analyses demonstrated the relevance of the environmental pathways in the transmission of giardiasis in both the mixed (overall OR=1.826; 95% CI: 1.534 - 2.171) and the children population (overall OR=1.718; 95% CI: 1.465 - 2.013; Table 5B). On average, the mixed population exposed to waste water (i.e., exposure to human waste or sewage, common drainage system, and no toilet facilities at home) bore the greatest risk of acquiring giardiasis (overall OR=2.034; 95% CI: 1.571 - 2.633) among all the other environmental pathways. A significantly lower association with giardiasis was found for the exposures related to drinking water (overall OR=1.857; 95% CI: 1.502 - 2.293) and recreational water (overall OR=1.874; 95% CI: 1.504 - 2.335 in Table 5B). While the drinking water exposure encompassed drinking untreated water, private/shallow well/river and bore water and unboiled water in deprived regions; the recreational water exposure included bathing or swimming in river, lake, ocean, swimming pool, any stream and practising water sports. On meta-analysis, all of these water-related exposures were equally likely to cause giardiasis in the mixed population. At a numerally lower risk laid the day care pathway, which grouped attending to day care centre and adult's contact with child, with an overall OR of 1.714 (95%

CI: 1.207 - 2.435). Camping, gardening and contact with manure (viz. playground) bore the lowest risk of acquiring giardiasis in the mixed population at an overall OR of 1.587 (95% CI: 1.141 - 2.208 in Table 5B).

Parameters	Mean	Standard	n	95% CI	$\Pr > t , Z$
N/: 1		error			
Mixed					
Africa	0.280	0.248	8	[-0.205 - 0.765]	0.257
Asia	0.373	0.117	43	[0.144 - 0.601]	0.001
North America	0.668	0.126	63	[0.421 - 0.914]	<.0001
North Europe	0.703	0.202	34	[0.306 - 1.098]	<.0001
Oceania	0.996	0.186	43	[0.629 - 1.362]	<.0001
South America	0.214	0.335	3	[-0.442 - 0.869]	0.523
West Europe	0.238	0.307	8	[-0.365 - 0.840]	0.439
Children					
Africa	0.405	0.150	38	[0.110 - 0.700]	0.007
Asia	0.290	0.173	16	[-0.049 - 0.630]	0.094
North America	0.434	0.206	18	[0.031 - 0.837]	0.034
Oceania	1.104	0.335	18	[0.447 - 1.761]	0.001
South America	0.614	0.098	64	[0.422 - 0.805]	<.0001
South Europe	-0.169	0.316	6	[-0.787-0.450]	0.593
West Europe	1.124	0.273	5	[0.589 - 1.660]	<.0001

Table 5A. Meta-analyses of environmental pathways for acquiring giardiasis by region in the mixed (n=202) and children (n=165) population

In children, the playground exposure – represented by playing on a soiled floor and having a sandpit or garden at home (overall OR=1.846; 95% CI: 1.117 - 3.049) – bore the greatest risk of acquiring giardiasis. On meta-analysis, children appeared equally likely to acquiring giardiasis when exposed to human waste (including open sewage near home, no toilet or latrine at home, toilet in yard and absence of network sewage system; pooled OR=1.740; 95% CI: 1.346 - 2.250), living on a farm (pooled OR=1.700; 95% CI: 1.236 - 2.342) or drinking untreated water (i.e., unboiled or unfiltered tap water, river/well/borehole/surface/spring/pond water; overall OR=1.781; 95% CI: 1.468 - 2.160 in Table 5B). Significantly lower levels of risk of giardiasis in children were born for the pathways of attending day care/kindergarten/school (overall OR=1.526; 95% CI: 1.122 - 2.088) and recreational water (comprising playing with water, fishing, swimming and sailing; pooled OR=1.392; 95% CI: 0.927 - 2.092). After Cook's distance assessment, only one potentially-biased and influential OR measure was removed from the meta-analysis on the mixed population (Table 5B). In addition, the OR measures appeared to be well distributed within the funnel plots from both, the mixed and children population meta-analyses (Figure 7). Publication bias was very

unlikely since the measures of OR were not found to depend upon the case-control study size (p=0.180 and p=0.539; Table 5B).

Table 5B. Meta-analyses of environmental pathways for acquiring giardiasis in the mixed
(n=189) and children (n=165) population – African and South American countries removed
from the mixed population

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pr > t , <.0001 0.003 <.0001 0.006
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.003 <.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Rec water 0.628° 0.112 73 $[0.408 - 0.848]$ Waste water 0.710^{d} 0.131 27 $[0.452 - 0.968]$ Before 2000 Random effects s^{2}_{u} (Intercept) 0.2000 $QE(df=183)$ $QM(df=5)$ s^{2} (residual) 0.5515 $p<.0001$ $p<.0001$ Publication bias 0.0000 0.0000 Points removed 1 Children All environment 0.541 0.081 $[0.382 - 0.700]$ (34 stud) Fixed effects Day care 0.423^{a} 0.159 21 $[0.115 - 0.736]$ Drink water 0.577^{b} 0.098 73 $[0.384 - 0.770]$ Farm 0.531^{b} 0.163 13 $[0.212 - 0.851]$	0.006
Waste water Before 2000 0.710^d 0.131 27 $[0.452 - 0.968]$ Before 2000Random effects s^2_u (Intercept) 0.2000 QE(df=183)QM(df=5) s^2 (residual) 0.5515 $p<.0001$ $p<.0001$ Publication bias 0.0000 0.0000 0.0000 Points removed1 $(0.382 - 0.700]$ (34 stud)Fixed effects 0.423^a 0.159 21 Day care 0.423^a 0.159 21 $[0.115 - 0.736]$ Drink water 0.577^b 0.098 73 $[0.384 - 0.770]$ Farm 0.531^b 0.163 13 $[0.212 - 0.851]$ Playground 0.613^c 0.256 6 $[0.111 - 1.115]$	
Before 2000 Random effects QM(df=5) s^2_u (Intercept) 0.2000 QE(df=183) QM(df=5) s^2 (residual) 0.5515 p<.0001	<.0001
Random effects s^2_u (Intercept)0.2000QE(df=183)QM(df=5) s^2 (residual)0.5515p<.0001	<.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.639
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Points removed1ChildrenAll environment 0.541 0.081 $[0.382 - 0.700]$ (34 stud)Fixed effectsDay care 0.423^a 0.159 21 $[0.115 - 0.736]$ Drink water 0.577^b 0.098 73 $[0.384 - 0.770]$ Farm 0.531^b 0.163 13 $[0.212 - 0.851]$ Playground 0.613^c 0.256 6 $[0.111 - 1.115]$	
ChildrenAll environment 0.541 0.081 $[0.382 - 0.700]$ (34 stud)Fixed effectsDay care 0.423^{a} 0.159 21 $[0.115 - 0.736]$ Drink water 0.577^{b} 0.098 73 $[0.384 - 0.770]$ Farm 0.531^{b} 0.163 13 $[0.212 - 0.851]$ Playground 0.613^{c} 0.256 6 $[0.111 - 1.115]$	0.180
$\begin{array}{c ccccc} \hline & & & & & & & & & & & & & & & & & & $	
Day care 0.423^{a} 0.159 21 $[0.115 - 0.736]$ Drink water 0.577^{b} 0.098 73 $[0.384 - 0.770]$ Farm 0.531^{b} 0.163 13 $[0.212 - 0.851]$ Playground 0.613^{c} 0.256 6 $[0.111 - 1.115]$	<.0001
Drink water 0.577^{b} 0.098 73 $[0.384 - 0.770]$ Farm 0.531^{b} 0.163 13 $[0.212 - 0.851]$ Playground 0.613^{c} 0.256 6 $[0.111 - 1.115]$	
Farm 0.531^{b} 0.163 13 $[0.212 - 0.851]$ Playground 0.613^{c} 0.256 6 $[0.111 - 1.115]$	0.008
Playground 0.613° 0.256 6 $[0.111 - 1.115]$	<.0001
	0.001
Rec water 0.331^{a} 0.208 18 [-0.076 - 0.738]	0.016
	0.110
Waste water 0.554^{b} 0.131 34 $[0.297 - 0.811]$	<.0001
Before 2000	0.891
Random effects	
s_u^2 (Intercept) 0.1869 QE(df=159) QM(df=6)	
s ² (residual) 0.4529 p<.0001 p<.0001	
Publication bias 0.0001 0.0001	0.539
Points removed 0	

(*) Camping, gardening and contact with manure

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

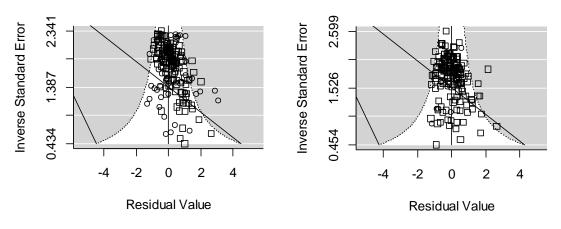


Figure 7. Funnel plots of the meta-analyses of environmental pathways as risk factors for giardiasis in the mixed (left) and children population (right). Circle markers belong to OR measures with potential for bias

The contact with a person having giardiasis is a very important pathway of transmission of disease, confirmed – on meta-analysis – to have significant pooled OR measures of association in the Asian (pooled OR=3.293; p<.0001), North American (pooled OR=2.889; p=<.0001), Oceania (pooled OR=6.228; p<.0001), South American (pooled OR=2.149; p=0.100) and Western European case-control studies (pooled OR=2.071; p=0.061 in Table 6A). Pooling the results from Africa, contact with an ill person was not strongly associated with giardiasis (pooled OR=1.722; p=0.271 in Table 6A). For this reason, the outcomes from the African case-control studies were removed from the data set for the subsequent general meta-analysis by population.

Parameters	Mean	Standard	n	95% CI	Pr > t , Z
		error			
Mixed and children					
Africa	0.544	0.494	3	[-0.425 - 1.512]	0.271
Asia	1.192	0.304	7	[0.600 - 1.788]	<.0001
North America	1.061	0.279	9	[0.513 - 1.609]	<.0001
Oceania	1.829	0.494	3	[0.862 - 2.797]	<.0001
South America	0.765	0.465	4	[-0.146 - 1.676]	0.100
West Europe	0.728	0.389	3	[-0.034 - 1.490]	0.061

Table 6A. Meta-analysis of person-to-person transmission of giardiasis by region for the combined mixed (n=18) and children (n=11) population

On meta-analysis, children who had contact with any giardiasis case presented 2.787 times (95% CI: 1.480 - 5.254) greater risk of contagion than those who did not. The risk of person-to-person contagion in the mixed population (overall OR=2.542; 95% CI: 1.521 - 4.246 in Table 6B) was not significant different than that of children. In this data partition, only one potentially-bias OR turned out to an influential data point in the meta-analytical regression. The corresponding funnel plot (Figure 8) did not hint any strong evidence of publication bias, which was also supported by the non-significant effect of study size on the measured OR (p=0.355 in Table 6B).

Рор	Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Both	Fixed effects					
(17 stud)	Children	1.025 ^a	0.323	9	[0.392 - 1.659]	0.002
	Mixed	0.933 ^a	0.262	17	[0.420-1.446]	<.0001
	Before 2000	0.740	0.390		[-0.024 - 1.504]	0.058
	Random effects					
	s ² _u (Intercept)	0.2365	QE(df=22)		QM(df=2)	
	s ² (residual)	0.5705	p<.0001		p=0.790	
	Publication bias	-0.0000	0.0000			0.355
	Points removed	1				

Table 6B. Meta-analysis of person-to-person transmission of giardiasis in the combined mixed (n=16) and children (n=9) population – Africa was removed

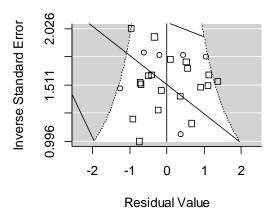


Figure 8. Funnel plot of the meta-analysis of person-to-person transmission of giardiasis in the combined mixed and children population. Circle markers belong to OR measures with potential for bias

In the mixed population, the ingestion of contaminated foods was associated with acquiring giardiasis in the case-control studies from Asia (pooled OR=1.584; p=0.001) and North America (pooled OR=2.186; p<.0001), whereas in Northern (pooled OR=1.040; p=0.841) and Western Europe (pooled OR=1.235; p=0.438), food did not appear to be an important vehicle for the infection with *Giardia duodenalis* (Table 7A). Nonetheless, in children from Latin America, the ingestion of infested food was a significant determinant of disease (pooled OR=2.179; p=0.002 in Table 7A). No geographical region was removed for the subsequent meta-analysis by food subcategory.

Parameters	Mean	Standard	n	95% CI	Pr > t , Z
		error			
Mixed					
Asia	0.460	0.134	18	[0.197 - 0.723]	0.001
North America	0.782	0.206	22	[0.378 - 1.186]	<.0001
North Europe	0.039	0.197	10	[-0.347 - 0.427]	0.841
West Europe	0.211	0.273	6	[-0.323 - 0.746]	0.438
Children					
Asia	0.104	0.371	3	[-0.623 - 0.831]	0.778
South America	0.779	0.252	8	[0.285 - 1.273]	0.002

Table 7A. Meta-analyses of food pathways for acquiring giardiasis by geographical region in the mixed (n=56) and children (n=11) population

The general meta-analysis on food pathways demonstrated that, as a whole, children were more likely to become infected with Giardia duodenalis through food consumption (overall OR=1.885; 95% CI: 1.211 – 2.933) than the mixed population (overall OR=1.567; 95% CI: 1.237 – 1.982 in Table 7B). On meta-analysis, the mixed population with giardiasis infection were more likely to have consumed produce (including raw vegetables, fresh fruits, salads and unwashed vegetables; overall OR=1.545; 95% CI: 1.219 - 1.956) or multi-ingredient foods (eaten at cafeteria, supermarket, food vendor, delicatessen shops and restaurants; overall OR=2.190; 95% CI: 1.297 - 3.699) than the controls (Table 7B). No statistical association with giardiasis was found for the food subcategories of beverages (bottled water and unpasteurised juice; p=0.488), dairy foods (raw milk and raw dairy products; p=0.835) and meat (meat from butcher and private kill; p=0.761), probably due to the very few ORs recovered in these subcategories (Table 7B). The trend was similar in the children population: whereas produce was a strong determinant of giardiasis (overall OR=1.925; 95% CI: 1.340 -2.765 for unwashed raw vegetables, fresh fruits and raw cabbage), meat was not found to be a source of giardiasis (overall OR=0.759; 95% CI: 0.419 - 1.374). After Cook's distance assessment, two potentially-biased OR popped up as influential points, and hence, they were removed (Table 7B). Although, in the children population, there was a strong effect of study size on the measured ORs (p=0.001), the funnel plots revealed an acceptable distribution of observations (Figure 9).

Pop	Parameters	Mean	Standard error	n	95% CI	$\Pr > t , Z$
Mixed	All foods	0.449	0.120		[0.213-0.684]	<.0001
(13 stud)	Fixed effects					
	Beverage	0.184 ^a	0.265	4	[-0.336 - 0.705]	0.488
	Composite	0.784^{ab}	0.267	15	[0.260 - 1.308]	0.003
	Dairy	0.156 ^a	0.755	2	[-1.322 – 1.636]	0.835
	Meat	0.269 ^a	0.885	2	[-1.466 – 2.004]	0.761
	Produce	0.435 ^b	0.121	33	[0.198 - 0.671]	0.001
	Before 2000					0.180
	Random effects					
	s ² _u (Intercept)	0.1067	QE(df=49)		QM(df=5)	
	s ² (residual)	0.3897	p<.0001		p=0.001	
	Publication bias	0.0001	0.0001			0.339
	Points removed	2				
Children	All foods	0.634	0.225		[0.192 - 1.076]	0.005
(9 stud)	Fixed effects					
	Meat	-0.276 ^a	0.303	3	[-0.869 – 0.318]	0.363
	Produce	0.655 ^b	0.185	10	[0.293 - 1.017]	<.0001
	Before 2000	0.744	0.399		[-0.879 – 1.526]	0.062
	Random effects					
	s ² _u (Intercept)	0.0862	QE(df=10)		QM(df=2)	
	s ² (residual)	0.4280	p=0.035		p=0.001	
	Publication bias	-0.0016	0.0006			0.001
	Points removed	0				

Table 7B. Meta-analyses of food pathways for acquiring giardiasis in the mixed (n=56) and children (n=13) population – no geographical region removed

The meta-analysis on produce pathways of transmission by geographical region showed that in the mixed population, there was a strong association between consumption of produce and giardiasis in Asia (pooled OR=1.624; p=0.002), whereas in Latin American children, such association was even stronger (pooled OR=2.201; p<.0001 in Table 8A). However, in Europe, consumption of produce did not come out as an important vehicle of transmission of *Giardia duodenalis* (pooled OR=1.206; p=0.366 in Table 8A). For the general meta-analysis by produce class, the Asian and American regions were removed as their pooled ORs were higher than that of Europe. Children who consumed raw or unwashed vegetables in Latin American countries presented 2.192 times (95% CI: 1.465 - 3.277; Table 8B) greater odds of becoming infected with giardiasis than those who did not. Such level of risk was significantly higher than that of people from the European mixed population exposed through the ingestion of raw or unwashed vegetables, which presented an overall OR of 1.283 (95% CI: 0.877 - 1.876 in Table 8B). This value, summarising only European studies, was only slightly lower than the pooled OR of 1.340 (95% CI: 1.110 - 1.620), obtained by meta-analysing studies from all countries (this is, without restriction by geographical region). The corresponding forest plot is shown in Figure 11.

Since only two data points were available for the consumption of fruits, the resulting overall OR of giardiasis due to fruits is very uncertain and, hence, not reliable (pooled OR=0.824; 95% CI: 0.447 - 1.517). In these meta-analyses, no potentially-biased OR was influential. However, it is very likely that exposures related to produce consumption, investigated in small case-control studies, may have remained unpublished due to their inability to find significant or strong association with disease (p=0.003 in the mixed population and p=0.014 in the children population; Table 8B). Corresponding funnel plots are shown in Figure 10.

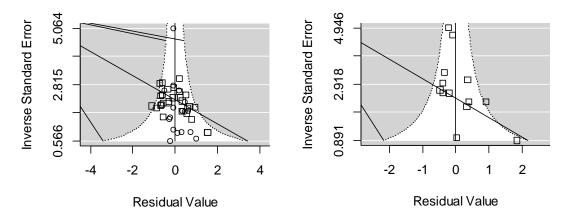


Figure 9. Funnel plots of the meta-analyses of food pathways for acquiring giardiasis in the mixed (left) and children population (right). Circle markers belong to OR measures with potential for bias

Table 8A. Meta-analyses of produce consumption related pathways for acquiring giardiasis by geographical region in the mixed (n=33) and children (n=9) population

Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Mixed					
Asia	0.485	0.158	18	[0.176 - 0.795]	0.002
America	0.611	0.434	2	[-0.248 – 1.469]	0.163
Europe	0.187	0.207	13	[-0.218-0.593]	0.366
Children					
South America	0.789	0.210	9	[0.377 - 1.200]	<.0001

Рор	Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Mixed	Fixed effects					
(4 stud)	Fruits	-0.194 ^a	0.311	2	[-0.806 - 0.417]	0.533
	Vegetables	0.249 ^a	0.194	11	[-0.131 – 0.629]	0.199
	Before 2000					0.529
	Random effects					
	s ² _u (Intercept)	0.0960	QE(df=11)		QM(df=2)	
	s ² (residual)	0.2815	p=0.004		p=0.889	
	Publication bias	-0.0020	0.0007			0.003
	Points removed	0				
Children	Fixed effects					
(7 stud)	Vegetables	0.785	0.205	10	[0.382 - 1.187]	<.0001
	Before 2000					0.558
	Random effects					
	s ² _u (Intercept)	0.1436	QE(df=9)			
	s ² (residual)	0.5145	p=0.026			
	Publication bias	-0.0020	0.0008			0.014
	Points removed	0				

Table 8B. Meta-analyses of produce consumption related pathways for acquiring giardiasis in the mixed (n=13) and children (n=10) population – Asian and American region removed from the mixed population

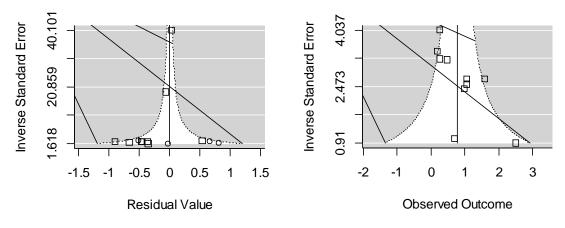


Figure 10. Funnel plots of the meta-analyses of produce consumption pathways for acquiring giardiasis infection in the mixed (left) and children population (right). Circle markers belong to OR measures with potential for bias

Country - Label

Odds Ratio [95% CI]

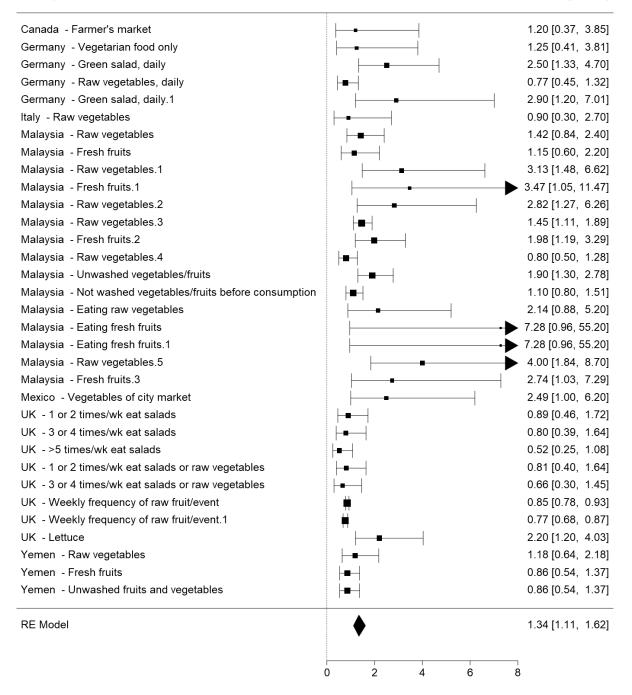


Figure 11. Forest plot of the meta-analysis on the association between giardiasis and consumption of fruits and vegetables in the mixed population from all countries

Composite foods, mostly comprising food prepared outside the home, constituted an important source of giardiasis in the mixed population from North America, from which all data in this subset was extracted (pooled OR=2.389; p<.0001 in Table 9A). The general meta-analysis by composite food class estimated that people with giardiasis were on average 2.210 times (95% CI: 1.508 - 3.238; Table 9B) more likely to have consumed any multi-ingredient dish or fast-food than controls. The level of risk associated to RTE deli foods bore a comparable level of risk (overall OR=2.293; 95% CI: 0.862 - 6.098), although this must be interpreted with caution since it was estimated from only 3 data points (Table 9B). In this meta-analysis, the observations were well dispersed within the funnel plot, therefore clueing the unlikely presence of publication bias (Figure 12), which was also corroborated for the non-significant effect of study size on the OR measures (p=0.295; Table 9B). No potentially-biased OR turned out to be influential in the meta-analysis regression.

Table 9A. Meta-analysis of composite-food related pathways for giardiasis by region for the combined mixed (n=14) and children (n=1) population

Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Mixed					
North America	0.871	0.179	15	[0.466 - 1.169]	<.0001

Table 9B. Meta-analysis of composite-food related pathways for acquiring giardiasis in the combined mixed (n=15) and children (n=1) population – no region was removed

Рор	Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Both	Fixed effects					
(3 stud)	Dishes&FastFood	0.793 ^a	0.195	13	[0.411 - 1.175]	<.0001
	RTE deli	0.830 ^a	0.498	3	[-0.148 - 1.808]	0.096
	Before 2000					0.937
	Random effects					
	s ² _u (Intercept)	0.2668	QE(df=14)		QM(df=2)	
	s ² (residual)	0.3445	p=0.309		p=0.955	
	Publication bias	0.0016	0.0015			0.295
	Points removed	0				

First Report: Part VI - Meta-analysis on risk factors for sporadic infection with *Giardia duodenalis* 14 September 2017

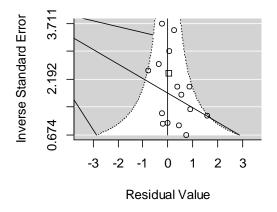


Figure 12. Funnel plot of the meta-analysis of composite food consumption pathways for acquiring giardiasis in the mixed population. Circle markers belong to OR measures with potential for bias

3.6.3 Meta-analysis on the risk of giardiasis due to poor handwashing habits

From the case-control primary studies, many of the exposures investigated poor hygiene habits, in special poor or no handwashing prior to meals and no handwashing after going to toilet. Children who did not wash hands before eating (overall OR=1.573; 95% CI: 1.177 - 2.100) had significantly higher odds of acquiring giardiasis than adults engaging in the same poor habits (overall OR=1.112; 95% CI: 0.838 - 1.477 in Table 10). On meta-analysis, children with giardiasis were more likely to have not washed their hands after going to toilet (overall OR=1.178; 95% CI: 1.030 - 1.347) than control children. Although such level of risk can be thought of being mild, still it is significant (p=0.016; Table 10). This result emphasises that children must be instructed on adopting hygienic habits since very young age. Although the observations within the funnel plots were quite homogeneously spread (Figure 13), the formal assessment of publication bias suggested that probably some OR estimates failing to determine an association between giardiasis and poor handwashing habits before eating remained unpublished (p=0.003; Table 10).

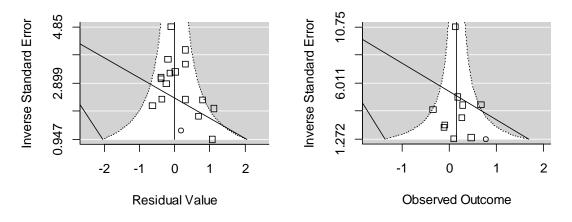


Figure 13. Funnel plots of the meta-analyses of no handwashing before meals (left) and no handwashing after using toilet (right) as risk factors for acquiring giardiasis in the combined mixed and children population. Circle markers belong to OR measures with potential for bias

When?	Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Before	Fixed effects					
eating (12 stud)	Children	0.453 ^b	0.148	11	[0.163 - 0.742]	0.002
. ,	Mixed	0.106^{a}	0.145	6	[-0.177 - 0.390]	0.462
	Before 2000					ND
	Random effects					
	s ² _u (Intercept)	0.0115	QE(df=15)		QM(df=2)	
	s ² (residual)	0.2757	p=0.014		p=0.007	
	Publication bias	-0.0005	0.0002			0.003
	Points removed	0				
After	Fixed effects					
toilet (9 stud)	Children	0.164	0.068	11	[0.030 - 0.298]	0.016
(*)	Before 2000					ND
	Random effects					
	s ² _u (Intercept)	0.0000	QE(df=10)			
	s ² (residual)	0.1130	p=0.415			
	Publication bias	-0.0001	0.0001			0.211
	Points removed	1				

Table 10. Meta-analyses of no-handwashing before eating and after using toilet as risk factors for the transmission of giardiasis – no geographical region removed

The main results from the meta-analyses on risk factors and pathways of exposure were compiled by means of two forest plots: one forest plot was designed for comparing among the *global* risk categories as potential determinants of giardiasis (Figure 14) and the other forest plot for comparing among the *disaggregated* risk categories and specific pathways of exposure (Figure 15). To visually distinguish the most important routes of transmission, the pooled ORs listed in the forest plots were ranked by mean's decreasing order, and to assess the reliability in the pooled ORs, the number of ORs used in the computations were displayed.

Examining the global categories (Figure 14), the most important risk factors for the transmission of giardiasis in the mixed population were: travel (overall OR=3.16; 95% CI: 2.08 - 4.81), host-specific factors predisposing people to disease (overall OR=3.10; 95% CI: 1.84 - 5.24) and contagion from person to person (overall OR=2.54; 95% CI: 1.52 - 4.25), which bore discernibly higher risk of giardasis than foods as a whole (overall OR=1.57; 95% CI: 1.24 - 1.98) and all animal-related pathways of transmission (overall OR=1.34; 95% CI: 1.12 - 1.61). The global food categories that, on meta-analysis, came up as important vehicles of transmission of giardiasis in the mixed population were: composite foods eaten out (overall OR=2.19; 95% CI: 1.30 - 3.70) and produce (overall OR=1.54; 95% CI: 1.22 - 1.96).

Exposure		n	Odds Ratio [95% Cl]
Mixed and Mixed/Children Partitions			
All Travel in mixed	⊢∎−−−1	42	3.16 [2.08, 4.81]
All Host-Specific in mixed	⊢∎	16	3.10 [1.84, 5.24]
Person-to-person in mixed	⊢∎−−−	17	2.54 [1.52, 4.25]
All Composite in mixed	-∎	15	2.19 [1.30, 3.70]
All Environment in mixed	⊨ i	189	1.83 [1.53, 2.17]
All Foods in mixed	i ∎-i	56	1.57 [1.24, 1.98]
All Produce in mixed	i ∎-i	33	1.54 [1.22, 1.96]
All Animal in mixed		49	1.34 [1.12, 1.61]
All Beverage in mixed	⊦∎-⊣	4	1.20 [0.71, 2.02]
Exclusively Children Partitions			
Person-to-person in children	⊢∎1	9	2.79 [1.48, 5.25]
All Produce in children	⊦∎⊣	10	1.93 [1.34, 2.76]
All Foods in children	⊦∎1	13	1.89 [1.21, 2.93]
All Animal in children	I∎-I	54	1.89 [1.41, 2.52]
All Environment in children		165	1.72 [1.47, 2.01]
All Host-Specific in children	l ≡ l	65	1.41 [1.11, 1.79]
All Meat in children	⊨∎⊣	3	0.76 [0.42, 1.37]
	0 2 4 6		

Figure 14. Forest plot summarising overall odds-ratios of acquiring giardiasis for global risk categories, ranked in decreasing order. The global risk categories presented are only those made up of at least n=3 ORs

For the children population (Figure 14), it is important to bear in mind that global risk categories could be ranked only for those factors for which sufficient data were available. In children, person-to-person contagion (overall OR=2.64; 95% CI: 1.79 - 3.90) was the most important determinant of giardiasis while the global food consumption routes (overall OR=1.89; 95% CI: 1.21 - 2.93), animal-related routes (overall OR=1.89; 95% CI: 1.41 - 2.52) and environmental routes (overall OR=1.72; 95% CI: 1.47 - 2.01) bore a comparable level of risk. In children, the host-specific factors (overall OR=1.41; 95% CI: 1.11 - 1.79) were not as predisposing of giardiasis infection as in the mixed population (breastfeeding data was removed for meta-analysing the global host-specific factors in children).

Exposure		n	Odds Ratio [95% Cl]
Mixed and Mixed/Children Partitions	5		
Travel abroad in mixed	} ⊢∎ }	32	4.85 [3.30, 7.12]
Other med in mixed		7	4.28 [2.18, 8.41]
Chronic in mixed	∎	5	3.93 [1.76, 8.78]
Person-to-person in mixed	├╋╌┤	17	2.54 [1.52, 4.25]
RTE deli in mixed	-∎	3	2.29 [0.86, 6.10]
Dishes&Fast-food in mixed		13	2.21 [1.51, 3.24]
Waste in mixed	∰-	27	2.03 [1.57, 2.63]
Rec water in mixed		73	1.87 [1.50, 2.33]
Drink water in mixed		66	1.86 [1.50, 2.30]
Travel inside in mixed	-∎	5	1.82 [0.95, 3.50]
Day care in mixed	⊞ -	13	1.71 [1.21, 2.44]
Wild animals in mixed	┼╋╌┤	9	1.66 [1.01, 2.73]
Playground in mixed	⊞-	10	1.59 [1.14, 2.21]
Poor hygiene in mixed	┝╋╌┤	4	1.53 [0.71, 3.29]
Pets in mixed	H	30	1.30 [1.06, 1.60]
Vegetables in mixed	₩ -1	11	1.28 [0.88, 1.88]
Farm animals in mixed		10	1.25 [0.86, 1.83]
No handwashing b/meals in mixed		6	1.11 [0.84, 1.48]
Exclusively Children Partitions			
Person-to-person in children	-∎	9	2.79 [1.48, 5.25]
Travel inside in children	∎-	7	2.38 [1.80, 3.15]
Vegetables in children	┝╋╌┤	10	2.19 [1.47, 3.28]
Farm animals in children	┝╋╌┤	15	1.92 [1.35, 2.73]
Pets in children	∎-	39	1.87 [1.38, 2.53]
Playground in children	-■	6	1.85 [1.12, 3.05]
Drink water in children		73	1.78 [1.47, 2.16]
Waste in children		34	1.74 [1.35, 2.25]
Farm env in children	¦⊞ -	13	1.70 [1.24, 2.34]
Chronic in children	┼╋╌┤	11	1.62 [0.97, 2.70]
No handwashing b/meals in children		11	1.57 [1.18, 2.10]
Day care in children	⊨	21	1.53 [1.12, 2.08]
Other med in children		35	1.41 [1.00, 2.00]
Rec water in children	┝═╾┤	18	1.39 [0.93, 2.09]
Poor hygiene in children		19	1.33 [0.94, 1.88]
No handwashing a/toilet in children		11	1.18 [1.03, 1.35]
Breastfed children		7	0.51 [0.29, 0.91]
	0 5 10)	

Figure 15. Forest plot summarising overall odds-ratios of acquiring giardiasis for disaggregated risk categories, ranked in decreasing order. The disaggregated risk categories presented are only those made up of at least n=3 ORs

Zooming into the disaggregated risk factors (Figure 15), it became evident that international travel (overall OR=4.85; 95% CI: 3.30 - 7.12), suffering from a gastrointestinal condition (overall OR=4.28; 95% CI: 2.18 - 8.41) and suffering from chronic immunocompromising diseases (overall OR=3.93; 95% CI: 1.76 - 8.78) were the most important determinant factors for acquiring giardiasis in the mixed population. Person-to-person contagion bore a significantly higher association with giardiasis (overall OR=2.54; 95% CI: 1.52 - 4.25) than dishes and fast-food eaten out (overall OR=2.21; 95% CI: 1.51 - 3.24) and environmental routes of transmission such as exposure to human waste/waste water (overall OR=2.03; 95% CI: 1.57 - 2.63), recreational water (overall OR=1.87; 95% CI: 1.50 - 2.33), drink water (overall OR=1.86; 95% CI: 1.50 - 2.30), day care (overall OR=1.71; 95% CI: 1.21 - 2.44) and camping/gardening (overall OR=1.59; 95% CI: 1.14 - 2.21). In the mixed population, the animal related exposures, such as contact with wild animals (overall OR=1.66; 95% CI: 1.01 - 2.73) and contact with pets (overall OR=1.30; 95% CI: 1.06 - 1.60) were not as strong determinants of giardiasis as the environmental routes of exposure to waste water, recreational water and drinking water.

In the children population (Figure 15), among the disaggregated categories for which data were available, the highest associations with giardiasis were posed by person-to-person transmission (overall OR=2.79; 95% CI: 1.48 - 5.25), travel (overall OR=2.38; 95% CI: 1.80 - 3.15) and consumption of fresh/unwashed vegetables (overall OR=2.19; 95% CI: 1.47 -3.28). Unlike the mixed population, in children, the animal-related routes of transmission of farm animals (overall OR=1.92; 95% CI: 1.35 - 2.73) and pets (overall OR=1.87; 95% CI: 1.38 - 2.53) were at least as important vehicles of giardiasis as the environmental routes of playground (overall OR=1.85; 95% CI: 1.12 – 3.05), drink water (overall OR=1.78; 95% CI: 1.47 - 2.16) and exposure to human waste (overall OR=1.74; 95% CI: 1.35 - 2.25). Other significant pathways of transmission of giardiasis in children were, in decreasing order: living on a farm (overall OR=1.70; 95% CI: 1.24 – 2.34), suffering from chronic disease (overall OR=1.62; 95% CI: 0.97 - 2.70), no handwashing before eating (overall OR=1.57; 95% CI: 1.18 - 2.10), attending day care or school (overall OR=1.53; 95% CI: 1.12 - 2.08), other medical conditions (overall OR=1.41; 95% CI: 1.00 - 2.00), recreational water (overall OR=1.39; 95% CI: 0.93 – 2.09), poor hygienic habits (overall OR=1.33; 95% CI: 0.94 – 1.88) and no handwashing after using toilet (overall OR=1.18; 95% CI: 1.03 - 1.35).

Routes of exposure that on meta-analysis had minor association with giardiasis in the mixed population were: poor hygienic habits (overall OR=1.53; 95% CI: 0.71 - 3.29), fresh/unwashed vegetables (overall OR=1.28; 95% CI: 0.88 - 1.88), contact with farm animals (overall OR=1.25; 95% CI: 0.86 - 1.83) and no handwashing before eating (overall OR=1.11; 95% CI: 0.84 - 1.40). Breastfeeding protected children against acquiring giardiasis since, on meta-analysis, children who were breastfed presented approximately half the odds (95% CI: 0.29 - 0.91) of becoming infected than those who were not.

3.6.4 *Meta-analysis on the effect of handling on the risk of transmission of giardiasis by consumption of vegetables*

The only data partition comprising sufficient data that could support the assessment of the effect of handling was that of vegetables. Full estimates and funnel plot of the meta-analysis

on the effect of not washing vegetables are shown in the supplementary Table S1 and Figure S1, respectively. There was no data partition with sufficient information on setting; thus, the effect of eating food prepared outside home on the overall association with disease could not be appraised. On meta-analysis, people who admitted having eaten unwashed vegetables had 1.404 (95% CI: 0.954 - 2.065; Table 11) greater probability of acquiring giardiasis infection than those who stated having consumed *simply* fresh vegetables (without having being specific as to whether it was washed or unwashed). Said otherwise, people who ate fresh vegetables and became ill were 1.404 times (95% CI: 0.954 - 2.065) more likely to have consumed them unwashed than those who consumed fresh vegetables but did not get ill. Hence, not washing fresh vegetables before consumption represents a significant risk of giardiasis on its own (p=0.086; Table S1)

Table 11. Meta-analysed effect of not washing vegetables prior to consumption on base OR				
for giardiasis				

Food class	Estimate	Mean	2.5 th percentile	97.5 th percentile
Vegetables	OR(Base)	1.542	1.176	2.024
	OR(Unwashed)/OR(Base)	1.404	0.954	2.065

3.6.5 Synthesis of the risks associated to ways of preparation and poor handling of foods

The forest plot of Figure 16 compiles exposures related to food preparation, which were examined as potential risk factors for sporadic giardiasis in the case-control and cohort studies. Washing food with bleached water, vinegar or soap and water could exert some protective effect against giardiasis, while washing only with water – particularly in world's regions where water is not treated – might increase the risk of transmission of giardiasis.

Exposure	Oa	Odds Ratio [95% Cl]		
Washed/disinfected food with bleach or vinegar.1		0.82 [0.48, 1.40]		
Food washed with soap and water	⊢∎ 1	0.84 [0.49, 1.44]		
Washed/disinfected food with bleach or vinegar.2	⊦∎⊣	1.01 [0.60, 1.70]		
Food washed only with water	·- - i	1.60 [0.93, 2.75]		
	0 2	4		

Figure 16. Forest plot of the odds-ratios of acquiring giardiasis associated to food preparation practices in the children population

Most of the food handling poor habits explored in the primary studies related to hand hygiene (Figure 17). Odds-ratios for not washing hands before eating ranged between 0.84 and 4.60 in the children population while they were lower, between 0.98 and 1.50, in the mixed population. Poor hand hygiene prior to food preparation or when feeding children were risky practices affecting children, with ORs between 1.89 and 4.78. Eating with hands was found to have a variable association with giardiasis in the mixed population, with ORs in the range of 0.76 to 1.51 (Figure 17). Likewise, improper food storage and washing food with untreated water could not be proven to be determinant of giardiasis in the children population.

Exposure

Odds Ratio [95% CI]

1		
Mixed		
Eating with hands.3	⊢∎−−−┤	1.51 [0.71, 3.21]
Not washing hands before eating.8	H a rt	1.50 [1.10, 2.05]
Not washing hands before eating.7	H∎H	1.50 [1.00, 2.25]
Eating with hands.2		1.01 [0.86, 1.19]
Not washing hands before eating.6	₩ -1	0.98 [0.61, 1.57]
Eating with hands.1	⊨ -I	0.76 [0.45, 1.28]
Children		
Poor hand hygiene prior to food preparation.2	⊢>	4.78 [1.95, 11.72]
Occasionally washing hands before meal.2	⊢►	4.60 [0.60, 35.27]
Poor hand hygiene prior to food preparation.1	. ⊢∎	3.50 [1.63, 7.52]
Occasionally washing hands before meal.1	⊨_∎	3.12 [1.08, 9.04]
Not washing hands when feeding	i⊢∎i	1.89 [0.41, 8.61]
Improper food storage	⊢ ∎−−−−−	1.75 [0.38, 8.14]
Not washing hands before eating.5	H ⊞	1.60 [1.00, 2.56]
Not washing hands before eating.4	I∎I	1.30 [0.89, 1.90]
Not washing hands before eating.3	¦∎-i	1.24 [0.70, 2.20]
Not washing hands before eating.2	⊨∎	1.10 [0.52, 2.33]
Unwashed hands before eat	H∎-1	1.06 [0.64, 1.78]
Not washing hands before eating.1	⊦ ∎	0.84 [0.36, 1.96]
Washing food with untreated water.2	H	0.73 [0.46, 1.16]
Washing food with untreated water.1		0.54 [0.34, 0.86]
	0 5 1	0

Figure 17. Forest plot of the odds-ratios of acquiring giardiasis associated to poor food handling practices in the mixed and children population

4. Conclusions

4.6 Meta-analysis on risk factors for sporadic giardiasis

- The outcomes from 72 case-control and cohort studies investigating routes of exposure for sporadic giardiasis were meta-analysed, taking into account geographical region and period of study.
- No data was available for food subcategories other than produce and composite food, so the significance of these sources as potential vehicles of transmission of giardiasis could not be appraised.
- ✤ The top three determinants of giardiasis in the mixed population are: international travel (OR=4.85) and the host-specific factors of suffering from gastrointestinal disease (OR=4.28) and chronic immunocompromising disease (OR=3.93).
- Person-to-person transmission has a higher association with giardiasis (OR=2.54) than all of the environmental routes assessed, namely, exposure to human waste or lack of waste water system (OR=2.03), recreational water (OR=1.87), drink water (OR=1.86), day care (1.71) and camping/gardening (OR=1.59).
- Consumption of dishes eaten out and fast-food (OR=2.21) can be as strong a risk factor for giardiasis as person-to-person transmission.
- ✤ In the mixed population, the animal related exposures, such as contact with wild animals (OR=1.66) and contact with pets (overall OR=1.30) are not as strong determinants of giardiasis as the environmental routes.
- ✤ In the children population, the highest associations with giardiasis are posed by person-to-person transmission (OR=2.79), travel (OR=2.38) and consumption of fresh/unwashed vegetables (OR=2.19).
- ✤ Unlike the mixed population, in children, the animal-related exposures of contact with farm animals (OR=1.92) and pets (OR=1.87) are at least as important vehicles of *Giardia duodenalis* as the environmental routes of playground (OR=1.85), drink water (OR=1.78) and exposure to human waste (OR=1.74).
- Other important pathways of transmission of giardiasis in children are: living on a farm (OR=1.70), chronic disease (OR=1.62), no handwashing before eating (OR=1.57), attending day care or school (OR=1.53), other medical conditions (OR=1.41) and recreational water (OR=1.39).
- ✤ Routes of exposure that have minor (not statistically proven) association with giardiasis in the mixed population are: poor hygiene habits (OR=1.53), consuming

fresh or unwashed vegetables (OR=1.28), contact with farm animals (OR=1.25) and not washing hands before eating (OR=1.11).

- Routes of exposure that have minor association with giardiasis in children are poor hygiene habits (OR=1.33) and not washing hands after using toilet (OR=1.18).
- Infants who are breastfed present half the probability of acquiring giardiasis than those who are not.
- People who ate fresh vegetables and became ill were 1.40 times more likely to have consumed them unwashed than those who consumed fresh vegetables but did not get ill.

5. References

5.6 Seventy-two case-control and cohort studies assessing risk factors for giardiasis

[Almerie et al., 2008] Almerie, M. Q., Azzouz, M. S., Abdessamad., M. A., Mouchh, M. A., Sakbani, M. W., Alsibai, M. S., Alkafri, A., and Ismail, M. T. (2008). Prevalence and risk factors for giardiasis among primary school children in Damascus, Syria. *Saudi Medical Journal*, 29(2):234–240.

[Alyousefi et al., 2011] Alyousefi, N. A., Mahdy, M. A. K., Mahmud, R., and Lim, Y. A. L. (2011). Factors Associated with High Prevalence of Intestinal Protozoan Infections among Patients in Sana'a City, Yemen. *PLOS ONE*, 6(7):1–7.

[Anuar et al., 2012] Anuar, T. S., Al-Mekhlafi, H. M., Ghani, M. K. A., Osman, E., Yasin, A. M., Nordin, A., Azreen, S. N., Salleh, F. M., Ghazali, N., Bernadus, M., and Moktar, N. (2012). Giardiasis among different tribes of Orang Asli in Malaysia: highlighting the presence of other family members infected with *Giardia intestinalis* as a main risk factor. *International Journal for Parasitology*, 42(9):871–880.

[Anuar et al., 2014] Anuar, T. S., Azreen, S. N., Salleh, F. M., and Moktar, N. (2014). Molecular epidemiology of giardiasis among Orang Asli in Malaysia: application of the triosephosphate isomerase gene. *BMC Infectious Diseases*, 14(78):1–12.

[Bello et al., 2011] Bello, J., Nunez, F. A., Gonzalez, O. M., Fernandez, R., Almirall, P., and Escobedo, A. A. (2011). Risk factors for Giardia infection among hospitalized children in Cuba. *Annals of Tropical Medicine and Parasitology*, 105(1):57–64.

[Boontanom et al., 2011] Boontanom, P., Mungthin, M., Tan-ariya, P., Naaglor, T., and Leelayoova, S. (2011). Epidemiology of giardiasis and genotypic characterization of *Giardia*

duodenalis in preschool children of a rural community, central Thailand. Tropical Biomedicine, 28(1):32–39.

[Campbell et al., 2016] Campbell, S. J., Nery, S. V., D'Este, C. A., Gray, D. J., McCarthy, J. S., Traub, R. J., Andrews, R. M., Llewellyn, S., Vallely, A. J., Williams, G. M., Amaral, S., and Clements, A. C. A. (2016). Water, sanitation and hygiene related risk factors for soil-transmitted helminth and *Giardia duodenalis* infections in rural communities in Timor-Leste. *International Journal for Parasitology*, 46:779.

[Chaves et al., 2007] Chaves, M. d. P., Fernández, J., Ospina, I., Lopez, M., Moncada, L., and Reyes, P. (2007). Tendencia de la prevalencia y factores asociados a la infección por *Giardia duodenalis* en escolares y preescolares de una zona rural de Cundinamarca. *Biomédica*, 27(3):345–351.

[Choy et al., 2014] Choy, S., Al-Mekhlafi, H., Mahdy, M., Nasr, N., Sulaiman, M., Lim, Y., and Surin, J. (2014). Prevalence and associated risk factors of Giardia infection among indigenous communities in rural Malaysia. *Scientific Reports*, 4:1–9.

[Chute et al., 1987] Chute, C., Smith, R., and Baron, J. (1987). Risk factors for endemic giardiasis. *American Journal of Public Health*, 77(5):585–587.

[Cifuentes et al., 2000] Cifuentes, E., Gomez, M., Blumenthal, U., Tellez-Rojo, M., Romieu, I., Ruiz-Palacios, G., and Ruiz-Velazco, S. (2000). Risk factors for *Giardia intestinalis* infection in agricultural villages practicing wastewater irrigation in Mexico. *American Journal of Tropical Medicine and Hygiene*, 62(3):388–392.

[Cohen et al., 2008] Cohen, S. A., Egorov, A. I., Jagai, J. S., Matyas, B. T., DeMaria, A., Chui, K. K. H., Griffiths, J. K., and Naumova, E. N. (2008). The SEEDS of two gastrointestinal diseases: Socioeconomic, environmental, and demographic factors related to cryptosporidiosis and giardiasis in Massachusetts. *Environmental Research*, 108(2):185–191.

[Coles et al., 2009] Coles, C. L., Levy, A., Dagan, R., Deckelbaum, R. J., and Fraser, D. (2009). Risk factors for the initial symptomatic giardia infection in a cohort of young Arab-Bedouin children. *Annals of Tropical Paediatrics*, 29(4):291–300.

[Delfino et al., 2016] Delfino, B., Campos, R., Pereira, T., Mantovani, S., Oliart-Guzmán, H., Martins, A., Braña, A., Branco, F., Filgueira-Júnior, J., Santos, A., Araújo, T., Oliveira, C., Ramalho, A., Muniz, P., Codeço, C., and da Silva-Nunes, M. (2016). Evolution of Socioeconomic Conditions and Its Relation to Spatial-Temporal Changes of Giardiasis and Helminthiasis in Amazonian Children. *EcoHealth*, 13:743-760.

[Dennis et al., 1993] Dennis, D., Smith, R., Welch, J., Chute, C., Anderson, B., Herndon, J., and von Reyn, C. (1993). Endemic Giardiasis in New Hampshire: A Case-Control Study of Environmental Risks. *Journal of Infectious Diseases*, 167(6):1391–1395.

[Enserink et al., 2015]Enserink, R., Mughini-Gras, L., Duizer, E., Kortbeek, T., and Van Pelt, W. (2015). Risk factors for gastroenteritis in child day care. *Epidemiology and Infection*, 143(13):2707–2720.

[Ensink et al., 2006] Ensink, J., van der Hoek, W., and Amerasinghe, F. (2006). *Giardia duodenalis* infection and wastewater irrigation in Pakistan. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 100(6):538–542.

[Erismann et al., 2016] Erismann, S. b., Diagbouga, S., Odermatt, P. b., Knoblauch, A. b., Gerold, J. b., Shrestha, A. b. d., Grissoum, T., Kaboré, A., Schindler, C. b., Utzinger, J. b., and Cissé, G. b. (2016). Prevalence of intestinal parasitic infections and associated risk factors among schoolchildren in the Plateau Central and Centre-Ouest regions of Burkina Faso. *Parasites and Vectors*, 9(1):1–14.

[Espelage et al., 2010]Espelage, W., an der Heiden, M., Stark, K., and Alpers, K. (2010). Characteristics and risk factors for symptomatic *Giardia lamblia* infections in Germany. *BMC Public Health*, 10(41):1–9.

[Esrey et al., 1989] Esrey, S., Collett, J., Miliotis, M., Koornhof, H., and Makhale, P. (1989). The risk of infection from *Giardia lamblia* due to drinking water supply, use of water, and latrines among preschool children in rural Lesotho. *International Journal of Epidemiology*, 18(1):248–253.

[Faustini et al., 2006] Faustini, A., Marinacci, C., Fabrizi, E., Marangi, M., Recchia, O., Pica, R., Giustini, F., La Marca, A., Nacci, A., Panichi, G., Perucci, C., Bonano, C., Carletti, M., Cavarischia, R., Di Tullio, A., Formosa, G., Gilardi, G., Pacciani, L., Culotta, P., D'Antonio, F., Macigno, M., Marino, L., Napoli, L., Ranfi, F., Valorani, G., Cortese, L., Di Luzio, A., La Greca, G., and Romagnoli, C. (2006). The impact of the Catholic Jubilee in 2000 on infectious diseases. A case-control study of giardiasis, Rome, Italy 2000-2001. *Epidemiology and Infection*, 134(3):649–658.

[Firdu et al., 2014] Firdu, T., Abunna, F., and Girma, M. (2014). Intestinal protozoal parasites in diarrheal children and associated risk factors at yirgalem hospital, Ethiopia: A case-control study. *International Scholarly Research Notices*, 2014:357126.

[Fonseca et al., 2014] Fonseca, J. E., Carneiro, M., Pena, J. L., Colosimo, E. A., da Silva, N. B., da Costa, A. G. F. C., Moreira, L. E., Cairncross, S., and Heller, L. (2014). Reducing Occurrence of *Giardia duodenalis* in Children Living in Semiarid Regions: Impact of a Large Scale Rainwater Harvesting Initiative. *PLOS Neglected Tropical Diseases*, 8(6):1–10.

[Fraser and Cooke, 1991] Fraser, G. and Cooke, K. (1991). Endemic giardiasis and municipal water supply. *American Journal of Public Health*, 81(6):760–762.

[Gagnon et al., 2006] Gagnon, F., Duchesne, J.-F., Lévesque, B., Gingras, S., and Chartrand, J. (2006). Risk of giardiasis associated with water supply in an endemic context. *International Journal of Environmental Health Research*, 16(5):349–359.

[Girotto et al., 2013] Girotto, K., Grama, D., da Cunha, M., Faria, E., Limongi, J., Pinto, R., and Cury, M. (2013). Prevalence and risk factors for intestinal protozoa infection in elderly residents at long term residency institutions in southeastern Brazil. *Revista do Instituto de Medicina Tropical de São Paulo*, 55(1):19–24. (*In Portuguese*)

[Gray et al., 1994] Gray, S., Gunnell, D., and Peters, T. (1994). Risk-factors for giardiasis - A case-control study in avon and somerset. *Epidemiology and Infection*, 113(1):95–102.

[Habbari et al., 1999] Habbari, K., Tifnouti, A., Bitton, G., and Mandil, A. (1999). Raw wastewater agricultural re-use and risk of protozoal infection in Beni-Mellal, Morocco. *The Journal of the Egyptian Public Health Association*, 74(3-4):353–369.

[Heimer et al., 2015] Heimer, J., Staudacher, O., Steiner, F., Kayonga, Y., Havugimana, J., Musemakweri, A., Harms, G., Gahutu, J.-B., and Mockenhaupt, F. (2015). Age-dependent decline and association with stunting of *Giardia duodenalis* infection among schoolchildren in rural Huye district, Rwanda. *Acta Tropica*, 145:17–22.

[Heusinkveld et al., 2016] Heusinkveld, M., Mughini-Gras, L., Pijnacker, R., Vennema, H., Scholts, R., van Huisstede-Vlaanderen, K., Kortbeek, T., Kooistra-Smid, M., and van Pelt, W. (2016). Potential causative agents of acute gastroenteritis in households with preschool children: prevalence, risk factors, clinical relevance and household transmission. *European Journal of Clinical Microbiology and Infectious Diseases*, 35(10):1691–1700.

[Hoque et al., 2001] Hoque, M., Hope, V., Scragg, R., Kjellström, T., and Lay-Yee, R. (2001). Nappy handling and risk of giardiasis. *Lancet*, 357(9261):1017–1018.

[Hoque et al., 2003] Hoque, M., Hope, V., Scragg, R., and Kjellstrom, T. (2003). Children at risk of giardiasis in Auckland: a case-control analysis. *Epidemiology and Infection*, 131(1):655–662.

[Hoque et al., 2002] Hoque, M. E., Hope, V. T., Kjellström, T., Scragg, R., and Lay-Yee, R. (2002). Risk of giardiasis in Aucklanders: a case-control study. *International Journal of Infectious Diseases*, 6(3):191 – 197.

[Ignatius et al., 2012] Ignatius, R., Gahutu, J. B., Klotz, C., Steininger, C., Shyirambere, C., Lyng, M., Musemakweri, A., Aebischer, T., Martus, P., Harms, G., and Mockenhaupt, F. P. (2012). High Prevalence of *Giardia duodenalis* Assemblage B Infection and Association with Underweight in Rwandan Children. *PLOS Neglected Tropical Diseases*, 6(6):1–9.

[Jerez-Puebla et al., 2015] Jerez Puebla, L., Núñez, F., Méndez Silva, I., Rojas Rivero, L., Martínez González, M., Méndez Sutil, Y., Ayllón Valdés, L., Atencio Millán, I., and Müller, N. (2015). Molecular characterization and risk factors of *Giardia duodenalis* among school children from la Habana, Cuba. *Journal of Parasitology Research*, 2015:1–9.

[Johnston et al., 2010] Johnston, A., Gillespie, T., Rwego, I., McLachlan, T., Kent, A., and Goldberg, T. (2010). Molecular epidemiology of cross-species *Giardia duodenalis* transmission in Western Uganda. *PLoS Neglected Tropical Diseases*, 4(5):1–7.

[Julio et al., 2012] Julio, C., Vilares, A., Oleastro, M., Ferreira, I., Gomes, S., Monteiro, L., Nunes, B., Tenreiro, R., and Angelo, H. (2012). Prevalence and risk factors for *Giardia duodenalis* infection among children: A case study in Portugal. *Parasites & Vectors*, 5(22):1–8.

[Kettani et al., 2006] Kettani, S. E., Azzouzi, E.-M., and Maata, A. (2006). Prévalence de *Giardia intestinalis* chez une population rurale utilisant les eaux usées à des fins agricoles à Settat, Maroc. *Médecine et Maladies Infectieuses*, 36(6):322 – 328.

[Lander et al., 2012] Lander, R. L., Lander, A. G., Houghton, L., Williams, S. M., Costa-Ribeiro, H., Barreto, D. L., Mattos, A. P., and Gibson, R. S. (2012). Factors influencing growth and intestinal parasitic infections in preschoolers attending philanthropic daycare centers in Salvador, Northeast Region of Brazil. *Cadernos de Saúde Pública*, 28(11):2177–2188.

[Lora-Suarez et al., 2002] Lora-Suarez, F., Marin-Vasquez, C., Loango, N., Gallego, M., Torres, E., Gonzalez, M., Castano-Osorio, J., and Gomez-Marin, J. (2002). Giardiasis in children living in post-earthquake camps from Armenia (Colombia). *BMC Public Health*, 2(5):1–6.

[Mahdy et al., 2008] Mahdy, A. K. M., Lim, Y. A. L., Surin, J., Wan, K. L., and Al-Mekhlafi, M. S. H. (2008). Risk factors for endemic giardiasis: highlighting the possible association of contaminated water and food. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 102(5):465–470. Meeting of the Royal-Society-of-Tropical-Medicine-and-Hygiene, London, ENGLAND, 2007.

[Mahdy et al., 2009] Mahdy, A. K. M., Surin, J., Wan, K. L., Mohd-Adnan, A., Al-Mekhlafi, M. S. H., and Lim, Y. A. L. (2009). *Giardia intestinalis* genotypes: Risk factors and correlation with clinical symptoms. *Acta Tropica*, 112(1):67–70.

[Mahmud et al., 2014]Mahmud, M., Bezabih, A., and Gebru, R. (2014). Risk factors for intestinal parasitosis among antiretroviral-treated HIV/AIDS patients in Ethiopia. *International Journal of STD and AIDS*, 25(11):778–784.

[Mahmud et al., 2001]Mahmud, M., Chappell, C., Hossain, M., Huang, D., Habib, M., and DuPont, H. (2001). Impact of breast-feeding on *Giardia lamblia* infections in Bilbeis, Egypt. *American Journal of Tropical Medicine and Hygiene*, 65(3):257–260.

[Marder, 2012] Marder, E. (2012). Risk factors for cryptosporidiosis and giardiasis infections in the united states: A case-case comparison in 16 states. Mathesis, Faculty of the Rollins School of Public Health of Emory University.

[Mathias et al., 1992] Mathias, R., Riben, P., and Osei, W. (1992). Lack of an association between endemic giardiasis and a drinking water source. *Canadian Journal of Public Health*, 83(5):382–384.

[Matthys et al., 2011] Matthys, B., Bobieva, M., Karimova, G., Mengliboeva, Z., Jean-Richard, V., Hoimnazarova, M., Kurbonova, M., Lohourignon, L., Utzinger, J., and Wyss, K. (2011). Prevalence and risk factors of helminths and intestinal protozoa infections among children from primary schools in western Tajikistan. *Parasites and Vectors*, 4(195):1–13.

[Mbae et al., 2013] Mbae, C., Nokes, D., Mulinge, E., Nyambura, J., Waruru, A., and Kariuki, S. (2013). Intestinal parasitic infections in children presenting with diarrhoea in

outpatient and inpatient settings in an informal settlement of Nairobi, Kenya. *BMC Infectious Diseases*, 13(243):1–11.

[Minetti et al., 2015] Minetti, C., Lamden, K., Durband, C., Cheesbrough, J., Platt, K., Charlett, A., O'Brien, S. J., Fox, A., and Wastling, J. M. (2015). Case-Control Study of Risk Factors for Sporadic Giardiasis and Parasite Assemblages in North West England. *Journal of Clinical Microbiology*, 53(10):3133–3140.

[Mitra et al., 2016] Mitra, S., Mukherjee, A., Khanra, D., Bhowmik, A., Roy, K., and Talukdar, A. (2016). Enteric Parasitic Infection Among Antiretroviral Therapy Naive HIV-Seropositive People: Infection Begets Infection-Experience from Eastern India. *Journal of Global Infectious Diseases*, 8(2):82–86.

[Moore et al., 2016] Moore, C. E., Elwin, K., Phot, N., Seng, C., Mao, S., Suy, K., Kumar, V., Nader, J., Bousfield, R., Perera, S., Bailey, J. W., Beeching, N. J., Day, N. P. J., Parry, C. M., and Chalmers, R. M. (2016). Molecular Characterization of Cryptosporidium Species and *Giardia duodenalis* from Symptomatic Cambodian Children. *PLOS Neglected Tropical Diseases*, 10(7):1–28.

[Núñez et al., 2003] Núñez, F., López, J., de la Cruz, A., and Finlay, C. (2003). Risk factors for *Giardia lamblia* infection in children in daycare centers in Havana, Cuba. *Cadernos de saúde pública / Ministério da Saúde, Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública*, 19(2):677–682. (In Spanish)

[Norhayati, 1998] Norhayati, M. (1998). Prevalence and some risk factors of *Giardia duodenalis* infection in a rural community in Malaysia. *Southeast Asian Journal of Tropical Medicine and Public Health*, 29(4):735–738.

[Novotny et al., 1990] Novotny, T., Hopkins, R., Shillam, P., and Janoff, E. (1990). Prevalence of *Giardia lamblia* and risk factors for infection among children attending day-care facilities in Denver. *Public Health Reports*, 105(1):72–75.

[Omar et al., 1995] Omar, M., Mahfouz, A., and Moneim, M. (1995). The relationship of water sources and other determinants to prevalence of intestinal protozoal infections in a rural community of Saudi Arabia. *Journal of Community Health*, 20(5):433–440.

[Osman et al., 2016] Osman, M., El Safadi, D., Cian, A., Benamrouz, S., Nourrisson, C., Poirier, P., Pereira, B., Razakandrainibe, R., Pinon, A., Lambert, C., Wawrzyniak, I., Dabboussi, F., Delbac, F., Favennec, L., Hamze, M., Viscogliosi, E., and Certad, G. (2016). Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon. *PLoS Neglected Tropical Diseases*, 10(3):1–17.

[Pereira et al., 2007] Pereira, M., Atwill, E., and Barbosa, A. (2007). Prevalence and associated risk factors for *Giardia lamblia* infection among children hospitalized for diarrhea in Goiânia, Goiás State, Brazil. *Revista do Instituto de Medicina Tropical de São Paulo*, 49(3):139–145.

[Pijnacker et al., 2016] Pijnacker, R., Mughini-Gras, L., Heusinkveld, M., Roelfsema, J., van Pelt, W., and Kortbeek, T. (2016). Different risk factors for infection with *Giardia lamblia* assemblages A and B in children attending day-care centres. *European Journal of Clinical Microbiology and Infectious Diseases*, 35:2005-2013.

[Prado et al., 2003] Prado, M., Strina, A., Barreto, M., Oliveira-Assis, A., Maria Paz, L., and Cairncross, S. (2003). Risk factors for infection with *Giardia duodenalis* in pre-school children in the city of Salvador, Brazil. *Epidemiology and Infection*, 131(2):899–906.

[Puebla et al., 2016] Puebla, L., Núñez, F., García, A., Rivero, L., Millán, I., and Prado, R. (2016). Prevalence of *Giardia duodenalis* among children from a central region of Cuba: molecular characterization and associated risk factors. *Journal of Parasitic Diseases*, pages 1–9.

[Ratanapo et al., 2008] Ratanapo, S., Mungthin, M., Soontrapa, S., Faithed, C., Siripattanapipong, S., Rangsin, R., Naaglor, T., Piyaraj, P., Taamasri, P., and Leelayoova, S. (2008). Multiple modes of transmission of giardiasis in primary schoolchildren of a rural community, Thailand. *American Journal of Tropical Medicine and Hygiene*, 78(4):611–615.

[Ravel et al., 2013] Ravel, A., Nesbitt, A., Pintar, K., MacArthur, A., Wang, H.-L., Marshall, B., and Pollari, F. (2013). Epidemiological and clinical description of the top three reportable parasitic diseases in a Canadian community. *Epidemiology and Infection*, 141(2):431–442.

[Redlinger et al., 2002] Redlinger, T., Corella-barud, V., Graham, J., Galindo, A., Avitia, R., and Cardenas, V. (2002). Hyperendemic Cryptosporidium and Giardia in households lacking municipal sewer and water on the United States-Mexico border. *American Journal of Tropical Medicine and Hygiene*, 66(6):794–798.

[Sackey et al., 2003] Sackey, M.-E., Weigel, M., and Armijos, R. (2003). Predictors and nutritional consequences of intestinal parasitic infections in rural Ecuadorian children. *Journal of Tropical Pediatrics*, 49(1):17–23.

[Santos et al., 2012] Santos, C., Grama, D., Limongi, J., Costa, F., Couto, T., Soares, R., Mundim, M., and Cury, M. (2012). Epidemiological, parasitological and molecular aspects of *Giardia duodenalis* infection in children attending public daycare centers in southeastern Brazil. *Transactions of the Royal Society of Tropical Medicine and Hygiene*, 106(8):473–479.

[Stuart et al., 2003] Stuart, J., Orr, H., Warburton, F., Jeyakanth, S., Pugh, C., Morris, I., Sarangi, J., and Nichols, G. (2003). Risk factors for sporadic giardiasis: A case-control study in Southwestern England. *Emerging Infectious Diseases*, 9(2):229–233.

[Swirski et al., 2015] Swirski, A. L., Pearl, D. L., Peregrine, A. S., and Pintar, K. (2015). A comparison of exposure to risk factors for giardiasis in non-travellers, domestic travellers and international travellers in a Canadian community, 2006-2012. *Epidemiology and Infection*, 144(5):980–999.

[Takaoka et al., 2016] Takaoka, K., Gourtsoyannis, Y., Hart, J. D., Armstrong, M., Daniel, A., Mewse, E., Phillips, D., and Bailey, R. L. (2016). Incidence rate and risk factors for giardiasis and strongyloidiasis in returning UK travellers. *Journal of Travel Medicine*, 23(5).

[Teixeira et al., 2007] Teixeira, J. C., Heller, L., and Barreto, M. L. (2007). *Giardia duodenalis* infection: risk factors for children living in sub-standard settlements in Brazil. *Cadernos de Saúde Pública*, 23(6):1489–1493.

[Tellevik et al., 2015] Tellevik, M. G., Moyo, S. J., Blomberg, B., Hjollo, T., Maselle, S. Y., Langeland, N., and Hanevik, K. (2015). Prevalence of *Cryptosporidium parvum/hominis*, *Entamoeba histolytica* and *Giardia lamblia* among Young Children with and without Diarrhea in Dar es Salaam, Tanzania. *PLoS Neglected Tropical Diseases*, 9(10).

[Warburton et al., 1994] Warburton, A., Jones, P., and Bruce, J. (1994). Zoonotic transmission of giardiasis: a case control study. *Communicable disease report. CDR Review*, 4(3).

[Wilson et al., 2008] Wilson, N., Baker, M., Edwards, R., and Simmons, G. (2008). Casecase analysis of enteric diseases with routine surveillance data: Potential use and example results. *Epidemiologic Perspectives and Innovations*, 5(6):1–8.

6 Supplementary tables and figures of the effects of handling on the transmission of giardiasis

Table S1. Meta-analysis of the effect of setting on the risk of giardiasis by consumption of vegetables in the combined mixed (n=23) and children population (n=10)

Pop	Parameters	Mean	Standard error	n	95% CI	Pr > t , Z
Both	Handl: Base	0.433	0.138	24	[0.162 - 0.705]	0.002
(18 stud)	Handl: Unwashed	0.339	0.197	9	[-0.047 – 0.725]	0.086
	Random effects					
	s ² _u (Intercept)	0.1544	QE(df=31)			
	s ² (residual)	0.4135	p<.0001			
	Publication bias	0.0000	0.0001			0.655
	Points removed	0				

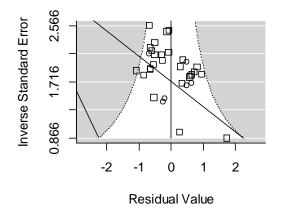


Figure S1. Funnel plot of the meta-analysis of the effect of handling on the risk of giardiasis by consumption of vegetables. Circle markers belong to OR measures with potential for bias