RETALT - RETro propulsion Assisted Landing Technologies

<u>Ali Gülhan</u>, Ansgar Marwege, Josef Klevanski , Sebastain Karl (DLR) Davide Bonetti (Elecnor DEIMOS), Jan Vos (CFS Engineering), Matthew Jevons (MT Aerospace), Anett Krammer (Almatech), João Carvalho (Amorim Cork Composites)

International Planetary Probe Workshop Oxford, July 11, 2019

Knowledge for Tomorrow

This project has received funding from the European Union's Horizon 2020 research and innovation framework programme under grant agreement No 821890

RETALT Team

DLR: Project coordination, ceference configuration, CFD and testing, AEDB and ATDB, health monitoring of base area TPS

ALMATECH: Landing mechanism, structural design and control surfaces, manufacturing and test of components, TVC structures and mechanisms

AMORIM: Thermal protection of the structures with cork-based TPS materials

CFS Engineering: CFD for aerodynamic loads and control surface efficieny, AEDB, dissemination

DEIMOS: Flight dynamics and GNC

MT Aerospace: Structural concept and design, design and manufacturing of a landing leg, hardware for aerothermodynamic tests

Introduction

Recovery Concept	Benefits	Drawbacks
VTHL Vertical Take-off Horizontal Landing (Space Shuttle, Buran, LFBB, Hermes, X-37)	 Aerodynamic breaking happens without additional propellant. Use of efficient air-breathing engines (turbojets) is possible. High L/D increases downrange (necessary for fly-back) and provides precise landing (big side range is necessary for suborbital flight landing) In-air-capturing could reduce fly- back propellant mass 	 Many additional elements are necessary (wing, control surfaces, landing gears, air-breathing engines), they increase system mass, size, complexity and costs. Runway is necessary High wing impact on the ascent aerodynamics High normal structural loads Trimming and CoG control is challanging Problems with multi-staging and packet (parallel) configurations
VTVL Vertical Take-off Vertical Landing (Falcon 9, New Shepard, DC-X)	 Only small changes on the current rocket design are necessary (landing legs and fins) No runway is necessary (comparable to heliport/helipad) Precise landing is possible Mainly axial loads Downrange landing version reduces descent propellant 	 Additional elements are necessary (legs, control surfaces, reaction control) Additional propellant is necessary (Toss-back, deceleration, landing) Throttling of engines is necessary Drone-Ship is necessary for the downrange landing

Main goals

- Investigate the Launch system reusability technologies of
 - <u>Operational</u> launch vehicle
 Vertical Take-off Vertical Landing (VTVL) Two Stage To Orbit (TSTO) (similar to Falcon 9)

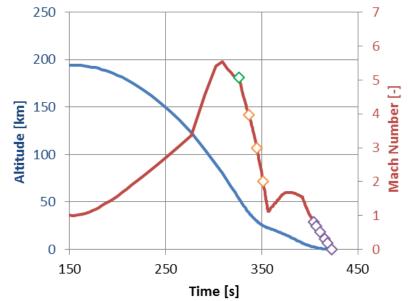
 <u>Future launch vehicle</u> Vertical Take-off Vertical Landing (VTVL) Single Stage To Orbit (SSTO) (similar to DC-X)

Concept

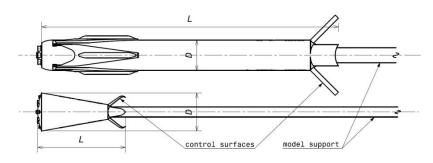
- <u>RETALT 1:</u>
 - TSTO VTVL RLV
 - 30 t to LEO
 - 7 engines (Vulcain 2): LOX/LH2
 - Aerodynamic Control Surfaces: Interstage sections (base line), grid fins (for comparison)
 - Breaking: Retro propulsion
- <u>RETALT 2:</u>
 - SSTO VTVL RLV
 - Smaller payloads to LEO of suborbital missions
 - Aerodynamic control surfaces: Fairing Sections (base line), Grid fins (for comparison)
 - Breaking: Retro propulsion, capsule like shape

Detailed goals

- Understanding of complex aerodynamics and aerothermodynamics
- Reliable aerodynamic data base for Flying Qualities Analysis and Guidance Navigation Control
- GNC Concept
- Overall concept of Structures and Mechanisms
- Concepts for Structure and Mechanisms for landing legs and aerodynamic control surfaces
- Development of TPS for base area
- TRL 5 for Aerodynamics, Aerothermodynamics, Structures and Mechanisms
- TRL 3 for GNC concept


Aerodynamic and Aerothermodynamic Experiments

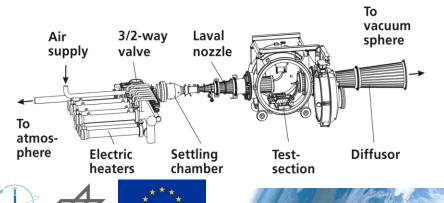
- Provide data for CFD validation wrt
 - Aerodynamic Loads,
 - Aerothermal Loads
 - Control Surfaces Efficiency
- Investigate impact of retro propulsion on flow structure and resulting force and moment coefficients
- Assessment of efficiency of novel control surface design (interstage and fairing sections)
- Hot plume for detailed understanding of flow-flow interaction
- Heat loads on structural elements and TPS
- Qualification of TPS and Health Monitoring System (HMS)
- Contribution to AEDB/ATDB for GNC and flight dynamics, TPS and landing structures


Planned Wind Tunnel Tests Full Configuration

- H2K / TMK
 - Mach 7.0 ... 2.0
 - Propulsive medium: pressurized air
 - Strain gauge measurements
- VMK
 - Mach 0.9 ... 0.3
 - Propulsive medium: GH2/GO2
 - Plume of up to 115 bar and 3600 K stagnation conditions
 - Wall pressure measurements, PIV
- Additional tests for control surface efficiency in TMK

Туре	Wind tunnel tests			
Test focus	Aerodynamic		Aerothermal	
Wind tunnel	Н2К / ТМК		VMK	
Configuration	RETALT1	RETALT2	RETALT1	RETALT2
Scale	1/100	1/100	1/80	1/80
Length (L / mm)	600	220	750	330
Diameter (D / mm)	60	100	75	150

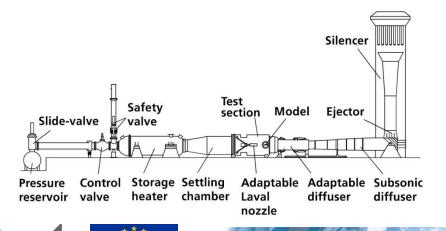
Exemplary Falcon 9 descent trajectory with relevant test cases in the H2K, TMK and VMK.


RETALT1 and RETALT2 wind tunnel models for use in the H2K, TMK and VMK facilities

Aerodynamic Wind Tunnel Experiments

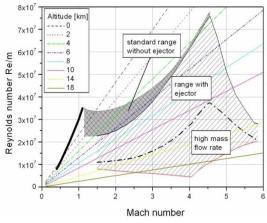
Wind Tunnel Facilities - Hypersonic Wind Tunnel Cologne (H2K)

- Blow down facility (pressure-vacuum) with several Laval nozzles for fixed Mach numbers
- Reynolds number adjustable by variation of total pressure and total temperature
- Available Diagnostic Techniques:
 - 6 components balances
 - High Speed shadowgraphs and Schlieren
 - Oil flow techniques
 - Infrared Thermography
 - Particle Image Velocimetry
 - Tracking methods
 - Pitot and heat flux probes



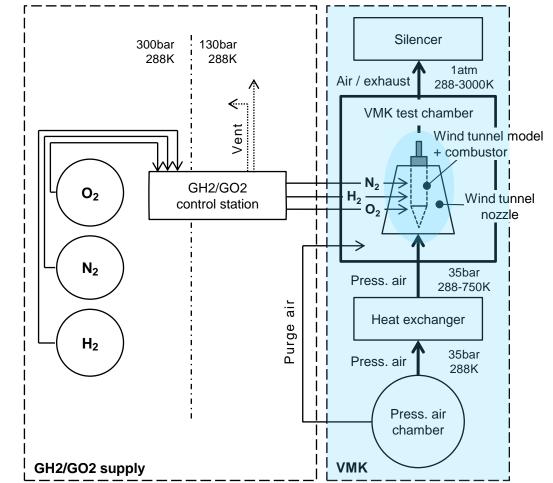
H2K wind tunnel, with test section open

Facility Attributes		
Mach Numbers	5.3, 6.0, 7.0, 8.7, 11.2	
Reynolds Numbers	2 to 20 x 10 ⁶ /m	
Test Section Area	π/4 x (600 mm)²	
Total Pressures	2.5 to 55 bar	
Total Temperature	1100 K (max)	
Typical Run Time	30s	


Aerodynamic Wind Tunnel Experiments Wind Tunnel Facilities - Trisonic Wind Tunnel (TMK)

- Operation range:
 - Mach: 0.5 5.7
 - Reynolds number variation
- Measurement:
 - Aerodynamics (forces, moments)
 - Derivativa measurements
 - Schlieren imaging
 - Oil flow pictures
 - Temperature, pressure

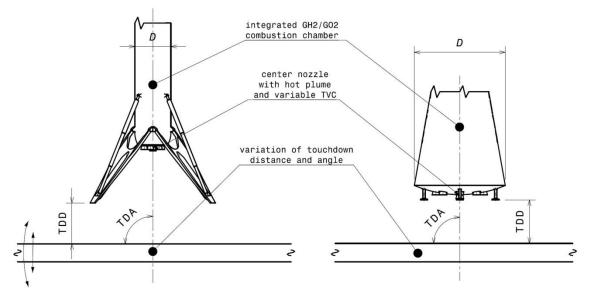
TMK wind tunnel, with test section open



Performance map of Trisonic Wind Tunnel TMK

Aerothermal Experiments

VMK – GOX/GH2 Test Stand Infrastructure


- Add-on to our Vertical Wind Tunnel (VMK)
- GH2/GO2 Supply Facility
 - Gas supply station (300bar)
 - Control station (115bar, 470g/s)
 - Piping
- Wind Tunnel Model
 - Model support
 - GH2/GO2 combustor
- Safety Measures to enable combustion testing in VMK

Planned Wind Tunnel Tests Ground Effect Model

- GH2/GO2 combustion chamber integrated in model
- Larger scale
- Without surrounding flow
- For qualification of TPS and Health Monitoring System
- Variations of Touch Down Distance (TDD) and Touch Down Angle (TDA)
- Variable TVC

Туре	Ground effect tests		
Test focus	Aerothermal		
Wind tunnel	VMK (static atmosphere)		
Configuration	RETALT1	RETALT2	
Scale	1/30	1/30	
Length (L / mm)	-	-	
Diameter (D / mm)	200	250	

RETALT1 and RETALT2 as base models for hot plume aerothermal impact tests

CFD Analyses

- Rebuilding of WT-Tests (Code validation, support of WT and model setup, improved interpretation and analysis of experimental data).
- Extrapolation to flight scales.
- Generation of inputs for Aerodynamic and Aerothermal Databases. Provision of mechanical and thermal loads.
- Analyses and assessment of control-surface efficiency.
- Control of uncertainty by:
 - Application and cross-check of different codes (TAU and NSMB)
 - Closely coupled analysis methodology between CFD and WT results

Conclusion

- Together with the other two European projects CALLISTO and RETRO. RETALT will generate an important expertise in VTVL technologies in Europe.
- Our industrial partners ALMATECH, AMORIM, CFS Engineering and DEIMOS have very complementary expertise and allowed defining an interdisciplinary study logic within RETALT.
- The definition of reference trajectories is ongoing and required an intense discussion.
- Since the topic is quite new in Europe, a lot of young and highly motivated scientists are interested joining the team.
- Ground tests are very challenging and require very careful preparation.

