

D4.4
Security testing framework

Project number: 731456

Project acronym: certMILS

Project title:

Compositional security certification for medium to

high-assurance COTS-based systems in

environments with emerging threats

Start date of the project: 1st January, 2017

Duration: 48 months

Programme: H2020-DS-LEIT-2016

Deliverable type: Report

Deliverable reference number: DS-01-731456 / D4.4 / V2.0

Work package contributing to the

deliverable:
WP4

Due date: M28 – April 2019

Actual submission date: 13th August, 2020

Responsible organisation: UROS

Editor: Thorsten Schulz

Dissemination level: PU

Revision: V2.0

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731456.

Abstract:

Final security testing approach for the MILS platform

and MILS platform components. This deliverable will

contain a public report on developed security

approach supplemented by confidential part about its

application on SW components.

Keywords:
Security framework, security testing, analysis, fuzz-

test methodology

D4.4 – Security testing framework

certMILS D4.4 Page II

Editor

Thorsten Schulz (UROS)

Contributors (ordered according to beneficiary numbers)

Andreas Hohenegger (ATSEC)

Alvaro Ortega (E&E)

Luise Müller (UROS)

Philipp Gorski, Holger Blasum (SYSGO)

We also thank EU reviewers for feedback on an earlier version.

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information
is fit for any particular purpose. The content of this document reflects only the author’s view – the European
Commission is not responsible for any use that may be made of the information it contains. The users use the
information at their sole risk and liability.

D4.4 – Security testing framework

certMILS D4.4 Page III

Executive Summary

This deliverable concerns the final security testing approach for the MILS platform and MILS platform
components.

It describes how the testing approach matches high-assurance requirements from ATE for Common
Criteria for Information Technology Security Evaluation (CC) EAL5+ (ISO/IEC 15408; Section 1.1)
and IEC 62443 (Section 1.2). The testing approach leverages the results from WP1 on assurance
techniques: The testing is derived from these requirements compliant to CC and IEC 62443. The
tests are applied to the security attack surface using interface verification and fuzz-testing
approaches.

Chapter 2 describes an implementation approach of concepts of defined in D4.1 for fuzz testing
kernel drivers by a design that is partly in user-space, partly in kernel-space, thus crossing different
address spaces and its capability to detect errors.

The tools introduced in deliverable D1.2 refer to commercially available products. Deliverable D4.1
describes robustness testing setups requiring specific adaptation. Therefore, the integration of the
two categories into test frameworks for security tests is discussed in Chapter 3. It describes how the
developed fuzz testing approach from Chapter 2 is integrated into the proven build- und test
frameworks. Through the modular approach, this also applies integration of commercially available
test applications. The exemplary use-case is on testing of separation kernel components and their
interfaces using two different tools (adapted AFL, existing AbsInt rule-checker). The AFL approach
was also adapted and applied to the TAS platform, using a comparable approach.

We conclude on lessons learnt using these methods to facilitate the security evaluation of the
robustness and conformance of a kernel driver of a separation kernel.

D4.4 – Security testing framework

certMILS D4.4 Page IV

Contents

Chapter 1 Introduction .. 1

1.1 Requirements from Common Criteria on Security Testing .. 2

1.2 Requirements from IEC 62443 on Security Testing .. 4

1.3 Expectation Towards a Driver Testing Framework .. 4

Chapter 2 Testing Approaches ... 6

2.1 Static and Dynamic Analysis of Interface Usage ... 6

2.2 Exploration of Effects of Interface Payloads by Fuzz-Testing 6

2.2.1 Common Aspects .. 7

2.2.1.1 Crash Recognition ... 7

2.2.1.2 Scalable Coverage Maps ... 8

2.2.2 QEMU-Emulation Trace-Data Coverage-Feedback ... 8

2.2.3 HW-Tracing-Features Coverage-Feedback ... 8

2.2.3.1 Adaptation to the separation kernel ecosystem .. 9

2.2.3.2 Performance on Sample Driver .. 9

2.2.3.3 Evaluation .. 11

2.2.4 Source-Level Instrumentation Coverage-Feedback ... 11

2.2.4.1 Adaptation for separation kernel ecosystem .. 12

2.2.4.2 Performance on Sample Driver .. 14

2.2.4.3 Evaluation .. 15

Chapter 3 Test Framework Integration .. 16

3.1 Separation Kernel Test Framework Integration ... 16

3.1.1 Separation kernel project setup ... 16

3.1.2 General Test Framework Setup ... 17

3.1.3 Fuzzing Integration for the TF .. 17

3.1.4 External Tool Integration for the TF ... 20

3.2 Application TAS-Build-Chain ... 21

3.2.1 Structure and Components of the Testing Framework ... 21

3.2.2 Experimental Application ... 22

3.3 Results .. 24

Chapter 4 Summary and Conclusion ... 25

Chapter 5 List of Abbreviations .. 26

Chapter 6 Bibliography ... 27

D4.4 – Security testing framework

certMILS D4.4 Page V

List of Figures

Figure 1 Security attack surfaces (see D4.1 [1]) .. 1

Figure 2 Separation kernel and kernel driver linking aspect and interface correllation 1

Figure 3 Separation kernel fusion-interfaces with the sandbox aspect .. 6

Figure 4 Classification of code coverage techniques ... 7

Figure 5 Dataflow in the KernelAFL approach (source: [8]) ... 9

Figure 6 KernelAFL findings graph .. 10

Figure 7 KernelAFL performace chart ... 11

Figure 8 GCC compilation stages (source: [9]) .. 11

Figure 9 Source code instrumentation of basic blocks: left, source; middle, derived control flow tree;
right, modified tree with locations of instrumentation injection ... 12

Figure 10 Instrumentation summary of GCC plugin applied on sample driver 12

Figure 11 Conceptual fuzz-test architecture with test agent .. 13

Figure 12 Fuzz-test architecture with test agent thread and corrected test pattern injection 13

Figure 13 Data flow in a fuzz-test of a kernel component .. 14

Figure 14 Separation kernel component compilation flow. .. 18

Figure 15 TF fuzzing integration project scheme ... 19

Figure 16 Information flow in automated server-based testing .. 20

Figure 17 Output of the robustness test run for the FiBuss protocol driver 23

Figure 18 Final stats of the robustness test run for the FiBuss protocol driver 24

D4.4 – Security testing framework

certMILS D4.4 Page 1 of 27

Chapter 1 Introduction

Figure 1 Security attack surfaces (see D4.1 [1])

A MILS system consists of several components, see for example Figure 1. These components may
be provided by the separation kernel developer, the integrator or third parties. Previous certMILS
deliverables presented the security concept for user-space components attached to the interfaces
available in normal partitions.

For instance, a separation kernel product may specify the concept of kernel drivers to provide
dedicated functional extensions to the kernel, which are not provided by the kernel via system calls
or its Application Programming Interfaces (APIs) and cannot be implemented without running in
privileged CPU mode as part of the kernel space. The most typical use case for this type of functional
extensions is the necessity to support specific devices or peripherals of a hardware platform.

In such a design, the separation kernel specifies and provides the kernel driver framework
implementing generic interfaces to permit such a functional extension. This interface specification
defines the services exposed by the separation kernel to a kernel driver (kernel driver service API)
as well as the callbacks to be provided by the kernel driver extension to the separation kernel (kernel
driver callback API), see Figure 2 below.

Figure 2 Separation kernel and kernel driver linking aspect and interface correllation

 The kernel driver service API defines the set of operations provided by the separation kernel
that can be safely called from the context of a kernel driver under defined conditions.

 The kernel driver callback API defines the set of operations provided by the kernel driver that
can be called by the separation kernel as well as other kernel driver objects. The separation

D4.4 – Security testing framework

certMILS D4.4 Page 2 of 27

kernel passes calls from the user space down to these callbacks (Gate Callbacks) and
triggers specific callbacks internally on the occurrence of certain events (Provider Callbacks
e.g., initialization, health monitoring events, ...).

The kernel driver framework is part of the separation kernel product and responsible for loading and
setting up registered kernel drivers. Therefore, each kernel driver to be added must be linked to the
separation kernel object file within a defined address range and published to the separation kernel
via dedicated symbols. Hence, for the development by the integrator or a third party, it is sufficient
to provide the required configuration artefacts and the object file of a kernel driver as basic sources
for the integration with the separation kernel via a project called “fusion project”.

Nevertheless, from the aspect of safety and security, there may be a lack of trust in such
components. Especially, because they represent extensions to the separation kernel and its trusted
software core. They may add additional security attack surfaces through the associated hardware
ports (see Figure 1). Any weak implementation of the provided APIs or intended misuse of them has
the potential to bring down the complete system with fatal consequences. Hence, ways for the
evaluation of these parts and their robustness must be found. The testing must ensure the expected
behaviour of the kernel driver in conformance to the specifications of the APIs.

To layout the testing requirements, security certification standards need to be obeyed. The security
certification landscape is characterized by the generic Common Criteria (CC) and application-
domain specific standards. For instance, it has been observed that the rigor of the CC suggests to
focus on a small system/product or subsystem of a product [2]. The MILS separation kernel is such
a product suitable for CC. In the domain of industrial automation and control systems (IACS), the
standard IEC 62443 considers the security of entire plants and takes strongly into account the
constant changes that need to made to a plant, by putting great emphasis on the processes during
the life cycle of an IACS. For instance, risk assessment is not just carried out at the beginning, but
continuously repeated to achieve improvement. Railways and the track-side networks as distributed
systems have a complexity comparable to IACS. The newly drafted CENELEC’s prTS 50701 [3] is
based primarily on the IEC 62443 standard in the field of cyber-security. Therefore the standard
IEC 62443 is a clear choice for the environment of rail transportation. As the pilots are in the IACS
domain (smart grid) and railway domain (railway and subway demonstrators), we chose IEC 62443
as certification standard.

In order to satisfy the requirements of these security standards, systems based on separation
kernels, or the separation kernel itself, must pass the respective testing activities performed in an
evaluation. In earlier certMILS deliverables, ISO 15408 (Common Criteria) and ISA/IEC 62443 were
identified accordingly as two of the most relevant security standards applicable to separation kernels
and MILS systems, where IEC 62443 is suited for larger systems built from many components, such
as the pilots, and Common Criteria is suited for individual products, such as a MILS separation
kernel. Therefore, separation kernel developers, integrators and operators take most benefit from
testing compliant with standards like these. The subsequent two sections outline the testing
approaches of the Common Criteria and IEC 62443. Additional constraints can exist in schemes that
also define the evaluation methodology. Accordingly, these requirements may differ between the
nations hosting certification bodies or the applicable certification scheme. These details are,
therefore, not discussed.

1.1 Requirements from Common Criteria on Security Testing

ISO/IEC 15408 (Common Criteria, CC) knows three types of testing [4]. One of these testing efforts
is performed by the developer of an IT-product and described by the assurance family ATE_FUN
during a CC evaluation. In the assurance family ATE_IND, evaluators of an independent evaluation
lab verify the developer testing. The remaining type is a penetration testing effort (pen-testing)
performed as part of the vulnerability assessment within the AVA class, also by the CC evaluation
lab. The required degree of rigor in the assessment of all aspects is dictated by the Evaluation
Assurance Level (EAL) claimed in the Security Target (ST), which, as well, specifies the security

D4.4 – Security testing framework

certMILS D4.4 Page 3 of 27

features of the product. The EAL also determines the degree of detail required for the product's
documentation, as it needs to provide all necessary information to the evaluator. For the purposes
of the present document, an assurance level of roughly EAL5 (EAL5+) is assumed.

Like the independent testing, the vulnerability assessment is planned and executed by a CC
evaluation lab. Therefore, it largely depends on the judgment of the evaluator and, possibly,
requirements of the national certification scheme. The evaluator takes into account all knowledge of
the lab collected during the evaluation of other aspects. The pen-testing can, therefore, differ
depending on the chosen evaluation lab and not be planned by the developer of the product.

The independent testing of ATE_IND is also defined by the evaluation lab, but often influenced by
the developer's own test approach. While the evaluator will focus on gaps or week points of the
exiting testing, these activities will often build on an existing testing framework.

Since the AVA class does not impose any requirements on the developer's testing framework, this
section seeks to describe the implications of the families of the ATE assurance class. As ISO 15408
is a flexible standard applicable for all kinds of IT-products, its requirements are generic. For
example, the standard does not tell the developer to test the product in a specific way, using certain
methods, or even dictate tools to be used. Its requirements rather concern the developer's
documentation describing his testing approach and recording the test results. This information must
enable the ATE evaluator to determine whether the testing approach is sound. Furthermore, the
developer needs to demonstrate that the testing relates to the security functions that are claimed
and modelled in the ST.

In general, the CC testing is performed by exercising interfaces. Those can be external interfaces
(TSFIs) or internal interfaces between the subsystems and modules of the test target. To show the
correspondence between the testing according to the test documentation and the TSFIs, the
developer provides an analysis relating the two. This tracing allows the evaluator to determine the
extent of test coverage obtained by the developer testing and to identify possible gaps (ATE_COV).
At EAL5, all TSFIs need to be tested. Similarly, the developer provides an analysis that the testing
exercises the internal interfaces (ATE_DPT).

The CC define TSFIs as all kinds of interfaces between the portion of the test target that comprises
the security functionality (TSF) and other parts or the environment, provided they have a relationship
with that security functionality. Therefore, all of those interfaces are in principle subject to testing
efforts. In practice, direct testing of some types of interfaces can be more difficult than that of others.
For instance, it may be more difficult to test interfaces between hardware and software as this may
require instrumentation. Likewise, the testing of internal interfaces in ATE_DPT can be achieved
either indirectly, exercising the TSFIs, or by testing portions of the test target separately, e.g. within
a test harness.

Some relevant detailed testing issues are left open by the standard and are in practice handled by
the experienced CC evaluator or additional requirements issued by the certification body. For
example, although, the CC do not use the term 'attack surface' and treat all TSFIs evenly, it may
make sense to intensify the testing activities for interfaces that are directly accessible by an attacker.
The CC also do not require the qualification of test tools and test frameworks. Furthermore, the
standard does not specify with what intensity a TSFIs need to be tested (e.g., how many different
input parameters need to be tried). Thereby, it does not strongly influence the design of a test
framework implementing, for instance, fuzzing techniques.

In summary, the CC make it rather easy for the developer to achieve compliance with its testing
related requirements as it accepts all kinds of approaches and frameworks, as long as it has the
sketched properties. At high EAL, the testing needs to cover all TSFIs as well as internal interfaces
between the modules. Correspondingly, the supplied documentation needs to achieve the resolution
required for the evaluator to assess whether this is the case. For any chosen test approach, the
developer needs to provide test plans, different tracings or mappings to other parts of the
documentation, and sensible records of the test results (actual outcomes). The developer can benefit
from a test framework that produces some of this documentation automatically, however that is not
required for the compliance with the CC.

D4.4 – Security testing framework

certMILS D4.4 Page 4 of 27

1.2 Requirements from IEC 62443 on Security Testing

In IEC 62443 normative text, the testing needs are identified and included at several levels for each
of the parts within the scope. However, the focus of these testing approaches is mostly on functional
testing, integration testing and patch verification testing.

Specific security testing, is covered by part 4-1 [5] at the level of IACS components. It describes the
testing methods in the table below.

Name Description

Security
requirements
testing

This testing focuses on verifying that all the security requirements in the security
requirements specification (SecRS) have been met. Functional, negative,
boundary, performance and other types of standard testing are performed on
the security capabilities in the SecRS.

Threat
mitigation
testing

This testing is based on threat trees created from the threats identified in the
threat model and ensures that the mitigations designed and implemented in the
product are effective in stopping the given threat. Testers design their tests to
attempt to thwart the mitigation using the type of threat identified.

General
vulnerability
testing

This testing focuses on using standard tools or published instructions for
discovering potential security vulnerabilities. No attempt is made to exploit the
vulnerability or assess the ability to exploit the potential vulnerability and the
product is tested without consideration of the implementation or its defence in
depth design.

Penetration
testing

This testing focuses specifically on compromising the confidentiality, integrity or
availability of the product. It can involve defeating multiple aspects of the
defence in depth design. This approach is unstructured and depends on the
skills and knowledge of the attacker. The tester tries to play the role of an
attacker. It is not based on an analysis of the design or threat model; rather it
encompasses the tester trying to defeat the security of the system using any
technique that he chooses. This testing often will identify types of vulnerabilities
that need to be fixed rather than single vulnerabilities. This testing will often
detect problems that are not detected in threat model driven testing because
there may be errors or omissions in the threat model itself.

The tools, techniques and methods to be used during the security testing are left open to testers, but
fuzz-testing is a recommended practice. Detailed requirements regarding the testing may arise from
a given ISO/IEC 62443 certification scheme. At the time of writing of this document such schemes
are still in an early stage of evolution.

1.3 Expectation Towards a Driver Testing Framework

The security architecture, asserts strong assurance for the interfaces of a MILS system between the
application components and the separation kernel. An application component is not allowed to have
any other interfaces (beyond higher-level abstractions of those). In general, a separation kernel
does, however, expose further interfaces to other components of an integrated system.

The introduction discussed the additional need for privileged driver components to adapt the
separation kernel to specific hardware configurations, or to introduce additional interfaces to
application or system specific hardware. When, for technical reasons, these driver components are

D4.4 – Security testing framework

certMILS D4.4 Page 5 of 27

realized as a kernel device driver, the internal interfaces cannot provide the same security strength
as the external kernel API, due to the same address space. Therefore, organizational measures
should be provided, such as a testing framework. Testing of internal interfaces, as covered by the
testing framework, is required for high assurance levels (EAL5+) according to CC.

Kernel drivers are often provided by Integrators. Hence, the testing framework must be accessible
and usable by developers of the separation kernel, integrators and third parties.

 A third party developer and the integrator of a MILS system typically have minor experience
in and resources for testing of added kernel components compared to the SK provider.

 An integrator, operator or evaluation facility may require the demonstration of testing activities
within own premises due to quality assurance reasons requiring independent tests.

 An integrator has no access to the source code of the SK. This limits the tests to at most
partial instrumentation.

 If the SK provider runs the driver testing framework, it may not have access to the source of
the driver or a third party component.

 The testing approach must support all target architectures of the SK.

 The result of any test run must be reproducible. The payload data of a fuzz-test leading to a
crash must be stored. Each test run must not depend on prior payload data to be
reproducible.

 Testing of internal interfaces may be needed to verify a defence-in-depth approach.

D4.4 – Security testing framework

certMILS D4.4 Page 6 of 27

Chapter 2 Testing Approaches

The following sections describe the tool set implemented to test kernel extensions through their
kernel APIs by the collaboration. For other security-testing aspects, refer to deliverables D4.1 [1] and
D1.2 [6].

This kernel testing approach consists of analysing the usage of the internal interfaces followed by
their fuzz-testing using data payloads sampling the parameters.

2.1 Static and Dynamic Analysis of Interface Usage

The basis for the proposed method to evaluate the behaviour of the untrusted kernel driver is the
observation of its operation at runtime in the intended production environment. The observability
should be ensured independent of whether the source code is available or only an object file of the
kernel driver without its sources.

Figure 3 Separation kernel fusion-interfaces with the sandbox aspect

Hence, means for checking and manipulating the object file must be found to run the kernel driver in
a sandboxed environment allowing to analyse the interactions with the separation kernel, as well as
other kernel space entities during full tests of the complete kernel driver object file.

As entry point for the sandbox-approach, a second kernel driver (the sandbox) is prepared. The
specific methods and modifications are detailed in a confidential supplement. During the separation
kernel fusion, this additional sandbox kernel driver is linked with the kernel driver under investigation.

Furthermore, the sandboxing is achievable with the tools provided as part of the separation kernel
ecosystem to avoid any external tool dependencies.

2.2 Exploration of Effects of Interface Payloads by Fuzz-Testing

Fuzz-testing is a testing methodology that executes the target with mutated data payloads to
potentially trigger faulty behaviour. When data payloads are mutated randomly, it takes long to
achieve good code coverage of the target. Better performance is achieved through code coverage
feedback. A target’s code coverage (classification in Figure 4) can be traced with help of hardware
profiling features, such as Intel PT [7] or ARM CoreSight [8]. The profiling subsystem of a system
emulator, such as QEMU, is also considered a “hardware” feature, as it does not modify the test
target.

D4.4 – Security testing framework

certMILS D4.4 Page 7 of 27

Figure 4 Classification of code coverage techniques

In contrast, without HW-based profiling support, source- and object code instrumentation can also
be used to analyse the code coverage. Additionally, binary instrumentation can be applied
dynamically at run-time. However, this technique is more complicated compared to static and source
instrumentation, especially in the targeted kernel-space. Section 2.2.4, discusses the source
instrumentation technique, as it is most versatile, scales well and produces only little overhead and
adds only minor technical requirements. It is the preferred approach, as owners of the source of a
specific test-target kernel driver (only the test-target needs to be instrumented) know best to fix the
identified issues, while keeping the test framework as simple as possible. The source instrumentation
technique will trace on branch level with a coverage map compatible to the AFL fuzzer [9].

Fuzz-testing is often understood to be a generic test methodology. Nonetheless, it still requires a
test harness to input the test payload into the test target at the location of interest. For example, the
AFL fuzz-testing tool, by default, starts the test candidate and injects the test data payload via the
process’s standard input channel. Components of a MILS system have different interfaces that must
be tested. As discussed in Chapter 1, extensions of the kernel have APIs, which are not exposed
externally. Furthermore, if a fault occurs (e.g., a crash) in the kernel, the system will be unable to
document the incident. As a result, the fuzz-test infrastructure must reside outside of the target
system: either on a separate machine or outside of the virtualized environment. The additional
communication paths affect the performance negatively.

The large number of calls of the kernel driver API and further component specific calls are another
impediment to a simple, generic framework.

Another shortcoming of generic test cases executed by fuzz-testing are the limited options for the
verification of results. Typical generic fuzz-testing infrastructures can only capture rogue
misbehaviour that leads to a crash of the target. Non-faulting dysfunction or information leakage
cannot be detected without further custom analysis. Fuzz-testing is more of a robustness testing
technique than a catch-all approach for security testing.

2.2.1 Common Aspects

2.2.1.1 Crash Recognition

For efficient test execution, the logic of the fuzzer needs to detect the crash of a target as early as
possible since lock-up situations (timeouts from the viewpoint of the external fuzzer) are very costly
performance-wise. Typically, faults trigger non-maskable interrupts (NMI) to give the OS a last
chance to react or at least log the fault. These NMI are caught by a supervision subsystem of the
OS kernel.

In a separation kernel, this can be made the task of the Health-Monitor subsystem (HM). The HM
provides hooks (function tables) for a number of events, amongst others, for a kernel panic. We use

Code coverage

Profiling at
runtime

Emulated HW

Processor
features

Instrumentation

IR / object code

Static

Replace

Insert

Dynamic

Source code

D4.4 – Security testing framework

certMILS D4.4 Page 8 of 27

this callback to notify the fuzzer and to save further information related to a crash. To notify the
external fuzzer from within QEMU, there are two ways:

1) Trigger a HW-port-based virtual QEMU device (“pvpanic”) that notifies via the monitor
channel.

2) When address tracing is used, setup a trigger that fires upon execution of the mentioned
callback function.

Using this approach, most faults can be caught. However, soft faults that do not trigger immediate
reactions or exceptions are harder, if not impossible, to find in that way. Since the fuzzer does not
know the expected behaviour, this aspect requires a fundamentally different approach.

2.2.1.2 Scalable Coverage Maps

General-purpose fuzz-testing tools, such as AFL, have to cope with applications of different sizes.
Coverage maps tracing control-flow on branch-level, using an address trace or address-space map,
can become very large and inefficient to process (see next section).

AFL instead implements a compressed map of a fixed size (typically 64 kB or less). The location on
the map is computed from the lower bits of the x-or of the current and the previous branch address.
This algorithm has proven to perform well, however, there is not necessarily a unique mapping from
the coverage map to source locations. Such a relation is not required for fuzz-testing. The bare
information of a change in the map in new locations triggers the fuzzer’s interest to fine-tune the
payload to explore this newfound path.

2.2.2 QEMU-Emulation Trace-Data Coverage-Feedback

When QEMU is running in emulation mode, i.e. with just-in-time machine-code translation, QEMU
can be configured to output detailed information about its execution. However, this information can
be too detailed, as it goes beyond address contents and time-stamps of the program counter
(instruction pointer). A single boot process of an operating system may produce several gigabytes
of trace-data.

As a result, this feature is limited to non-time-critical applications, e.g., tracing of functional test
cases. Fuzz-testing requires several hundreds and thousands executions per second, thus trace-
data collection is a performance bottleneck.

2.2.3 HW-Tracing-Features Coverage-Feedback

Schumilo et. Al. [10] demonstrate “coverage-guided kernel fuzzing in an OS-independent and
hardware-assisted way by utilizing QEMU and Intel’s Processor Trace (PT) technology”. The sources
for the KernelAFL (kAFL) framework were also made available to adapt and apply to other targets.

Their approach, relies on the Intel PT execution address-tracing unit to record the control flow of a
target. Like the former approach, trace data can quickly accumulate. However, PT can already filter
certain events or instruction types, e.g. Change of [control] Flow Instructions. The modified QEMU
version QEMU-PT has extra capabilities to filter the data stream from PT and produce coverage
maps that can be evaluated by the fuzz-tester kAFL.

D4.4 – Security testing framework

certMILS D4.4 Page 9 of 27

Figure 5 Dataflow in the KernelAFL approach (source: [10])

After initialization, the repetitive control flow in Figure 5 starts by generating the test data pattern in
kAFL (4). This data is passed to QEMU-PT (5), which forwards it to the test-execution agent and
activates PT trace sampling. The agent then executes the target in (6) and afterwards acknowledges
successful execution back to QEMU-PT. QEMU-PT then requests the trace data from KVM-PT (7)
and translates it to the coverage map for evaluation by kAFL (8). The findings from the changes in
the coverage map can then be used to fine-tune the next test-data pattern.

2.2.3.1 Adaptation to the separation kernel ecosystem

The kAFL approach requires multiple tool adaptations. First, the host system’s operating system
kernel needs special support for the Intel Processor Trace (PT) functionality within the Kernel
Virtualization Module (KVM). The patch by the kAFL authors measures ~50kB in size. It is available
for the Linux Kernel in version 4.6.2. We have updated the patch to work with Linux 4.9, as it is
planned to be a long-term-support kernel (Jan, 20231). The effort is feasible, but must be accounted
for. There is no support for other host OS.

QEMU is the emulation and virtualization application used as a tool for development and test of
separation kernel systems. The separation kernel that we analysed is shipped with QEMU 2.7.1,
released 2017. KernelAFL provides a patch for QEMU 2.9.0 to integrate support for a dedicated
SHM device, capturing of hypercalls and accessing, filtering and controlling PT. We have updated
this patch to the closest available QEMU version within the Debian Linux distribution (version 2.10.1).
The effort to update the QEMU patch, despite the small version number difference, was much higher
compared to the Linux patch. Further updates to newer versions are considered a heavy impediment.

Lastly, the kAFL fuzzing application is a one-off publication with neither long-term support nor
maintenance community. It is, however, open-source.

2.2.3.2 Performance on Sample Driver

The authors packaged samples for kAFL on Linux and Windows. The Linux sample, which contained
an intentional bug, was translated to the form of a separation kernel driver as an example of a SW
component. Two “magic” data payloads lead to a crash are different compared to the ones used for
source instrumentation in section 2.2.4.2. KernelAFL provides dot-graph based output of the fuzzing
run sketched in Figure 6.

1 https://www.kernel.org/category/releases.html

D4.4 – Security testing framework

certMILS D4.4 Page 10 of 27

Figure 6 KernelAFL findings graph

D4.4 – Security testing framework

certMILS D4.4 Page 11 of 27

 0

 500

 1000

 1500

 2000

 2500

 3000

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 [h:min]

Performance

 0

 5

 10

 15

 20

 25
Pending

Pending Favs

Findings

Favorites

 0

 1

 2
Unique Panics

KASan Unique

Timeout Unique

Figure 7 KernelAFL performace chart

The first chart in Figure 7 shows the executions per second, which most the time averages around
2000 s-1. Below, in the middle of Figure 7, the chart displays metrics of the fuzzer based on the
feedback from coverage and the success of specific paths. The bottom chart shows crashes of the
target. Co-incidentally, both crashing paths were found within a few minutes apart. The detected
timeout is a false positive due to an unrelated high-priority job on the test machine that confused the
power-saving CPU governor. This may also account to the changing performance in the first minutes
of the fuzz-job.

2.2.3.3 Evaluation

The kAFL performance measured in test executions per second is highest of all approaches trialled
– roughly four times better than the source-level instrumentation approach described below.

However, the necessary adaptations to host-tooling discussed in section 2.2.3.1 are quite severe.
They are deemed problematic for long-term support and easy distribution. Furthermore, this
approach with Intel PT is limited to Intel CPUs. The equivalent technology for ARM architecture
processors, CoreSight, was not covered due to time constraints but should be followed for future
work.

2.2.4 Source-Level Instrumentation Coverage-Feedback

The generation of a separation kernel system’s boot image consists of many steps. First, all
components are compiled to object code. These fragments are then linked together to the binary
and finally merged into the boot image.

Compilation and linking may happen at different times. A system integrator, who wishes to add his
component to the kernel image typically obtains the operating system library from the OS component
supplier as a binary object. The new component that is the target for the tests, however, is available
as source code. The instrumentation is only required on the test-target’s source, not on the whole
kernel. Instrumentation is applied in the compilation process of the component.

Figure 8 GCC compilation stages (source: [11])

The compilation process of GCC undergoes several intermediate stages and code representations
(Figure 8). Without going into detail, each stage can be extended with custom plugin modules. The

D4.4 – Security testing framework

certMILS D4.4 Page 12 of 27

program control flow, which is best suited for coverage analysis, is found in the Gimple intermediate
language stage. The control flow is composed of basic blocks with linear execution, as seen in Figure
9. Our plugin function hooks are called in this stage to insert the source instrumentation for code
coverage recording. At the beginning of each block, a function call is inserted that takes the current
instruction address, x-ors it with the former address and uses the result to index into the coverage
map to increases the counter at that index.

Figure 9 Source code instrumentation of basic blocks: left, source; middle, derived control flow tree; right,
modified tree with locations of instrumentation injection

The instrumented test target object (Figure 10) is then linked with the kernel. The whole approach is
independent of the underlying hardware architecture. As above, this instrumented object needs
assistance by special test agents, utilities that transfer the data and trigger the execution, which must
also be linked. The data and execution flow is explained in the next section.

Figure 10 Instrumentation summary of GCC plugin applied on sample driver

2.2.4.1 Adaptation for separation kernel ecosystem

By principle, testing should be done as early as possible. As such, most of the testing of embedded
systems is executed in virtual environments on a development or dedicated testing host. The system
emulation and virtualization software QEMU is a prominent application that is also used as a testing
environment for the separation kernel.

D4.4 – Security testing framework

certMILS D4.4 Page 13 of 27

Figure 11 Conceptual fuzz-test architecture with test agent

As discussed in the previous section, the test database has to reside outside of the test target
environment (see concept Figure 11, based on system architecture in Figure 1). We focus on QEMU
system virtualization. However, the same concept also applies for a setup of separate test executor
and test target devices connected by a network or debugging link.

The next feature in Figure 11 is the test agent. It receives the test patterns from the external test
database and executes it onto the target component via the desired interface. The test agent either
implements different APIs or is a specific replaceable component. However, the architecture in
Figure 11 is technically not feasible.

First, it is problematic to “magically” induce data into the test-target’s memory without knowing all
necessary side-effects. There needs to be some sort of device to represent an entry gate for data
from the environment. Performance wise, a PCI-shared memory segment would be best. In the
version of the separation kernel we used, the API for PCI-device drivers can only be used in the
system service or user-space context, not in the kernel directly. Fixed SHM segments are not
supported by QEMU on a modular or configurable basis without source modifications.

Secondly, in order to use user-space thread management, each call to a driver must be initiated by
a user-space application at some point. There are exceptions to this rule, such as driver initialization
and interrupts by hardware, but these cannot cover enough code of the tested component.

For these reasons, we split the test-agent into two parts: one as an extra partition in the user-space
and one agent as a driver in the kernel-space, see Figure 12. In this setup, the user-space agent
talks to the fuzzer via a TCP-based-link that is included in the separation kernel development
framework, and is able to multiplex several TCP connections (the “multiplexer”). This concept also
works in non-QEMU-setups.

Figure 12 Fuzz-test architecture with test agent thread and corrected test pattern injection

The whole process for a single test run is shown in Figure 13. At first and once (not shown), the
internal network of the host is configured and the separation kernel multiplexer host-service is

D4.4 – Security testing framework

certMILS D4.4 Page 14 of 27

started. The target test-image is generated with the instrumented components and the test-agents
linked in. With this, QEMU boots, however waiting for the fuzzer to connect for control.

When the environment is set up, the test starts by executing AFL. AFL is passed the remote
communication proxy (RCP) as a pseudo target-binary, which emulates the remote target by
forwarding the test-data payloads and “committing suicide” if the target machine faulted. With this
architecture, AFL and QEMU can be left unmodified.

Figure 13 Data flow in a fuzz-test of a kernel component

At initialization, RCP runs the target to the start-point, when the test agent signals its Hello-message.
RCP triggers QEMU to take a snapshot of the virtual machine for the following invocations. Now
RCP reads the new test data payload from AFL through the standard input stream and forwards it
via the multiplexer to the test thread agent. The thread agent invokes the kernel driver fuzz agent
driver via a control command and a separation kernel SHM region. Finally, the target driver
component is called by the fuzz proxy agent. If the test run succeeds without faults, latter returns the
coverage map and signals the finalization back to the RCP.

In case of the QEMU environment, the return is optimized. The fuzz proxy fires a hardware trigger
that stops the virtual machine and notifies the RCP via the control channel. The RCP can then do a
memory dump of the coverage map in the test target, which proceeds much faster than the IO-
channel path. This mechanism also works in a fault situation, where the multiplexer-return-channel
would not be available anymore. The RCP copies the dump of the coverage map to AFL’s coverage
map SHM and signals either a crash or readiness for the next test run.

2.2.4.2 Performance on Sample Driver

The described architecture has proven effective, but there is still potential for optimization. The
separation kernel debug-channel-I/O multiplexer has been identified as a major performance
bottleneck. It also requires a developer license, which limits fuzzing on a larger number of machines
or in a data center (see parallel fuzzing in [9]).

driver
under test

D4.4 – Security testing framework

certMILS D4.4 Page 15 of 27

For future refactoring, the multiplexer should be replaced by a simpler data channel. For example,
switching the return data (~64kB) from a multiplexer transmission to the QEMU memory dump has
reduced per test execution time by 9 ms, in this case, increasing executions / second by factor 10.

The architecture was trialled on a low-performance development host machine. It achieved about
500 to 1000 test-executions per second. A buggy driver was equipped with three hidden “code
bananas”. It contains an invalid pointer access, an infinite recursion and a division by zero. One of
the three was typically found within minutes (5…100 min). However, to detect all three would take
hours.

2.2.4.3 Evaluation

The sample driver trialled in the previous section was only tested on one API call. The amount of
work required to set up a database of templates for a larger set of major API calls was
underestimated and is still work in progress.

For simplification of the security-testing framework, this approach and the sandbox methodology in
Section 2.1 should be merged. This was not planned for initially, however scanning and identification
of API calls must be automated and would be a redundant effort otherwise.

D4.4 – Security testing framework

certMILS D4.4 Page 16 of 27

Chapter 3 Test Framework Integration

The pilots within the certMILS project are based on different Build-Tool-Chains and build
approaches, which are referred to as the frameworks. System and component development and
lifecycle maintenance follows processes with many actions, including testing. Where feasible, these
action items are automated within these frameworks. New items are typically added to “hooks”, which
are executed at defined locations of the process. Each hook iterates through its (extensible) list of
actions. These action hooks of frameworks are often clustered into sub-frameworks. In this case, we
will hook into the test-framework’s actions.

Unfortunately, security testing is quite application specific due to the individual attack surface
exposed by each test target, so automation of security testing tools is limited. Another problem is,
that security testing is not transparent to refinement (as was discussed in other project deliverables),
i.e., there is only limited value to testing an isolated component in a reduced simulated environment,
compared to running a security test in the assembled system – which is much harder to accomplish
and automate.

In this chapter we show how we integrate the developed fuzz-testing tools and the code analysis
tool AbsInt rule-checker (for static security code checks) within the separation kernel test framework.
For integration within the TAS-Platform framework we reached a proof of feasibility status.

Other security testing tools mentioned in D4.1 and D1.2 are partially already integrated as an optional
framework extension, such as XML checker (analysis of project configuration), linter, API checker,
code analyser, etc.

3.1 Separation Kernel Test Framework Integration

3.1.1 Separation kernel project setup

For a better understanding of a typical separation kernel ecosystem, some relevant basic project
types are introduced upfront to the basic operations of the separation kernel test framework (TF).

 Application Project

An application project is a specific project type to develop, configure, and build application
artefacts for the separation kernel.

 Kernel Driver Project

A kernel driver project is a specific project type to develop, configure, and build kernel
driver artefacts for the separation kernel.

 Kernel Fusion Project

A kernel fusion project is a specific project type to merge kernel-related project artefacts
(e.g., kernel drivers) with the binary and configuration of the separation kernel.

 Integration Project

An integration project is a global configuration artefact for a separation kernel image that
will be built to run on a hardware target. In its static configuration it contains all resource
setups, assignments, communication paths, access rights, or configuration limits. The
configuration refers to the assigned project artefacts:

o Application projects for resource partitions and processes.

o Kernel driver projects.

o Kernel fusion projects.

o …

Building an integration project means that all referred artefacts must exist, their binaries are merged
into a final boot image, their configuration artefacts are compiled and merged into a final boot image.

D4.4 – Security testing framework

certMILS D4.4 Page 17 of 27

3.1.2 General Test Framework Setup

The test framework for separation kernel (TF) organizes its tests via different abstraction layers as
follows:

 Test suite

A test suite represents the highest level of abstraction. It is a collection of test cases, test
sets, documentation, and global configuration settings. As criteria for the association with
a certain test suite, a requirement document or certain API is most commonly applied.
Running a test suite implies that all associated test cases are processed within their
assigned test set configurations and a final reporting on the passed or failed test cases
is generated (with the related documentation artefacts).

Furthermore, a test suite can contain further tools that can be used by the test cases
(e.g., dedicated libraries) or for the result evaluation (e.g., special purpose scripts).

A test suite contains at least a single test case with the related test set.

 Test case

A test case represents the specific content for the application project that is running as
test secondary on the test hardware. This includes the source code, test vector inputs,
Makefiles, and documentation artefacts. Each test case is assigned to a dedicated test
set.

Furthermore, a test case can provide dedicated extensions and customizations if it is
needed for its specific test purpose (e.g., kernel drivers, make targets).

Beneath the binaries of the test case itself, the test cases are developed against a library
of the TF to communicate the status and results to a controller counterpart (test primary),
when running on a hardware target.

 Test set

A test set represents a specific configuration for the basic environment a test case is
using and possibly customizing. This includes the basic separation kernel projects
(application, integration …), library or tool paths, modification snippets, and
documentation artefacts.

In general, all testing performed by the TF is applied upon the project ecosystem of the separation
kernel itself. Dedicated tooling or build steps are controlled via path variables and customized
Makefiles. With this flexible solution, test flows can be customized, extended, or adjusted individually
for each test case.

The test flow of the TF is suited to automatically build, run, and evaluate test suites with few make
targets in a defined environment (e.g., chroot) that provided the needed toolchain.

The test suite run can be the compilation itself, with later evaluation of the build artefacts, or a
complete execution of the test cases on a hardware target. For those runs on real or emulated
hardware, a primary/secondary control and communication scheme is applied. The primary runs
locally, or on a server that performs the automatic testing, and connects to the test case secondary
on the application via the chosen communication peripherals (e.g., serial, Ethernet). Both parts of
this communication chain are customizable.

3.1.3 Fuzzing Integration for the TF

The integration of the security fuzzing extension is applied as a derived test case and test set.

Assuming a full set of separation kernel projects for the targeted scenario already exists and is
runnable, the specific components that shall be targeted by the fuzzing, need to be re-compiled with
a modified compiler flow as depicted in Figure 14, to support the required instrumentation plugin for
GCC.

D4.4 – Security testing framework

certMILS D4.4 Page 18 of 27

Figure 14 Separation kernel component compilation flow.

In the following description, it is assumed that mainly application or kernel driver projects are subject
of the fuzzing.

Furthermore, the following tools are required:

 A predefined instrumentation library (libInstr), which provides the function call and data
symbols the instrumented object code can be linked against. It implements the operations to
retrieve the trace information and pass possible inputs to the fuzzer instrumentation points.
It can be a customizable component with sources or a predefined one as static library binary.

 A configurable kernel driver component, which acts as handler for the gathered trace and
input data. For the instrumented applications APP (binInstr) or kernel driver (binInstr), this
kernel driver component is invoked by the inserted libInstr functions to write trace data or
read input data. It can be a customizable component with sources or an existing one as pre-
compiled binary.

 A customized test supervisor host, which operates as controller and processes the data
exchange from the host side with the kernel driver component at the target side. It can be a
customizable component with sources or an existing one as pre-compiled binary.

 Makefile adjustments, which serve the purpose of adding the new fuzzing targets as well as
pre- and post-processing commands that trigger the right tools.

 Optional tools such as scripts for the pre- or post-processing.

Under consideration of an existing and runnable project set, an automated fuzzer flow for the TF is
as follows:

1. The desired application and kernel driver projects subjected for the fuzzing are marked in the
project configuration via a selectable option.

2. The separation kernel project configurator or a dedicated script clones the existing project
set to generate a new combination of test cases and test set as export. Thereby, the
application and kernel driver projects with the selected fuzzer option are now configured to
be compiled with instrumentation. The fusion project integrates the kernel driver component
(binInstr, referred to as “Test Agent” or “Kernel Fuzzing Proxy” in the run-time flow of Figure
12 and Figure 13) and the extracted configuration from the instrumented projects. The
integration project integrates the user-space part of the fuzzer (“Test Agent” in Figure 12;

D4.4 – Security testing framework

certMILS D4.4 Page 19 of 27

“Fuzz Thread Agent” in Figure 13). These extensions are referenced by the corresponding
entries in the test set.

3. The new test cases and test set derived from the separation kernel project set can be added
to an existing test suite with focus on security / robustness related testing, or a new one is
set up for this purpose.

4. A generic or customized test primary is added to provide the controller part of the fuzzing
from the host side (e.g., referred to as “Remote Communication Proxy” in Figure 13 as well
as the AFL executable)

5. Finally, the make targets for the possible post-processing and evaluation of the result logs
can be added. (As crash results from fuzzing need manual post-processing to filter false
positives and common-cause reduction, this currently results in a failed test case and a
related notification.)

In consequence, the final derived combination of test cases and test set produces a boot-image as
depicted schematically in Figure 15. The approach is that each instrumented component is targeted
by fuzz-testing in an independent test-case, but not all at once.

Figure 15 TF fuzzing integration project scheme

D4.4 – Security testing framework

certMILS D4.4 Page 20 of 27

The test suite itself is activated via a parametrized make target, such as:

make clean all run TS=sec_tsuite TARGET=x86-64

This integration scheme can be assumed as general template for each tool flow that relies on
instrumentation and dynamic execution on a hardware or emulated device. Therefore, any additional
kind of testing can be added as new combination of test cases and test set to the test suite.

3.1.4 External Tool Integration for the TF

The TF supports the inclusion of external tools for additional analysis and evaluation scenarios as
well via the Makefile integration approach. The data and control flow is shown in Figure 16. The
needed tool setup and processing is encapsulated via dedicated make targets in a Makefile snippet
that must be included in the parent Makefile.

At this point the external tools can be used by activating the provided make targets.

Figure 16 Information flow in automated server-based testing

Another use-case for security testing within the framework is the integration of the rule-checker of
AbsInt. It executes source code compliance checks in the context of selected coding standard rules
for the MISRA and the SEI CERT Secure C standards to achieve static code analysis.

The make targets that introduce the capabilities to interact with the rule-checker are introduced via:

include $(TOOLS_DIR)/rulechecker.mk

At this point the rule-checking procedure is performed via:

make clean all run-rulechecker

This command is sufficient to:

D4.4 – Security testing framework

certMILS D4.4 Page 21 of 27

1. Send the source code files as well as the configuration files for the rules to be checked to the
rule-checker on a server.

2. Let the rule-checker process the provided content.

3. Receive the analysis results from the rule-checker.

Depending on the rule strictness the test case will fail on unsecure code segments requiring to fix
the source. A failed test case propagates to its test suite to halt the whole project-build process within
the framework before it can be finalized, i.e., to form a release or a security patch.

3.2 Application TAS-Build-Chain

This chapter summarizes the proof-of-feasibility integration of kernel-component fuzz-testing within
the TAS-Platform build-toolchain. Some of the commonalities with the separation kernel approach
are described again.

3.2.1 Structure and Components of the Testing Framework

The fuzz-testing technology is based on the successful AFL framework, as it is for the former
separation kernel approach. The core fuzzing engine is used unchanged. The communication
channels are redirected from the testing host to the target using a remote communication proxy
(RCP, also called “afl-wormhole”) on the testing side, and a fuzzing agent (FA) on the tested side.
The RCP behaves as an AFL-instrumented user-space application on the testing host, i.e., the test
framework supervisor machine. The Test-Agent (TA) injects the test payload into the target driver
on the target system via a test-case specific interface. It also collects the coverage bits from the
target driver and returns the coverage map back to the RCP. In normal operation the two components
communicate through IP-network packets. In case of a crash of the test target, the networking sub-
feature of the test-target is assumed to be rendered unfunctional. For successful coverage-based
fuzzing, AFL also requires coverage information in case of a crash. This is achieved through a last-
resort kernel-dump hook function to the serial console. Due to their low requirements, serial console
outputs still work in many crash situations. Alternative debugging features, such as JTAG are
oftentimes not available at this stage of system testing.

We have noticed, when a bug leading to endless recursion is fired, effectively
depleting all stack memory, the console dump approach also fails, because it cannot
be called. Recursion issues must be caught by static code analysis.

By returning the coverage map through the RCP to AFL, the AFL engine can use all its advanced
algorithms to generate the next test payload. Crashes are logged by AFL on the testing host the
usual way in the output folder. Obviously, since the tested target is a physical system, test-multi-
threading cannot be used. AFL’s feature to run parallel coordinated instances on multiple hosts and
targets was not trialled.

The RCP requires a GNU/Linux host as a runtime environment. The RCP currently has interfaces to
access the TA implementation for the separation kernel (“pfuzz”) and for Linux (“fluzz”) from the
same binary. For the separation kernel target, the RCP supports connecting to the tested target
system through the development TCP data-channel multiplexer. For the Linux-kernel target, the RCP
uses a plain TCP transport stream. The console needs to be redirected by external means onto a
TCP socket for reading in a plain (e.g., telnet) style. This is, however, a common approach in larger
testing facilities and readily available in the TAS-Testing Environment. If the target is run in a QEMU
VM, the RCP can also access the QEMU control interface and make use of specific memory dumping
functions to optimize test case execution.

The third component is required for preparation of the test target. To generate coverage information
the target driver needs to be instrumented. Coverage information is hashed into a bitmap of
configurable size between 1k and 64k byte. The original AFL approach uses injection of assembler
statements at the beginning of each basic block.

D4.4 – Security testing framework

certMILS D4.4 Page 22 of 27

A basic block is a sequence of linear statements. If a conditional branch or jump is
passed, the compiler starts (two) new basic blocks, until the paths reunite or the
function exits (see Figure 9 in chapter 2.2.4).

In contrast to the original approach by AFL, we have adapted an approach that uses a GCC plugin
to inject GIMPLE statements (the intermediary representation language in GCC), see chapter 2.2.4.
The plugin registers a handler that is called in one of intermediary compilation steps. The advantage
is improved independence of the target architecture and inclusion in optimization steps. However,
actual experimental comparison of using the plugin approach compared to the original AFL
instrumentation technique on a user-space application have shown slightly slower performance for
the plugin variant by a single digit percentage margin. (This was not a comprehensive benchmark.)
The plugin is currently compatible with GCC version 5..9.

3.2.2 Experimental Application

The first step is to assure the GCC compiler for the target system has proper functioning plugin
support. Experiences in the trial of the test-framework extension have shown that the shipped
compilers for both platforms (TAS and separation kernel) did lack the support for various reasons
(minimal required feature set, cross-compiler issues, dynamic library loading support, etc.) As an
exact match of compiler version compiling the plugin and compiling the target is required, both
compilers had to be recompiled to be usable for the fuzzing-security-testing framework extension.

While both recompilations of compilers succeeded in the end, it was always an unexpectedly large
impediment, making the security test-framework extension anything but “plug-and-play”. Compilers
are part of the target system toolchain qualification and assurance artefacts. The build environments
for the compilers use special build systems themselves, which complicates their “minor”
reconfiguration. This is especially true for cross compilers and specialized libc derivatives, applicable
at the TAS-build-framework. As a result, compiler plugin support should be considered for inclusion
in earlier system specification. For the proof-of-concept evaluation, out-of-automated-flow compilers
were applied in a manual process.

In the second step, the target driver and its to-be-fuzzed interface must be selected. The current
fuzzing framework extension has no sophisticated templating engine like Syzcaller to generically
access type-based high-level defined interfaces. It is more suited for buffer inputs, such as protocol
parsers, e.g., for Ethernet or CAN drivers. For the TAS platform, a special application level CAN
protocol driver was selected. The selected interface must be manually coded into the TA module.
The fluzz example provides a kernel-module exported symbol for a function call. The CAN protocol
drivers provided a character device API.

To build the testable target image, first, the adapted TA must be included into the target image build
process. Secondly, the GCC compilation flags must require the use of the plugin:

CFLAGS_target.o += -fplugin=path/to/afl-gcc-pass.so

To emphasize, only the compilation modules that are to be tested must contain the extra flag setting,
not the TA, neither the kernel as a whole. Find the parallels to this step in the previous chapter for
the separation kernel test-framework extension.

When the selected target driver is actually compiled, the plugin will output statistics related to its
instrumentation activities. The sum of instrumented basic blocks may be a rough indication towards
the coverage paths later found by AFL through guided fuzzing (see AFL’s GUI in ‘overall results’
box).

As the third step, AFL and afl-wormhole (the RCP) must be compiled. There are no requirements
towards the compiler and the testing host may also be of different architecture than the tested target.
Before starting AFL, the target should be up and waiting. The network connections, either the
development TCP-multiplexer or plain IP should all be setup and the serial console should be
reachable from the testing host.

D4.4 – Security testing framework

certMILS D4.4 Page 23 of 27

When afl-wormhole is run on its own with command-line parameter ‘-h’ it shows a short help screen,

how to configure the target’s / multiplexer’s addresses and the target’s timeout span. The latter is
required to hang out for the reboot time after a crash of the target. When afl-wormhole is run as a
pseudo-target in AFL, its outputs (stdout / stderr) are hidden. By default it logs its messages to a file

in the same path named afl-wormhole.stderr.

Warning: By nature capturing the kernel output, the log file may become quite large and may not
even provide insightful information to the tester. Crashes, chatty kernel consoles and broken test
sessions may fill it up in bulk. It must be manually deleted.

If all parameters are correctly known, afl-wormhole can be started as the fuzzed binary of AFL, thus

starting a test run. AFL, in most cases, fails to start with an error message, if things are not working
as expected. In those cases afl-wormhole.stderr will typically provide further hints. Otherwise, follow

AFL’s UI:

Figure 17 Output of the robustness test run for the FiBuss protocol driver

D4.4 – Security testing framework

certMILS D4.4 Page 24 of 27

Figure 18 Final stats of the robustness test run for the FiBuss protocol driver

In the same manner as described for the separation kernel TF in the previous chapter, the kernel-
module fuzzing extensions added to build-hooks of the TAS platform build-framework. However, the
Yocto-Linux has different build process tools (bitbake), which is based on Python as the top layer

of the framework but supports descending into Makefile build approaches as used in the certMILS
security testing extension tools.

3.3 Results

The application of the low-level driver security testing framework was successfully examined on both
MILS platforms of the certMILS project. As noted in the previous sections, there are multiple technical
challenges related to the approach itself and the special requirements of the targeted systems.

Fuzz-testing requires many test runs to achieve results, so test runtime performance is of utmost
importance. The additional components and network communication reduce the execution rate:

 The buggy test driver (with the tested core function being a cascaded string comparison)
achieved an execution rate of ~5000 /s in a QEMU VM on the testing host.

 The same test case ran on a separate physical device achieved ~900 /s.

 Testing the CAN protocol driver for the TAS platform in their testing facility environment
achieved ~40 /s.

While technically acceptable, the latter result is considered a slow test case. This may have different
reasons and cannot be generalized in either direction.

D4.4 – Security testing framework

certMILS D4.4 Page 25 of 27

Chapter 4 Summary and Conclusion

The security requirements for MILS systems allow different techniques and methodologies for
testing. In the introduction and, building on the results of previous deliverables, we explained the
different attack surfaces for a MILS system. For example, we must assert that an application
component (in a partition, see Figure 1) may be an attacker from a security point of view. There are
also other attack vectors coming from the environment via the hardware interface, e.g., the network
interface.

The robustness of MILS systems protecting the (minimal) assets computation time and memory have
been proven with respect to the interfaces between the application components and the kernel. Tests
related to these aspects were discussed in D4.1, and we have described integration into the
separation kernel’s TF and the TAS platform test framework, i.e., the functional testing requirements.
However, kernel extensions required for specific privileged hardware interfaces or drivers with
special timing requirements, are linked into the kernel-space and thus are not protected in the same
way. As a result, kernel extensions must be integrated with appropriate care.

To compensate for technical limitations, we provide additional testing methodologies for kernel driver
components and Linux kernel modules, the driver test-framework extension for security tests. By
examining the approach, it was also shown (in case of the separation kernel) that it is also effective
for multiple specialized security test tools, such as static code analysis, (static/dyn) API checking,
etc. Due to attack surface-specific security test requirements and different tool applicability, we have
not chosen a static one-fits-all package, but an extension-based plugin-approach to run security
testing in proven test frameworks.

The separation kernel driver API checker has two parts to test conformance of interfaces. The test
verifies the correct usage of the API between the driver and the kernel and vice versa. It can also
scan for allowed and forbidden API calls and trace invalid access to kernel-internal resources on
address bases, i.e., also for black-box driver objects. Traces of the API calls are collected at (test-)
run-time and identified for calling in correct order. The second part considers the interfaces from the
kernel to the driver, e.g., the kernel driver callback API, and fills the data payloads with random data
to test for robustness of the driver. This approach uses state-of-the-art fuzzing techniques to optimize
code-coverage and testing performance. This second part was also trialled on the TAS-platform to
assert its flexibility within the MILS approach.

We demonstrated the testing methodologies using sample drivers and a protocol driver to show the
test-framework’s effectiveness in identifying security and robustness issues in kernel device drivers.

We focused on improving the solution for best balance between ease of application by different
(developer) target groups, architecture independence and testing performance. The result is a test
framework extension for security tests that can add confidence to the correctness of kernel
extensions. The framework extension is also useful to uphold the confidence in case of patching or
updating of an installed system.

Overall, the security-testing framework extension approach is compliant to IEC 62443 and CC
requirements. Including other test tools, e.g., the external separation kernel API-Fuzzer (see D4.1,
robust APIs), commercial tools like Nessus for EDSA compliance, as well as the static analysis tools
from D1.2 (e.g., AbsInt rule-checker), the framework can provide coverage for a large area of security
testing requirements.

D4.4 – Security testing framework

certMILS D4.4 Page 26 of 27

Chapter 5 List of Abbreviations

Abbreviation Translation

API Application Programming Interface

ATE CC security assurance class “Tests”

CC Common Criteria for Information Technology Security Evaluation (CC)

EAL Evaluation Assurance Level

EDSA Embedded Devices Security Assurance

GCC GNU Compiler Collection

HW Hardware

IACS Industrial Automation and Control System

IEC International Electrotechnical Commission

kAFL Kernel AFL

KVM Kernel Virtualization Module

OS Operating System

PT Intel Processor Trace

QEMU The Q System Emulator

RCP Remote Communication Proxy

SK Separation kernel

ST Security Target

TF Test Framework

TSF Target of Evaluation Security Functionality

TSFI Target of Evaluation Security Functionality Interface

D4.4 – Security testing framework

certMILS D4.4 Page 27 of 27

Chapter 6 Bibliography

[1] T. Schulz, A. Hohenegger, S. Persson, A. Ortega, R. Hametner, M. Paulitsch, C. Gries, S.
Tverdyshev, H. Blasum und K. Tomáš, „Security testing framework: strategy and approach
(certMILS D4.1),“ September 2017. [Online]. Available: https://zenodo.org/record/2586591.

[2] A. Hohenegger, „Die Common Criteria und IEC-62443,“ in Deutscher IT-Sicherheitskongress,
2019.

[3] CENELEC, prTS 50701: Railway applications – Cybersecurity, draft version D7E3, 2019.

[4] CCMB, “Common Criteria for Information Technology Security Evaluation v3.1, Part 2:
Security functional requirements,” 2017. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf.

[5] ISA Security Compliance Institute, “ISASecure - IEC 62443-4-1 - SDLA Certification,” 2017.
[Online]. Available: http://www.isasecure.org/en-US/Certification/IEC-62443-SDLA-
Certification.

[6] J. Rollo, A. Alvarez de Sotomayor, B. Caracuel, A. Ortega, R. Hametner, S. Tverdyshev, H.
Blasum, T. Kertis, O. Havle, T. Schulz und M. Hager, „List of tools and techniques applicable
for high and medium assurance for efficient assurance (certMILS D1.2),“ December 2017.
[Online]. Available: https://zenodo.org/record/2586480.

[7] J. Reinders, “Intel Software Developer Zone: Processor Tracing,” Intel Corporation, 2013.
[Online]. Available: https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing.
[Accessed September 2017].

[8] ARM, “ARM CoreSight Datasheet,” 2015. [Online]. Available:
https://www.arm.com/files/pdf/CoreSight_Datasheet.pdf. [Accessed 2017].

[9] M. Zalewski, “american fuzzy lop,” [Online]. Available: http://lcamtuf.coredump.cx/afl/.
[Accessed 2017].

[10] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel and T. Holz, “kAFL: Hardware-Assisted
Feedback Fuzzing for OS Kernels,” in USENIX Security Symposium, 2017.

[11] L. Chien, “Intro to Compiler Development,” Mediatek, 2018. [Online]. Available:
http://slide.logan.tw/compiler-intro/. [Accessed 2018].

[12] “ISO/IEC 15408-1:2009, Information technology - Security techniques - Evaluation criteria for
IT security - Part 1: Introduction and general model,” 2017. [Online]. Available:
https://www.iso.org/standard/50341.html.

[13] CCMB, “Common Criteria for Information Technology Security Evaluation v3.1, Part 3:
Security assurance requirements,” 2017. [Online]. Available:
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf.

	Chapter 1 Introduction
	1.1 Requirements from Common Criteria on Security Testing
	1.2 Requirements from IEC 62443 on Security Testing
	1.3 Expectation Towards a Driver Testing Framework

	Chapter 2 Testing Approaches
	2.1 Static and Dynamic Analysis of Interface Usage
	2.2 Exploration of Effects of Interface Payloads by Fuzz-Testing
	2.2.1 Common Aspects
	2.2.1.1 Crash Recognition
	2.2.1.2 Scalable Coverage Maps

	2.2.2 QEMU-Emulation Trace-Data Coverage-Feedback
	2.2.3 HW-Tracing-Features Coverage-Feedback
	2.2.3.1 Adaptation to the separation kernel ecosystem
	2.2.3.2 Performance on Sample Driver
	2.2.3.3 Evaluation

	2.2.4 Source-Level Instrumentation Coverage-Feedback
	2.2.4.1 Adaptation for separation kernel ecosystem
	2.2.4.2 Performance on Sample Driver
	2.2.4.3 Evaluation

	Chapter 3 Test Framework Integration
	3.1 Separation Kernel Test Framework Integration
	3.1.1 Separation kernel project setup
	3.1.2 General Test Framework Setup
	3.1.3 Fuzzing Integration for the TF
	3.1.4 External Tool Integration for the TF

	3.2 Application TAS-Build-Chain
	3.2.1 Structure and Components of the Testing Framework
	3.2.2 Experimental Application

	3.3 Results

	Chapter 4 Summary and Conclusion
	Chapter 5 List of Abbreviations
	Chapter 6 Bibliography

