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Preface

This volume is a collection of the papers presented at the Detection and Classification of Acoustic
Scenes and Events 2021 Workshop (DCASE 2021) in Barcelona (online), on November 15-19, 2021.

The DCASE 2021 Workshop is the sixth workshop on Detection and Classification of Acoustic Scenes
and Events, organized again in conjunction with the DCASE Challenge. The aim of the workshop was
to bring together researchers from many different universities and companies with interest in the
topic, and provide the opportunity for scientific exchange of ideas and opinions.

The DCASE 2021 Workshop was jointly organized by researchers at Universitat Pompeu Fabra,
Tampere University, Google Inc., New York University, Microsoft, Universidad de la República, Apple
Inc., Adobe Research, Voicemod and Bose Corporation. The associated DCASE 2021 Challenge tasks
were organized by researchers at Tampere University (Task 1: Acoustic scene classification, Task 3:
Sound Event Localization and Detection with Directional Interference, Task 6: Automated Audio
Captioning); Hitachi Ltd. (Task 2: Unsupervised Anomalous Sound Detection for Machine Condition
Monitoring under Domain Shifted Conditions); Google Inc. (Task 2: Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring under Domain Shifted Conditions, Task 4: Sound Event
Detection and Separation in Domestic Environments); NTT Corporation (Task 2: Unsupervised
Anomalous Sound Detection for Machine Condition Monitoring under Domain Shifted Conditions);
Inria Nancy Grand-Est (Task 3: Sound Event Localization and Detection with Directional Interference,
Task 4: Sound Event Detection and Separation in Domestic Environments); University of Lorraine
(Task 4: Sound Event Detection and Separation in Domestic Environments); Adobe Research (Task 4:
Sound Event Detection and Separation in Domestic Environments); Universitat Pompeu Fabra (Task 4:
Sound Event Detection and Separation in Domestic Environments); Northwestern University (Task 4:
Sound Event Detection and Separation in Domestic Environments); Università Politecnica delle
Marche (Task 4: Sound Event Detection and Separation in Domestic Environments); Queen Mary
University of London (Task 5: Few-shot Bioacoustic Event Detection); Tilburg University (Task 5:
Few-shot Bioacoustic Event Detection); University of Konstanz (Task 5: Few-shot Bioacoustic Event
Detection); BIOTOPIA Naturkundemuseum Bayern (Task 5: Few-shot Bioacoustic Event Detection);
and AGH University of Science and Technology (Task 5: Few-shot Bioacoustic Event Detection).

For this edition of the DCASE 2021 Workshop, 67 full papers were submitted, each reviewed by at
least three members of our Technical Program Committee. From these, 47 papers were accepted.

The Organizing Committee was also pleased to invite leading experts for keynote addresses: Laurie
Heller (Professor and director of the Auditory Lab at Carnegie Mellon University), and Kristen Grauman
(Professor at Department of Computer Science University of Texas at Austin and Research Director at
Facebook AI Research).

The success of the DCASE 2021 Workshop was the result of the hard work of many people whom we
wish to warmly thank here, including all the authors and keynote speakers, as well as all the members
of the Technical Program Committee, without whom this edition of the DCASE 2021 Workshop would
not exist. We also wish to thank the organizers and participants of the DCASE Challenge tasks.

This edition of the workshop was supported by sponsorship from Facebook, Apple Inc., Bose
Corporation, Hitachi Ltd., Line, Audio Analytic, Cochlear.ai, Dolby, Google Inc., Mitsubishi Electric, and
RION. We wish to thank them warmly for their valuable support to this workshop and the expanding
topic area.

Frederic Font, Annamaria Mesaros, Daniel P.W. Ellis,
Eduardo Fonseca, Magdalena Fuentes, and Benjamin Elizalde



DCASE 2021 Sponsors
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TOYADMOS2: ANOTHER DATASET OF MINIATURE-MACHINE OPERATING SOUNDS
FOR ANOMALOUS SOUND DETECTION UNDER DOMAIN SHIFT CONDITIONS

Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi
Masahiro Yasuda and Shoichiro Saito

NTT Corporation, Japan

ABSTRACT
This paper proposes a new large-scale dataset called “ToyADMOS”
for anomaly detection in machine operating sounds (ADMOS). As
with our previous ToyADMOS dataset, we collected a large num-
ber of operating sounds of miniature machines (toys) under nor-
mal and anomaly conditions by deliberately damaging them, but
extended them in this case by providing a controlled depth of dam-
ages in the anomaly samples. Since typical application scenarios
of ADMOS require robust performance under domain-shift con-
ditions, the ToyADMOS2 dataset is designed for evaluating sys-
tems under such conditions. The released dataset consists of two
sub-datasets for machine-condition inspection: fault diagnosis of
machines with geometrically fixed tasks and fault diagnosis of ma-
chines with moving tasks. Domain shifts are represented by intro-
ducing several differences in operating conditions, such as the use of
the same machine type but with different models and parts configu-
rations, operating speeds, microphone arrangements, etc. Each sub-
dataset contains over 27 k samples of normal machine-operating
sounds and over 8 k samples of anomalous sounds recorded with
five to eight microphones. The dataset is freely available for
download at https://github.com/nttcslab/ToyADMOS2-dataset and
https://doi.org/10.5281/zenodo.4580270.

Index Terms— Anomaly detection in sounds, machine operat-
ing sounds, product inspection, dataset, domain shift conditions

1. INTRODUCTION
Extensive research efforts have recently been focused on anomaly
detection. An anomaly detection task is designed to detect anomaly
states by learning only normal condition data. Microphones have
been used as sensors to detect anomalies, referred to as anomaly
sound detection (ASD) or acoustic condition monitoring [1–9]. This
task setting is different from other sound event detection tasks such
as gunshot detection [10].

In general, it is very difficult or almost impossible to collect
massive anomaly data. The ToyADMOS [11] and MIMII [12]
datasets were the first to be utilized for evaluating anomaly detec-
tion systems using sound. These datasets enable us to compare
the performance of different systems. In 2020, a number of sys-
tems from various research organizations in academia and industry
were submitted to DCASE 2020 Challenge Task 2: Unsupervised
detection of anomalous sounds for machine condition monitoring
[13]. The submitted systems performed quite well on the task, thus
demonstrating the great potential of applying deep learning-based
systems for unsupervised anomaly detection tasks [14–19].

However, the ASD scenario given in the DCASE 2020 Chal-
lenge was not realistic compared to actual use cases. The task set-
ting was too basic, and the task requirements were much easier than
they would be for typical ones in practical applications, where (for

example) the same machine type but different models are used at
different operating speeds, and the conditions are not given as train-
ing data. Several independent research groups have tackled tasks
related to domain shift or domain adaptation [20–25], but few open
datasets that could serve this need have been made available. While
the previous ToyADMOS dataset has some data variations that can
be used for testing domain-shift conditions, we would like to have
more variations on the test configuration.

When evaluating the performance of ASD systems, the statisti-
cal characteristics of anomalous sound samples should be different
from those of normal samples. However, if the difference is too sig-
nificant, the anomaly detection task might not be difficult enough to
properly evaluate the system performance. One way of controlling
the difficultly of the test configuration is to adjust the signal-to-noise
ratio (SNR) of the added noise level, but noise reduction techniques,
such as the ones in [15,26], can be used to mitigate the difficulty of
the task. Therefore, there should be a way to control the difficulty,
without relying on the SNR.

The difficulty of the task under domain shifts can be con-
trolled by changing the statistical difference among normal samples
across domains and/or the statistical difference between normal and
anomaly sound samples within a domain. In designing challeng-
ing test conditions, it is preferred to strike an appropriate balance
between these two approaches.

To address the application scenarios discussed above, we pro-
vide a new ADMOS dataset called ToyADMOS2. The ToyAD-
MOS2 dataset adds more variations on condition arrangements ded-
icated to domain shifts. As we did for the previous ToyADMOS
dataset, we collected normal and anomalous operating sounds of
miniature machines by deliberately damaging their components.
The ToyADMOS2 dataset has the following characteristics:

• Designed for two ADMOS tasks: product inspection (toy car)
and fault diagnosis for a moving machine (toy train).

• Provides controlled domain-shift conditions on machine mod-
els, parts configurations, operating speeds, microphone models
and arrangements, and environmental noise.

• Enables control of depth of damage in anomaly samples to pro-
vide choices on significance levels of statistical differences be-
tween normal and anomalous samples.

Note that the ToyADMOS2 dataset can be used alongside the pre-
vious ToyADMOS dataset to provide a larger variety of test condi-
tions.

The proposed ToyADMOS2 dataset is freely available for
download at https://github.com/nttcslab/ToyADMOS2-dataset and
https://doi.org/10.5281/zenodo.4580270. The license and explana-
tion of some of its uses are also available at those links.
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Figure 1: Recording-room layouts and microphone arrangements.
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Figure 2: Images of microphone arrangements.
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Figure 3: Images of toy-model configurations.

2. DATASET OVERVIEW

The ToyADMOS2 dataset consists of two sub-datasets for two types
of ADMOS task. Each sub-dataset has three domain shift condi-
tions. A different type of toy, namely a toy car and a toy train, is
used for each task.

Toy car: Designed for the product-inspection task. The toy car
runs on an inspection device. Sound data were collected
with five microphones arranged close to the inspection de-
vice, as shown in Figs. 1(a) and 2(a). The setting is similar
to the toy car sub-dataset in ToyADMOS, but the machine
models, parts configurations, operating speed settings, and
microphone arrangements are different. The toy-car models
are shown in Fig. 3(a).

Toy train: Designed for fault diagnosis of a moving machine. The
toy train runs on a railway track. Sound data were collected

with eight microphones surrounding the track, as shown in
Figs. 1(b) and 2(b). The setting is similar to that of the toy
train sub-dataset of the ToyADMOS dataset, but the machine
models, cargo arrangements, operating speed settings, and
microphone arrangements are different. The toy-train mod-
els are shown in Fig. 3(b).

To collect various normal and anomalous sounds depending on
individual differences, operating sounds were recorded using sev-
eral models with different parts configurations.

Normal sound: Operating sound when the target machine operates
normally in accordance with its specifications.

Anomalous sound: Operating sound when the target machine was
forced to operate anomalously by deliberately damaging its
components or adding extraneous objects. The anomaly
level was controlled by changing the depth of the damage
deliberately made on the parts.

Environmental noise: Environmental noise for simulating a fac-
tory or other locations such as a roadside. Noise sam-
ples were collected at several locations with multiple micro-
phones. These sounds were emitted from four loudspeak-
ers positioned at the corners of each recording room and
recorded with the same microphone configurations used for
recording the normal and anomalous sound samples. In ad-
dition to newly recorded noise samples, noises from the Toy-
ADMOS dataset were also used.

We utilized omnidirectional dynamic (SURE SM11-CN) and
condenser (TOMOCA EM-700) microphones to collect these
sounds. All sounds were stored as multiple WAV files.

In ToyADMOS2, several application scenarios representing
domain-shift conditions were designed. Examples of possible
domain-shift scenarios are as follows:

Model and parts configuration shift: The normal and anomaly
data were recorded using several different machine models
and parts configurations.

Operating speed shift: Operating speed was varied. Normal and
anomaly data were recorded under several different speed
levels.

Microphone and environmental noise shift: Different environ-
mental noise was recorded at different positions using
different types of microphone.

2
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3. DETAILS OF SUB-DATASETS

3.1. Toy-car sub-dataset
We assumed a product inspection task and took up the task of de-
tecting anomalous sounds from the running sound of a toy car on
an inspection device, as shown in Fig. 2(a). The miniature car ma-
chine was a toy car called “mini 4WD”, which has four wheels and
is driven by a small motor through gears and a shaft. A stabilized
power supply was connected to the motor, and running sounds on
an inspection device were recorded with five microphones. There
were five machine configurations: A, B, C, D, and E, as shown in
Fig. 3(a). In each configuration, different machine chassis models
and parts were used.

To control the operating speed, five voltage levels, 2.8, 3.1, 3.4,
3.7, and 4.0 V, were provided through the stabilized power supply.
Each recorded WAV file contains a normal or anomalous sound of a
toy car. The duration of the normal and anomalous sound samples
is 12 s. This results in over 35 k samples times five channels; in
total over 177 k sound samples. Anomalous sounds were generated
by deliberately damaging the shaft, gears, or tires. Three damage
depth levels were provided for each part, as listed in Table 1. In
total, over 8 k samples of anomalous sounds were recorded with
various combinations (300 patterns) including three different depths
of damage.

For recording the environmental noise, four types of noise files
were played through the four loudspeakers and recorded with the
same microphone setting shown in Figs. 1(a) and 2(a), and normal
and anomalous sounds were recorded. Three dynamic and two con-
denser microphones were used. Some of the noise files were newly
recorded; others were taken from ToyADMOS.

3.2. Toy-train sub-dataset
We assumed the use of fault diagnosis of a moving machine task of
anomalous sounds from the running sound of a toy train. We used
an HO-scale model train which is a precisely detailed miniature,
as shown in Fig. 3(b). Sound data were collected with eight mi-
crophones positioned inside and outside the railway track perimeter
(four microphones each). The microphones and loudspeakers in the
recording room were arranged as shown in Figs. 1(b) and 2(b). Dy-
namic microphones were used as the four outer microphones (chan-
nels 1 to 4), and condenser microphones were used as the four inner
microphones (channels 5 to 8). Domain shift conditions in each task
configuration are listed in Table 1. There are five machine configu-
rations (A, B, C, D, and E).

To control the operating speed, five levels of speed control (5,
6, 7, 8, and 9) were used. Each recorded WAV file contains normal
or anomalous sounds of a toy train. The duration of the normal and
anomalous sound samples are 12 s each. This results in over 35
k samples times two mic types; in total, over 71 k sound samples.
Anomalous sounds were generated by deliberately damaging the
carriage and railway track. Three depth levels of the damage were
provided to each part, as listed in Table 1. In total, over 8 k samples
of anomalous sounds were recorded with their various combinations
(300 patterns).

For recording the environmental noise, four types of noise files
were played through the four loudspeakers and recorded with the
same microphone setting (shown in Figs. 1(b) and 2(b)) that the nor-
mal and anomalous sounds were recorded with. Four dynamic mi-
crophones (channels 1 to 4) and four condenser microphones (chan-
nels 5 to 8) were used. Some of the noise files were newly recorded;
others were taken from ToyADMOS.

Table 1: Anomaly conditions of sub-datasets.
Toy car Toy train

Part Condition Part Condition

Shaft - Bent Carriage - Flat tire
Gears - Deformed - Broken shaft

- Melted Railway track - Disjointed
Wheels - Damaged (straight, curve) - Obstructing stone

Table 2: Variation settings of sub-datasets.
Toy car Toy train

Model variations Five Five
Speed levels Five Five
Mic. type and Dynamic: 1–3 Dynamic: 1–4
channel config. Condenser: 4, 5 Condenser: 5–8

Noise type Four recordings

Normal samples 1,094 samples⇥5 models⇥5 speed levels
(Total hours) (91 hours ⇥ 5 ch) (91 hours⇥2 ch-sets)

Anomaly samples 324 samples⇥5 models⇥5 speed levels
(Total hours) (27 hours⇥5 ch) (27 hours⇥2 ch-sets)

Noise samples 24 hours per a channel

Table 3: Example domain-shift task configurations.
Domain Configuration Training data

Car/Train model B
Source Speed level 1, 3 1,500 normal
domain Mic. type Dynamic samples

Noise N1

Target Car/Train model D
domain 1: Speed level 1, 3 Four normal
Model and Mic. type Dynamic samples
parts shift Noise N1

Target Car/Train model B
domain 2: Speed level 2, 5 Four normal
Operating Mic. type Dynamic samples
speed shift Noise N1

Target Car/Train model B
domain 3: Speed level 1, 3 Four normal
Mic. and Mic. type Condenser samples
noise shift Noise N2

Target Car/Train model D
domain 4: Speed level 2, 5 Four normal
All of Mic. type Condenser samples
above Noise N2
Test data for each domain consists of 100 normal and 100
anomaly samples.

Further details of the ToyADMOS2 dataset are available at
https://github.com/nttcslab/ToyADMOS2-dataset.

4. SAMPLE DOMAIN-SHIFT TASK SETTINGS AND
BENCHMARK

To demonstrate how to use the ToyADMOS2 dataset, we designed
examples of task configurations for testing ASD systems under var-
ious domain-shift conditions. The domain-shift configurations are
listed in Table 3.

We assume a typical application scenario with a task setting
similar to that in [21]. A relatively large number of normal samples
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Table 4: Benchmark AUC results of DCASE 2020 Challenge Task 2 baseline under domain-shift conditions.
Toy car Toy train

Damage level Clean 6 dB 0 dB –6 dB Clean 6 dB 0 dB –6 dB

Source domain high 0.99 0.99 0.96 0.85 1.00 0.86 0.66 0.61
mid 0.99 0.95 0.94 0.80 0.98 0.66 0.57 0.56
low 1.00 0.96 0.95 0.80 0.83 0.57 0.59 0.49
avg. 0.99 0.97 0.95 0.82 0.94 0.70 0.61 0.55

Target domain 1: high 0.37 0.29 0.34 0.38 0.82 0.75 0.71 0.62
Model and parts shift mid 0.92 0.55 0.58 0.59 0.71 0.61 0.61 0.53

low 0.80 0.69 0.68 0.69 0.57 0.56 0.58 0.58
avg. 0.70 0.51 0.53 0.55 0.70 0.64 0.63 0.57

Target domain 2: high 0.77 0.78 0.83 0.76 0.71 0.65 0.62 0.57
Operating speed shift mid 0.61 0.63 0.65 0.66 0.65 0.61 0.51 0.52

low 0.64 0.72 0.67 0.69 0.52 0.52 0.48 0.44
avg. 0.68 0.71 0.71 0.70 0.63 0.59 0.54 0.51

Target domain 3: high 0.55 0.53 0.45 0.52 0.72 0.62 0.57 0.57
Mic. type and noise shift mid 0.39 0.55 0.47 0.48 0.66 0.55 0.54 0.52

low 0.45 0.57 0.56 0.52 0.65 0.52 0.52 0.52
avg. 0.46 0.55 0.49 0.50 0.68 0.56 0.54 0.54

Target domain 4: high 0.55 0.71 0.59 0.65 0.60 0.57 0.53 0.49
All above shifts mid 0.44 0.64 0.54 0.56 0.51 0.45 0.44 0.45

low 0.52 0.71 0.55 0.65 0.51 0.45 0.42 0.44
avg. 0.50 0.69 0.56 0.62 0.54 0.49 0.46 0.46

recorded in a source domain (e.g., 1,500 samples) are available as a
training dataset; however, a very limited number of normal samples
recorded in the target domains (four samples each) are given for
training. As shown in Table 3, there are four example domain-shift
configurations: Target domain 1, Model and parts shift; Target
domain 2, Operating speed shift; Target domain 3, Mic. type and
noise shift; and Target domain 4, A mixture of shifts 1 to 3.

For the source domain training dataset, 1,500 normal samples
of Toy-car model B and Toy-train model B were used. For Toy car,
normal sample data recorded with one dynamic microphone (ch 1)
were used. For Toy train, normal sample data recorded by dynamic
microphones (ch 1 to 4) were used. In these normal samples, op-
erating speeds were set to levels 1 and 3. For target domains 1 to
4, only four normal samples were given as training data for each
of the target domains. Environmental noises N1 and N2 recorded
using microphones at the same positions as for the normal samples
were used. SNRs calculated by

SNR = 20 log10

n 1
J

X
rms(Sj)

o
/rms(Nk), (1)

where Sj is a recorded machine-operating sound sample and Nk is
a recorded environmental noise sample with the same duration as
Sj , were set to +1 dB (clean), 6 dB, 0 dB, and –6 dB. After being
mixed with the noise, all sound samples were down-sampled at a
sampling rate of 16 kHz. Detailed conditions of each target domain
are shown in Table 3.

To simplify the evaluation system example, a baseline system of
DCASE 2020 Challenge Task 2 [13]—a simple unsupervised-ASD
one with an auto encoder as a normal model—was tested under the
task setting described above. All the training data—1,500 normal
samples of the source domain, and other normal samples from the
target domains (four samples each)— were merged to formulate a
training dataset that contains 1,516 normal samples. The baseline
system was trained for each SNR condition of Toy car and Toy train.

The trained baseline systems were tested using 200 unknown
test samples that were not used for training. We calculated anomaly
scores on each time frame for all the test WAV files as described

in [13]. Calculated area under curve (AUC) results are shown in Ta-
ble 4. The results in bold indicate that when the damage level was
higher, anomaly detection was easier for the source domain/clean
for Toy train. For Toy car, the AUC results were around 0.99 for
all the levels. Distribution of the anomaly scores for the source
domain/clean samples are shown in Fig. 4. The target domain re-
sults show that the DCASE baseline failed to distinguish normal
and anomaly data under domain-shifted conditions even with a high
damage level.
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Figure 4: Anomaly scores of source domain/clean samples.

5. CONCLUSION
This paper proposed a new large-scale dataset called “ToyAD-
MOS2” for ADMOS. The ToyADMOS2 dataset is designed for
evaluating systems under domain-shift conditions and is available
for free download. It consists of two sub-datasets for machine-
condition inspection: fault diagnosis of machines with geometri-
cally fixed tasks and fault diagnosis of machines with moving tasks.
Domain shifts are represented by introducing several differences in
operating conditions, such as the use of the same machine type but
with different machine models and parts configurations, operating
speeds, microphone arrangements, etc. Each sub-dataset contains
over 27 k samples of normal machine-operating sounds and over
8 k samples of anomalous sounds recorded at a 48-kHz sampling
rate. A subset of the ToyADMOS2 dataset was used in the DCASE
2021 Challenge Task 2: Unsupervised anomalous sound detection
for machine condition monitoring under domain-shifted conditions.
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ABSTRACT 

Audio captioning is a multi-modal task, focusing on generating a 
natural sentence to describe the content in an audio clip. This pa-
per proposes a solution of automated audio captioning based on 
weakly supervised pre-training and word selection methods. Our 
solution focuses on solving two problems in automated audio cap-
tioning: data insufficiency and word selection indeterminacy. As 
the amount of training data is limited, we collect large-scale 
weakly labeled dataset from Web with heuristic methods. Then 
we pre-train the encoder-decoder models with this dataset fol-
lowed by fine-tuning on the Clotho dataset. To solve the word se-
lection indeterminacy problem, we use keywords extracted from 
captions of similar audios and audio tags produced by pre-trained 
audio tagging models to guide caption generation. The proposed 
system achieves the best SPIDEr score of 0.310 in the DCASE 
2021 Challenge Task 6. 

Index Terms— Audio captioning, encoder-decoder model-
ing, weakly supervised pre-training, audio similarity, audio tag 

1. INTRODUCTION 

The automated audio captioning (AAC) problem is defined as an 
intermodal translation task of automatically generating a textual 
description for an input audio signal [1]. This task needs infor-
mation including identification of sound events, acoustic scenes, 
spatiotemporal relationships of sources, foreground versus back-
ground discrimination, concepts, and physical properties of ob-
jects and environment [2]. Audio captioning needs to extract the 
feature representation of audio space and map it to natural lan-
guage space. Therefore, most of the previous works adopt en-
coder-decoder framework [3-6]. Our solution focuses on solving 
two problems in automated audio captioning: data insufficiency 
and word selection indeterminacy. 

As the amount of training data in the audio captioning task is 
limited, training a well generalized end-to-end model is difficult. 
It is well-established that pre-training on large datasets followed 
by fine-tuning on target datasets boosts performance [7]. We use 

heuristic methods to collect a weakly labeled dataset for pretrain-
ing, which contains 65667 audios and corresponding captions. In 
addition, our system uses PANN’s [8] architecture as an encoder, 
which is trained on the large-scale AudioSet [9] dataset.  

In AAC task, one acoustic event/scene in an audio can be de-
scribed with different words, leading to a combinatorial explosion 
of possible captions [3]. This word selection indeterminacy prob-
lem may lead to difficulty in training. We try two methods to tackle 
this problem. Firstly, considering that similar audios may have 
similar captions, we train a model to calculate the similarity be-
tween audios and use keywords extracted from the captions of sim-
ilar audios to assist decoding. Secondly, we try to use audio tag 
information to assist decoding. 

The contributions of this work are in the following aspects. 
Firstly, we propose a method to use pretrained PANN models as 
encoder and to pretrain the whole model on a large weakly labeled 
dataset. Secondly, to relieve the word selection indeterminacy, we 
introduce audio tags and caption keywords in the decoding stage. 
Thirdly, ablation studies are conducted to confirm the effective-
ness of different strategies in the proposed approach. 

The paper is organized as follows: Section 2 describes the pro-
posed method for DCASE 2021 audio captioning challenge. Sec-
tion 3 introduces the ablation study experiment setup. The experi-
mental results are presented in Section 4. Section 5 concludes this 
work.  

2. SYSTEM DESCRIPTION 

This section describes our methods. Please refer to our technical 
report for more details [10]. 

2.1. Data augmentation 

Perturb audio data In the Clotho dataset, each audio has five 
captions. Using audio augmentation methods such as speed per-
turbation [11] and reverberation [12], we perform a 5-fold aug-
mentation of the Clotho dataset. 

  

 
 These authors contributed equally to this work. 
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Figure 1: The overview diagram of the proposed method. The Expend data includes AudioCaps and weakly labeled dataset. 

AudioCaps dataset We also add AudioCaps [13] for training, 
which is a large-scale dataset of about 51K audio clips to human-
written text pairs collected via crowdsourcing on the AudioSet 
dataset.  
Weakly labeled dataset We collect audios and corresponding de-
scriptions from the Freesound 1 , Zapsplat 2 , Soundbible 3  and 
SoundJay4 website. Audios that are shorter than 5 seconds are re-
moved. And for those longer than 30 seconds, we randomly select 
15 to 30 seconds of clips from the audio. We use heuristic rules to 
filter and clean captions [10]. As a result, we collected 65667 au-
dios with captions from the four websites. 

2.2. Pretrain encoder 

PANNs are models pre-trained on raw AudioSet recordings with 
different structures. Several PANN systems outperform previous 
state-of-the-art audio tagging systems and can be transferred to 
other audio comprehension tasks. Three different networks in 
PANNs are selected as encoders, namely CNN14, Resnet38 and 
Wavegram-Logmel CNN5. 

2.3. Similar audio searching 

As mentioned above, similar audios may have similar descriptions. 
For an audio without captions, we can get relevant keywords from 
the captions of its similar audios, which can help to generate better 
caption. 

Inspired by text similarity calculation methods such as ESIM 
[14], we design a model to calculate the similarity between audios. 
We use CNN146 as audio encoder and get the 2048-dimension fea-
ture sequence. Then, we treat each audio feature sequence as the 
word embedding sequence and similarity between two audios is 
calculated with the ESIM network. 

 
1 https://freesound.org 
2 https://www.zapsplat.com/ 
3 https://soundbible.com/ 
4 https://www.soundjay.com/ 

For training, we use SPIDEr score between captions of two au-
dios as their ground truth similarity. We train this model with tri-
plet dynamic margin loss. Given an anchor audio a, its similar 
audio p, and unsimilar audio n, the loss calculation is defined as 
follows: 

𝐿𝑜𝑠𝑠(𝑎, 𝑝, 𝑛) = max(0,𝑚(𝑎, 𝑝, 𝑛) + 𝑠(𝑎, 𝑝) − 𝑠(𝑎, 𝑛)) (1) 
where 𝑠(. ) is the similarity as mentioned above, and 𝑚(. ) is the 
margin function. The margins for each pair of (a, p, n) are differ-
ent. We calculate the margins by the SPIDEr scores between cap-
tions of audios: 

𝑚(𝑎, 𝑝, 𝑛) = max(0.4, 𝑆𝑃𝐼𝐷𝐸𝑟(𝑎, 𝑝) − 𝑆𝑃𝐼𝐷𝐸𝑟(𝑎, 𝑛)) (2) 

2.4. Decoder 

As in [4], we use transformer networks as decoder.  
Tag enhanced decoder In order to reduce the search space, we 
utilize audio tag information by adding it to the beginning of the 
output sequence. The tags we use is based on AudioSet Ontology7. 
To avoid the problem of sparse data, we merge fine-grained tags 
with the help of the structural features of the ontology and get 13 
tags, named Self-Tag-13. CNN14 is used to get the Self-Tag-13 
tags of audios in training set and test set. During the training pro-
cess, the decoder needs to predict the tag of audio before generat-
ing caption. In the test phase, the decoder generates caption given 
the corresponding tag of test audio. 
Keyword enhanced decoder We extract keywords from captions 
of similar audios. Specifically, we select 50 captions of the top 10 
most similar audios for the target audio, use NLTK8 to perform 
stemming, and extract the top 10 keyword stems according to the 
TF-IDF weight. In the decoding stage, a fixed boost score is added 
to log likelihood for all word forms of the keywords. The boost 
score is set to 0.5. 

5https://zenodo.org/record/3987831#.YMhofqgzaUk 
6 https://github.com/qiuqiangkong/audioset_tagging_cnn 
7 http://research.google.com/audioset/ontology/index.html 
8 https://www.nltk.org/ 
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Table 1: Ablation study. PE: Pre-trained encoder. KD: Keyword enhanced decoder. TD: Tag enhanced decoder. PD: Perturbed audio 
data. AD: AudioCaps dataset. WD: Weak label dataset. 

Model BLUE1 BLUE2 BLUE3 BLUE4 METEOR ROUGE-L CIDEr SPICE SPIDEr 
Baseline 0.521 0.328 0.216 0.139 0.153 0.353 0.326 0.102 0.2142 
PE 0.541 0.348 0.228 0.149 0.162 0.362 0.386 0.112 0.2490 
PE+KD 0.552 0.360 0.240 0.156 0.167 0.372 0.409 0.119 0.2641 
PE+TD 0.537 0.341 0.225 0.148 0.163 0.359 0.371 0.114 0.2427 
PE+PD 0.550 0.353 0.232 0.149 0.164 0.366 0.385 0.118 0.2514 
PE+PD+AD 0.554 0.356 0.235 0.153 0.167 0.364 0.405 0.117 0.2609 
PE+PD+AD+WD 0.578 0.381 0.258 0.171 0.176 0.384 0.444 0.123 0.2837 
PE+PD+AD+WD+KD 0.583 0.391 0.267 0.177 0.179 0.388 0.456 0.128 0.2920 

 
Table 2: Experimental results on the evaluation split of Clotho dataset. 

Model BLUE1 BLUE2 BLUE3 BLUE4 METEOR ROUGE-L CIDEr SPICE SPIDEr 
Model 1: CNN14 0.583 0.388 0.265 0.178 0.179 0.385 0.473 0.128 0.300 
Model 2: Resnet38 0.593 0.400 0.274 0.184 0.183 0.392 0.482 0.133 0.308 
Model 3: Resnet38 + TD 0.581 0.386 0.261 0.173 0.178 0.384 0.456 0.131 0.294 
Model 4: Wavegram-Logmel CNN 0.585 0.392 0.269 0.182 0.177 0.389 0.474 0.130 0.302 
Ensemble 1 2 4 0.600 0.409 0.283 0.192 0.184 0.398 0.497 0.135 0.316 
Ensemble 1 2 3 4 0.603 0.414 0.286 0.195 0.186 0.400 0.499 0.137 0.318 
 

3. EXPERIMENTS 

3.1. Dataset 

The Clotho [2] v2 dataset consists of audio clips from the 
Freesound platform [15] with captions annotated via crowdsourc-
ing [16]. The Clotho v2 dataset is divided into a development split 
of 3839 audio clips, a validation split of 1045 audio clips, an eval-
uation split of 1045 audio clips, and a test split of 1043 audio clips. 

We used the development split of Clotho, AudioCaps and 
weakly labeled dataset for training, the evaluation split for testing. 
The validation split is selected as the validation data.  

3.2. Data pre-processing 

All audio clips are down-sampled to 32kHz. The configuration of 
audio feature extraction is the same as that of PANNs[8]. We use 
words in the development-training split of Clotho as vocabulary. 
Words out of vocabulary are represented by <UNK>. <SOS> and 
<EOS> are also employed as the start-of-sequence and end-of-se-
quence tokens, respectively. 

3.3. Training detail 

Training method As is shown in Figure 1, the whole training pro-
cess is divided into three stages. In the pre-training stage, the pa-
rameters of encoder are frozen and only the decoder is trained. In 
the training stage, the encoder parameters are unfrozen and trained 
together with the decoder. In the experiment where AudioCaps and 
weakly labeled dataset are included, the finetuning stage is used to 
finetune the model only with the Clotho dataset. 
Model settings We use CNN14 as an encoder for ablation study, 
which consists of 6 convolutional blocks and each convolutional 
block consists of 2 convolutional layers with a kernel size of 3×3. 

In addition to CNN14, Resnet38 and Wavegram-Logmel CNN are 
used as encoder in our submissions. Resnet38 consists of 16 basic 
blocks in the Resnet [17], where each block consists of two con-
volutional layers with a kernel size of 3×3, and a shortcut connec-
tion between input and output. Wavegram-Logmel-CNN uses 
CNN14 as a backbone and uses a trainable 1D-Conv based 
frontend to extract features from time-domain waveforms. We use 
a 2-layer Transformer [18] with a hidden dimension of 256 and 4 
heads as decoder.  

To improve performance and avoid over-fitting, Label smooth-
ing [19] and SpecAugment [20] are applied during training. The 
configuration of SpecAugment is the same as that of PANN. The 
learning rate is 3e-4, 1e-4 and 5e-5 for the three training stages 
separately. In the inference stage, a beam search with beam size 3 
is implemented to achieve better decoding performance. 

3.4. Evaluation metrics 

A total of eight objective metrics are utilized to evaluate our model 
generated captions. Among the metrics used, BLEU@1-4 [21] 
measures a modified n-gram precision. METEOR [22] measures a 
harmonic mean of precision and recall of segments of the captions 
between the predicted and the target. ROUGEL [23] measures F-
score based on the longest common subsequence. CIDEr [24] 
measures a weighted cosine similarity of n-grams. SPICE [25] 
compares semantic propositions extracted from caption and refer-
ence. SPIDEr [26] is the arithmetic mean between the SPICE score 
and the CIDEr score. 

4. RESULTS 

4.1. Ablation study 

To verify the effectiveness of the tricks and components in the pro-
posed model, several ablation experiments are conducted. 
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The experiment results are shown in Tab.1. Baseline is the 
model training from scratch with the Clotho dataset.  

As shown in Table 1, most of the tricks and components can 
improve the final SPIDEr score. First of all, the benefits of data 
augmentation are significant. Both the AudioCaps dataset and the 
weakly labeled dataset collected from the Internet can improve the 
final performance. And the collected weakly labeled dataset can 
bring more benefit than the AudioCaps dataset. The reason may be 
that the weakly labeled dataset is collected from websites similar 
to Freesound, which matches the data distribution of Clotho da-
taset more closely. 

Secondly, adding a pre-trained encoder can significantly im-
prove SPIDEr scores, which shows that the pre-trained PANN can 
extract more effective features from the audio. Thirdly, perturbing 
audio data slightly improves the spider score. 

Finally, the keyword enhanced decoder can assist the generation 
of captions. Compared to experiments without keyword enhanced 
decoder, both experiments with this component get great improve-
ment on all evaluation metrics. This indicates that similar audio 
captions contain valuable information for AAC task. 

Note that compared to using PE only, by adding the tag en-
hanced decoder, the SPIDEr score drops a little bit. We thought 
this decline was due to the tag prediction errors produced by pre-
trained PANN model. 

4.2. Submitted systems 

In Table 2, we present the relevant results of our submission 2, 
which is our best submission in the DCASE Challenge. To tackle 
the problem of insufficient data, validation data is added to the 
train dataset.  

Three different model architectures of PANN are trained using 
the best strategy combination (PE+PD+AD+WD) obtained from 
ablation research. At the same time, we also try to add tag en-
hanced decoder to the Resnet architecture for training. Finally, 
model ensemble is performed by adding the predicted scores of 
multiple models. We first ensemble three different snapshots un-
der the same model architecture and then we try two ensemble 
strategies, ensemble of three different architecture models and en-
semble of all four architecture models. 

Experiments show that Resnet achieves the highest spider score, 
and Resnet38 with tag enhanced decoder has the lowest score. 
Model ensemble can significantly improve SPIDEr scores. Alt-
hough the SPIDEr score of the model with tag enhanced decoder 
declines, it improves the final result after the model ensemble. 

4.3. Case study 

We choose two cases from evaluation split of Clotho to show 
the impact of keyword enhanced decoder and tag enhanced de-
coder on captions generation. For each case, 2 representative ref-
erence captions are listed. 

Table 3 shows the impact of keyword enhanced decoding. We 
can see that keyword enhanced decoding can make the caption 
more specific and closer to the caption written manually. The dif-
ferent forms of the ten keyword stems extracted from similar au-
dio captions in the vocabulary is shown in the bottom of Table 3. 
Most of the keywords are in line with the content of the audio, 
which can help to generate captions more precisely. 

 

Table 3: The case for Chopping pieces of mushrooms vigor-
ously.wav. 

Name Caption 
Ref 1 Vegetables are cut and chopped on a cutting 

board by someone. 
Ref 2 A person cutting and chopping vegetables on a 

cutting board. 
w/o KD chopping vegetables with a knife. 
KD chopping vegetables on a cutting board with a 

knife. 
keyword knives/knife chopping/chopped/chop/chops veg-

etable/vegetables woods/wood cutting/cuts/cut 
saw/saws/sawed/sawing/ boards/board wooden 
food slices/sliced/slicing 

 
Table 4: The case for SamyeLing_Pheasant121102.wav. 

Name Caption 
Ref 1 A bird caws at regular intervals while smaller 

birds chirp in the background. 
Ref 2 A bird making a call and another bird that is 

chirping. 
w/o TD a person uses a tool to each other. 
TD a bird is chirping and then another bird is chirp-

ing in the background. 
Tag TGA_animal 

 
Table 4 shows an example of the advantage of the tag enhanced 
decoder. Guided by the tag, i.e., TGA_animal, captions about 
birds can be generated. Without this strategy, the generated cap-
tions are far from the reference captions. This case indicates that 
when the tag is accurate, the tag enhanced decoder can keep the 
generated caption within a reasonable space. 

5. CONCLUSIONS 

In this paper, we present a solution of automated audio captioning 
based on weakly supervised pre-training and word selection meth-
ods, and conducted a detailed ablation study to clarify which ele-
ment is effective. From the results, pretrained encoder, keyword 
enhanced decoder and data augmentation are effective in improv-
ing the accuracy of AAC task. In particular, we propose a set of 
heuristic methods for collecting weakly-labeled data sets. This 
method can effectively alleviate the problem of insufficient data. 
We also verified that the captions of similar audio are valuable for 
the AAC task. In future work, we will explore the promotion of 
larger-scale data pre-training for AAC tasks, and try other effec-
tive methods to integrate similar audio captions information into 
AAC tasks. 
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ABSTRACT

We present our submission to the DCASE2021 Challenge Task 2,
which aims to promote research in anomalous sound detection. We
found that blending the predictions of various anomaly detectors,
rather than relying on well-known domain adaptation techniques
alone, gave us the best performance under domain shifted condi-
tions. Our submission is composed of two self-supervised classifier
models, a probabilistic model we call NF-CDEE, and an ensemble
of the three – the latter obtained the top rank in the DCASE2021
Challenge Task 2.

Index Terms— DCASE, anomaly detection, domain shift, ma-
chine condition monitoring, machine health monitoring.

1. INTRODUCTION

The DCASE2021 Challenge Task 2 is concerned with identifying
anomalous behavior from a target machine using sound recordings
[1]. A major difference between this task and other DCASE tasks
is that it is not supervised. Accordingly, the available training data
only contains samples from the normal-state distributions. A further
complication added to this challenge is that the acoustic character-
istics of the training data and of the test data are different – this
condition is known as domain shift and there are some known re-
sults for reducing the performance gap between the training and test
data [2, 3, 4, 5, 6, 7, 8]. In our experiments, while we recognize the
potential of these techniques, we did not generally gain much from
using these methods alone.

In our submission, we used two self-supervised classifiers that
classified the section IDs similar to the approach several teams
followed in DCASE2020 [9, 10, 11, 12, 13]. For a third model,
we introduce a model that relies on several normalizing flows to
estimate the conditional density of input Mel spectrogram sec-
tions and use their combined outputs to produce an anomaly score
[14, 15, 16, 17, 18, 19, 20, 21, 22].

In the sequel we describe each model, how it was trained, its
hyperparameters, and their respective results. In order to put the
results into perspective, we include the scores for the baseline au-
toencoder and MobileNetV2 models on Tables 1 and 2, respectively.
The data used in this challenge is 16 KHz, single-channel, audio.
For more details, please see [1, 23, 24].

ToyCar ToyTrain fan gearbox pump slider valve
h-mean AUC 0.6249 0.6171 0.6324 0.6597 0.6192 0.6674 0.5341

h-mean pAUC 0.5236 0.5381 0.5338 0.5276 0.5441 0.5594 0.5054

Table 1: Baseline Autoencoder Scores

ToyCar ToyTrain fan gearbox pump slider valve
h-mean AUC 0.5604 0.5746 0.6156 0.6670 0.6189 0.5926 0.5651

h-mean pAUC 0.5637 0.5161 0.6302 0.5916 0.5737 0.5600 0.5264

Table 2: Baseline MobileNetV2 Scores

2. ARCHITECTURES

The first model described below builds on the work from [9]. In
particular, the encoder network has been updated to use 1D convo-
lutions rather than 2D. The input to this model is a spectrogram with
or without a Mel transformation. The second model builds on the
well-known WaveNet architecture [25] by adding an x-vector [26]
classification head after the dilated convolutions – in a sense, the
WaveNet functions as a time-series encoder for the x-vector compo-
nent. Both models mentioned above are trained to reduce the cross
entropy loss between predictions and the section IDs. The third
model differs from the first two models in that it is completely un-
supervised and attempts to learn several distributions of some Mel
spectrogram bins conditioned on the remaining bins. We also de-
scribe a fourth model, a 1D convolutional autoencoder, which we
did not include in our submission but we believe may be of inter-
est to the community. We call these approaches complementary
because of the different input modalities and learning approaches.
The last system described is an ensemble of the first three models
described above.

All our development was done using PyTorch [27] and spectro-
grams were computed using nnAudio [28]. The third model addi-
tionally used the Pyro [29] probabilistic programming library.

2.1. XVector1D

A high-level view of the architecture of the first model is shown in
Figure 1. We denote additive margin softmax as AMS [30].

Audio Standardizer Encoder x-vector AMSnnAudio
Section IDs

Figure 1: XVector1D High-level Architectures

In Figure 1, we use the term “standardizer” as a preprocess-
ing step done before passing data to the rest of the network. In the
simplest case, it is a batch-norm layer with the learnable parame-
ters disabled. In this way, this batch-norm will perform the usual
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ToyCar ToyTrain fan gearbox pump slider valve
STFT MEL STFT MEL STFT STFT STFT

AutoDIAL batch-norm AutoDIAL AutoDIAL AutoDIAL AutoDIAL AutoDIAL
C(128,192) C(128,192) C(128,192) C(128,192) C(128,192) C(128,192) C(128,192)

5 x C(192,192) 5 x C(192,192) 5 x C(192,192) 4 x C(192,192) 5 x C(192,192) 5 x C(192,192) 5 x C(192,192)
C(192,90)

Table 3: Input And Encoder Parameters

frequency-wise normalization once the running statistics have con-
verged. However, in other cases, “standardizer” can mean an Au-
toDIAL layer which mixes the statistics from the source and target
domains for normalization [4]. In early experiments we evaluated
the more general domain adaptation technique from [6]; however,
we found the performance similar to AutoDIAL but, in our imple-
mentation, much more computationally expensive.

The encoder used in this model includes 1D convolutions with
kernel size 3 and leaky-relu activations. The number of layers varied
with machine type as shown on Table 3 – in this table and going
forward, we use “C” to mean a 1D convolution.

The x-vector component used here remains largely the same as
in [9] except the interface to the encoder was adapted (as expected)
to accept the 1D encoder output.

2.1.1. Preprocessing

This model did not use any special preprocessing or augmentation.
The logarithm was taken for both the STFT and the Mel spectro-
grams. All spectrograms were computed with frequency min and
max values set to 100 and 8000 Hertz, respectively. Mel spectro-
grams were computed using 128 bins.

2.1.2. Training & Results

The model was trained to predict the section ID meta-data parame-
ter using the cross entropy loss function. We found that the spectro-
gram parameters had a big effect on the performance. Parameters
like the number of input samples, the number of points used for the
FFT, the hop length can have a significant effect. We generally used
the AdamW optimizer with the default learning rate of 1⇥10�3 and
weight decay set to 1 ⇥ 10�4. However, we used ASGD with the
default learning rate (and no weight decay) for gearbox. Generally,
the training losses converge more slowly using ASGD but some-
times the slower trajectory spends more epochs close to an optimal
region with respect to AUC and this can yield better results1. Dur-
ing training, random contiguous audio clips were sampled and the
spectrograms were computed on the fly using nnAudio [28]. The
training was usually run for 300 epochs, using all the training data
from the development and evaluation datasets. Lastly, we computed
the average embedding, during training, using the embedding from
the layer prior to the final AMS classification layer. At test time,
the average embedding was used to compute the cosine and Maha-
lanobis distances to the test embedding which served as additional
options for anomaly scores. Table 4 shows the results, and, Table 5
shows the effect on performance when using AutoDIAL.

2.2. WaveNet-XVector

We explored the use of a WaveNet model processing the audio sam-
ples directly. For details on the architecture we refer the reader to

1We used the harmonic mean of AUC and pAUC harmonic means to
assign a single score to a model configuration. For gearbox, the experiment
using ASGD had an 8.89% greater score.

ToyCar ToyTrain fan gearbox pump slider valve
batch size 128 64 128 64 128 128 64

input samples 16384 16384 16384 98000 16384 16384 98000
no. Mels 2048 128 2048 128 2048 2048 2048
no. FFT 4096 1024 4096 1024 4096 4096 4096

hop 80 512 512 80 512 512 512
scoring cosine mahalanobis softmax mahalanobis softmax softmax softmax

h-mean AUC 0.6702 0.7193 0.7171 0.8342 0.7799 0.7871 0.9032
h-mean pAUC 0.6233 0.6772 0.7295 0.7443 0.6684 0.6728 0.7724

Table 4: XVector1D Scoring Results

ToyCar ToyTrain fan gearbox pump slider valve
AutoDIAL 2.79% -12.90% 4.49% 23.41% 2.24% 1.31% 0.46%

Table 5: Relative Change In XVector1D Score Using AutoDIAL

the original publication [25]. In the original paper the authors ex-
plain that the model can be readily adapted to classification tasks
and in their classification experiment they add a mean pooling layer
after the dilated convolutions followed by “a few non-causal con-
volutions”. The training proceeds with two loss terms: one for
predicting the next sample and the other is the classification loss.
We follow this procedure in that we use a mean pooling layer (with
kernel size 10) and train with the two loss functions but instead
of using a few convolutions, we use an x-vector component, with
AMS top layer, as with the XVector1D model. In this way, one can
consider this model a variant of the XVector1D model which uses
an audio-only encoder. For the WaveNet encoder, we used a single
block with 14 layers. Gearbox and pump used 64 channels for the
dilation, residual, and skip channels. The other machines used 32
channels. For valve we used an AutoDIAL standarizer, and the rest
used a batch-norm.

2.2.1. Preprocessing

For valve and ToyTrain we used the Teager-Kaiser energy operator
(TKEO) to preprocess the audio [31, 32, 33, 34]. The motivation
was that, because the valve noises are sparse and impulsive events,
the noise suppression provided by the Teager-Kaiser operator would
improve the signal-to-noise (SNR) ratio in the valve recordings. De-
spite improving the results for valve and ToyTrain, the improvement
was modest.

2.2.2. Training & Results

To train this model, we used the Adamax optimizer with the default
learning rate for 200 epochs in the same manner as XVector1D, with
16384 input samples. Table 6 shows the performance of this model
using softmax scoring. Table 7 shows the effects on performance
due to AutoDIAL and TKEO independently.

ToyCar ToyTrain fan gearbox pump slider valve
batch size 128 128 128 64 64 128 128

h-mean AUC 0.5843 0.6641 0.8122 0.7156 0.7543 0.7184 0.7297
h-mean pAUC 0.5629 0.5696 0.8025 0.5964 0.6506 0.6239 0.6206

Table 6: WaveNet-XVector Scoring Results

2.3. NF-CDEE

For our third system, we began by attempting to model the probabil-
ity density function of the Mel spectrograms of the machine sounds,
for a single machine, using normalizing flows. We used the Pyro
[29] probabilistic programming library to develop this model. We
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ToyCar ToyTrain fan gearbox pump slider valve
AutoDIAL -0.54% -0.11% -3.13% -2.62% -1.71% -2.22% 4.97%

TKEO -3.15% 7.69% -27.04% -5.98% -9.70% -14.08% 3.30%

Table 7: Relative Change On WaveNet-XVector Score Using Auto-
DIAL & TKEO

found that training a model to fit a distribution with the same di-
mensions as Mel bins to be somewhat unstable. In order to improve
the stability we instead estimated several conditional densities and
trained them in a single model, minimizing the sum of their negative
log-likelihoods. We consider this model an ensemble of conditional
density anomaly detectors. Hence, we call this model NF-CDEE,
because it uses normalizing flows and it is a conditional density es-
timator ensemble. Each conditional density estimator fits the distri-
bution of a n-bin segment of input spectrograms conditioned on the
remaining bins. This reduces the instability due to dimensionality.
The parameter n and the amount of overlap are tunable by the user.
For this work, we chose n = 32 with no overlap. Each normaliz-
ing flow uses a single conditional spline with 16 count-bins and the
default hidden layer dimensions – these are also tunable but in our
experiments they did not significantly affect the performance.

To summarize, each estimator outputs the probability
p(sA|sAc) where s is a vector of dimension equal to the number
of Mel bins m that is indexed by the set I = {1, . . . ,m}. A is an
n-element subset of I, and Ac is its complement I �A. We define
the likelihood of the normal state as:

p(normal) =
Y

i

p(sAi |sAc
i
) (1)

where i 2 [1, . . . , k] and k is a positive integer provided by the
user – it is the number of estimators in the ensemble. Here, we used
A1 = {1, . . . , 32}, A2 = {33, . . . , 64}, and so forth. To train the
model, we minimize the negative logarithm of p(normal). There-
fore, the output of NF-CDEE is the sum of the individual negative
log-likelihoods.

2.3.1. Training & Results

To train this model we converted the input audio to 256-bin Mel
spectrograms, computed using 8192-point FFTs with hop-length
512, and applied frequency-wise normalization before passing to
the conditional density estimators. Unlike the self-supervised mod-
els, the spectrograms were pre-computed and spectrogram windows
were passed to the network in the same manner as [35]. Each model
was trained with all the sections of the development (or evaluation)
training data, per machine type – except for fan for which we trained
a model for each section. To further reduce training instability,
caused by the normalizing flow determinant computation, we take
the mean across the time dimension. This last step was important
for stabilizing the training of the ensemble. As previously stated the
loss function used was the sum of the negative log-likelihoods and
this also served as the anomaly score. Figure 2 shows the inference
process.

For the optimizer, we used the same optimizer as the XVec-
tor1D, with gradient clipping. In our experiments this model gener-
ally needs to train for about 50 epochs. Table 8 shows the results,
sampling 192 spectrogram frames in batches of 32.

Spectrograms

Mean 
Operation

+

log-likelihood log-likelihoodlog-likelihood

Standardizer

-loss

Figure 2: NF-CDEE Inference

ToyCar ToyTrain fan gearbox pump slider valve
h-mean AUC 0.8657 0.7797 0.7866 0.8081 0.6993 0.7483 0.6130

h-mean pAUC 0.7831 0.6031 0.6024 0.6513 0.5655 0.6054 0.5275

Table 8: NF-CDEE Scoring Results

2.4. 1D CNN Autoencoder

The model described here is a 1D convolutional autoencoder that
reconstructs (Mel) spectrograms. We excluded this model for sev-
eral reasons including that, like NF-CDEE, its performance was
strongest for ToyCar but NF-CDEE was also strong for other ma-
chines. Additionally, WaveNet-XVector offered stronger fan perfor-
mance than either XVector1D or NF-CDEE and resulted in a better
ensemble when including three models.

The architecture of this model is shown in Table 9. The bot-
tleneck for this autoencoder was inspired by [36] in that the time
dimension was mostly preserved2. In our post-DCASE2020 analy-
ses, we found that preserving the time dimension to be a key factor
for the success of the autoencoder in [36]. Additionally, we found
the scoring methods in [36] to be effective at improving AUC per-
formance in (spectrogram) autoencoders. For example, the scoring
methods in [36] can improve the results from [35]. Table 9 shows
the architecture of this model, which uses leaky-relu activations,
kernel size 3, and a batch-norm standardizer.

2In [36] the time dimension was not reduced at all because causal con-
volutions were used.

ToyCar ToyTrain fan gearbox pump slider valve
C(128,256) C(128,192) C(128,256) C(128,256) C(128,192) C(128,192) C(128,192)

3 x C(256,256) 4 x C(192,192) 2 x C(256,256) 5 x C(256,256) 3 x C(192,192) 5 x C(192,192) 3 x C(192,192)
C(256,20) C(192,30) C(256,10) C(256,30) C(192,90) C(192,90) C(192,90)
C(20,256) C(30,192) C(10,256) C(30,256) C(90,192) C(90,192) C(90,192)

3 x C(256,256) 4 x C(192,192) 2 x C(256,256) 5 x C(256,256) 3 x C(192,192) 5 x C(192,192) 3 x C(192,192)
C(256, 128) C(192, 128) C(256, 128) C(256, 128)) C(192, 128) C(192, 128) C(192, 128)

Table 9: 1D CNN Autoencoder

13



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

2.4.1. Training & Results

The training for this model followed the same approach as NF-
CDEE, using spectrogram windows as in [35]. The loss function
used was mean absolute error (MAE). However, for gearbox, fan,
and ToyCar we attached an x-vector classifier head to the bottleneck
layer and additionally included a cross-entropy loss term for the
meta-data. Moreover, for gearbox, fan, and ToyCar we employed a
special weighting scheme during training and at test time.

The intuition behind the weighting is that if one knew the SNR
of a frequency bin, one could weigh the reconstruction loss us-
ing this information, giving greater importance to bins with greater
SNR. Estimating the SNR is not straightforward, so we used the
frequency bin variance in its place. The weight vector w is pre-
computed with elements given by wf = 1

�2
f

, where �2
f denotes the

variance of the f th Mel bin3, using the training data for each domain
and each section.

Table 10 shows the results sampling 192 frames, from 128-bin
Mel spectrograms, in batches of 64. The spectrogram hop length
was set to 512. The E1 and E2 scoring methods referenced in Table
10 come from [36] and are repeated here for the reader’s conve-
nience.

E1(X, X̂) =
1

FT

FX

f=1

"
TX

t=1

⇣
Xf,t � X̂f,t

⌘#2

(2)

and

E2(X, X̂) =
1

FT

FX

f=1

�����

TX

t=1

⇣
Xf,t � X̂f,t

⌘����� (3)

where X 2 RF⇥T and X̂ 2 RF⇥T are the true and reconstructed
spectrograms. F and T are natural numbers that denote the fre-
quency and time dimensions, respectively.

ToyCar ToyTrain fan gearbox pump slider valve
scoring E2 MAE E1 E1 E1 E2 E2
no. FFT 8192 2048 8192 4096 2048 8192 4096

h-mean AUC 0.8663 0.7180 0.7265 0.7287 0.6981 0.7022 0.6117
h-mean pAUC 0.7502 0.6023 0.5738 0.5992 0.5951 0.5782 0.5230

Table 10: 1D CNN Autoencoder Scoring Results

2.5. Ensemble

For the last system we combined the first three models (described
in Sections 2.1, 2.2, and 2.3) by first standardizing the training data
scores and then searching over a grid of convex combinations, sim-
ilar to [37].

We could have included the autoencoder, for example, by en-
sembling separately with each system but we did not have time
to explore this or other ensembling alternatives. As it stands, this
model influenced the development of XVector1D, particularly its
encoder, and the selection of hyperparameters for NF-CDEE. Table
11 shows the results of the ensemble of the first three models.

3The weight vector was also scaled to have a max element of 1.

ToyCar ToyTrain fan gearbox pump slider valve
WaveNet weight 0.03 0.03 1 0.04 0.32 0.02 0

XVector1D weight 0.06 0.55 0 0.61 0.68 0.52 1
NF-CDEE weight 0.91 0.42 0 0.35 0 0.46 0

h-mean AUC 0.8745 0.7756 0.8122 0.8613 0.7958 0.8287 0.9032
h-mean pAUC 0.7837 0.7048 0.8025 0.7635 0.6790 0.6925 0.7724

Table 11: Ensemble Scoring Results

3. CONCLUSIONS

We have outlined our submission to the DCASE2021 Challenge
Task 2, which featured a domain shift between the training and test
distributions. We found it concerning that domain adaptation meth-
ods that seem to do well for other modalities, especially vision, do
not seem to work as well for audio (at least in our implementa-
tions). This discrepancy gives the DCASE2021 Challenge a greater
relevance, because it highlights the need for the audio community
to generate more effective domain adaptation methods for audio.

As the XVector1D, WaveNet-XVector, and NF-CDEE models
(respectively) ranked 11, 52, and 31, it is clear that the three were
indeed complementary and that ensembling is a good option for im-
proving results under domain shifted testing conditions. We do not
find the lower individual ranks too concerning because the scores
are for single models, as opposed to ensembles, and because the
rankings do not fully reflect the performance on individual machine
categories.

Of the models we investigated, we find NF-CDEE to be partic-
ularly promising because it performed well and is unsupervised. In
real-world settings it is not always practical to leverage meta-data,
even when it is possible to do so. Moreover, we expect the ensem-
bling nature of the model to perform better under domain shifted
conditions. We plan to develop this model further going forward.
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“Autodial: Automatic domain alignment layers,” 2017.

[5] ——, “Just dial: Domain alignment layers for unsupervised
domain adaptation,” 2017.

[6] M. Mancini, L. Porzi, S. R. Bulò, B. Caputo, and E. Ricci,
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ABSTRACT

The use of multiple and semantically correlated sources can provide
complementary information to each other that may not be evident
when working with individual modalities on their own. In this con-
text, multi-modal models can help to produce more accurate and ro-
bust predictions in machine learning tasks where audio-visual data
is available. This paper presents a multi-modal model for automatic
scene classification that exploits simultaneously auditory and visual
information. The proposed approach makes use of two separate
networks which are respectively trained in isolation on audio and
visual data, so that each network specializes in a given modality.
The visual subnetwork is a pre-trained VGG16 model followed by
a bidiretional recurrent layer, whilst the residual audio subnetwork
is based on stacked squeeze-excitation convolutional blocks trained
from scratch. After training each subnetwork, the fusion of infor-
mation from the audio and visual streams is performed at two differ-
ent stages. The early fusion stage combines features resulting from
the last convolutional block of the respective subnetworks at differ-
ent time steps to feed a bidirectional recurrent structure. The late
fusion stage combines the output of the early fusion stage with the
independent predictions provided by the two subnetworks, resulting
in the final prediction. We evaluate the method using the recently
published TAU Audio-Visual Urban Scenes 2021, which contains
synchronized audio and video recordings from 12 European cities
in 10 different scene classes. The proposed model has been shown
to provide an excellent trade-off between prediction performance
(86.5%) and system complexity (15M parameters) in the evaluation
results of the DCASE 2021 Challenge.

Index Terms— Deep Learning, Multi-modal, Convolutional
Neural Networks, Scene Classification, Squeeze-Excitation, Gam-
matone, DCASE 2021

1. INTRODUCTION

The world as it is perceived by humans involves multiple modal-
ities. In general, a sensory modality is understood as a primary
channel of communication and sensation, such as vision, hearing or
touch. In this context, multi-modal machine learning aims at ex-
ploiting datasets including multiple such modalities, building mod-
els that can process and relate information among them [1]. The
explosion of deep learning and its use in vision, natural language
processing and acoustic analysis, makes of multi-modal machine
learning a multi-disciplinary area with increasing potential. Obvi-
ously, the most abundant multi-modal datasets are those made up of
audio-visual data, where the included examples come in the form of
videos that include both sound and images.

One important application scenario of multi-modal machine
learning is automatic scene classification on videos, which refers
to the task of classifying audiovisual data to one of the predefined
scene categories (such as airport, park or shopping mall) [2], based
on the ambient content provided by the information contributed by
both modalities. Note, however, that scene classification has also
been a topic of intensive research in the last decade by considering
different modalitites on their own [3, 4, 5].

This paper presents a multi-modal approach for scene classi-
fication consisting of two specialized components or modules (an
audio module and a visual module) that are further trained together
to achieve a more robust solution by incorporating two fusion strate-
gies simultaneously. The visual module is based on a VGG16 [6]
convolutional neural network (CNN) pre-trained on the places365

dataset [7, 8]. The training procedure of this component is based on
a transfer learning scheme with fine tuning. On the other hand, the
audio module is based on a fully convolutional neural network with
convolutional blocks implementing residual and squeeze-excitation
techniques [9] and gammatone filterbank audio representations as
input. Finally, the audio and video modules with frozen weights are
combined into a multimodal recurrent structure that performs infor-
mation fusion both at early and late stages. The early fusion stage
combines features resulting from the last convolutional block of the
audio and visual subnetworks at different time steps, while the late
fusion stage provides a final prediction by combining the output of
the early fusion stage with the independent predictions provided by
the visual and audio modules.

The model is evaluated by considering the TAU Audio-Visual
Urban Scenes 2021 dataset [10], which contains synchronized audio
and video recordings from 12 European cities in 10 different scenes
classes. For a complete assessment of the model, different input
pre-processing alternatives and architecture choices are considered
and discussed.

The rest of this paper is structured as follows. Section 2 de-
scribes in detail the architecture of the different sections making up
the whole learning system. Section 3 describes the experimental
set-up and evaluates the proposed system considering some vari-
ants with respect to the input and the system architecture. Section 4
compares our system with other Challenge submissions. Finally,
Section 5 concludes this work.

2. SYSTEM DESCRIPTION

This section describes the full architecture of the system, providing
details on the different modules making up the whole multi-modal
network. An schematic view of the full model is depicted in Fig. 1,
where the visual and audio flows are represented with different col-
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Figure 1: Proposed network achitecture for audiovisual scene classification.

ors.

2.1. Audio Module

2.1.1. Audio Input Representation

Based on previous works by the authors [11, 12], the input to the
network consists is a multi-channel 3D audio representation compil-
ing information from the left and right input audio channels as well
as their difference. Each channel is converted into a time-frequency
domain representation, provided by a Gammatone or a Mel-scale
filter bank. Both alternatives have been widely adopted by the ma-
chine listening community [13, 14, 15, 16] and we evaluate both
options in the experimental section of this paper.

All the considered representations are computed using 64 fre-
quency bands, with a window size of 40 ms and 50% overlap. The
audio was resampled from 48 kHz to 44.1 kHz. Gammatone repre-
sentations were computed by using the Auditory Toolbox presented
in [17] with Python implementation and Mel-spectrograms were
obtained by using the LibRosa library [18]. Taking the above de-
tails into account, one second of audio results in a tensor input of
size (64, 50, 3), where the third axis corresponds to the left-right-
difference channels.

2.1.2. Audio Subnetwork

The audio module is based on a fully convolutional neural network
combining residual connections with squeeze-excitation. More
specifically, the convolutional blocks follow the structure of those
denoted as Conv-StandardPOST in [9] (see Fig. 2), which showed
very good performance for acoustic scene classification tasks. The
aim of these blocks is to achieve improved accuracy by recalibrating
the internal feature maps using residual [19] and squeeze-excitation
techniques [20, 21]. An important feature is the use of the scSE
(spatial and channel Squeeze and Excitation) module, which per-
forms a spatial and channel-wise recalibration of the block feature
maps. The interested reader is referred to [9] for a full description
and evaluation of such blocks. All use a 3 ⇥ 3 kernel size, while
the number of filters in each block are specified in Fig. 1. In be-
tween convolutional blocks, Max Pooling layers are used to halve
the resolution of the resulting feature maps along the time axis. Ad-
ditionally, Dropout [22] with a rate of 0.3 is also included after
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Figure 2: Structure of the Conv-StandardPOST block [9]. BN and
ELU denote batch normalization and exponential linear unit acti-
vation, respectively. The N ⇥ N notation denotes a convolutional
layer with the corresponding kernel size. The input to the l-th block
is denoted as Xl.

the pooling layers to prevent overfitting. The output feature maps
from the last convolutional block are summarized with global av-
erage pooling into a 128-dimensional feature vector, which is fed
to a fully-connected layer with softmax activation for classification.
This subnetwork is trained from scratch using only audio data on
the whole dataset by minimizing the cross-entropy loss.

2.2. Visual Module

2.2.1. Visual Input Representation

The visual input is adapted to match the pre-trained VGG16 archi-
tecture [6], which accepts color images of size 224⇥224 pixels.
Moreover, as visual scene recognition does not require a very high
frame rate (images do not change that much from frame to frame),
the videos from the dataset are subsampled for obtaining a frame
rate of 5 frames per second (fps). Therefore, a one-second video
clip results in a tensor shape of (5, 224, 224, 3).

2.2.2. Visual Subnetwork

The visual module is based on the VGG16 CNN architecture [6]
pretrained on the places365 dataset [7]. With the aim of process-
ing temporal information extracted from multiple frames, a time-
distributed structure with frozen weights is considered. It must be
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emphasized that the pre-trained model is used as a feature extractor,
so that the top fully-connected layers of the network are omitted.
The outputs from each time step (5 temporal steps) are globally av-
eraged channel-wise, resulting in a sequence of 512 output features.
This sequence is fed to a bidirectional 64-neuron Gated Recurrent
Unit (GRU) layer and the returned sequences are processed by a
time-distributed fully-connected layer with softmax activation, re-
sulting in a predicted label for each time step. The final label is
taken as the temporal average of the predictions. This subnetwork
is trained on the visual data only, with trainable weights only on the
recurrent and final dense layer.

2.3. Full Audio-Visual Network

The complete audio and visual modules described above are then
merged into a full audio-visual framework that combines informa-
tion from both modalities at two different levels. On an early fusion
stage, the output of the last convolutional block of the audio and
visual modules are concatenated into a sequence of 640 features.
To achieve this, the feature maps of the audio module are turned
into a temporal sequence matching the temporal resolution of the
visual data (i.e. 5 fps) using global and average pooling operators.
A bidirectional GRU processes the sequence and a new prediction
is created by stacking a global average pooling and a dense layer.
A late fusion stage receives the predictions from the independent
modalities as well as the one resulting from their combination and
produces the final prediction with a dense layer with softmax acti-
vation.

Note that, as observed in Fig. 1, the full network can be used
to extract both predictions from the independent modalitites, i.e.
labels from the visual (yellow) and audio (green) information flows,
and from the fusion flows, i.e. early fusion (purple) and late fusion
(blue).

2.4. Dataset

The system is trained on the recently published TAU Urban Audio-
Visual Scenes 2021 [10]. This dataset contains fragments of record-
ings obtained in 12 large European cities corresponding to 10 scene
classes: airport, shopping mall (indoor), metro station (under-
ground), pedestrian street, public square, street (traffic), traveling
by tram, bus and metro (underground), and urban park. The data
was gathered with four devices recording simultaneously. The data
examples are provided as segments with a length of 10 seconds,
annotated by the corresponding scene class, city and recording lo-
cation identifier. The dataset contains 34 hours of recordings and it
specifies training/test partitions to facilitate comparisons. The train-
ing set contains approximately 70% of the data, while the validation
set contains the remaining 30%.

2.5. Training Details

The whole network was trained in three steps using the default train-
ing and validation partitions provided by the TAU Audio-Visual Ur-
ban Scenes 2021 dataset. The first step corresponds to the training
of the audio module from scratch using audio data only. The sec-
ond step trains the recurrent and classification parts of the visual
module (the convolutional blocks use frozen weights from the pre-
trained network). In the last step, the whole audio-visual network
is trained using frozen weights from the audio and visual modules.
A fine-tuning strategy is finally followed, unfreezing all the weights
and using a very small learning rate. The loss function used at each

training step was categorical cross-entropy. The optimizer used was
Adam [23] with default parameters. The models were trained with
a maximum of 200 epochs. Batch size was set to 32 for training
the independent subnetworks and 16 for the complete audio-visual
network due to memory constraints. The 10 second examples pro-
vided in the dataset were randomly trimmed into 1 second segments
in each epoch. The learning rate started with a maximum value of
0.001 decreasing with a factor of 0.5 in case of no improvement in
validation accuracy after 20 epochs. In the last fine-tuning with all
trainable weights, the starting learning rate was 10�5. The training
is considered as early finished in case of no improvement in valida-
tion accuracy after 50 epochs. Mixup data-augmentation [24] with
↵ = 0.4 was used. All the models were implemented using Keras
with Tensorflow backend and trained using NVidia Titan RTX GPU.

2.6. Model Complexity

Assuming that all the weights of the different subsystems are train-
able, the number of parameters corresponding to the different mod-
ules of the network are as follows: audio module (323k trainable
weights), visual module (14M parameters, only 105k trainable)
and full audio-visual system (15M parameters, only 272k train-
able). Note that, although the number of parameters used by the
visual module is considerably higher than that of the audio module,
the visual one uses frozen weights in all its convolutional blocks.
Thus, all subsystems can be trained considerably fast, as only 272k
weights are trainable. Additionally, the final fine-tuning step in
which all the weights are unfrozen only requires 2 epochs and,
therefore, it does not require too much extra training time.

3. EXPERIMENTS

This section evaluates the proposed multi-modal framework over
the default validation partition of the TAU Audio-Visual Urban
Scenes 2021 dataset. For those systems submitted to the DCASE
2021 Challenge, we also provide the performance reported by the
organizers over the evaluation/test dataset. Note that no custom test
partition was created in order to facilitate comparisons with other
competing systems using the same dataset. The performance of the
proposed system is analyzed considering three different aspects:

• Audio input representation: log-Mel spectrogram and gam-
matone filterbank.

• Independent modalities: audio-only and visual-only.

• Multi-modal fusion: early fusion and late fusion.

Table 1 shows the accuracy results obtained for the different
subsystems involved in the audio-visual framework on the default
validation set. Similarly, Table 2 shows the results obtained for
the evaluation partition used in DCASE 2021 Task1b. Compar-
isons to other competing approaches can be directly accessed via
the DCASE 2021 Challenge website1.

In general, the results clearly highlight that the visual-only
modality is much more accurate than the audio-only one (e.g.
87.0% vs 69.0% in the development validation partition). Although
it is true that the visual network departs from previous knowledge
provided by a pre-trained model, this confirms that, as of today,
acoustic scene recognition is a more challenging problem than vi-
sual scene recognition. Nonetheless, the audio module used in this

1http://dcase.community/challenge2021/
task-acoustic-scene-classification-results-b
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Modality
Audio-Only Visual-Only Multi-Modal (Early Fusion) Multi-Modal (Late Fusion)

log-Mel 68.4 87.0 88.5 88.7
Gammatone 69.0 87.0 89.2 90.0

Table 1: Accuracy results on the TAU Audio-Visual Urban Scenes 2021 validation partition.

Modality
Audio-Only (Gammatone) Visual-Only Multi-Modal (Late Fusion)

66.8 83.2 86.5

Table 2: Accuracy results on the DCASE 2021 Task1b evaluation set.

work was ranked as the best performing model from all the sub-
missions considering only the audio modality in terms of log-loss
performance. In addition, it is observed that although both audio
input representations, log-Mel and Gammatone spectrograms, led
to very similar performances, the results were slightly better with
the use of Gammatone filterbanks (69.0% vs 68.4% in the valida-
tion partition).

Despite the fact that the multi-modal models provide the best
performance, their accuracy is only slightly better than the best of
the individual modalities, which is particularly the visual one. In
any case, for our specific case and despite the significant perfor-
mance gap between the audio and video modalities, the multi-modal
approaches achieved a performance gain of approximately 3 per-
centage points. In this context, although both the early and late fu-
sion stages were able to exploit the information from the audio and
visual data, the late fusion stage performed consistently (slightly)
better in all our experiments.

In order to provide further insight, Fig. 3 shows the performance
achieved by each modality and their combination in the DCASE
2021 Task1b evaluation set on each class. Note that the audio mod-
ule only outperforms the visual one for the tram class and it can be
clearly observed for this case that multi-modality allows to exploit
significantly both types of information. Interestingly, although the
multi-modal system usually outperforms the individual modalities
alone, there are some classes at which this does not happen, as in
public square or metro.

4. CHALLENGE COMPARISON

The presented multi-modal framework ranked 7th in Task1b of the
DCASE 2021 Challenge. It is important to remark that only 7 teams
exceeded 85% accuracy. The team ranking 8th achieved an ac-
curacy of 74% [25], 12 percentage points lower than our system.
Moreover, our model presents a great performance-complexity bal-
ance. For example, the system ranking 6th [26] (with 88.4% accu-
racy) has 140M parameters, while ours has only 15M. All systems
above 90% accuracy have more than 40M parameters, with the most
complex one having 1B parameters [27]. Thus, the model presented
in this paper allows very good accuracy with moderate complexity.

5. CONCLUSION

This paper presented a multi-modal system for audio-visual scene
classification based on convolutional recurrent neural networks.
The full system is based on two individual modules that are trained
in isolation on the audio and visual modalities, respectively. The
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Figure 3: Class-wise performance in DCASE 2021 Task1b evalua-
tion set.

visual module is based on a time-distributed VGG16 model pre-
trained on the places365 dataset, followed by a bidirectional re-
current layer. The audio module is a convolutional neural net-
work that incorportes residual and squeeze-excitation techniques,
working over Gammatone input representations. After training both
modules, both are incorporated into a full audio-visual architecture
that performs information fusion at early and late stages. Early fu-
sion combines features extracted from both modalities at each time
step into a bidirectional recurrent layer. Late fusion decides a final
label after receiving the predictions obtained from each independent
modality and that resulting from early fusion. The results show that
the proposed framework is able to exploit successfully information
from both modalities, even though the visual modality is consider-
ably more accurate than the audio one. The results obtained in the
DCASE 2021 Challenge confirm that the proposed system provides
an excellent trade-off between prediction performance and system
complexity.
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ABSTRACT

It is a practical research topic how to deal with multi-device
audio inputs by a single acoustic scene classification system with
efficient design. In this work, we propose Residual Normaliza-
tion, a novel feature normalization method that uses frequency-
wise normalization with a shortcut path to discard unnecessary
device-specific information without losing useful information for
classification. Moreover, we introduce an efficient architecture, BC-
ResNet-ASC, a modified version of the baseline architecture with
a limited receptive field. BC-ResNet-ASC outperforms the baseline
architecture even though it contains the small number of parameters.
Through three model compression schemes: pruning, quantization,
and knowledge distillation, we can reduce model complexity fur-
ther while mitigating the performance degradation. The proposed
system achieves an average test accuracy of 76.3% in TAU Urban
Acoustic Scenes 2020 Mobile, development dataset with 315k pa-
rameters, and average test accuracy of 75.3% after compression to
61.0KB of non-zero parameters. The proposed method won the 1st
place in DCASE 2021 challenge, TASK1A.

Index Terms— acoustic scene classification, efficient neural
network, domain imbalance, residual normalization, model com-
pression

1. INTRODUCTION

Acoustic scene classification (ASC) is the task of classifying sound
scenes such as “airport”, “train station”, and “urban park” to which
a user belongs. ASC is an important research field that plays a key
role in various applications such as context-awareness and surveil-
lance [1, 2, 3]. Detection and Classification of Acoustic Scenes and
Events (DCASE) [4] is an annual challenge, attracting attention to
the field. There are various interesting tasks in the DCASE2021
challenge, and we aim for TASK1A: Low-Complexity Acoustic
Scene Classification with Multiple Devices [5, 6].

TASK1A classifies ten different audio scenes from 12 Euro-
pean cities using four real and 11 simulated devices. In this year,
the task becomes more challenging as an ASC model needs to solve
two problems simultaneously which practically exist in real appli-
cations; First, data is collected from multiple devices, and the num-
ber of samples per device is unbalanced. Therefore, the proposed
system needs to solve the domain imbalance problem while gener-
alizing to different devices. Second, TASK1A restricts the model
size and therefore requires an efficient network design.

† Qualcomm AI Research is an initiative of Qualcomm Technologies,
Inc.⇤Author completed the research in part during an internship at Qual-
comm Technologies, Inc.

In recent years, a number of researches have been proposed for
more efficient and high-performance ASC. Most of them are based
on convolutional neural network (CNN) using residual network and
ensemble [7, 8, 9, 10]. The top-performing models in the previous
TASK1A utilize multiple CNNs in a single model with parallel con-
nections [7, 9]. For the generalization of the model, [8, 11] show
that there is a regularization effect by adjusting the receptive field
size in CNN-based design. However, these works also use models of
several MB, and it is still challenging to satisfy the low model com-
plexity of TASK1A of this year. In addition, when using the previ-
ous methods, we found an accuracy drop of up to 20% on the unseen
devices compared to the device with sufficient training data. In this
work, we propose methods to leverage the generalization capabili-
ties of unseen devices while maintaining the model’s performance
in lightweight models. First, we introduce a network architecture for
ASC that utilizes broadcasted residual learning [12]. Based on this
architecture, we can achieve higher accuracy while reducing the size
by a third of the baseline [8]. Next, we propose a novel normaliza-
tion method, Residual Normalization (ResNorm), which can lever-
age the generalization performance for unseen devices. ResNorm
allows maintaining classification accuracy while minimizing the in-
fluence on different frequency responses of devices by performing
normalization of frequency bands in the residual path. Finally, we
describe model compression combined with pruning and quantiza-
tion to satisfy the model complexity of the task while maintaining
performance using knowledge distillation.

This work is an expanded version from the challenge technical
report submissions [13]. The rest of the paper is organized as fol-
lows. Section 2 describes the network architecture, Residual Nor-
malization, and model compression methods. Section 3 shows the
experimental results and analysis. Finally, we conclude the work in
Section 4.

2. PROPOSED METHOD

This session introduces an efficient model design for device-
imbalanced acoustic scene classification. First, we present a modi-
fied version of Broadcasting-residual network [12] for the acoustic
scene domain. Following, we propose Residual Normalization for
generalization in a device-imbalanced dataset. Finally, we describe
how to get a compressed version of the proposed system.

2.1. Network Architecture

To design a low-complexity network in terms of the number of
parameters, we use a Broadcasting-residual network (BC-ResNet)
[12] which uses 1D and 2D CNN features together for better effi-
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Table 1: BC-ResNet-ASC. Each row is a sequence of one or more
identical modules repeated n times with input shape of frequency
by time by channel and total time step T .

Input Operator n Channels

256⇥ T ⇥ 1 conv2d 5x5, stride 2 - 2c
128⇥ T/2⇥ 2c stage1: BC-ResBlock 2 c
128⇥ T/2⇥ c max-pool 2x2 - -
64⇥ T/4⇥ c stage2: BC-ResBlock 2 1.5c

64⇥ T/4⇥ 1.5c max-pool 2x2 - -
32⇥ T/8⇥ 1.5c stage3: BC-ResBlock 2 2c
32⇥ T/8⇥ 2c stage4: BC-ResBlock 3 2.5c
32⇥ T/8⇥ 2.5c conv2d 1x1 - num class

32⇥ T/8⇥ num class avgpool - -
1⇥ 1⇥ num class - - -

ciency. While the BC-ResNet targets human voice, we aim to clas-
sify the audio scenes. To adapt to the differences in input domains,
we make two modifications to the network, i.e., limit the receptive
field and use max-pool instead of dilation.

The proposed architecture, BC-ResNet-ASC, is shown in Ta-
ble 1. The model has 5x5 convolution on the front with a (2, 2)
stride for downsampling followed by BC-ResBlocks [12]. In [8],
they show that the size of the receptive field can regularize CNN-
based ASC models. We change the depth of the network and use
max-pool to control the size of the receptive field. With a total of 9
BC-ResBlocks and two max-pool layers, the receptive field size is
109x109. We also do the last 1x1 convolution before global average
pooling that the model classifies each receptive field separately and
ensembles them by averaging. Original BC-ResNets use dilation in
temporal dimension to obtain a larger receptive field while main-
taining temporal resolution across the network. We observe that
time resolution does not need to be fully kept in the audio scene
domain, and instead of dilation, we insert max-pool layers in the
middle of the network.

In this work, we use BC-ResNet-ASC-1 and BC-ResNet-ASC-
8 whose base numbers of channels c are 10 and 80, respectively,
in Table 1. Table 2 compares our BC-ResNet-ASC-8 with two
baselines: CP-ResNet [8] which is a residual network-based ASC
model with limited receptive field size; and original BC-ResNet-
8 with the number of Subspectral Normalization [14] groups of 4.
As shown in Table 2, BC-ResNet-ASC-8 records Top-1 test accu-
racy 69.5% with only one-third number of parameters compared to
CP-ResNet showing 67.8% accuracy. Moreover, BC-ResNet-ASC-
8 outperforms the original BC-ResNet-8 by a 1% margin with the
modifications.

2.2. Residual Normalization

Instance normalization (IN) [15] is a representative approach to re-
ducing unnecessary domain gaps for better domain generalization
[16] or domain style transfer [17, 18] in the image domain. While
domain difference can be captured by channel mean and variance in
the image domain, we observe that differences between audio de-
vices are revealed along frequency dimension as shown in Figure 1.
To get audio device generalized features, we use instance normal-
ization by frequency (FreqIN) as below.

FreqIN(x) =
x� µnfq
�2
nf + ✏

, (1)

Table 2: Network Architectures. Compare Top-1 test accuracy (%)
on TAU Urban AcousticScenes 2020 Mobile, development dataset.

Network Architecture #Param Top-1 Acc. (%)

CP-ResNet, c=64 899k 67.8
BC-ResNet-8, num SSN group = 4 317k 68.6 ± 0.4
BC-ResNet-ASC-8 315k 69.5 ± 0.3

Figure 1: 2D t-SNE [19] visualization of feature maps of BC-
ResNet-ASC-1 stage2 (without ResNorm). Top: Concatenation of
frequency-wise mean and standard deviations. Bottom: Concate-
nations of channel mean and standard deviations. The training sam-
ples are separated better by device ID (A to S3) with frequency-wise
statistics.

where,

µnf =
1

CT

CX

c=1

TX

t=1

xncft,

�2
nf =

1
CT

CX

c=1

TX

t=1

(xncft � µnf )
2. (2)

Here, µnf , �nf 2 RN⇥F are mean and standard deviation of the
input feature x 2 RN⇥C⇥F⇥T , where N , C, F , T denote batch
size, number of channel, frequency dimension, and time dimension
respectively. ✏ is a small number added to avoid division by zero.

Direct use of IN can result in loss of useful information for clas-
sification contained in domain information. To compensate for in-
formation loss due to FreqIN, we add an identity shortcut path mul-
tiplied by a hyperparameter �. We suggest a normalization method,
named Residual Normalization (ResNorm) which is

ResNorm(x) = � · x+ FreqIN(x). (3)

We apply ResNorm for input features and after the end of every
stage in Table 1. There are a total of five ResNorm modules in the
network.

2.3. Model Compression

To compress the proposed model, we utilize three model compres-
sion schemes: pruning, quantization, and knowledge distillation.
Pruning. The pruning method prunes unimportant weights or chan-
nels based on many criteria. In this work, we choose a magnitude-
based one-shot unstructured pruning scheme used in [20]. After
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Table 3: Residual Normalization. We demonstrate how residual normalization affects BC-ResNet-ASC on TAU Urban AcousticScenes 2020
Mobile, development dataset. We show mean and standard deviation of Top-1 test accuracy (%) (averaged over 3 seeds, * averaged over 6
seeds).

Method #Param A B C S1 S2 S3 S4 S5 S6 Overall

BC-ResNet-ASC-1 (Baseline) 8.1k 73.1 61.2 65.3 58.2 57.3 66.2 51.5 51.5 46.3 58.9 ± 0.8
BC-ResNet-ASC-1 + Global FreqNorm 8.1k 73.9 60.9 65.5 60.2 57.9 67.9 50.2 54.3 49.4 60.0 ± 0.9
BC-ResNet-ASC-1 + Fixed PCEN 8.1k 68.0 60.4 57.2 64.0 63.0 66.2 62.3 61.8 56.5 62.2 ± 0.8

BC-ResNet-ASC-1 + ResNorm 8.1k 76.4 65.1 68.3 66.0 62.2 69.7 63.0 63.0 58.3 *65.8 ± 0.7
w/o ResNorm in Network 8.1k 75.1 68.9 67.0 66.0 63.9 69.3 63.4 66.9 63.6 67.1 ± 0.8
w/o Shortcut 8.1k 68.2 62.1 58.6 64.2 65.3 66.3 65.1 63.8 61.3 63.9 ± 0.7

BC-ResNet-ASC-8 + ResNorm 315k 81.3 74.4 74.2 75.6 73.1 78.6 73.0 74.0 72.7 *75.2 ± 0.4
w/o ResNorm in Network 315k 80.8 73.7 73.0 74.0 72.9 77.8 73.3 72.1 71.0 74.3 ± 0.3
w/o Shortcut 315k 78.3 73.5 69.1 73.8 72.9 75.6 72.2 72.5 71.0 73.2 ± 0.3

training, we conduct unstructured pruning on all convolution layers
and do additional training to enhance the pruned model’s perfor-
mance.
Quantization. Quantization is the method to map continuous infi-
nite values to a smaller set of discrete finite values. We quantize all
of our models with quantization-aware training (QAT) with sym-
metric quantization [20]. We combine the pruning and quantization
methods. It means that we quantize the important weights which
are not pruned after the pruning process in the additional training
phase. We quantize all convolution layers as an 8-bit while utilize
the half-precision representation for other weights.
Knowledge Distillation. Knowledge Distillation (KD) trains the
lightweight model using the outputs of a pre-trained teacher net-
work. In general, previous model compression schemes such as
pruning and quantization decrease the performance by reducing the
model complexity. To enhance the performance of the compressed
model, we use a KD loss [21] using the pre-trained model as a
teacher network.

3. EXPERIMENTS

3.1. Experimental Setup

Datasets. We evaluate the proposed method on the TAU Urban
Acoustic Scenes 2020 Mobile, development dataset [6]. The dataset
consists of a total of 23,040 audio segment recordings from 12 Eu-
ropean cities in 10 different acoustic scenes using 3 real devices
(A, B, and C) and 6 simulated devices (S1-S6). The 10 acoustic
scenes contain “airport”, “shopping mall”, “metro station”, “pedes-
trian street”, “public square”, “street with traffic”, “park”, and trav-
elling by “tram”, “bus”, and “metro”. Audio segments from B and
C are recorded simultaneously with device A, but not perfectly syn-
chronized. Simulated devices S1-S6 generate data using randomly
selected audio segments from real device A. Each utterance is 10-
sec-long and the sampling rate is 48kHz. [6] divides the dataset into
training and test of 13,962 and 2,970 segments, respectively. In the
training data, device A has 10,215 samples while B, C, and S1-S3
have 750 samples each, which means the data is device-imbalanced.
Devices S4-S6 remain unseen in training. In test data, all devices
from A to S6 have 330 segments each.
Implementation Details. We do downsampling by 16kHz and use
input features of 256-dimensional log Mel spectrograms with a win-
dow length of 130ms and a frameshift of 30ms. During training, we

augment data to get a more generalized model. In the time dimen-
sion, we randomly roll each input feature in the range of -1.5 to
1.5 sec, and the out-of-range part is added to the opposite side. We
also use Mixup [22] with ↵ = 0.3 and Specaugment [23] with two
frequency masks and two temporal masks with mask parameters of
40 and 80, respectively, except time warping. We use Specaugment
only for the large model, BC-ResNet-ASC-8. In BC-ResNet-ASC,
we use Subspectral Normalization [14] as indicated in [12] with 4
sub-bands and use dropout rate of 0.1. We train the models for 100
epoch using stochastic gradient descent (SGD) optimizer with mo-
mentum to 0.9, weight decay to 0.001, mini-batch size to 64, and
learning rate linearly increasing from 0 to 0.06 over the first five
epochs as a warmup [24] before decaying to zero with cosine an-
nealing [25] for the rest of the training. We use fixed � = 0.1 for
ResNorm in experiments. Due to the absence of validation split in
the development dataset, we report the numbers of early stopping.
Baselines. We compare our method with other methods and do
some ablation studies: 1) Global FreqNorm, which normalizes data
by global mean and variance of each frequency bin; 2) Fixed per-
channel energy normalization (PCEN) [26], which is an automatic
gain control based dynamic compression and is used instead of log
Mel spectrogram in our experiment; 3) w/o ResNorm in Network,
which uses ResNorm module only at input not in the middle of the
network. 4) w/o shortcut, which is a special case of ResNorm when
� = 0 in Equation 3 and uses FreqIN.

3.2. Residual Normalization

We do the experiments using BC-ResNet-ASC-1 and BC-ResNet-
ASC-8, and the overall results are on Table 3. The task has multi-
device inputs which are imbalanced with dominant device A. As a
result, the baseline, BC-ResNet-ASC-1, shows that the accuracy of
the device A is relatively higher than other seen devices, B, C, S1,
S2, and S3. Furthermore, the accuracy on unseen devices, S4, S5,
and S6 are even lower, and these results imply that the model is not
generalized well to multiple devices, especially for unseen devices.
When we use global normalization by frequency dimension, the re-
sult shows 60.0% accuracy which is 1% improvements compared to
the baseline, but still we can observe poor domain generalization.
We also try PCEN, a normalized feature instead of log Mel spec-
trogram. PCEN shows improvements for unseen devices, but we
also observe that the performance of device A degrades due to its
normalization. The proposed ResNorm uses FreqIN to get domain
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Table 4: Model compression Compare bitwidth, top-1 test accu-
racy (%) on Tau Urban AcousticScenes 2020 Mobile, development
dataset, and pruning ratio of the models (Average over 6 seeds).

BC-ResNet-ASC-8 + ResNorm, 300 epochs, KD

Method Bitwidth KD Pruning Accuracy

Vanilla model 32 - - 76.3 ± 0.8

Compressed model 8, 16 0.89 75.1 ± 0.9
Compressed model 8, 16 0.89 75.3 ± 0.8

invariant features while not loosing the useful class-discriminative
information through identity shortcut connection. The ‘BC-ResNet-
ASC-1 + ResNorm’ shows a large improvement, 6% compared to
baseline and records 65.8% test accuracy. The ResNorm shows per-
formance improvements not just for unseen devices but also for all
seen devices.

We do some ablation studies for the component of ResNorm.
First, we use the ResNorm module as the preprocessing module,
and do not use the module in the middle of the network; ‘w/o
ResNorm in Network’. For the small model, BC-ResNet-ASC-1,
‘w/o ResNorm in Network’ shows better performance, 67.1%, and
for the larger model, BC-ResNet-ASC-8, it shows a performance
degradation of 1%. Due to ResNorm’s regularization effect, it was
expected that this module could degrade the performance of a small
network. We expect that the module can control the normalization
power by the hyperparameter � in Equation 3 to adapt to various
size of networks. In this work, we use fixed � = 0.1, and leave the
automatic update of the � as a future work. Second, ‘w/o shortcut’
shows the result when � = 0 in ResNorm which equals to FreqIN in
Equation 1. Our design motivation is that the shortcut path will keep
the useful information for classification. The results show that Fre-
qIN records relatively lower accuracy for seen devices compared to
ResNorm. Especially, the margins on device A are 8.2% and 3.0%
on BC-ResNet-ASC-1 and BC-ResNet-ASC-8, respectively.

3.3. Model Compression

Simultaneously, we distill the knowledge of the pre-trained teacher
network (‘Vanilla’ model) into the compressed model for enhanc-
ing the performance and achieve the 0.2% improvement in test ac-
curacy. In detail, we prune the convolution layers of the model with
89% pruning ratios compared to vanilla and quantize all convo-
lution layers in a compressed model as an 8-bit. Other layers are
quantized as a 16-bit. The resulting ‘Compressed’ model has 33K
8-bit nonzero for convolution layers and 15K 16-bit parameters for
normalization, resulting in 61.5kB and shows 75.3% test accuracy
which is 1% lower than Vanilla model. We use the ensemble of two
compressed model in the DCASE 2021 challenge, task 1A.

4. CONCLUSIONS

In this work, we design a system to achieve two goals; 1) effi-
cient design in terms of the number of parameters and 2) adapt-
ing to device imbalanced dataset. To design an efficient acoustic
scene classification model, we suggest a modified version of Broad-
casting residual network [12] by limiting receptive field and us-
ing max-pool. We compress the model further by utilizing three
model compression schemes, pruning, quantization, and knowledge

distillation. Moreover, we propose a frequency-wise normalization
method, named Residual Normalization which uses instance nor-
malization by frequency and shortcut connection to be generalized
to multiple devices while not losing discriminative information.
Our system achieves 76.3% test accuracy on TAU Urban Acoustic
Scenes 2020 Mobile, development dataset with 315k number of pa-
rameters and the compressed version achieves 75.3 % test accuracy
with 89% pruning, 8-bit quantization, and knowledge distillation.
Residual normalization has a hyperparameter � which can control
the regularization power of the module. We leave the automatic up-
date of the hyperparameter as future work.
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ABSTRACT

Sound recorded from beehives is important to understand a colony’s
state. This fact is used in the we4bee1 project, where beehives are
equipped with sensors (among them microphones), distributed to
educational institutions and set up to record colony characteristics at
the communication level. Due to data protection laws, we have to
ensure that no human is recorded besides the bees’ sound. However,
detecting the presence of speech is challenging since the frequen-
cies of human speech and the humming of bees largely overlap.
Despite having access to only a limited amount of labeled data, in
this initial study we show how to solve this problem using Siamese
networks. We find that using common convolutional neural net-
works in a Siamese setting can strongly improve the ability to detect
human speech in recordings obtained from beehives. By adding
train-time augmentation techniques, we are able to reach a recall of
up to 100%, resulting in a reliable technique adhering to privacy
regulations. Our results are useful for research projects that require
written permits for acquiring data, which impedes the collection of
samples. Further, all steps, including pre-processing, are calculated
on the GPU, and can be used in an end-to-end pipeline, which allows
for quick prototyping.

Index Terms— Audio classification, Siamese networks, Speech
detection, Deep learning

1. INTRODUCTION

With the introduction of the General Data Protection Regulation
(GDPR) [1] in the European Union, publicly recording sound at
any time, even for scientific purposes, requires written agreements
and the immanent possibility to stop recording from the user’s side.
Smart home devices ensure this by only recording data after a signal
word. Uploading recorded data is allowed, if no speaker can be
recognized individually from the recording (i.e., distortion) or the
recording device ensures no privacy concerned data is contained
in the file (i.e., speech detection). Despite these challenges, it is
desirable to use this data since sound is rich in information and
enables more fundamental understandings of communicating organ-
isms, such as bee colonies.

In this paper we focus on the task of detecting the presence
of speech in audio signals obtained from beehives of our we4bee
project. The we4bee project distributed over 100 Top Bar Hives
(TBH), mainly to educational institutions in Germany. Within these
“smart” beehives (see Figure 1), we can continuously monitor the
state of the colony, and even analyse the auditory communication
of the bees. Bee monitoring systems are an important tool for api-
arists [2], and especially sound recordings are inevitable to fully

1https://we4bee.org

Figure 1: Sensor placement of the TBH. This cutaway view of the
beehive shows the sensor placement of all sensors. The placement
of the two microphones (one inside, one outside), is highlighted
in yellow. Both mono sources are merged as a stereo-signal and
uploaded as such. Image taken from we4bee1

understand the beehive’s state [3]. Especially in swarming predic-
tion, sound recordings have shown great success, in contrast to
simpler monitoring, such as observing the temperature [4], which
we used in prior work [5]. Our contributions are as follows: 1) An
algorithm which achieves high recall, allowing allows us to detect
human speech in a challenging environment, 2) a privacy-regulation
conform recording approach without distorting the signals, and 3) to
the best of our knowledge, the first study on human speech detection
for smart apiculture.

2. RELATED WORK

As one of the first, [6] uses a convolutional neural network (CNN) to
classify sound. This model is trained on the Environmental Sound
Classification dataset (ESC-50) [7], consisting of 50 classes with
40 samples each. All samples are 5 s long and split into overlap-
ping spectrogram segments. The length of the extracts is 950ms

(short variant) and 2.3 s (long variant), Lastly, the probabilities of
all segment-level predictions are taken into account to obtain a final
prediction. The authors find that using the longer samples improves
the classification accuracy, reaching a score of 64.5%.

In 2017, Stowell et al. hosted the Bird Audio Detection challenge
(BADc) [8]. For this challenge, the task is to detect the presence
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Table 1: Overview of the dataset.
Dataset negative samples positive samples

Train 119 16

Validation 27 3

Test 25 10

Overall 171 29

of any bird sound in short (mostly 10 s) audio recordings. The
development data and test data come from different sources, which
requires methods that generalize to unseen recording conditions.
The highest scoring approach uses CNNs on spectrogram inputs and
cyclical time shifting to classify the data [9]. With their submission
named bulbul, which works on spectrograms calculated over 14 s,
they reach an area under ROC score (AUROC) of 88.7%.

Building on this architecture [10] classify sound excerpts of
audio data recorded from beehives. The excerpts are labeled as
containing bee-related sound or containing external sounds. Mel
spectrograms are then calculated and used as input features to the
network, with random pitch and time shifting augmenting the train-
ing data. Using a wide receptive field of 30 s, the classifier network
reaches an AUROC score of 90.1%.

In [11], Manocha et al. use a Siamese network [12] to compare
the similarity of input pairs. On several audio datasets, among them
ESC-50, they study the problem of retrieving semantically similar
audio clips. In their setup, log-scaled spectrograms are calculated for
the data, and feed to Siamese networks to obtain dense embedding
vectors. Using a k nearest neighbor search on the embeddings, the
authors achieve a mean precision of up to 78.4%, indicating that the
learned representations successfully capture similarity.

In this work, we use the mentioned CNNs in a Siamese setting to
detect speech presence in audio recordings obtained from beehives.

3. DATASET

In order to enable continuous sound monitoring with we4bee, we
obtained permission to record audio at one location. Since the data
for this feasibility study currently originates from a single beehive
only, we plan to add more recording stations in the future. Recording
started in May 2020, and is still running. For the purpose of this
paper, we used one day each in August and September for training
and validation data, and a separate day in October for final testing.

Each audio sample is recorded at 44.1 kHz, 16 bits resolution for
60 s. We let one voluntary annotator manually label a small, random
amount of these recordings on file level. Each sample is hand-
labeled as class 0, no human speech present (negative samples), or
as class 1, meaning the presence of human speech (positive samples).
Additionally, to collect more positive samples, we followed a simple
heuristic: Every time speech was detected in the current sample,
we searched in a ±10min interval for more positive samples. An
exemplary spectrogram of a recording with speech segments can be
seen in Figure 2. Table 1 lists the complete dataset statistics.

This dataset poses two challenges: First, human speech is only
sparsely present, both in terms of absolute numbers of samples
and relative time within the samples. Analysing shorter windows
would yield more samples but also lead to higher class imbalance
towards class 0 which is why we kept the 60 s windows from the
recordings. These samples come from a broad range of situations,
from children playing far away (hardly audible) to adults talking next

Figure 2: Sample audio file containing speech. A high noise level is
created by a motor moving until 25 s, marked by the large arrow. The
speech, located at 50 s (small arrow), is covered by the background
noise and not visually discernible.

to the beehives (clearly audible). Second, the general limited number
of annotated samples increases the difficulty. Large supervised audio
datasets such as the ones used for the BADc have 24 000 annotated
samples and more. In contrast, our labeled dataset only consists of
200 samples in total. The challenge is therefore to learn a model to
classify a diverse, unbalanced, and small dataset.

4. METHODS

4.1. Siamese Neural Networks

Siamese neural networks [12] are a class of networks that learn
the similarity of an input pair. Each sample is fed into the neural
network to obtain a dense representation, termed embedding. A
distance metric (i.e., Euclidean distance) is then used to calculate
the distance between the embeddings. To interpret the result, one
often applies a sigmoid activation function, forcing the values to
lie between [0, 1]. An output close to 0 indicates highly similar
samples, conversely values near 1 indicate high dissimilarity. The
term “siamese” refers to the fact that the same set of weights is used
to calculate each embedding of the input pair.

We train the Siamese networks to minimize the distance between
audio pairs from the same class and to maximize the distance for
opposite pairs. For this, we randomly draw an audio sample, and
pair it both with a random sample from the same class (this pair is
labeled as 0), and with a random sample from the opposite class
(labeled as 1). The learned embeddings are used to train a kNN
classifier [13, 14]. To obtain class predictions for the test samples,
we first extract embeddings for the test data and then query the
classifier.

4.2. Base Neural Networks

Motivated by the frequent usage of mel-scaled spectrograms (Mel
spectrograms from now on) as input features, we utilize the two
networks briefly introduced in Section 2 (the networks trained on the
ESC dataset and submitted to the BADc, respectively) , and one pub-
lished in an introductory article on sound classification with CNNs.
We adapt each network to accept the raw audio and compute the
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Mel spectrograms as part of the forward pass, using the kapre [15]
package. With this modification, the computation is accelerated by
the GPU, making a separate on-CPU pre-processing step obsolete.

Saeed The first network is from work published by Aaqib
Saeed [16], which we name Saeed after its author. The input Mel
spectrogram features are merged with their deltas, local estimates
of the derivative that capture the transition dynamics of sound. The
resulting two-channel representation is then framed, splitting the
vector into small excerpts. These excerpts are processed by four
sets of the following stack: convolution ! batch normalization [17]
! ReLU activation [18, 19] ! max pooling. Additionally to the
proposed architecture, we add a drop dropout [20] layer before each
pooling operation and replace the max- with global max-pooling in
the last stack. Afterwards, we add a further dropout operation prior
to two ReLU dense layers. We modify the final layer to have a single
neuron only and replace the softmax with a sigmoid activation.

Bulbul The highest-scoring submission in the aforementioned
BADc is a CNN named Bulbul [9]. The key feature of this network
is its wide receptive field, enabling it to find short local events. The
input Mel spectrograms are normalized with batch normalization,
followed by four sets of the following stack: convolution ! leaky
ReLU ! max pooling layers. The output is then flattened, and
followed by two blocks of dropout ! dense ! leaky ReLU layers.
The final layer has a single neuron with sigmoid activation.

ESC The third model we used is the network introduced for the
ESC dataset (see Section 2 and [7, 6]), which we call ESC. The Mel
spectrogram is stacked with its delta features. The computation of
these features is followed by a single stack of convolution ! dropout
! max-pooling. After another convolution and max pooling layer,
the tensor is flattened and processed by two dense layers, each with
dropout. The output activation is a binary sigmoid.

5. EXPERIMENTAL SETUP

For all experiments, we utilize the Adam optimizer [21] with default
parameter values: A learning rate of 0.001, �1 of 0.9, and �2 of
0.999. Each model is trained and evaluated on our dataset five
times, and the results are averaged. We use librosa [22] to load
and downsample the audio to 22 050Hz. As a metric function, we
follow [9] and report the area under the receiver-operating curve
(AUROC) score [23, 24, 25]. This metric first calculates recall
versus fall-out at various threshold levels, yielding the ROC curve.
The area under this curve captures the performance of a classifier
in a single metric. A value of 0.5 equals random guessing, a value
of 1.0 is equal to a perfect classifier. For our imbalanced two-
class dataset, we use the AUROC metric, as opposed to misleading
accuracy scores. Further, for the baseline networks, we interpret
the binary output as class 1 if it is above the default threshold of
0.5, and as class 0 otherwise. Similarly, for the Siamese networks
the default threshold is 0.5. Additionally, we report the recall for
class 1 (speech). Since samples of class 1 might contain sensitive
information, we are interested in particularly high recall. Therefore,
regarding privacy, a false negative is more severe than a false positive.

5.1. Baselines

We initially tried various clustering algorithms, which scored only
slightly better than random guessing and where thus not further eval-
uated. We therefore used the three CNNs introduced in Section 4.2
as baseline networks, without using a Siamese setting. For the train-
ing we follow the approach of [9]: We train the network for 100

Table 2: Baseline networks on the test set, averaged over five runs.
Network AUROC Recall speech

Saeed 0.6125 ± 0.0400 0.0
Bulbul 0.7525 ± 0.0100 0.0
ESC 0.5017 ± 0.0300 0.0

epochs, use EarlyStopping [26] with a patience of 20 epochs and a
batch size of 16. We reduce the learning rate by a factor of 10, if the
area-under-curve score has not improved for ten consecutive epochs.

5.2. Siamese Network

We use all networks introduced in Section 4.2 in a Siamese setting.
For all networks, we replace the final hidden dense and any sub-
sequent layer with a single dense layer of 128 neurons, which is
interpreted as the embedding vector. All embedding vectors are
normalized using L2 normalization.

We train our Siamese network for 100 epochs and use EarlyStop-
ping on the validation AUROC score with a patience of 20 epochs.
Since our audio samples are quite large, we use small batch sizes for
the training. The default value is 4, which means that four pairs are
created, using 8 individual audio samples in total.

To obtain better scores, we also try train-time augmentations
on the raw audio. For this, we used the audiomentations2

package. With a probability of 50% each, we add gaussian noise,
use time-shifting of ±30 s, and shift the pitch ±2 semitones.

Further, we experiment with more epochs (500) and try different
EarlyStopping offsets (300 and 500), which is the number of guar-
anteed update steps done before the counter begins. We try different
values for the number of neighbors k 2 {1, 3, 5}.

6. RESULTS & DISCUSSION

As summarized in Table 2, of the baseline networks, the ESC net-
work reaches the lowest AUROC score, with 50.17%. The next
best network, Saeed, scores more than 10 points higher, reaching
61.25%, and the best network, Bulbul, reaches 75.25%. How-
ever, our primary indicator of performance, the recall of the speech
class, is drastically lower; all three networks achieve a recall of 0.
Using a Siamese setting, we can improve the score for all three
networks (Table 3), and our strongest candidate reaches 94% speech
recall and an AUROC score of 96.88%. The ESC network does not
benefit from a Siamese setup, it reaches only slightly better scores
compared to the non-Siamese setting. Generally, a higher number of
neighbors when classifying the test data via kNN improves scores.

When using train-time augmentations, as described in Sec-
tion 5.2, we observe two primary effects: First, the scores are worse
compared to no augmentation, as shown in Table 4. Secondly,
training takes considerably longer since the computation is done
on the CPU. On examination of the validation AUROC curve we
noticed that the scores heavily oscillate in the beginning. Before
the scores stabilize and increase, either the EarlyStopping patience
prematurely terminates the run or the maximum number of epochs
(100) is reached.

These instabilities can be overcome by using an offset for
EarlyStopping and by training for more epochs. We find that an
offset of 300 is sufficient when training for 500 epochs. Combined

2https://git.io/JcQJQ
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Table 3: Scores for the Siamese networks on the test dataset, averaged over five runs, without augmentation.
Saeed Bulbul ESC

k AUROC Recall speech AUROC Recall speech AUROC Recall speech

1 0.8633 ± 0.1600 0.76 ± 0.31 0.9500 ± 0.0500 0.90 ± 0.01 0.5317 ± 0.0500 0.18 ± 0.05
2 0.8988 ± 0.1400 0.76 ± 0.31 0.9696 ± 0.5000 0.90 ± 0.10 0.5258 ± 0.0600 0.18 ± 0.05
3 0.9046 ± 0.1300 0.74 ± 0.29 0.9688 ± 0.0500 0.94 ± 0.10 0.5537 ± 0.0600 0.04 ± 0.05

Table 4: Scores for the Siamese networks on the test dataset, averaged over five runs, with augmentation. Augmenting the training data stops
the training prematurely, as explained in Section 6.

Saeed Bulbul ESC

k AUROC Recall speech AUROC Recall speech AUROC Recall speech

1 0.6092 ± 0.1900 0.26 ± 0.34 0.4867 ± 0.0200 0.04 ± 0.05 0.5192 ± 0.0400 0.18 ± 0.11
2 0.6775 ± 0.1500 0.26 ± 0.34 0.4838 ± 0.5000 0.04 ± 0.05 0.5254 ± 0.0600 0.18 ± 0.12
3 0.6837 ± 0.1400 0.28 ± 0.31 0.5083 ± 0.0500 0.04 ± 0.09 0.4908 ± 0.1000 0.00 ± 0.00

Table 5: Scores for the Siamese networks on the test dataset, averaged over five runs, with augmentation. The training is done with an offset of
300 epochs for EarlyStopping. Compared to Table 4, using such an offset can lead to improved results.

Saeed Bulbul ESC

k AUROC Recall speech AUROC Recall speech AUROC Recall speech

1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.495 ± 0.020 0.04 ± 0.09
2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.51 ± 0.05 0.04 ± 0.09
3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.52 ± 0.07 0.06 ± 0.13

with augmentation, we reach perfect AUROC and recall scores
(100%) with both Bulbul and Saeed. These perfect scores indi-
cate overfitting, which might be due to the relatively small dataset.
We plan to address this in further research by increasing both the
dataset’s size and diversity. Nonetheless, for this initial study the
results are very encouraging. A sample embedding is visualized
with t-SNE [27, 28] in Figure 3, which shows how the classes are
separated well in space. As before, the ESC network does not benefit.
We suspect that this is due to the relatively shallow architecture,
which may prevent the network from learning meaningful features.

Figure 3: t-SNE plot (perplexity=12.5) of the learned embeddings,
obtained from the Siamese Bulbul network for the test dataset.
The network can perfectly separate the data.

7. CONCLUSION

Sound recordings of beehives are an important source of information
for modeling the behavior of bees but it is not trivial to record pub-
licly accessible hives in a privacy preserving manner. To allow for
GDPR-compliant sound recordings of bee colonies we considered
multiple approaches for presence of speech detection, allowing us to
detect and remove human speech before storing the sound data. In
this initial feasibility study, we used three convolutional neural net-
works to detect presence of speech in these challenging recordings.
By using them in a Siamese setting, we achieve high recall. Moti-
vated by the good results, we then used augmentation techniques
and increased the number of epochs to achieve perfect recall and
AUROC scores. For our small datasets, these results are promising,
but open the opportunity for future work in several directions:

First, our current dataset is limited to recordings from a single
beehive. In prospective work, it can be enriched with recordings
from more beehives. This would capture more locations and charac-
teristics, allowing to better examine the ability to generalize. Second,
the code can be adapted for on-device inference. Currently, for the
beehives we have permission to record, we upload the audio data
to the cloud. Only then do we check for the presence of speech.
However, this step can be greatly simplified by running the detection
directly on the Raspberry Pi which powers all beehive sensors.
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ABSTRACT
Anomaly Sound Detection (ASD) is a popular topic in deep learn-
ing and has attracted the attention of numerous researchers due to
its practical applications within the industry. In the case of unsu-
pervised conditions, how to better discover the inherent consistency
of normal sound clips has become a key issue in ASD. In this pa-
per, we propose a novel training framework that jointly trains two
different feature extractors using contrastive loss to obtain a bet-
ter representation of normal sounds in the latent space. We eval-
uate our framework on the development dataset of DCASE 2021
challenge task 2. Our framework is a combination of two baseline
systems from the challenge: 1) An AutoEncoder-based model and
2) a MobileNetV2-based model. Our approach trains two models,
whereas during inference only model 2) is used. Experimental re-
sults indicate that the MobileNetV2-based model trained under our
proposed training framework exceeds the baseline model in terms of
the official score metric. Since we participated in the challenge and
submitted the system trained on the proposed framework with some
data augmentation methods, we also analyze the results of DCASE
2021 challenge task 2 and discuss the effect of the median filter
as a data augmentation technique. Notably, our proposed approach
achieves the first place for anomaly detection for the machine type
“Fan” with an AUC of 90.68 and a pAUC of 79.99.

Index Terms— Unsupervised anomaly sound detection, au-
toencoder, convolutional nerual network, contrastive learning

1. INTRODUCTION

Anomaly sound detection (ASD) is the task of identifying whether
the sound emitted from an object is normal or anomalous. It has a
wide range of applications, such as machine condition monitoring
and home monitoring.

In this paper, we focus on ASD in an unsupervised setting,
which means that only normal (positive) sound samples can be
accessed during the training phase, while during evaluation ab-
normal (negative) samples need to be ascertained. These settings
commonly occur in real-world scenarios, where diverse anomalous
sounds rarely occur. Therefore, collecting a dataset that contains
exhaustive anomalous patterns is hard.

The main idea of unsupervised ASD is to learn the inherent
consistency of the normal sounds, and then classify samples as
anomalous or normal by the deviation of a sample from normal
sound properties. Early researchers adopted statistic-based methods
such as Hidden Markov Model [1] (HMM) and Gaussian Mixture

Model [2](GMM) to model the probability distribution of normal
sound. Anomalous sounds are usually outside of the normal sound
distribution, thus we can determine whether the sound is abnormal
by its posterior probability. Other researchers used generative mod-
els such as Non-negative Matrix Factorization [3] (NMF) and Au-
toencoder approaches [4]. These models are trained to compress
and reconstruct normal sounds to learn a normal sound’s proper-
ties in latent space. If an abnormal sample is fed into a generative
model, the model will likely produce large reconstruction errors,
meaning that the sample has not been seen during training and thus
is abnormal.

Recently in the DCASE challenges, the classifier-based method
showed promising performance [5, 6, 7]. Supervised training is
made possible since the challenge training data is composed of nor-
mal sounds from different operating conditions with different sec-
tion IDs. Classifier based ASD method uses the section ID as a
label and then performs classification on latent features. Since we
have access to the section ID during inference, a classifier could per-
form anomaly sound detection by identifying misclassified samples
(wrong section ID) as anomaly sounds.

As we can see from previous works, for deep learning based
anomaly sound detection methods, a key issue to improve the per-
formance is to obtain better latent space features of normal sounds,
both for the widely used Autoencoder method and classifier-based
method. Inspired by the recent success of contrastive learning ap-
proaches for self-supervised audio pretraining [8, 9, 10], we aim
to enhance the model’s capability to detect unseen events by link-
ing multiple views together. Our proposed learning framework is
a novel combination of two mainstream anomaly detection models
trained with an additional contrastive loss function.

The paper is structured as follows: In Section 2 we introduce
our proposed learning framework and its components. Further, in
Section 3 details regarding the dataset and experimental setup are
provided. Results are provided in Section 4 and the conclusion is
given in Section 5.

2. PROPOSED APPROACH

During the training phase, our approach jointly trains two indi-
vidual models: an unsupervised AE-based model combined with
a supervised convolutional neural network (CNN). Once the loss
converges, inference can be performed using either model indepen-
dently. The architecture can be seen in Figure 1.
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Figure 1: The proposed architecture used in this work. A spectro-
gram feature is first extracted from the input waveform. Then the
feature is fed into two separate models: an Autoencoder (AE) and a
Convolutional neural network (mainly MobileNetV2). The models
are jointly optimized to reconstruct the input spectrogram, predict
the section label and minimize the contrastive loss between the two
models’ hidden representations.

2.1. Autoencoder-based unsupervised classification

Our AE baseline model is a fully connected neural network with a
bottleneck structure and trained to reconstruct a given input sound
(normal sound). Ideally, a well-trained AE will produce a low error
if a new data sample has been seen during the training phase (nor-
mal sample) and a large error when it encounters unseen anomalous
sounds.

Formally, let x be an input sample and AE be the autoencoder,
our training objective follows:

AE(x) 7! x̂,

Lunsup(·) = LAE(x) = LMSE(x̂� x),
(1)

where the training loss is chosen to be the mean square error (MSE).

2.2. MobileNet-based supervised classification

Our supervised approach uses the provided section ID as classifica-
tion targets and predicts each section’s probability. Formally, for a
sample x and corresponding one-hot target y, we compute the stan-
dard cross-entropy (CE) loss, as seen in Equation (2).

CNN(x) 7! ŷ,

Lsup(·) = LCE(ŷ, y) = � 1
N

NX

i

yi log ŷi,
(2)

where CNN represents the CNN-based classifier and N the number
of samples. Then the anomaly score A(x) is calculated as:

A(x) = log

✓
1� ŷi
ŷi

◆
, (3)

where ŷi is the softmax output for the correct section. Note that if
the sample x is divided into consecutive segments (x1, x2, ..., xP ),
the anomaly score will be 1

P

PP
i A(xi).

2.3. Proposed contrastive semi-supervised learning

We train these models with an additional contrastive loss [11]. The
contrastive loss Lcontrastive is added between the hidden representa-
tions of both models (vAE,vCNN) as:

p = vAE,

u = vCNN,

Lcontrastive(·) = �
X

i

log
exp(hui,pii/⇢)P
j 6=i exp(hui,pji/⇢)

,

(4)

where h, i represents inner product, ⇢ 2 R is a scalar hyperparame-
ter and p,u 2 R256 are hidden vector representations obtained by
both models via projection. Concretely speaking, we transform the
output vector of Autoencoder’s bottleneck layer and CNN’s feature
layer into same dimension by linear transformation, then map rep-
resentations to the space where the contrastive loss is applied via a
shared MLP projection layer with one hidden layer. In most cases,
the dimension of the bottleneck layer in the Autoencoder is much
smaller than the dimension of the feature layer in the CNN model
( 8 vs. 1280 in this paper ). We assume that the bottleneck layer
output in the AE tends to represent the general structure of normal
sound clips, while CNN extracted feature represents their micro-
scopic structure. Our approach aims to obtain two different repre-
sentations of a single sample, which is reminiscent of SimCLR [8],
unsupervised data augmentation (UDA) [12] and other semi and
self-supervised approaches.

Ltotal = Lunsup + Lsup + Lcontrastive (5)

The final loss for optimization can be seen in Equation (5).

2.4. Data Augmentation

One of our contributions is the exploration of data augmentation
techniques. Regarding conventional techniques, we explore the use
of Mixup [13] along with time masking [14] and frame-shifting for
model training during the DCASE challenge. Further, our intuition
is that the input audio data contains large amounts of short-time
noise, thus an input feature might contain a surplus of unreliable
information, which can affect the performance of our supervised
training method. We propose a median filtering approach applied
on the input spectrogram feature along the frequency axis aiming to
reduce the influence of distracting noise.

3. EXPERIMENTAL SETUP

Log Mel-spectrogram (LMS) features are chosen as the default
front-end feature for the task. Overall, seven models are trained
in our approach, one for every machine type.

For the supervised CNN training, each 128-filter LMS is ex-
tracted from a 64 ms window with a stride of 32 ms. We follow the
baseline approach by concatenating 64 consecutive frames with a
shift of 8 frames, resulting in an 128 ⇥ 64 dimensional input ten-
sor. If segments are shorter than 10 seconds (or 311 samples), we
zero-pad the input to the longest sample within a batch.

Regarding the AE training, we flatten the input tensor to a single
input vector of size 8192 (128 ⇤ 64). All experiments are run for
100 epochs, with the learning rate halving every 30 epochs. The
batchsize is set to 32 for training and we set the hyperparameter
⇢ = 0.07 for the contrastive loss. Our median filtering approach
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Table 1: Performance of our models in comparison to other participants in the challenge on the official evaluation dataset. Best results are
highlighted in bold.

Model Official Score Fan Gearbox Slider Toy Train Toy Car Pump Valve

AE Baseline 56.375 60.68 65.49 57.22 68.51 65.93 58.30 51.87
MBv2 Baseline 54.770 64.96 51.14 72.92 42.91 42.73 67.97 53.13
1st 66.798 61.01 63.07 83.18 69.15 75.27 86.76 65.36
2nd 64.956 86.48 67.45 83.05 45.60 60.88 85.04 71.49
3rd 64.201 88.98 57.75 86.84 57.50 69.83 74.82 62.74
4th 63.745 66.60 62.53 86.27 61.79 61.70 74.60 62.36
5th 62.593 68.98 67.74 79.88 61.71 73.32 71.87 63.73
6th 62.239 82.65 57.20 83.76 53.43 58.67 85.54 60.54
7th 61.480 87.68 56.56 76.66 48.24 70.60 72.54 60.70
8th 61.186 73.17 64.70 69.89 51.71 68.23 78.65 53.93
Ours best 60.966 90.68 58.00 77.34 47.49 53.81 77.82 53.53

uses a window size of 31 frames (i.e., 1 second) for each filter bank
respectively.

PyTorch [15] was used as the default neural network toolkit1.

3.1. Evaluation metrics

The evaluation metrics used in the challenge is the area under curve
(AUC) and partial-AUC (pAUC) scores respectively [16]. The final
official score ⌦ is computed as the harmonic mean of the AUC and
pAUC scores.

3.2. Dataset

The data used for this task consists of running sounds of seven
machine types being “ToyCar”, “Fan”, “ToyTrain”,“Valve”, “Gear-
box”, “Silder” and “Pump”, including two recent machine audio
datasets, ToyADMOS [17] and MIMII [18].

Notably, all provided data samples by the challenge authors
have a length of 10 seconds, and each section, as well as machine
type, has a near uniformly distributed duration. The overall data
length is 70 hours of which the large majority belongs to the source
domain.

Model Fan Gearbox Slider Toy Train Toy Car Pump Valve Score

MBv2 60.30 57.43 59.43 51.10 53.60 56.17 55.19 56.01
+ CL 60.61 58.87 60.70 50.92 52.51 56.90 54.38 56.18
+ MF 64.08 65.38 59.83 49.69 55.38 59.50 53.74 57.75
+ CL, MF 64.45 67.16 58.66 51.89 56.15 57.27 53.46 57.99

Table 2: Main results proposed in our work for the DCASE 2021
Task2 challenge on the held-out development dataset in regards to
the main evaluation metric ⌦ (see [16]). “C” represents adding con-
trastive learning and “M” the addition of median filtering. Note that
a single model is trained for each machine type.

The two models used in this work are described. First, our AE
is the same as the one provided by the challenge baseline. Each
hidden block has 128 units except for the bottleneck block, which
has 8 units. Second, the MobileNetV2 (MBv2) architecture is di-
rectly taken from [19], where our approach differs from the standard
architecture by using global average and max pooling (GAMP) as
our aggregation method compared to the standard global average

1The source code is available at https://github.com/
bibiaaaa/SmallRice_DCASE2021Challenge

pooling (GAP). During training, both the AE and MBv2 models are
jointly optimized given the total loss Equation (5), whereas during
evaluation only the MBv2 model is used.

4. RESULTS

Our model’s performance on the held-out development set is dis-
played in Table 2. As it can be seen, our MBv2 model trained in the
proposed training framework shows improvement over the baseline
model in some machine types such as “Fan” and “Gearbox”.

For the DCASE challenge, we trained an EfficientNet-B0 based
model under our proposed training framework along with median
filter and other data augmentation techniques such as Mixup [13]
and time masking. For the challenge, our method ranked 9th out of
27 participated methods. As shown in Table 1, our method lacks
behind an absolute of 6 % against the winning system.

It is worth mentioning that Table 3 shows that our method per-
formed best on the Fan dataset, especially from the perspective of
pAUC metric, leading by a large margin of around 9% compared
to the 2nd result. We believe that it contributes to the median filter
applied on the log-mel spectrogram along the time axis since it can
erase short-time noise and improve the generalization ability of the
model.

Model Fan (AUC) Fan (pAUC)

AE Baseline 60.68 50.50
MBv2 Baseline 64.96 58.14
2nd 90.22 71.19
3rd 88.98 70.20
4th 88.09 70.84
Ours 90.68 79.99

Table 3: Top 5 best results in the Fan dataset in the challenge. Our
result ranks 1st both in AUC and pAUC.

5. CONCLUSION

This paper proposes a novel contrastive loss training framework
for anomaly sound detection. Experimental results indicate that
the MobileNetV2-based model trained under our proposed training
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framework exceeds the baseline model for some machine types in
the DCASE 2021 challenge task 2, while no additional parameters
are introduced during inference. Notably, our model achieves the
best performance for the “Fan” machine type. We conclude that
anomaly sounds greatly vary between different machine types, thus
finding a universal anomaly sound detection method suitable for
machine condition monitoring is still a problem worthy of research.
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ABSTRACT

This paper describes our submission to the DCASE 2021 challenge.
Different from most other approaches, our work focuses on training
a lightweight and well-performing model which can be used in real-
world applications. Compared to the baseline, our model only con-
tains 600k parameters, resulting in a size of 2.7 Mb on disk, making
it viable for applications on low-resource devices such as mobile
phones. As a novelty, our approach uses unsupervised data augmen-
tation (UDA) as the primary consistency criterion, which we show
can achieve competitive performance to the more common mean
teacher paradigm. Our submitted results on the validation set result
in a single model peak performance of 36.91 PSDS-1 and 57.17
PSDS2, outperforming the baseline by an absolute of 2.7 and 5.0
points respectively. The best submitted ensemble system using a 5-
way fusion achieves a PSDS-1 of 38.23 and PSDS-2 of 62.29 on the
validation dataset. Our system ranks 7th in the official DCASE2021
Task4 challenge ranking and is the best performing model without
post-processing while also having the least amount of parameters
(3.4 M) by a large margin. Post-challenge evaluation reveals that
by applying simple median post-processing, our approach achieves
comparable performance to the 5th place.

Index Terms— Semi-supervised learning, Convolutional re-
current neural networks, Weakly supervised learning, unsupervised
domain adaptation.

1. INTRODUCTION

This work focuses on modeling audio signals for sound event de-
tection (SED). The main objective within SED is to categorize (i.e.,
tag) an event, with its respective on- and offsets. A core difficulty
in this task is that multiple sound events can simultaneously occur
during a time window.

One possible method to train a SED model is by using fully su-
pervised labels, where on- and offsets for each event of interest are
provided. However, obtaining fully supervised labels via manual la-
beling is expensive and thus might be a hindrance for SED systems
at scale. To the best of our knowledge, there currently only exists a
single large-scale manual labeled dataset, being Audioset [1], which
provides full annotation for around 200 hours of data.

This paper focuses on semi-supervised sound event detection,
where the provided training data is largely incomplete. Specifically,
the DCASE2021 Task4 challenge focuses on low-cost sound event
detection, where only a small fraction of data (4 hours) is manu-
ally weakly annotated. All other available data sources are either
generated or do not contain labels.

Currently, SED can be used for a variety of applications, query-
based sound retrieval [2, 3], smart cities, and homes [4, 5], voice

activity detection [6, 7] as well as an important component of au-
dio captioning [8, 9]. Most current approaches within SED utilize
neural networks, in particular convolutional neural networks [10]
(CNN), convolutional recurrent neural networks [11] (CRNN) and
other models such as transformers and conformers [12, 13].

CNN models excel at audio tagging [14] and scale with data,
yet falling behind CRNNs and transformer approaches in onset and
offset estimations [15].

1.1. Problem statement

In the following, assume that x is an input (either raw-waveform or
some spectrogram) and ŷ is a predicted label.

Weakly supervised SED models commonly have two outputs:
A clip-level prediction head C(x) 7! ŷ 2 {0, 1}E and a frame-
level output F (x) 7! ŷt 2 {0, 1}E , t = 1, . . . , T for a frame at
time t with E events. Both of these heads are directly connected
via an aggregation function: C(·) = agg(F (·)), which summarizes
the frame-level predictions to a single clip-level response. When
training in strictly weakly supervised fashion, only the clip-level
prediction head C can be learned, while F needs to be inferred by
the model.

Figure 1: Inconsistent predictions between the two output heads in
weakly-supervised SED are tackled in this work. The clip-level pre-
diction ŷ estimates the presence of “Speech” and “Vaccum cleaner”,
but the frame-level output ŷt additionally predicts the presence of
“Blender” (in bold) and some other noisy event outputs.

One of the key problems regarding training of weakly super-
vised SED models is that both heads can predict contradictory re-
sults since only errors in C are back-propagated, while F cannot be
directly controlled. For example, the frame head F might predict
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the presence of a sound event e during some time frame, due to fac-
tors such as noise or general similarity of a sound event to another
(e.g., Blender, Vacuum Cleaner), while the clip head C predicts that
e is not present. We show an example of this behavior in Figure 1,
which is a prediction done by our baseline model.

Since in this challenge, the only human-annotated training data
is provided on clip-level, meaning that the clip head C should pro-
vide reliable outputs, additional predictions from F can be con-
sidered as an inconsistency between both heads. In order to miti-
gate the inconsistency problem, we propose a simple learnable clip-
smoothing algorithm.

2. PROPOSED APPROACH

2.1. Learnable clip-smoothing

We propose learnable clip-smoothing to combat the problem of in-
consistent predictions the C and F heads. This technique is identi-
cal to clip-thresholding for weakly supervised SED [11], but since
the DCASE2021 Task4 dataset provides strong frame-level labels,
the clip-smoothing threshold can now be jointly optimized with the
weak labels.

In particular, clip-smoothing is computed as in Equation (1),
where ŷ(t)† is the clip-smoothed output of our model for event e
and ŷt(e) is the model’s frame head output (F ):

ŷ†
t (e) = ŷt(e) ⇤ ŷ(e). (1)

This approach should reduce false alarms, since the clip-
level output will squash the frame-level probabilities for any non-
occurring event. Subsequently, by using learnable clip-smoothing,
the head F will only output events which also have a large proba-
bility score (⇡ 1) in C.

2.2. Unsupervised data augmentation for consistency training

Many techniques exist to utilize unlabeled data to improve model
performance. Mean Teacher (MT) [16] is a popular technique used
in recent DCASE challenges [17].

In this work we propose the use of unsupervised domain
(UDA) [18] for consistency training in SED. The advantages of
UDA are:

1. In the vision domain, UDA has been seen to outperform
other unsupervised methods such as MT [18].

2. Since only a single model is trained, performance evaluation
is simpler compared to MT, where two models need to be
evaluated.

3. We believe that the main contributing factor of MT is that
it enables the usage of unlabeled data to improve perfor-
mance. Our work shows that unsupervised data augmenta-
tion is equally effective in boosting performance.

The idea of UDA is to compute a consistency loss for unlabeled
data between an augmented and a non-augmented ( or differently
augmented ) sample. To the best of our knowledge, UDA has not
been previously used in SED.

x† = Aug(x),
M(x) 7! (ŷ, ŷt),

M(x†) 7! (ŷ†, ŷ†
t ),

LUDA(x) = Lconsistency(ŷ
†, ŷ) + Lconsistency(ŷ

†
t , ŷt).

(2)

The UDA consistency training scheme is defined as in Equa-
tion (2). Here, a sample x is fed through a trainable neural network
M where clip (ŷ) and frame-level (ŷt) predictions are obtained.
The consistency between these predictions (ŷ, ŷt) and the predic-
tions obtained by augmenting the input sample x denoted as x† and
predict (ŷ†, ŷ†

t ) is the training objective. Note that in our work, we
use UDA for both model heads, whereas it would be possible to use
UDA for only weak or strong labels respectively. Also, it is worth
mentioning that gradients are not computed during M(x).

3. EXPERIMENTAL SETUP

Log Mel-spectrogram (LMS) features are chosen as the default
front-end feature for the task. Each 64-filter LMS is extracted from
a 25 ms window with a stride of 10 ms, resulting in an approxi-
mately 1001⇥ 64 dimensional input tensor. If segments are shorter
than 10 seconds, we zero-pad the input to the longest sample within
a batch. During inference, we use a batch size of 1, such that
padding has no effect on the final evaluation.

All experiments start with a learning rate of 0.001 and are run
for at most 200 epochs, with a linear warmup duration of 20 batches
using the Adam optimizer. The learning rate is halved every 1000
batches. Batch sizes are set to be 32 for weak and synthetic data and
64 for unlabeled data. The available weak training data is split into a
90% training and a 10% cross-validation portion. Cross-validation
is done on the 10% held-out weak subset with the additional syn-
thetic validation data. The training objective is the sum of the weak
F1 and the intersection-F1 score, whereas training is stopped if the
model did not improve for 15 epochs. Pytorch [19] was used as the
neural network back-bone.1.

3.1. Dataset

The dataset used in this work is the DCASE2021 dataset, which
focuses on sound event detection in domestic environments.

The DCASE 2021 dataset is split into a development (used for
training) and an evaluation section. The development set is further
split into training and validation sections. The training section con-
trains three datasets Dweak,Dsyn,Dun, as seen in Equation (3).

Dweak = {(x1, y2), (x2, y2), . . . , (xN , yN )},
Dsyn = {(x1, y2), (x2, y2), . . . , (xM , yM )},
Dun = {x1, . . . , xP }.

(3)

Note that the labels for Dweak are provided on clip-level, i.e., yj 2
{0, 1}E , j  N , while labels for Dsyn are provided at frame-level,
i.e., yk 2 {0, 1}ET , k  M for each timestep in T . The unlabeled
dataset contains only samples with target events also seen in the
weak training data.

3.2. Model

Our model named CDur is a lightweight (in terms of parameters)
5-layer CRNN directly taken from the previous work in [11].

ŷ =

P
t ŷ

2
tP

t ŷt
(4)

1The source is available at https://github.com/bibiaaaa/
SmallRice_DCASE2021Challenge
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CDur subsamples the time-dimension by a factor of 4 and uses
linear-softmax [20] as its aggregation method defined in Equa-
tion (4). The frame-level output is upsampled by a non-learnable
transformation. For more information about the model, please refer
to [11]. One of the benefits of the proposed model is its size, it only
contains around 600k parameters, making it a lightweight alterna-
tive to the larger baseline model (1.1M parameters). Note however,
that CDur requires slightly more FLOPs (3.36 GFlops) compared to
the baseline (2.97 GFlops).

Three losses are used, one for each respective training data sub-
set. Note that we experimented with additional losses such as asym-
metric focal loss (AFL) [21], but did not observe gains in perfor-
mance.

Lsup = BCE(ŷ, y), {y, ŷ} 2 Dweak, (5)
Lsyn = BCE(ŷt, yt), {yt, ŷt} 2 Dsyn, (6)

Lunsup = LUDA(x) = BCE(ŷ†, ŷ) + BCE(ŷt, ŷt), x 2 Dun. (7)

The model is optimized using the sums of all introduced losses
seen in Equation (8).

Ltot = Lsup + Lsyn + Lunsup (8)
As the default in our work use UDA for both C and F heads.

Augmentation in regards to UDA is applied on raw-wave level,
where the torchaudio2 and torch-audiomentations3 packages are
used. Specifically, we apply random Gain (in range -20, 10 db),
Polarityinversion (with both probability 50%), and time masking
(zeroing a sequence of at most 2 seconds, similar to SpecAug) to an
input sample.

4. RESULTS

We report our results in terms of Event-F1 (E-F1) [22], Intersection-
F1 (I-F1), and the two main challenge metrics denoted as PSDS-1
and PSDS-2 [23]. Additionally, we provide the d-prime d0 score,
which represents our model’s capability to detect the presence of an
event on clip-level and takes values in range d0 � 0, where higher
values are better.

Note that for all results, no post-processing is used and the
Event-F1 score is calculated from the thresholded ŷt > 0.5 frame-
predictions.

Data d0 E-F1 I-F1 PSDS-1 PSDS-2

Weak 2.28 22.71 49.06 15.17 33.47
+ Syn 2.23 30.39 49.63 19.01 28.12
++ Unlabel 2.47 32.11 52.14 26.87 42.19

Table 1: Baseline results using CDur training with amounts of train-
ing data. All results are an average over 5 individual runs on the de-
velopment dataset. Highlighted scores are the main challenge eval-
uation metrics. Higher is better.

The baseline experiments using the proposed CDur model can
be seen in Table 1. The additional data synthetic data seems to de-
crease d0, which likely stems from the mismatch between the syn-
thetic and real data. With the addition of the unlabeled data, how-
ever, d0 largely enhances, since the model now has access to larger

2https://github.com/pytorch/pytorch
3https://github.com/asteroid-team/

torch-audiomentations

amounts of real-world samples. This enhancement is then reflected
on the PSDS-1 and PSDS-2 scores since the clip-smoothing tech-
nique’s filtering capability is now enhanced.

Data d0 E-F1 I-F1 PSDS-1 PSDS-2

Weak 2.27 22.99 49.14 19.98 46.57
+ Syn 2.21 35.31 54.84 29.85 47.34
++ Unlabel 2.50 37.21 57.12 34.41 54.90

Table 2: Development dataset results using the proposed clip-
smoothing with CDur. All results are an average over 5 individual
runs. Highlighted scores are the main challenge evaluation metrics.
Higher is better.

Our results with the proposed clip-smoothing technique can be
observed in Table 2. Comparing to our baseline, clip-smoothing
leads to a large improvement for all metrics, leading to a comparable
performance in terms of PSDS-1 and -2 against the strong baseline.

4.1. Data Augmentation

Two augmentation methods, namely SpecAug [24] and Mixup are
used to enhance performance. The results can be seen in Table 3.
Adding SpecAug to our model training decreases all metrics except
PSDS-2, while the addition of SpecAug + Mixup shows improve-
ments for both PSDS-1 and PSDS-2 scores. In the following, every
experiment denoted as Aug uses SpecAug and Mixup as default.

Aug d0 E-F1 I-F1 PSDS-1 PSDS-2

Base 2.50 37.21 57.12 34.41 54.90
+ SpecAug 2.64 35.68 57.06 32.60 56.26
++ Mixup 2.60 35.76 56.01 34.59 57.11

Table 3: Results with additional data augmentation in form of
SpecAug and Mixup on the development dataset. All results are
an average over 5 individual runs. Highlighted scores are the main
challenge evaluation metrics.

4.2. Ensemble and submissions

The ensemble submissions seen in Table 4 named S1, S2 and S3
are frame-level averaged over the respective single models, which
are:

• Aug, which uses clip-smoothing and additional specaug +
mixup during training (see Table 3).

• Heavy uses much stronger augmentations during UDA than the
default ones. Time Masking with a maximal length of 5s as
well as a 70 % probability to apply volume gain in the range of
-20 to 20 dB.

• MSE uses the mean square error criterion for UDA training
instead of the default BCE.

• WeakShift Uses an additional augmentation via shifting of the
time domain (with rollover) during UDA training. Note that
the training criterion becomes LUDA = BCE(ŷ†, ŷ).

• Sub-8 subsamples the time dimension by a factor of 8, leading
to an output resolution of 80ms instead of 40ms.
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Model d0 E-F1 I-F1 PSDS-1 PSDS-2

Baseline - 40.10 76.60 34.20 52.70
Aug (A) 2.66 36.80 58.94 33.63 57.43
Heavy (B) 2.56 39.02 58.09 35.21 58.00
MSE (C) 2.46 35.08 56.69 34.24 55.07
WeakShift (D) 2.50 39.29 59.02 36.91 57.17
Sub-8 (E) 2.66 36.05 57.17 33.00 59.38
S1 (A+B+C) 2.70 40.89 59.13 37.25 61.99
S2 (S1 + D) 2.70 40.90 59.61 38.23 62.29
S3 (S2 + E) 2.75 41.06 59.71 38.13 62.98

Table 4: Performance for the best single model results on the de-
velopment dataset and the submitted ensemble models. Best results
are highlighted in bold. Ensembles are generated by averaging the
frame-level outputs of each respective model.

Compared to the baseline, our model falls behind in terms of
Intersection-F1 and Event-F1, which is likely due to our neglect of
post-processing methods largely affecting those metrics. However,
in terms of PSDS, our model largely outperforms the baseline ap-
proach by an absolute of at least 3 and 9 points, respectively. Our
submissions to the challenge include the ensemble systems S1, S2
and S3 as well as our best performing single model (D).

4.3. Challenge results

After the challenge ended, the results of all teams participated were
published. Within the challenge, our method scored the 7th over-
all place in terms of the averaged PSDS-1 and PSDS-2 metrics as
well as the average of both metrics (PSDS-Avg). A comparison of
our method against other challenge participants can be seen in Ta-
ble 5. Notably, our approach is the best performing approach in the
challenge without requiring post-processing.

Model PSDS-1 PSDS-2 PSDS-Avg Post

Baseline 31.5 54.7 43.1 Median
1st 45.2 74.6 59.9

Median

2nd 44.2 67.4 55.8
3rd 39.9 71.5 55.7
3rd 41.9 68.6 55.2
4th 41.6 63.7 52.6
5th 41.3 58.6 49.9
6th 37.0 62.6 49.8
S1 36.1 58.4 47.2

-S2 37.3 58.5 47.9
S3 37.0 59.6 48.3
S4 (Single) 33.9 50.4 42.1
Ours (best) 37.3 59.6 48.4 -

Table 5: Performance of our models in comparison to other partici-
pants in the challenge on the official evaluation dataset. Best mod-
els with postprocessing (Post) using median filtering and without
are displayed in bold.

4.4. Post-challenge post-processing

Since all other participants opt to use median filtering, we also pro-
vide our results on the development set in comparison to theirs using

an adaptive window size for each event. The window sizes are es-
timated from the validation dataset, where one-third of each event’s
average duration is used as the window sizes.

Model #Param (M) PSDS-1 PSDS-2 Score Single?

1st 14.3 45.2 74.6 1.40 N
2nd 20.2 44.2 67.4 1.32 Y
3rd 79.2 33.9 71.5 1.29 N
3rd 50.0 41.9 68.6 1.29 N
4th 119.8 41.6 63.7 1.24 N
S3 3.4 38.2 65.4 1.20 Y
S2 2.7 37.9 64.3 1.19 Y
5th 8.5 41.3 58.6 1.19 Y
S1 2.0 36.1 64.3 1.16 Y
6th 6.7 37.0 62.6 1.16 Y

Table 6: Post-challenge performance of our models in comparison
to other participants using median post-processing on the evaluation
set. “Single” refers to whether the results stem from a single sub-
mission or two different submissions. “Score” represents the chal-
lenge ranking score, where 1.0 is the challenge baseline. If multiple
models were used, the reported parameter count represent the sum
of each individual model’s parameters.

As we can see from the results in Table 6, our model compares
favorably against other participants in terms of parameter count to
performance ratio4. Further, the submission S3 achieves a notice-
able boost of 2 and 5 points in terms of PSDS-1 and PSDS-2 scores
respectively on the evaluation dataset when using median filtering.
Within the top-performing submissions, our proposed method is the
most lightweight by a large margin as seen in Table 6, achieving
comparable performance to the 4th place, while using only a frac-
tion (2 %) of its parameters. Finally, our method ranks overall sec-
ond if we only compare scores obtained by a single submission i.e.,
a model which performs well in terms of both PSDS-1 and PSDS-2
scores.

5. CONCLUSION

This paper proposes our submission to the DCASE2021 Task4 chal-
lenge. The approach uses clip-smoothing in combination with a
small parameter model to outperform the provided baseline in terms
of PSDS-1 and PSDS-2 scores. Our best single model achieves a
PSDS-1 of 36.91 and 33.9 and a PSDS-2 of 57.17 and 50.4 on the
validation and evaluation datasets, respectively. Moreover, our 4-
model ensemble approach achieves a PSDS-1 of 38.23 and a PSDS-
2 of 62.29, significantly outperforming the challenge baseline by an
absolute of 4.03 and 9.6 points respectively. In terms of the offi-
cial evaluation, our method scored seventh place, while being the
only top-ranking method not using post-processing. When utilizing
common adaptive median post-processing our approach achieves
comparable performance to the 5th place, while having the fewest
parameters amongst all top-ranked methods.
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ABSTRACT

Automated audio captioning (AAC) has developed rapidly in re-
cent years, involving acoustic signal processing and natural lan-
guage processing to generate human-readable sentences for audio
clips. The current models are generally based on the neural encoder-
decoder architecture, and their decoder mainly uses acoustic infor-
mation that is extracted from the CNN-based encoder. However,
they have ignored semantic information that could help the AAC
model to generate meaningful descriptions. This paper proposes
a novel approach for automated audio captioning based on incor-
porating semantic and acoustic information. Specifically, our au-
dio captioning model consists of two sub-modules. (1) The pre-
trained keyword encoder utilizes pre-trained ResNet38 to initialize
its parameters, and then it is trained by extracted keywords as la-
bels. (2) The multi-modal attention decoder adopts an LSTM-based
decoder that contains semantic and acoustic attention modules. Ex-
periments demonstrate that our proposed model achieves state-of-
the-art performance on the Clotho dataset. Our code can be found
at https://github.com/WangHelin1997/DCASE2021_
Task6_PKU.

Index Terms— Audio captioning, pre-training, multi-modal at-
tention, keyword classification

1. INTRODUCTION

Automated audio captioning (AAC) is a cross-modal task of gener-
ating a natural language description for an audio clip. It is different
from audio tagging (AT), acoustic scene classification (ASC) and
automatic speech recognition. The purpose of AAC is not only to
analyze acoustic scenes, events, and concepts in a given audio clip,
but also to find the relationships among them to produce human-
readable sentences. Applications of automated audio captioning are
diverse such as assisting the hearing impaired people by convert-
ing audio signals into a text, and content-based audio retrieval task
which uses the free-form natural language queries to retrieve the
audio [1].

AAC has aroused a lot of interest among researchers since
the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2020 challenge. Nowadays, the mainstream framework is
based on neural encoder-decoder systems which have achieved suc-
cess in some relevant fields such as image captioning [2]. The cur-
rent AAC models consist of a convolutional neural network (CNN)
encoder and a recurrent neural network (RNN) (or Transformer)

⇤Yuexian Zou is the corresponding author.

decoder with an attention mechanism. The inputs used could be
log-mel energies, Mel-Frequency Cepstral Coefficients(MFCCs), or
other acoustic features which are extracted from raw audio clips.
They are firstly encoded by a CNN encoder into a set of feature
vectors. Then, they are decoded into sentences by an RNN-based
or Transformer-based decoder with (or without) an attention mech-
anism.

Over past few years, there are amounts of methods proposed in
AAC task [3, 4, 5, 6, 7] based on neural encoder-decoder systems.
M. Wu et al. [3] straightly takes the mean of the feature vectors
that are the outputs of the encoder in the time dimension, and uses
them as the input of the decoder. H. Wang et al. [5] proposed a
temporal attention mechanism in the decoder, which could utilize
more acoustic information for each time step. In contrast to previ-
ous work in AAC, Y. Wu et al. [4] and X. Xu et al. [6] explore trans-
fer learning method to help AAC models to get better performance.
The strategy of their proposed methods could be divided into two
stages. In the first stage, a tagging system is pre-trained by ASC or
AT task. Then the parameters of the audio encoder are initialized
by the pre-trained tagging system. In the second stage, the whole
AAC model is trained end-to-end by minimizing the cross-entropy
(CE) loss. With these methods mentioned above, they generally
only consider acoustic information while ignoring semantic infor-
mation when the AAC model generates sentences. Specifically, the
semantic information could contain keywords that are from the en-
coder, previously predicted words in the decoding time, and so on.
In this paper, we introduce semantic information with acoustic in-
formation to assist the decoder to generate higher quality sentences.
Furthermore, to better make use of semantic and acoustic informa-
tion, we propose a novel multi-modal attention mechanism. In sum-
mary, our contributions are as follows:

1. We propose a multi-modal attention-based audio captioning
model with a pre-trained keyword encoder, named MAAC.
It could utilize both acoustic and semantic information to
generate the description. The semantic information includes
keywords from the pre-trained keyword encoder and the pre-
viously decoding information from the decoder.

2. Our MAAC achieves a new state-of-the-art performance on
the Clotho dataset. We present the ablation analysis of the
components of our MAAC and demonstrate that seman-
tic information could improve the performance of the AAC
model.

The organization of the paper is as follows. Section 2 intro-
duces our proposed model. We present our experimental results
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Figure 1: (a) Our proposed MAAC includes two submodules: the pre-trained keyword encoder is on the top and the LSTM-based decoder
with a multi-modal attention module is on the bottom. (b) The architecture of the attention mechanism. F could represent acoustic features
or semantic features.

and evaluations in Section 3. Finally, we give concluding remarks
and possible future directions in Section 4.

2. SYSTEM ARCHITECTURE

In this section, our proposed MAAC is introduced and its architec-
ture is shown in Figure 1. Specifically, our MAAC consists of two
submodules: a pre-trained keyword encoder and an LSTM-based
decoder with a multi-modal attention module. In the following sub-
sections, we will introduce details about it.

2.1. Pre-trained Keyword Encoder

The CNN encoder, which is widely used in the AAC challenge [4,
5], plays an important role in extracting acoustic information from
raw audios. In this work, we extract keywords from captions as
training labels and use the pre-trained ResNet381 [8] that performs
well in the AudioSet dataset [9] as our backbone network.
Constructing Audio-Keyword Training Pairs Firstly, Natural
Language Toolkit (NLTK2) is a powerful open-source tool applied
to extract words from each caption. We choose the nouns and verbs
to construct the keyword table by getting rid of some useless words
such as make, go, others, etc. The verbs in the keyword table are
transformed into their original forms and the nouns are not changed,
because plural forms of the nouns have different meanings. Then,
we choose N keywords with the highest frequency from the modi-
fied keyword table and use them as labels for pre-training.

We combine all the keywords from the 5 captions of each audio
clip to form the training label which is a multi-hot vector. Each
word of captions is transformed into its original forms according
to the above rules. When a word occurs in the keyword table, the
corresponding position of the multi-hot vector is set to 1, otherwise
0.

1
https://github.com/qiuqiangkong/audioset_

tagging_cnn

2
https://github.com/nltk/nltk

Training the Keyword Encoder As Figure 1 illustrates, the pre-
trained ResNet38 is used as our backbone, which consists of 6 con-
volutional blocks. We refine it with a feature hierarchy structure to
combine multi-level features, i.e. the features after the third, fourth,
and last convolution block. Then all of them are passed into differ-
ent linear layers after the global average pooling (GAP) method to
obtain f1, f2 and f3. Finally, we use them to obtain the predictions
ŷ 2 RN and N is the number of keywords.

ŷ = �(Linear(concat(f1, f2, f3))) (1)

where � denotes sigmoid activation function. Given the ground-
truth y 2 RN , the pre-trained keyword encoder could be optimized
by minimizing the binary cross-entropy loss:

Lbce(y, ŷ) = � 1
N

NX

i=1

y(i)log ŷ(i) (2)

2.2. Multi-modal Attention Decoder

Unlike the existing audio captioning models, we further incorporate
acoustic with semantic information into generating captions: we
propose a multi-modal attention module to incorporate them. The
high-level representation of acoustic information denoted as X =
{x1, ..., xL} 2 RL⇥C1 , is the output of a linear layer whose input
is the output of the last convolution block of the pre-trained key-
word encoder. The semantic features contain the keywords W =
{w1, ..., wK} that is the K outputs of the pre-trained keyword en-
coder, and the previously predicted words P = {p1, ..., pt�1} that
contain all the generated words before time step t. Both of them
are transformed into continuous vectors by a randomly initialized
embedding layer Emb, W 2 RK⇥C2 and P 2 R(t�1)⇥C2 . The
implementation process of the multi-modal attention module is as
follows.

Firstly, all of them are transformed into the same latent space,
where X is turned to X̂ 2 RT⇥C , W becomes Ŵ 2 RK⇥C and P
becomes P̂ 2 R(t�1)⇥C . Then the hidden states as intermediaries
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Table 1: Single-model performances on the Clotho [10] evaluation splits in the CE and RL training period. B1, B4, RG, ME, CD, SP, and SD
denote BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr-D, SPICE, and SPIDEr, respectively. For all metrics, higher values indicate better
performance.

Cross-entropy CIDEr-D optimization

Model B1 B4 RG ME CD SP SD B1 B4 RG ME CD SP SD

Baseline [10] 37.8 1.7 26.3 7.8 7.5 2.8 5.1 - - - - - - -
TAM [5] 48.9 10.7 32.5 14.8 25.2 9.1 17.2 - - - - - - -
TM [4] 53.4 15.1 35.6 16.0 34.6 10.8 22.7 - - - - - - -

UNIS’s model [11] - - - - - - - 62.5 17.8 40.1 17.6 42.8 12.6 27.7
SJTU’s model [12] 56.5 15.5 37.4 17.4 39.9 11.9 25.9 64.0 16.3 40.4 17.8 44.9 12.3 28.6

MAAC (Ours) 57.7 17.4 37.7 17.4 41.9 11.9 26.9 64.8 18.1 40.8 19.0 49.1 13.1 31.1

Table 2: Settings and results of ablation studies. The results are re-
ported after CE training stage. SAM denotes the semantic attention
module.

Model B4 CD SD

Base 16.5 40.6 26.4

+ Previously predicted words 17.1 41.1 26.4
+ Keywords can not converge
+ Both (w/o sharing SAM) 16.8 41.1 26.7

proposed MAAC 17.4 41.9 26.9

connect X̂ , Ŵ and P̂ , through a multi-modal attention mechanism
that is shown in Figure 2. Taking the acoustic information for ex-
ample: given the previous LSTM hidden state ht�1, we use a single
fully-connected layer followed by a softmax function to generate
the attention distributions ↵ of acoustic features in the time dimen-
sion. Finally, the gated linear unit (GLU) is applied to the output
of the attention module, to control how much information should
flow into the next layer. Formula (3)-(5) are the definitions of the
acoustic attention module x:

A = ReLU((X̂W T
i + bi)� (ht�1W

T
s + bs)) (3)

↵ = softmax(AWn + bn) (4)

ox = GLU([X̂ ⌦↵, ht�1]) (5)

where Ws 2 RM⇥H , Wi 2 RM⇥C , Wn 2 RM are trans-
formation matrixes that map acoustic features and hidden states
to the same dimension. Here are bs 2 RM , bi 2 RM , and
bn 2 R1. We denote � as the element-wise addition of a matrix
and a vector, and ⌦ as the element-wise multiplication of a matrix
and a vector. We choose the GLU operation to obtain the output
ox 2 RC , which implements a simple gating mechanism over the
output Y = [A,B] 2 R2d:

GLU([A,B]) = A⌦ �(B) (6)

where A 2 Rd,B 2 Rd are the inputs to the non-linearity, and the
output GLU([A,B]) 2 Rd is half the size of Y [13].

As for the semantic information, the same structure of the atten-
tion module is applied to keywords and previously predicted words,
and the outputs are ow 2 RC and op 2 RC respectively. Note each
part of semantic information shares an attention module. We add

ox, ow, op with wt�1 which is a predicted word of the last time
step to obtain the output ot. Then, ot and ht�1 are sent to calcu-
late the hidden state ht which is used to predict word probability
distribution vt. Finally, the current word wt is chosen from vt with
the highest probability and added to previously predicted words P
for the next iteration of LSTM. Formula (7) is the operation of the
multi-modal attention module described above:

h0 = GAP (X̂)

ht = LSTM(ht�1, Add(ox, ow, op,Emb(wt�1)))

vt = Softmax(Linear(ht))

(7)

where h0 represents the global information of acoustic features in
the time dimension. vt 2 R|⌃| is a probability vector, and |⌃| is a
predefined dictionary including all words.

3. EXPERIMENT

3.1. Dataset and Experiment Setup

Clotho v2 We evaluate our proposed method on the Clotho v2
dataset [10], which is published in DCASE 2020 and expanded in
DCASE 2021. Nowadays it contains 5,929 audio clips labeled with
5 captions for each, including 3,839 training, 1,045 validation, and
1,045 testing audio clips. We convert all sentences to lower case
and remove all punctuation marks, ending up with a vocabulary |⌃|
of 4368 words including special tokens ”BOS”, ”EOS”, and ”PAD”.
For evaluation, we employ standard evaluation metrics: BLEU [14],
ROUGE-L [15], METEOR [16], CIDEr-D [17], SPICE [18] and
SPIDEr that is the mean of CIDEr-D and SPICE. All metrics are
computed with the audio captioning evaluation tool3.
Implementation Details We choose N = 300 keywords for pre-
training encoder, K = 5 keywords and the dimension of fully-
connected layers C1, C2 and C are 512. The decoder LSTM has
512 hidden units, word embedding size is also set to 512. To miti-
gate overfitting, dropout regularization [19] is used in the word em-
bedding layer with a rate of 0.5, and the word classification layer
with a rate of 0.25.

The training strategy of the MAAC could be divided into two
stages: encoder pre-training and the whole MAAC model training.
In the phase of training the encoder, firstly the CNN backbone is
frozen up, trained with the initial learning rate of 1 ⇥ 10�3 for 80

3
https://github.com/audio-captioning/

caption-evaluation-tools
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(i)

Example 1:
MAAC: Birds are chirping in the background as a door opens and closes.
Keywords: chirp, bird, door, close, open.
GT1: Birds in a zoo are chirping as their cage door are being opened and closed.
GT2: Birds chirping while people move things around and talk in the background.

Example 2:
MAAC: A door creaks as it opens and closes.
Keywords: door, open, creak, close, chair.
GT1: A door creaks as it opens and shuts.
GT2: A door is creaking back and forth in the wind.

Example 3:
MAAC: Cars are passing by and birds are chirping in the background.
Keywords: car, drive, vehicle, pass, bird.
GT1: Birds chirping in the background while a car is driving by.
GT2: A car drives by as birds chip in the background.

(ii)

1.0

0.5

Keywords Previously predicted words

Figure 2: (i) It shows some examples of MAAC outputs and colored words indicate that keywords appear in both predicted and ground-truth
sentences. (ii) The visualization for attention matrices of keywords and previously predicted words in the semantic attention module of
example 1.

epochs. Next, we finetune the whole keyword encoder with the
learning rate of 5 ⇥ 10�4 for 25 epochs. Then, it can be divided
into two parts for training the whole MAAC: CE training and RL
fine-tuning. CE training takes 30 epochs while the parameters of
the pre-trained keyword encoder are frozen. Finally, the 30th CE
training model is used for reinforcement learning (RL) fine-tuning
55 epochs. In all training stages, we adopt an Adam optimizer with
a mini-batch size of 32, and exponential decay to adjust the learning
rate with a factor of 0.98 every epoch. The initial learning rates
are set to 3 ⇥ 10�4 and 5 ⇥ 10�5 for two parts of training the
whole MAAC. In the inference stage, we adopt beam search with
a beam size of 4 that is implemented to achieve the best decoding
performance.

In order to avoid over-fitting and increase data diversity,
SpecAugment [20], SpecAugment++ [21], Mixup [22], Label
smoothing [23] and teacher forcing [24] are used in the training
phase. For Mixup method, it is just used in the training of the key-
word encoder. The label smoothing and teacher forcing are just
used while training the whole MAAC.

3.2. Result Analysis

We compare our proposed MAAC with the following current mod-
els: (1) Baseline [10] is proposed by K. Drossos et al., which
employs a GRU-GRU encoder-decoder framework; (2) Tempo-
ral attention model (TAM) [5] uses the CNN encoder and the
LSTM-based decoder with the temporal attention mechanism; (3)
Transformer-based model (TM) [4] adopts a pre-training strategy
to improve captioning performance; (4) UNIS’s model [11] uses
PANNs to initialize the parameters of the encoder and is pre-trained
on AudioCaps dataset [25]; (5) SJTU’s model [12] utilizes Au-
dioSet to pre-train its encoder in order to enhance the ability of the
encoder to recognize audio concepts. Both (5) and (6) adopt RL
training to obtain the final models.

Table 1 lists the results of various single models on the Clotho
dataset. Our MAAC achieves the highest score on all metrics in
the CIDEr-D optimization stage. In addition, the CIDEr-D score
of the proposed MAAC improves from 41.9 to 49.1 after further
optimizing CIDEr-D.

Through Figure 2 (i), we can find that the pre-trained keyword
encoder can almost recognize the main concepts i.e. keywords (e.g.
bird and chirp in example 1) of a given audio clip, and the keywords

may appear in different states in the ground-truth captions and the
predicted sentences. Figure 2 (ii) further shows that keywords and
previously predicted words are concerned to generate the current
word. For instance, when the decoder is generating “chirping”, it
pays more attention to the “birds” in the previously predicted words
but pays less attention to “birds” in the keywords. That is to say, pre-
viously predicted words and keywords are complementary to each
other in the semantic attention module.

3.3. Ablative Analysis

To quantify the impact of the proposed multi-modal attention mod-
ule, we compare our MAAC against a set of other ablated models
with different settings. The results of various models are shown in
Table 2. We firstly design the “base” model which does not use
previously predicted words and keywords (i.e. the semantic atten-
tion module). Then we add the information of previously predicted
words or keywords to the ”base” model. We find that it has little
impact on the performance of the model by only introducing previ-
ously predicted words. It might be that previously predicted words
would contain wrong words that destroys the input information of
the decoder. In addition, the model which only uses the keywords
in the semantic attention module could not converge. From section
3.2, we know that keywords contain the main concepts of an audio
clip. When we only utilize them in the semantic attention module,
they will cause the decoder to pay more attention to the part of the
keywords and ignore the overall semantic relationship. Moreover,
we examine the performance of using a shared (or not) semantic at-
tention module on its performance and find that a sharing semantic
attention module could further improve the CIDEr-D score.

4. CONCLUSION

In this paper, we propose a novel audio captioning model based on
the multi-modal attention module which utilizes both acoustic and
semantic information to generate captions. In addition, the perfor-
mance of the MAAC achieves a new state-of-the-art under the two
stages of training. The ablation experiments further demonstrate the
effectiveness of the multi-modal attention module. In future work,
we would concentrate on how to align the multi-modal information
more effectively to improve the performance of the AAC.
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ABSTRACT

This paper presents the details of the Audio-Visual Scene Classi-
fication task in the DCASE 2021 Challenge (Task 1 Subtask B).
The task is concerned with classification using audio and video
modalities, using a dataset of synchronized recordings. This task
has attracted 43 submissions from 13 different teams around the
world. Among all submissions, more than half of the submitted
systems have better performance than the baseline. The common
techniques among the top systems are the usage of large pretrained
models such as ResNet or EfficientNet which are trained for the
task-specific problem. Fine-tuning, transfer learning, and data aug-
mentation techniques are also employed to boost the performance.
More importantly, multi-modal methods using both audio and video
are employed by all the top 5 teams. The best system among all
achieved a logloss of 0.195 and accuracy of 93.8%, compared to
the baseline system with logloss of 0.662 and accuracy of 77.1%.

Index Terms— Audio-visual scene classification, DCASE
Challenge 2021

1. INTRODUCTION

Acoustic scene classification (ASC) has been an important task in
the DCASE Challenge throughout the years, attracting the largest
number of participants in each edition. Each challenge included a
supervised, closed set classification setup, with increasingly large
training datasets [1], [2], [3], which has allowed the development of
a wide variety of methods. In recent years, the task has focused on
robustness to different devices and low-complexity solutions [4].

Scene classification is commonly studied in both audio and
video domains. For acoustic scene classification the input is typ-
ically a short audio recording, while for visual scene classification
tasks the input can be an image or a short video clip. State-of-the-art
solutions for ASC are based on spectral features, most commonly
the log-mel spectrogram, and convolutional neural network archi-
tectures, often used in large ensembles [3]. In comparison, visual
scene classification (VSC) from images has a longer history and
more types of approaches, e.g. global attribute descriptors, learning
spatial layout patterns, discriminative region detection, and more
recently hybrid deep models [5]. The classification performance
for images has been significantly increased when large-scale im-
age datasets like ImageNet [6] became available. Various network
structures have been explored over these years, e.g. CNN [7], while

This work was supported in part by the European Research Council
under the European Unions H2020 Framework Programme through ERC
Grant Agreement 637422 EVERYSOUND.

more recently, ResNet [8] and EfficientNet [9] have been proposed
to further increase the performance.

Motivated by the fact that we humans perceive the world
through multiple senses (seeing and hearing), and in each individ-
ual domain methods have reached maturity, multimodal analysis
has become a pursued research direction for further improvement.
Recent work has shown the joint learning of acoustic features and
visual features could bring additional benefits in various tasks, al-
lowing novel target applications such as visualization of the sources
of sound in videos [10], audio-visual alignment for lip-reading [11],
or audio-visual source separation [12]. Feature learning from audio-
visual correspondence (AVC) [13], and more recent work that learns
features through audio-visual spatial alignment from 360 video and
spatial audio [14], have shown significant improvement in perfor-
mance in various downstream tasks.

Audio-visual scene classification (AVSC) is introduced in
DCASE 2021 Challenge for the first time, even though research on
audio-visual joint analysis has been active already for many years.
The novelty of the DCASE task is use of a carefully curated dataset
of audio-visual scenes [15], in contrast to the use of audio-visual
material from YouTube as in the other studies. Audio-visual data
collected from the Youtube mostly has automatically generated la-
bel categories, which makes the data quality irregular. Besides,
most of the datasets based on material from Youtube are task spe-
cific, e.g., action recognition [16], sport types [17], or emotion [18].
In [15], the dataset is carefully planned and recorded using the same
equipment, which gives it a consistent quality.

In this paper we introduce the audio-visual scene classifica-
tion task setup of DCASE 2021 Challenge. We shortly present the
dataset used in the task and the given baseline system. We then
present the challenge participation statistics and analyze the sub-
mitted systems in terms of approaches. Since visual data has a large
number of large datasets, e.g. ImageNet [6], CIFAR [19], most
methods employing the visual modality are expected to use pre-
trained models or transfer learning based on the pretrained models.
A number of resources have been listed and allowed as external data
in the DCASE 2021 website.

The paper is organized as follows: Section 2 introduces the
dataset, system setup and baseline system results. Section 3
presents the challenge results and Section 4 gives an analysis of
selected submissions. Finally, Section 5 concludes this paper.

2. AUDIO-VISUAL SCENE CLASSIFICATION SETUP

In DCASE 2021 Challenge, an audio-visual scene classification
task, illustrated in Fig.1, is introduced for the first time. The input
to the system is both acoustic and visual signals. Single- and multi-
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Figure 1: Overview of audio-visual scene classification

modal approaches were allowed, therefore there was no requirement
to use both audio and video data.

2.1. Dataset

The dataset for this task is TAU Urban Audio-Visual Scenes 2021.
The dataset was recorded during 2018-2019 and consists of ten
scene classes: airport, shopping mall (indoor), metro station (un-
derground), pedestrian street, public square, street (traffic), travel-
ing by tram, bus and metro (underground), and urban park, from
12 European cities: Amsterdam, Barcelona, Helsinki, Lisbon, Lon-
don, Lyon, Madrid, Milan, Prague, Paris, Stockholm, and Vienna.
The audio content of the dataset is a subset of TAU Urban Acoustic
Scenes 2020, in which data was recorded simultaneously with four
different devices [2].

The video content of the dataset was recorded using a GoPro
Hero5 Session; the corresponding time-synchronized audio data
was recorded using a Soundman OKM II Klassik/studio A3 elec-
tret binaural in-ear microphone and a Zoom F8 audio recorder
with 48 kHz sampling rate and 24 bit resolution. The camera was
mounted at chest level on the strap of the backpack, therefore the
captured audio and video have a consistent relationship between
moving objects and sound sources. Faces and licence plates in the
video were blurred during the data postprocessing stage, to meet the
requirements of the General Data Protection Regulation law by the
European Union.

The development dataset contains 34 hours of data, provided in
files with a length of 10 seconds. Complete statistics of the dataset
content can be found in [15]. The evaluation set contains 20 hours
of data from 12 cities (2 cities unseen in the development set), in
files with a length of 1 second.

2.2. Performance Evaluation

Evaluation of systems is performed using two metrics: multiclass
cross-entropy (log-loss) and accuracy. Ranking of submissions is
performed using the log-loss. Accuracy is provided for comparison
with the ASC evaluations from the challenge previous editions.

2.3. Baseline system and results

The baseline system is based on OpenL3 [13] and uses both audio
and video branches in the decision. The audio and video embed-
dings are extracted according to the original OpenL3 architecture,
then each branch is trained separately for scene classification based
on a single modality. The trained audio and video sub-networks
are then connected using two fully-connected feed-forward layers
of size 128 and 10.

Audio embeddings are calculated with a window length of 1 s
and a hop length of 0.1 s, 256 mel filters, using the ”environment”
content type, resulting in an audio embedding vector of length 512.
Video embeddings are extracted using the same variables as the au-
dio embedding, excluding the hop length, resulting in a video em-
bedding vector of length 512. Embeddings are further preprocessed
using z-score normalization for bringing them to zero mean and unit
variance. For training the joint network, Adam optimizer [20] is
used with a learning rate set to 0.0001 and weight decay of 0.0001.
Cross-entropy loss is used as the loss function. The models with
best validation loss are retained. More details on the system are
presented in [15].

The baseline system results are presented in Table 1. In the
test stage, the system predicts an output for each 1 s segment of the
data. The results from Table 1 are different than the ones presented
in [15], because in the latter the evaluation is done for the 10 s clip.
In that case, the final decision for a clip is based on the maximum
probability over 10 classes after summing up the probabilities that
the system outputs for the 1 s segments belonging to the same audio
or video clip. In DCASE challenge, the evaluation data contains
clips with a length of 1 s, therefore the baseline system is evaluated
on segments of length 1 s also in development.

The results in Table 1 show that the easiest to recognize was the
”street with traffic” class, having the lowest log-loss of all classes
at 0.296, and an accuracy of 89.6%. At the other extreme is the
”airport” class, with a log-loss of 0.963 and accuracy 66.8%, and an
average performance of 0.658 log-loss, with 77.0% accuracy. The
class-wise log loss is calculated taking into account only the test
items belonging to the considered class (splitting the classification
task into ten different sub-problems), while overall log loss is cal-
culated taking into account all test items.

3. CHALLENGE RESULTS

There are altogether 13 teams that participated to this task with one
to four submission entries from each team, summing up to 43 en-
tries. Of these, systems of 8 teams outperformed the baseline sys-
tem. The top system, Zhang IOA 3 [21], achieved a log loss of
0.195 and accuracy of 93.8%. Among all submissions, 15 sys-
tems achieved an accuracy higher than 90% and a log loss under
0.34. There are 11 systems which use only the audio modality,
three that use only video, and 27 multimodal systems. The best per-
forming audio-only system, Naranjo-Alcazar UV 3 [22], is ranked
32nd with 1.006 logloss and 66.8% accuracy. The best perform-
ing video-only system, Okazaki LDSLVision 1 [23], is ranked 12th

46



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

Baseline (audio-visual)

Scene class Log loss Accuracy

Airport 0.963 66.8%
Bus 0.396 85.9%
Metro 0.541 80.4%
Metro station 0.565 80.8%
Park 0.710 77.2%
Public square 0.732 71.1%
Shopping mall 0.839 72.6%
Street pedestrian 0.877 72.7%
Street traffic 0.296 89.6%
Tram 0.659 73.1%

Overall 0.658 77.0%

Table 1: Baseline system performance on the development dataset

with 0.312 log loss and 91.6% accuracy, while the top 8 systems
belong to 2 teams, and are all multimodal.

4. ANALYSIS OF SUBMISSIONS

A general analysis of the submitted systems shows that the most
popular approach is usage of both modalities, with multimodal
approaches being used by 26 of the 43 systems. Log-mel ener-
gies are the most widely used acoustic features among the submis-
sions. Data augmentation techniques, including mixup, SpecAug-
ment, color jitter, and frequency masking, are applied in almost ev-
ery submitted system. The usage of large pretrained models such as
ResNet, VGG, EfficientNet trained on ImageNet or Places365 and
fine-tuned on the challenge dataset is employed in most systems
to extract the video embeddings. The combination of information
from the audio and video modalities is implemented as both early
and late fusion. The main characteristics and performance on the
evaluation set of the systems submitted by the top 5 teams are pre-
sented in Table 2.

4.1. Characteristics of top systems

The top ranked system [21] adopts multimodality to solve the
task. In the audio branch, authors employed 1D deep convolu-
tional neural network and investigated three different acoustic fea-
tures: mel filter bank, scalogram extracted by wavelets, and bark
filter bank, calculated from the average and difference channels,
instead of left and right channels. In the video branch, authors
studied four different pretrained models: ResNet-50, EfficientNet-
b5, EfficientNetV2-small, and swin transformer. Authors use the
pretrained model trained on ImageNet, and fine-tune it first on
Places365, then on TAU Urban Audio-Visual Scenes 2021 dataset.
RandomResizedCrop, RandomHorizontalFlip, and Mixup data aug-
mentation techniques are also applied. This approach takes the top
4 ranks, with the best system being based on the combination of
EfficientNet-b5 and log-mel acoustic features, a hybrid fusion com-
prised of model-level and decision-level fusion.

The team ranked on second place [24] used an audio-visual
system and explored various pretrained models for both audio and
video domain. The systems also include data augmentation through
SpecAugment, channel confusion, and pitch shifting. Specifically,
for the audio embedding, authors investugated use of the pretrained
VGGish and PANN networks, both trained on AudioSet, with trans-

fer learning applied to solve the AVSC task. Authors propose use
of FCNN and ResNet to extract high-level audio features, to bet-
ter leverage the acoustic presentations in these models. For the
video embeddings, authors adopt the pretrained model trained on
ImageNet and Places365. Authors also propose to use embeddings
extracted from an audio-visual segment model (AVSM), to repre-
sent a scene as a temporal sequence of fundamental units by using
acoustic and visual features simultaneously. The AVSM sequence
is translated into embedding through a text categorization method,
and authors call this a text embedding. The combination of audio,
video, and text embeddings significantly improves their system’s
performance compared to audio-video only.

The team ranked third [23] also used audio, video and text for
solving the given task. Authors use log-mel spectrogram, frame-
wise image features, and text-guided frame-wise features. For au-
dio, the popular pretrained CNN model trained on AudioSet is used,
with log-mel spectrogram; for video, authors select three backbones
ResNeSt, RegNet, and HRNet; finally, for the text modality, au-
thors use CLIP image encoders trained on image and text caption
pairs using contrastive learning, to obtain text-guided frame-wise
image features. The three domain-specific models were ensembled
using the class-wise confidences of the separate outputs, and post-
processed using the confidence replacement approach of threshold-
ing the log-loss. In this way, the system can avoid the large log-loss
value corresponding to a very small confidence. Authors show that
this approach has significantly improved the log-loss results.

4.2. Systems combinations

Confidence intervals for the accuracy of the top systems presented
in Table 2 are mostly not overlapping (small overlap between ranks
6 and 9). Logloss confidence intervals are ±0.02 for all systems.
Because the systems are significantly different, we investigate some
systems combinations. We first calculate the performance when
combining the outputs of the top three systems with a majority vote
rule. The obtained accuracy is 94.9%, with a 95%CI of ±0.2. Even
though modest, this increase is statistically significant, showing that
the systems behave differently for some of the test examples.

Looking at the same systems as a best case scenario, we calcu-
late accuracy by considering a correct item if at least one of the sys-
tems has classified it correctly. In this case, we obtain an accuracy
of 97.5% with a 95% CI of ±0.1, showing that the vast majority of
the test clips are correctly classified by at least one of the three con-
sidered systems, and that if the right rules for fusion can be found,
performance can be brought very close to 100%.

4.3. General trends

An analysis over the individual modalities among the submissions
reveals that video-based methods have advantages over audio-based
ones. The best audio-only model achieves a logloss of 1.006 and ac-
curacy of 66.8%, while the best video-only model has a much lower
logloss of 0.132 and much higher accuracy of 91.6%. This is due to
several reasons. Firstly, image classification domain has a relatively
longer history than the audio scene classification, which allowed
the development of mature and large pretrained models with mil-
lions of parameters, for example, CNNs, ResNet, VGG, Efficient-
Net and so forth. Secondly, the large-scale image datasets and the
variety of the available image data, such as ImageNet, COCO and
so forth, help making the model more robust. Thirdly, image do-
main has attracted much attention throughout the years, including
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Rank Team Logloss Accuracy (95% CI) Fusion Methods Model Complexity

1 Zhang IOA 3 0.195 93.8% (93.6 - 93.9) early fusion 110M
5 Du USTC 4 0.221 93.2% (93.0 - 93.4) early fusion 373M
9 Okazaki LDSLVision 4 0.257 93.5% (93.3 - 93.7) audio-visual 636M
10 Yang THU 3 0.279 92.1% (91.9 - 92.3) early fusion 121M
16 Hou UGent 4 0.416 85.6% (85.3 - 85.8) late fusion 28M
24 DCASE2021 baseline 0.662 77.1% (76.8 - 77.5) early fusion 711k

Table 2: Performance and general characteristics of top 5 teams (best system of each team). All these systems use both audio and video.

Figure 2: Class-wise performance comparison between the top 1 system and the baseline system on the evaluation set.

airport

bus

metro

Ac
tu

al

airport bus metro me_st park sh_mapu_sq st_tr tramst_pe

Predicted

street pedestrian

shopping mall

public square

street traffic

tram

park

metro station

Figure 3: Confusion matrix of the top-performing system [21].

large numbers of participants in various challenges, such as Kaggle
challenges, therefore promoting the rapid development of this field.

Even though the audio-only models achieve lower performance
than video-only ones, the best performance was obtained by sys-
tems which combined the two modalities. This validates our initial
idea that joint modeling of audio and visual modalities can bring
significant performance gain compared to state-of-the-art uni-modal
systems.

An analysis of the machine learning characteristics of the sub-
mitted systems reveals that there is a direct relationship between the
performance and the model complexity, that is, in general, the top-
performing systems tend to have more complex models with larger
numbers of trainable parameters. Indeed, Spearman’s rank correla-
tion coefficient [25] between the model complexity and system rank
is 0.75, indicating that they are highly correlated. Considering both
complexity and the performance, the baseline system is a balanced
choice with a satisfactory performance.

The choice of evaluation metrics does not affect the ranking
drastically. We found that the top team stays the same position,
the system Okazaki LDSLVision 4 would jump to the second in-
stead of the third spot, Hou UGent 4 would drop to the seventh
instead of the fifth, and Wang BIT 1 would jump to the tenth from

the thirteenth. The Spearman’s rank correlation between accuracy
and logloss indicates a very strong correlation, at 0.93.

In general, no significant changes have been found in terms of
the system performance between the development dataset and the
evaluation dataset, which shows that the dataset is well balanced and
the systems have consistent behavior and good generalization prop-
erties. Most of the system performance shows only a very slight
drop in performance on the evaluation dataset, which is explained
by the data from two cities unseen in training.

The confusion matrix of the top system is shown in Fig.3. In
general, the top system performs very good in all classes; the lowest
class performance is 84%, and the highest is 100%. In particular,
the system achieves the best performance in ”park”(100) and ex-
cellent in ”metro station”(99), ”metro”(98), ”shopping mall”(98),
”street traffic”(98), ”bus”(97). We observe that ”airport” class is
mostly misclassified as ”shopping mall”(12); ”public square” is of-
ten misclassified as ”street pedestrian”(10) and ”street traffic”(6);
and ”tram” is mostly misclassified as ”bus” and ”metro”. This be-
havior is rather intuitive, since inside the airport there are many
shops which may resemble ”shopping mall”, and inside the ”tram”
there are mostly seats and people which may also resemble ”bus”
or ”metro”.

A bar plot comparison of the class-wise performance on the
evaluation set between the baseline and the top system is shown in
Fig.2. It can be seen that the top system has significantly higher per-
formance in all classes, especially ”airport” (logloss 0.859 smaller)
and ”public square” (logloss 0.6 smaller). Some similarities be-
tween the baseline system and the top system can be observed in
the bar plot, with ”park”, ”street traffic” being the easiest to classify
among all classes for both systems, and ”airport”, ”public square”
being the most difficult ones.

5. CONCLUSIONS AND FUTURE WORK

Audio-visual scene classification task was introduced in the
DCASE2021 challenge for the first time, and had a high number
participants and submissions. More than half of the submissions
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outperformed the baseline system. Multimodal approaches were
widely applied among the submissions, and also achieved the best
performance compared to uni-modal methods. The choice of mod-
els used by the top systems reveals that large and well-trained pre-
trained models are important for this task, while data augmentation
and fine-tuning techniques help making the system more robust.
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ABSTRACT
Understanding the reasons behind the predictions of deep neural
networks is a pressing concern as it can be critical in several ap-
plication scenarios. In this work, we present a novel interpretable
model for polyphonic sound event detection. It tackles one of the
limitations of our previous work, i.e. the difficulty to deal with a
multi-label setting properly. The proposed architecture incorporates
a prototype layer and an attention mechanism. The network learns a
set of local prototypes in the latent space representing a patch in the
input representation. Besides, it learns attention maps for position-
ing the local prototypes and reconstructing the latent space. Then,
the predictions are solely based on the attention maps. Thus, the
explanations provided are the attention maps and the correspond-
ing local prototypes. Moreover, one can reconstruct the prototypes
to the audio domain for inspection. The obtained results in urban
sound event detection are comparable to that of two opaque base-
lines but with fewer parameters while offering interpretability.

Index Terms— interpretability, sound event detection, proto-
types

1. INTRODUCTION

After significant advances in computer vision, speech recognition,
and natural language processing, deep learning models have also
become the standard approach in environmental sound processing
tasks, such as sound event detection, audio tagging, and acoustic
scene classification [1, 2]. The increasing complexity of such mod-
els makes it difficult to explain the process that leads to its output
in a way that humans can understand. This can be problematic in
some real–world deployment scenarios. Therefore, research on in-
terpretability and accountability of predictive models are steadily
growing. In addition, interpretable models make it easier to debug,
detect biases, and design defenses for adversarial attacks [3].

Instead of creating intrinsically interpretable deep neural net-
works, most existing works follow a post hoc approach, i.e., they
try to explain the input-output behavior of a black-box model. For
example, training a linear proxy model that imitates the behavior
of the original model but is easier to interpret is a common ap-
proach [4]. However, since the proxy model is typically a local
linear approximation of a non-linear model, it can fall short of pro-
viding a reliable explanation [5]. Other post hoc explanation meth-
ods focus on studying the representations of the input data learned
by the network or highlighting the input characteristics that strongly
influence the output. For instance, saliency maps are a typical ex-
ample of this approach [6], where the gradient of the output with
respect to the input is used to identify the most relevant portions of
the input. However, this is incomplete as an explanation, as it pro-
vides no clue about how the relevant information is being used [5].

Rather than producing explanations of black-box models, some
research seeks to develop inherently interpretable neural networks
that provide faithful explanations to what the model actually com-
putes [5]. By adding specific components, one can strive for ren-
dering some form of interpretability while being as accurate as a
black-box model. An example of this is the incorporation of atten-
tion mechanisms, which are network components that learn to select
the part of the input that the rest of the model should focus on. Thus,
besides improving predictive performance, the relative importance
of the input units offers insights into the model’s decision-making
process. Yet, whether attention mechanisms can provide faithful ex-
planations is a matter of current debate, as it depends on how they
are implemented and the degree of interpretability pursued [7].

Learning through prototypes is another approach that can pro-
vide inherent interpretability to deep neural networks. Decision are
based on a few relevant examples known as prototypes that serve as
a distillation of the data and have a high interpretable value [8, 9].
A prototype is a vector that is close or identical to an instance of
the training set. Deep neural networks can learn those prototypes
in a flexible latent space. For example, the interpretable network
proposed by Li et al. [10] for image classification is based on proto-
types. The architecture appends a special prototype layer and uses
an autoencoder. The prototypes are learned in the low-dimensional
latent space produced by the encoder, and they can be reconstructed
by applying the decoder. The predictions are based on the distance
from the data instance to each prototype in the latent space. Thus,
the explanations are the prototypes and the distances to them, which
are the actual computations of the model to generate the output.

Our previous work extended this approach to audio classifica-
tion [11]. There, we proposed the Audio Prototype Network (AP-
Net) and showed compelling results when applied to speech, music,
and environmental audio, for problems with a single class label per
audio clip. However, in a polyphonic setting (i.e multi-label), an in-
put instance corresponding to several classes should be simultane-
ously close to prototypes of those classes in the latent space. Unfor-
tunately, learning such latent space proved challenging in practice,
thus motivating the alternative approach proposed herein.

In this work, we propose a novel interpretable deep neural
network for polyphonic sound event detection. To provide inter-
pretability, we leverage the prototypes network approach and atten-
tion mechanisms. The network learns local prototypes, i.e. data
points in the latent space representing a patch in the input repre-
sentation. The approach is similar to that of [12] for single class
image classification, which compares image parts to learned proto-
types. However, we extend the scope to a multi-label setting with
promising results in sound event detection. Besides, the proposed
model learns attention maps used for positioning the local proto-
types and reconstructing the latent space properly. Then, the detec-
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tion is solely based on the attention maps. Thus, the explanations of
the network are in the form of local prototypes and attention maps.

2. RELATED WORK

Some post hoc visualization methods have been applied in the au-
dio domain. For instance, in [13] a convolutional–recurrent network
trained for polyphonic sound event detection was evaluated using
saliency maps. In [14], a gradient–based approach was proposed
for visualizing heat maps in the first layer of an end–to–end con-
volutional neural network. Regarding proxy models, SLIME [15]
is a variation of the LIME [4] algorithm for audio content analysis,
which produces visual explanations in the form of temporal, fre-
quency, and time-frequency segmentation. The model we propose
herein also generates visual explanations of its predictions, but these
are faithful to its computations instead of post hoc explanations.

Prototypical learning has been applied to audio problems but
not necessarily looking for interpretability. For example, Pons
et al. [16]—following [17]—used prototypical networks for audio
classification with few data. However, their system is not intended
to be interpretable, so one can not reconstruct the prototypes to the
input space. In contrast, APNet and the model we propose herein
allow for reconstructing the prototypes to the input space through
the decoder and then mapping them to the audio domain.

The first models that used attention mechanisms in the audio
domain applied them in conjunction with recurrent networks for
speech recognition [18, 19]. Nowadays, attention mechanisms are
widely used for speech, music, and other audio-related problems
because of their ability to capture long-term temporal information.
Self-attention mechanisms are used instead of recurrent layers to
integrate temporal information; for instance, they were applied for
music generation [20] and tagging [21]. Attention mechanisms can
also be used for weighting the frequency dimension to create in-
terpretable adaptive filter banks [22]. In contrast, our model does
not use attention maps to weight input’s features. Instead, we use
them as the only information to classify sound sources. Further-
more, since we devise the attention maps for proper reconstruction
from the local prototypes, they are interpretable by design.

Some other models combine attention mechanisms and proto-
types. For instance, ProtoAttend [23] selects input-dependent pro-
totypes based on a relational attention mechanism that connects the
encoded representation and the prototype candidates. In this case,
the prototypes are instances from the training data. However, other
methods use mean vectors as prototypes for few-shot learning [24].

3. PROPOSED MODEL

Let Xi 2 RT ⇥F be the i-th mel-spectrogram where T and F are
the number of time frames and frequency bins, respectively. There-
fore we define the training set as {(Xi,Y i)}Ni=1, where Y i 2 RK

are the one-hot encoded labels, N is the number of instances and
K is the number of classes. APNet is formed by two main com-
ponents: an autoencoder and a classifier [11]. Our proposed model
uses the same autoencoder from APNet, which is represented in
the upper branch of Figure 1, and utilizes a novel classifier. The
encoder is aimed at extracting meaningful features from the input:
Zi = f(Xi), where Zi is a tensor of shape (T, F, C) and repre-
sents the transformed input in the latent space. C is the number of
channels of the encoder’s last convolutional layer. The decoder part
of the autoencoder is used for reconstructing the mel-spectrogram:
fXi = g(Zi) 2 RT ⇥F . Both the encoder and the decoder are

Figure 1: Diagram of the proposed model.

formed by three convolutional layers with leaky ReLu activations.
The encoder includes two max-pooling layers interspersed between
the convolutions and the decoder applies the corresponding unpool-
ing layers. Please refer to [11] for more details. The classifier of
APNet is based on the distance from Zi to a set of M prototypes
with the same shape (T, F,C). Therefore, a prototype is a point
in the latent space corresponding to the full mel-spectrogram repre-
sentation in the input space. This makes it troublesome for APNet
to represent a multi-label input instance as it should be close to pro-
totypes from different classes.

The model proposed in this work is devised to overcome this
limitation, i.e. it is capable of detecting various simultaneous sound
events. The middle and bottom branches in the diagram of Fig-
ure 1 show this novel classifier. We use another encoder, s(·), to
extract M attention maps in the latent space: Si = s(Xi), where
Si is a tensor of shape (T, F,M). The encoder s(·) is similar to
the autoencoder’s one, f(·), but with ReLu activations to force a
non-negative output. Each attention map is related to one proto-
type. Therefore the network learns a set of M prototypes of shape
(1, 1, C). We represent the M prototypes as a tensor P of shape
(1, 1,M,C). Note that each prototype represents one point in the
time-frequency plane in the latent space. Therefore, in the input
space these prototypes represent a patch of shape equal to the re-
ceptive field of the encoder network (32⇥ 32 in this work).

Using the attention maps and the learnable prototypes the
model tries to reconstruct the latent representation Zi. This is
done by multiplying each attention map by its corresponding pro-
totype and then summing all maps. Note that this is equivalent to
a 1 ⇥ 1 2D convolutional layer: bZi = Si ⇤ P , or a dense layer
bZi = Si · P s, where P s is the squeezed version of the tensor P
with shape (M,C).

Therefore bZi has the same shape of Zi and aims to be a re-
construction of the latent space. In summary the attention maps
represent the specific weight of each local prototype in each time-
frequency point in order to have a good reconstruction of the latent
space. Using the decoder g(·) from the top branch, we can project
this reconstructed tensor into the input space, cXi = g( bZi) 2
RT ⇥F . In this way, we can visualize the reconstruction of the latent
space in the input space to inspect it.

Finally, the bottom branch deals with the detection task, which
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is solely based on the attention maps. First, we average the time
dimension of Si:

S̄i[f,m] =
1
T

TX

t=1

Si[t, f,m] (1)

where S̄i has shape (F,M) and integrates the attention map for
each prototype and frequency bin in the latent space. Then, a dense
layer connects a flattened version of S̄i with the classification out-
put:

eY i = sigmoid(S̄i ·W ), (2)
where W 2 RMF⇥K is the kernel of the layer and
eY i = {eYik} 2 R1⇥K . We do not use bias in order to keep this
layer more interpretable. We seek to audit how the model connects
each prototype and each frequency bin to the corresponding output.

3.1. Objective function

We want the model to be able to detect sound events while main-
taining the interpretability of the parameters and the explainabil-
ity of the predictions. For this purpose, we define three losses to
train the model. First we have a loss for learning the detection
task. Since this is a multi-label problem, we use binary cross-
entropy, Lc. Then we define a mean squared error loss to have
good reconstruction quality in the autoencoder of the top branch:

Lr = 1
N

PN
i=1

���Xi �fXi

���
2

2
. This loss ensures that we can trans-

form the data from the latent space back to the input space, in par-
ticular the learned prototypes.

Finally, we define a loss for enforcing a correct process of re-
construction using the attention maps and the prototypes. In other
words, we let the network learn how to position the prototypes us-
ing the attention maps. In this sense, we define a mean squared error
loss in both latent and input spaces:

Lp =
1
N

NX

i=1

���Zi � bZi

���
2

2
+

1
N

NX

i=1

���Xi �cXi

���
2

2
. (3)

This loss ensures two assets of the model related to its interpretabil-
ity. First, this loss establishes that the attention maps are learned to
be an explicit explanation of how the model makes its predictions.
Note that the attention maps are the only information used for the
final prediction. And these maps are interpretable since they show
how to position each prototype in the latent space in order to have a
good reconstruction. Moreover this loss ensures that the prototypes
are similar to the data and therefore we can transform them to the
input space and audit them.

Besides, we use l1 regularization to force some sparsity in the
attention map: Rs = 1

N

PN
i=1 kZik1. This is to prevent the net-

work from reconstructing the latent space by mixing many proto-
types. We also apply the same type of regularization to the kernel
of the dense layer that connects the attention maps and the output:
Rw = kW k1. The idea is that the output for a given class is ac-
tivated with only a few points on the attention map, both in the
frequency and prototype dimension. Therefore we keep the expla-
nations as simple as possible.

While training the proposed system, we optimize the weighted
sum of all losses and regularization terms defined previously:

L = ↵Lc + �Lr + �Lp + �Rs + ✏Rw (4)

where the weights (↵,�, �, �, ✏) are real-valued hyperparameters.

Figure 2: Reconstructed learned local prototypes. The y axis repre-
sents the mel bands where the prototypes were reconstructed.

4. EXPERIMENTS AND RESULTS

We train the proposed model by optimizing the objective function
defined in Eq. (4). We use Adam optimizer with a learning rate of
0.001 for 50 epochs and we select the model with the top perfor-
mance in the validation set. We use the following set of hyperpa-
rameters (10, 5, 5, 10�5, 10�6) and a batch size of 256. The exper-
iments are conducted using the DCASE-models library [25] and the
code is available under an open-source license1.

We compare the performance of the proposed model to that
of two different opaque baselines: (1) a convolutional neural net-
work (CNN) formed by three convolution layers and two dense
layers [26]; and (2) a multi-layer perceptron (MLP) whose in-
put is the embedding vector extracted from the pre-trained Openl3
model [27]. We optimize a binary cross-entropy loss with the same
optimizer and strategy for these baselines as for the proposed model.

We train and evaluate the proposed model and the baselines on
the URBAN-SED dataset v2.0 [26]. This is formed by 10-second
length audio files corresponding to synthetic mixtures of sound
sources obtained from the UrbanSound8k dataset. Each sound event
is tagged with one of the following classes: air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot, jack-
hammer, siren, and street music. The three models use log-scaled
mel-spectrogram as input representation, but with different parame-
ters. Both the CNN and the proposed model uses 128 mel bands and
a sampling rate of 22050 Hz. The proposed model uses a window
size of 4096 and hop size of 1024 for calculating the spectrograms.
On the other hand, CNN uses a window size of 512 and hop size of
the same length. Openl3 has predefined parameters [27].

To evaluate the models, we use F-measure (F1) and error rate
(ER) in a 1-second grid as commonly used for sound event de-
tection [28]. We run the training 10 times and calculate the mean
and standard deviation of both metrics. Table 1 shows the perfor-
mance comparison of the three models along with their number of

1https://github.com/pzinemanas/attprotos
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Figure 3: Example of an input instance from the test set masked
by the attention maps. At the top left plot we show the mel-
spectrogram, which includes sound events of six different classes.
The other plots are the same mel-spectrogram but masked by each
of the reconstructed attention maps for the corresponding classes.

parameters. Note that the performance of the proposed model is
comparable to that of the baselines, but with fewer parameters.

Table 1: Performance comparison of the proposed model and the
two baselines. The performance metrics are the F-measure (F1)
and the error rate (ER). The number (#) of parameters in millions
(M) are also included in the comparison.

Network F1 (%) ER # Params. (M)

CNN 57.3± 0.6 0.568± 0.006 0.5
Openl3+MLP 58.2± 0.3 0.558± 0.004 9.5

Ours 58.8± 0.9 0.572± 0.007 0.15

4.1. Prototypes

The reconstruction of the latent space helps the network to learn
prototypes similar to patches from the training data. We use the de-
coder part of the autoencoder, g(·), to reconstruct the learned pro-
totypes in the input space. We follow a process similar to that per-
formed in APNet for this purpose [11]. But in this case, we have
to extend the prototypes tensor P to have the same shape of the la-
tent space, i.e. (M,T, F,C). To this end, we create a zero tensor
of this shape and select a point in the time-frequency plane where
to position each prototype. The time is selected arbitrarily at the
center, and the frequency is selected by minimizing the distance of
each prototype to the data instances. By doing this, we reconstruct
the patches in the frequency bands where the closest data instances
have these prototypes present. Figure 2 shows a set of selected pro-
totypes. Note that the network learns different types of shapes and
textures related to environmental sounds present in the data set.

4.2. Attention maps

For each data instance it is possible to extract the corresponding
attention maps to provide and explanation on how the model makes

its predictions. For a given class k, we follow the following process:

1. Mask the prediction eY i 2 R1⇥K by a unit vector of the
same shape whose k-th component is the only one equal to
1: eY

(k)
i = eY i � 1k

2. Get the points of the previous layer that are more
connected to the output k by calculating the gradient:
rS̄

(k)
i = eY

(k)
i ·W T 2 R1⇥FM

3. Reshape the gradient to (F,M), apply a half-wave rectifier
to keep only positive connections and multiply it by the time-
averaged attention maps: S̄

(k)
i = ReLu

⇣
rS̄

(k)
i

⌘
� S̄i.

This represents the attention maps masked by the most im-
portant connections to the output k.

4. Find the most connected prototype by maximiz-
ing the energy of the masked attention map:

bm = argmaxm2[1,...,M ]

PF
f=1

⇣
S̄(k)
i [f,m]

⌘2

5. Extract the frequency-dependent attention function:
S(k)
i [f ] = S̄(k)

i [f, bm]

6. Convert the attention function to the input space. To do this,
we first upsample the sequence by a rate of 4 to emulate
the two max-pooling operations. Then we apply a moving-
average filter to emulate the receptive field. Thus, the length
of the filter is equal to the receptive field (32).

Figure 3 shows an example of the attention maps for three dif-
ferent classes. We multiply the attention maps in the input space by
the mel-spectrograms, similarly to how the model does in the latent
space. Note that the model can detect simultaneous sound events
whose energy is concentrated in different frequency bands. Since
the attention maps are designed to reconstruct the latent space and
are the only information used for classification, these represent the
inherent explanation of how the network makes its predictions.

5. CONCLUSION

In this work, we present a novel interpretable model for polyphonic
sound event detection. Its predictions are based on attention maps
learned for reconstructing the latent space by positioning a set of
local prototypes. The network also learns the local prototypes as
data points in the latent space representing a patch in the input rep-
resentation. The attention maps provide a form of explanation that
is faithful to the model computations and can give valuable insights
into its decision process. Moreover, the prototypes can be recon-
structed and thus can be listened to and audited.

The proposed model achieves encouraging results in urban
sound event detection for a data set of synthetic mixtures, which
are comparable to that from two opaque baselines but with fewer
parameters, while at the same time offering interpretability. This
is consistent with some previous work that claims that it is often
possible to incorporate interpretability into deep learning models to
tackle complex tasks without sacrificing performance [10, 12, 5].

Future work includes ablation studies to understand better the
impact of the proposed losses and regularization terms in the final
model. In addition, more experiments are needed to evaluate the
effect of some hyperparameter values, such as the loss weights and
the number of prototypes. Besides, we should evaluate the model
with datasets recorded in natural conditions. Finally, we seek fur-
ther development of interpretable models to analyze environmental
sounds, including those that learn disentangled representations.
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ABSTRACT

Systems based on sub-cluster AdaCos yield state-of-the-art perfor-
mance on the DCASE 2020 dataset for anomalous sound detec-
tion. In contrast to the previous year, the dataset belonging to task
2 “Unsupervised Anomalous Sound Detection for Machine Condi-
tion Monitoring under Domain Shifted Conditions” of the DCASE
challenge 2021 contains not only source domains with 1000 normal
training samples for each machine but also so-called target domains
with different acoustic conditions for which only 3 normal training
samples are available. To address this additional problem, a novel
anomalous sound detection system based on sub-cluster AdaCos for
the DCASE challenge 2021 is presented. The system is trained to
extract embeddings whose distributions are estimated in different
ways for source and target domains, and utilize the resulting nega-
tive log-likelihoods as anomaly scores. In experimental evaluations,
it is shown that the presented system significantly outperforms both
baseline systems on the source and target domains of the devel-
opment set. On the evaluation set of the challenge, the proposed
system is ranked third among all 27 teams’ submissions.

Index Terms— anomalous sound detection, machine listening,
representation learning, angular margin loss, domain shift

1. INTRODUCTION

The goal of semi-supervised anomalous sound detection is to de-
cide whether a given audio sample resembles the training data i.e.
is normal or substantially differs from the training data and thus is
anomalous. Basically, one can distinguish two major strategies for
anomalous sound detection: The first approach is based on training
autoencoders to encode normal data into a lower-dimensional space
and then reconstruct it again [1, 2]. The underlying assumption
is that normal data can be reconstructed well after training while
anomalous data cannot, leading to a higher reconstruction error.
Thus, the reconstruction error can be used as an anomaly score. The
second approach is to train neural networks to discriminate among
classes as for example machine types and utilize the trained neu-
ral network to extract representation of the data, so-called embed-
dings, as features [3, 4, 5, 6, 7]. Here, the assumption is that the
information needed to discriminate among the classes and thus is
contained in the embeddings is also sufficient to distinguish normal
from anomalous data. Angular margin losses such as ArcFace [8] or
AdaCos [9], which ensure a margin between the classes, have been
shown to outperform standard softmax losses in this context. To our
knowledge, the best performing system on the anomalous sound de-
tection dataset belonging to task 2 of the DCASE challenge 2020
[10] uses an extension of AdaCos, called sub-cluster AdaCos [11].

This loss learns more than a single mean value for each class to es-
timate less restrictive distributions of the embeddings than standard
AdaCos and utilizes Gaussian mixture models (GMMs) to estimate
these distributions for the normal data instead of comparing embed-
dings to the learned mean values by using the cosine similarity. This
superior performance is the reason why this work focuses entirely
on a system based on the sub-cluster AdaCos loss.

The system presented in this paper is designed for and submit-
ted to task 2 “Unsupervised Anomalous Sound Detection for Ma-
chine Condition Monitoring under Domain Shifted Conditions” of
the DCASE challenge 2021 [12]. The dataset of this task consists of
audio recordings with a length of 10 seconds and a sampling rate of
16 kHz belonging to the machine types “ToyCar” and “ToyTrain”
from ToyADMOS2 [13] and the machines types “fan”, “gearbox”,
“pump”, “slide rail” and “valve” from MIMII DUE [14]. The or-
ganizers of the challenge also provided two baseline systems: An
autoencoder, which is the same as the baseline system of the previ-
ous edition of the task, and a discriminatively trained MobileNetV2-
based baseline that predicts the section, which is a subset of the data
within one machine type, a given audio sample belongs to.

In contrast to the DCASE challenge 2020, there are several dif-
ferences for this year’s task: First and foremost, the dataset is split
into source domains for which about 1000 normal training samples
are provided for each of the 6 sections per machine type and so-
called target domains for the same sections with different acoustic
conditions than the source domains for which only 3 normal train-
ing samples are available. For both domains, the same number of
test samples is provided, about 100 normal samples and 100 anoma-
lous samples. Furthermore, the dataset is split into a development
set consisting of half of the sections and an evaluation set consist-
ing of the other half of the sections. Another difference between
the datasets is, that the sections do not directly correspond to spe-
cific products of a machine type but the same products can appear in
different sections or different products can appear in the same sec-
tions. Both of these changes make the task much more challenging
than before. Last but not least, the DCASE 2020 dataset consists of
slightly different machine types, namely “ToyCar” and “ToyCon-
veyor” from the ToyADMOS dataset [15] and the machine types
“fan”, “pump”, “slide rail” and “valve” from the MIMII dataset
[16].

The goal of this work is to investigate how to utilize the sub-
cluster AdaCos loss for the DCASE 2021 anomalous sound detec-
tion dataset with its novel challenges. To this end, a system based
on the sub-cluster AdaCos loss is presented. As a second contribu-
tion, different ways to compute anomaly scores for the source and
target domains are proposed. Furthermore, it is shown how to de-
cide whether samples are normal or anomalous only based on these
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layer name structure output size

input - 313⇥ 128
2D convolution 7⇥ 7, stride= 2 157⇥ 64⇥ 16

residual block
✓
3⇥ 3
3⇥ 3

◆
⇥ 2, stride= 1 78⇥ 31⇥ 16

residual block
✓
3⇥ 3
3⇥ 3

◆
⇥ 2, stride= 1 39⇥ 16⇥ 32

residual block
✓
3⇥ 3
3⇥ 3

◆
⇥ 2, stride= 1 20⇥ 8⇥ 64

residual block
✓
3⇥ 3
3⇥ 3

◆
⇥ 2, stride= 1 10⇥ 4⇥ 128

max pooling 10⇥ 1, stride= 1 4⇥ 128
flatten - 512
dense (representation) linear 128

sub-cluster AdaCos - 42
sub-cluster AdaCos - 199

Table 1: Modified ResNet architecture used for all experiments.

scores from normal data. In experimental evaluations, it is shown
that the proposed system significantly outperforms both baseline
systems on the source and target domains of the development set.

2. METHODOLOGY

2.1. Sub-Cluster AdaCos loss

The standard AdaCos [9] loss is an angular margin loss that uses
an adaptive scale parameter and thus does not require any hyper-
parameter to be set. For detecting anomalous sounds, this loss has
been extended to the sub-cluster AdaCos loss [11] that learns mul-
tiple mean values for each class instead of a single one. This loss
has been shown to significantly outperform the standard AdaCos
loss on the DCASE 2020 dataset and thus is the only loss used for
training the proposed system. The probability of sample xi 2 RD

belonging to class j of the C 2 N classes is given by

P̂i,j :=
X

l2M(j)

exp(ŝ · cos ✓i,l)PCS
k=1 exp(ŝ · cos ✓i,k)

(1)

where M(j) denotes all sub-clusters belonging to class j, S 2 N
denotes the number of sub-clusters, ŝ denotes the adaptive scale
parameter as defined in [11], and ✓i,k 2 [0,⇡] denotes the angle de-
fined through the cosine similarity cos ✓i,k = hxi,Wki/kxikkWkk
for a learned class center Wk 2 RD .

2.2. Data preprocessing

To compute input features for the neural network, log-Mel spectro-
grams with 128 Mel-bins, a window size of 1024 and a hop size of
512 are extracted from all raw waveforms with a sampling rate of
16 kHz resulting in features of size 313 ⇥ 128. These features are
then standardized by subtracting the temporal mean and dividing by
the temporal standard deviation estimated from all training files.

2.3. Neural network architecture

The network architecture used throughout this work is the same
as used in [11] and can be found in Tab. 2.3. It consists of sev-
eral residual blocks [17] whose output is further processed by max-
pooling over time, flattening and using a final linear dense layer

to obtain the embeddings of size D = 128. In each residual
block, batch normalization [18] is applied and LeakyReLu [19] with
↵ = 0.1 is used as a non-linear transfer function.

To train the neural network, two sub-cluster AdaCos losses with
equal weights are minimized using Adam [20]. One is for classify-
ing jointly among the sections and machine types and the other one
for classifying among the different attribute information given in the
filenames. When training, all normal data contained in the training
set and the additional training set has been used resulting in a to-
tal of 42 sections and 199 different types of attribute information.
Furthermore, mixup [21] is used during training to avoid overfitting
of the model to the training data. The network is implemented in
Tensorflow [22] and trained for 400 epochs with a batch size of 64.

2.4. Calculating anomaly scores

Throughout this work, all anomaly scores are computed by training
Gaussian mixture models (GMMs) on the embeddings and utilizing
negatively weighted log-likelihoods as scores. In [11], it has been
shown that using GMMs to estimate the underlying distribution of
the embeddings outperforms other backends such as using cosine
similarity to the class means. Unless stated otherwise, all GMMs
are realized using scikit-learn [23], initialized with the learned mean
values of the sub-cluster AdaCos loss, and have a regularized co-
variance matrix by adding 10�3 to the diagonal. To calculate the
anomaly scores, two different strategies for the source and target
domain are used.

For the source domain, one GMM is trained for all normal data
of the source domain belonging to a single section. Another GMM
is trained for all normal data of the source domain labeled with dif-
ferent attribute information. Let x 2 RD denote an embedding,
s(x) 2 S denote its section and a(s(x)) ⇢ A denote all attribute
information that are present in this section. Then, the anomaly score
Zsource(x) for x is the given by

Zsource(x) :=�max
k

logP (x|s(x), k)

�max
k

max
a2a(s(x))

logP (x|a, k) (2)

where P (.|s, k), P (.|a, k) denote the weighted likelihoods of com-
ponent k of the GMMs trained for section s 2 S and target infor-
mation a 2 A, respectively.

For the target domain, the same GMMs trained on the normal
data of the target domain belonging to single sections are used. Fur-
thermore, another GMM with three components is trained on the
three target samples and thus the cosine distance to the closest nor-
mal target sample is also utilized. Using the above notation, the
anomaly score Ztarget(x) for embedding x is given by

Ztarget(x) :=�max
k

logP (x|s(x), k)

� max
k=1,2,3

logP (x|Xtarget(s(x)), k)
(3)

where Xtarget(s(x)) ⇢ RD denotes the normal training samples of
the target domain belonging to the section of x.

In [11], it has also been shown that a simple representation
derived from the input features leads to surprisingly good perfor-
mance for the machine type “valve” on the DCASE 2020 dataset.
This is the reason why an additional term based on the temporal
maximum of the log-Mel spectrogram, denoted by tmax(x) 2 RD

for embedding x, is introduced when calculating the anomaly score
for the source domain of the machine type “valve”. To this end, a

56



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

GMM with a single Gaussian component is trained and the altered
anomaly score eZsource(x) for embedding x belonging to machine
type “valve” is given by

eZsource(x) := Zsource(x)� max
a2a(s(x))

logPtmax(tmax(x)|a) (4)

where Ptmax(.|a) denotes the weighted likelihoods of the single
Gaussian trained on the temporal maxima of the log-Mel spectro-
grams belonging to target information a 2 A.

2.5. Ensembling strategy

As done in [11], the proposed neural network for extracting the em-
beddings is trained with a different number of sub-clusters ranging
from 20 to 24. The same value is used for both sub-cluster AdaCos
losses. Thus, there are 5 differently trained versions of each net-
work to extract embeddings. Furthermore, after each 100 epochs
of training, the embeddings are extracted and GMMs are trained to
calculate the anomaly detection scores. Then, all of these scores
are summed-up resulting in 4 subsystems for each network with a
specified number of sub-clusters and hence an ensemble consisting
of a total of 4⇥ 5 = 20 models.

In addition to that, the described ensembling procedure is re-
peated by using only a single sub-cluster AdaCos loss classifying
among the sections and machine types only and thus removing the
second sub-cluster AdaCos loss. This led to slightly better perfor-
mance for some machine types and to slightly worse performance
for other machine types. To obtain anomaly scores for each ma-
chine type, the single system is used that led to better performance
for the given machine type. More concretely, for the machine types
“ToyCar”, “ToyTrain”, “pump” and “slide rail” the anomaly scores
obtained by using the model trained on both losses are used and for
“fan”, “gearbox” and “valve” the anomaly scores obtained with the
models trained on only a single loss are used.

2.6. Setting decision thresholds

Next, it is described how decision thresholds for deciding whether
a given test sample is normal or anomalous solely based on the
anomaly score are obtained. To this end, the 90th percentile of
the anomaly scores of all normal training samples belonging to a
given section and a given domain is calculated. Then, all anomaly
scores of test samples belonging to the same section and domain that
are above this threshold are marked as anomalous. For the source
domain, Zsource(x) as defined in Eq. (1) is used but for the target
domain, only the first term of Ztarget(x) is used. The reason is that
the likelihoods from the second term belonging to the training data
are inappropriately high since the three means of the corresponding
GMM are initialized as the three training samples. Hence, when
also using the second term of Eq. (2) the decision threshold would
also be overestimated and thus all test data samples belonging to the
target domain would be considered anomalous.

3. EXPERIMENTAL RESULTS

3.1. Performance on the development set

The experimental results obtained with the proposed system on
the development set compared to both baseline systems can be
found in Tab. 2. It can be seen that the proposed system signifi-
cantly outperforms both baseline systems, which both have roughly

dataset split baseline proposed systemautoencoder MobileNetV2
machine type section domain AUC pAUC AUC pAUC AUC pAUC

ToyCar 0 source 67.63% 51.87% 66.56% 66.47% 75.03% 60.32%
ToyCar 1 source 61.97% 51.82% 71.58% 66.44% 89.30% 73.26%
ToyCar 2 source 74.36% 55.56% 40.37% 47.48% 92.27% 75.32%
ToyCar 0 target 54.50% 50.52% 61.32% 52.61% 92.41% 78.11%
ToyCar 1 target 64.12% 51.14% 72.48% 63.99% 78.34% 61.47%
ToyCar 2 target 56.57% 52.61% 45.17% 48.85% 56.78% 57.26%
ToyCar harmonic mean 62.49% 52.36% 56.04% 56.37% 78.37% 66.64%

ToyTrain 0 source 72.67% 69.38% 69.84% 54.43% 95.62% 88.74%
ToyTrain 1 source 72.65% 62.52% 64.79% 54.09% 90.67% 76.26%
ToyTrain 2 source 69.91% 47.48% 69.28% 47.66% 87.78% 47.37%
ToyTrain 0 target 56.07% 50.62% 46.28% 51.27% 71.32% 48.47%
ToyTrain 1 target 51.13% 48.60% 53.38% 49.60% 49.76% 50.89%
ToyTrain 2 target 55.57% 50.79% 51.42% 53.40% 92.98% 76.58%
ToyTrain harmonic mean 61.71% 53.81% 57.46% 51.61% 77.17% 60.71%

fan 0 source 66.69% 57.08% 43.62% 50.45% 72.17% 62.95%
fan 1 source 67.43% 50.72% 78.33% 78.37% 89.24% 84.68%
fan 2 source 64.21% 53.12% 74.21% 76.80% 83.03% 74.58%
fan 0 target 69.70% 55.13% 53.34% 56.01% 55.30% 48.47%
fan 1 target 49.99% 48.49% 78.12% 66.41% 87.68% 74.58%
fan 2 target 66.19% 56.93% 60.35% 60.97% 72.43% 70.63%
fan harmonic mean 63.24% 53.38% 61.56% 63.02% 74.66% 67.34%

gearbox 0 source 56.03% 51.59% 81.35% 70.46% 85.80% 74.56%
gearbox 1 source 72.77% 52.30% 60.74% 53.88% 85.37% 52.54%
gearbox 2 source 58.96% 51.82% 71.58% 62.23% 61.39% 48.23%
gearbox 0 target 74.29% 55.67% 75.02% 64.77% 81.93% 69.25%
gearbox 1 target 72.12% 51.78% 56.27% 53.30% 86.02% 51.29%
gearbox 2 target 66.41% 53.66% 64.45% 55.58% 65.26% 49.92%
gearbox harmonic mean 65.97% 52.76% 66.70% 59.16% 76.13% 56.00%

pump 0 source 67.48% 61.83% 64.09% 62.40% 77.49% 63.47%
pump 1 source 82.38% 58.29% 86.27% 66.66% 98.26% 91.21%
pump 2 source 63.93% 55.44% 53.70% 50.98% 78.56% 63.68%
pump 0 target 58.01% 51.53% 59.09% 53.96% 57.00% 51.74%
pump 1 target 47.35% 49.65% 71.86% 62.69% 88.82% 62.42%
pump 2 target 62.78% 51.67% 50.16% 51.69% 72.88% 57.26%
pump harmonic mean 61.92% 54.41% 61.89% 57.37% 76.59% 63.00%

slide rail 0 source 74.09% 52.45% 61.51% 53.97% 96.28% 83.16%
slide rail 1 source 82.16% 60.29% 79.97% 55.62% 93.73% 69.16%
slide rail 2 source 78.34% 65.16% 79.86% 71.88% 84.01% 77.30%
slide rail 0 target 67.22% 57.32% 51.96% 51.96% 82.06% 60.63%
slide rail 1 target 66.94% 53.08% 46.83% 52.02% 62.92% 49.76%
slide rail 2 target 46.20% 50.10% 55.61% 55.71% 72.39% 55.72%
slide rail harmonic mean 66.74% 55.94% 59.26% 56.00% 80.16% 63.86%

valve 0 source 50.34% 50.82% 58.34% 54.97% 81.47% 63.00%
valve 1 source 53.52% 49.33% 53.57% 50.09% 90.09% 64.37%
valve 2 source 59.91% 51.96% 56.13% 51.69% 98.07% 91.47%
valve 0 target 47.12% 48.68% 52.19% 51.54% 65.86% 64.74%
valve 1 target 56.39% 53.88% 68.59% 57.83% 81.38% 58.58%
valve 2 target 55.16% 48.97% 53.58% 50.86% 77.42% 56.95%
valve harmonic mean 53.41% 50.54% 56.51% 52.64% 81.13% 64.92%

all harmonic mean 61.93% 53.27% 59.72% 56.37% 77.69% 62.99%

Table 2: AUCs and pAUCs (with p = 0.1) obtained with the base-
line systems and the proposed system on the development set. High-
est AUCs and pAUCs in each row are underlined.

the same overall performance, on the source and target domains.
However, the improvement in terms of AUC is much greater than
for pAUC. For nearly all dataset splits the proposed system has
a higher AUC than both baseline systems. But for some dataset
splits the MobileNetV2-based baseline system has a higher pAUC
than the proposed system. For the machine type “gearbox” the har-
monic mean of all pAUCs belonging to the proposed system is even
slightly worse than the harmonic mean of the MobileNetV2-based
baseline system.

Next, the performances of all distributions and losses used for
the subsystems of the ensemble have been evaluated and compared
on the development set. The results can be found in Tab. 3 and
Tab. 4, respectively. For the distributions it can be seen that
in most cases the distribution conditioned on the sections has a
lower AUC but a higher pAUC than the distribution conditioned
on the file endings and the distribution conditioned on the target
samples. One exception to this is the machine type “gearbox” for
which P (.|s, k) performs best and “ToyCar” and “ToyConveyor”
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dataset split distribution proposed ensemble
P (.|s, k) P (.|a, k) P (.|Xtarget(s), k)

machine type domain AUC pAUC AUC pAUC AUC pAUC AUC pAUC

ToyCar source 82.49% 65.82% 86.22% 69.39% - - 85.04% 69.25%
ToyCar target 65.02% 58.45% - - 76.02% 64.13% 73.21% 64.55%

ToyTrain source 90.54% 65.60% 91.55% 66.11% - - 91.30% 66.01%
ToyTrain target 54.03% 53.21% - - 68.13% 57.29% 66.81% 56.14%

fan source 81.05% 73.34% 80.55% 72.12% - - 80.98% 73.20%
fan target 67.52% 65.71% - - 69.17% 60.20% 69.30% 62.20%

gearbox source 75.20% 58.63% 75.66% 55.65% - - 75.88% 56.46%
gearbox target 81.02% 57.93% - - 75.68% 55.34% 76.64% 55.59%

pump source 83.63% 70.60% 83.83% 70.83% - - 83.70% 70.66%
pump target 69.90% 60.11% - - 70.16% 55.51% 70.52% 56.81%

slide rail source 91.10% 76.23% 90.97% 75.59% - - 91.11% 76.20%
slide rail target 65.90% 56.17% - - 71.63% 54.99% 71.56% 54.94%

valve source 83.85% 73.84% 89.34% 68.89% - - 89.33% 70.77%
valve target 71.66% 61.64% - - 73.31% 59.16% 74.26% 60.00%

all source 83.67% 68.66% 85.09% 67.81% - - 85.00% 68.38%
all target 67.00% 58.80% - - 71.90% 57.93% 71.63% 58.41%

Table 3: Harmonic means of AUCs and pAUCs (with p = 0.1) ob-
tained with different distributions on the development set. Highest
AUCs and pAUCs in each row are underlined.

sub-cluster AdaCos losses for
dataset split sections sections and proposed ensemble

file endings
machine type domain AUC pAUC AUC pAUC AUC pAUC

ToyCar source 74.49% 60.67% 88.58% 71.58% 85.04% 69.25%
ToyCar target 67.44% 61.55% 75.53% 65.84% 73.21% 64.55%

ToyTrain source 86.88% 62.00% 91.15% 67.03% 91.30% 66.01%
ToyTrain target 63.73% 54.18% 68.10% 56.43% 66.81% 56.14%

fan source 81.66% 73.16% 80.22% 72.60% 80.98% 73.20%
fan target 69.11% 62.55% 69.00% 61.16% 69.30% 62.20%

gearbox source 74.97% 57.04% 75.34% 56.16% 75.88% 56.46%
gearbox target 78.53% 59.53% 72.02% 51.90% 76.64% 55.59%

pump source 83.44% 69.75% 83.75% 71.35% 83.70% 70.66%
pump target 68.77% 56.31% 71.30% 56.34% 70.52% 56.81%

slide rail source 90.44% 74.91% 90.99% 76.43% 91.11% 76.20%
slide rail target 68.84% 54.44% 73.13% 55.41% 71.56% 54.94%

valve source 88.90% 72.11% 89.51% 68.95% 89.33% 70.77%
valve target 75.41% 61.12% 72.36% 56.55% 74.26% 60.00%

all source 82.54% 66.44% 85.26% 68.58% 85.00% 68.38%
all target 69.96% 58.34% 71.56% 57.37% 71.63% 58.41%

Table 4: Harmonic means of AUCs and pAUCs (with p = 0.1) ob-
tained with different losses on the development set. Highest AUCs
and pAUCs in each row are underlined.

for which P (.|s, k) yields significantly lower AUCs and pAUCs.
The ensemble obtained by taking the mean of the distributions per-
forms relatively close to the best performing distribution for each
machine type. For the two losses the same three machine types
stated before have the largest differences in performance. When
only using the sections for the loss, the AUCs and pAUCs are higher
for the machine type “gearbox” but lower for machine types “Toy-
Car” and “ToyConveyor” than when also using the file endings for
the loss. For each of the other machine types, no loss is preferable
since both perform better than the other one for some classes but
the differences in performance are relatively small compared to the
three machine types mentioned before. Again, the ensemble yields
results close to the best performing loss for each machine type and
thus seems to combine the strengths of both losses.

3.2. Performance on the evaluation set

The experimental results obtained on the evaluation set compared to
both baseline systems can be found in Tab. 5. Overall, it can be seen
that the proposed system significantly outperforms both baseline

dataset split baseline proposed systemautoencoder MobileNetV2
machine type domain AUC pAUC AUC pAUC AUC pAUC

ToyCar source 76.33% 51.26% 34.32% 53.49% 67.07% 63.05%
ToyCar target 58.02% 53.42% 56.62% 58.89% 72.83% 63.77%

ToyTrain source 69.89% 55.49% 47.30% 52.49% 70.87% 56.19%
ToyTrain target 67.18% 59.78% 39.27% 48.75% 48.38% 52.39%

fan source 66.58% 51.36% 70.88% 57.76% 89.07% 69.85%
fan target 55.74% 49.68% 59.96% 58.53% 88.89% 70.55%

gearbox source 67.81% 55.71% 53.16% 53.47% 61.19% 50.97%
gearbox target 63.32% 58.06% 49.27% 49.83% 54.68% 49.40%

pump source 62.75% 51.18% 67.12% 60.77% 70.89% 65.52%
pump target 54.43% 50.79% 68.85% 59.79% 79.20% 67.81%

slide rail source 64.13% 50.91% 73.06% 60.47% 88.06% 64.38%
slide rail target 51.65% 51.92% 72.78% 60.94% 85.66% 69.69%

valve source 51.56% 50.89% 54.71% 53.03% 73.19% 55.97%
valve target 52.19% 49.27% 51.64% 50.10% 54.90% 51.47%

all source 64.76% 52.32% 53.82% 55.73% 73.13% 60.21%
all target 57.03% 53.01% 54.80% 54.80% 65.76% 59.47%
all both 56.38% 54.77% 64.20%

Table 5: Harmonic means of AUCs and pAUCs (with p = 0.1)
obtained with the baseline systems and the proposed system on the
evaluation set. Highest AUCs and pAUCs in each row are under-
lined.

systems. However, for some machine types as for example “gear-
box” or the target domains of “ToyTrain”, the autoencoder-based
baseline system has a much better performance than the proposed
system. This shows that not all information needed to detect anoma-
lies is captured sufficiently well in the discriminatively trained em-
beddings but an autoencoder is able to identify these anomalous
structures. Hence, also utilizing an autoencoder structure for train-
ing the embeddings may be helpful to further improve the results.

4. CONCLUSIONS AND FUTURE WORK

In this work, a system for detecting anomalous sounds based on the
sub-cluster AdaCos loss function for domain shifted conditions has
been presented. The proposed system consists of multiple discrim-
inatively trained neural networks for extracting embeddings from
log-Mel spectrograms and utilizes multiple GMMs for estimating
distributions of the normal embeddings. These estimated distribu-
tions are then used to calculate log-likelihoods for test data that are
combined into actual anomaly scores. To decide whether a given
test sample is anomalous or normal, individual decision thresholds
for each section are computed by taking the 90th percentile from
the log-likelihoods of the corresponding normal training samples.
In experimental evaluations conducted on the dataset of task 2 of
the DCASE challenge 2021, it has been shown that the proposed
system significantly outperforms both baseline systems of the chal-
lenge in terms of AUC and pAUC on source and target domains of
the development and evaluation set. Moreover, the system ranked
third among all 27 teams that participated in this challenge.

For the near future, it is planned to reduce the size of the ensem-
ble and thus simplify the presented system. This can be achieved by
identifying subsystems that only result in marginal gains and there-
fore can be removed from the ensemble. Furthermore, the perfor-
mance can probably be improved by incorporating an autoencoder
into the proposed system. Instead of building an even larger en-
semble, it seems promising to use an additional reconstruction loss
and therefore enforce the embeddings to capture more information
about the structure of the data as for example done in [24, 25].
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ABSTRACT

Automated audio captioning (AAC) is the task of automatically
generating textual descriptions for general audio signals. A cap-
tioning system has to identify various information from the input
signal and express it with natural language. Existing works mainly
focus on investigating new methods and try to improve their per-
formance measured on existing datasets. Having attracted attention
only recently, very few works on AAC study the performance of ex-
isting pre-trained audio and natural language processing resources.
In this paper, we evaluate the performance of off-the-shelf mod-
els with a Transformer-based captioning approach. We utilize the
freely available Clotho dataset to compare four different pre-trained
machine listening models, four word embedding models, and their
combinations in many different settings. Our evaluation suggests
that YAMNet combined with BERT embeddings produces the best
captions. Moreover, in general, fine-tuning pre-trained word em-
beddings can lead to better performance. Finally, we show that se-
quences of audio embeddings can be processed using a Transformer
encoder to produce higher-quality captions.

Index Terms— audio captioning, transfer learning, word em-
beddings, machine listening, transformer

1. INTRODUCTION

Automated audio captioning (AAC) is an inter-modal translation
task, where existing methods take an audio signal as input and gen-
erate a textual description, i.e. a caption, of its contents [1]. The
generated captions contain information about various aspects of the
content of the audio signal, ranging from identification of sound
events to knowledge about spatiotemporal interactions, foreground
and background disambiguation, surroundings, textures, and other
high-level information [2–4].

To our knowledge, all published works focusing on AAC solely
employ deep learning methods [1–3, 5–17]. Most of them follow
an encoder-decoder scheme and address the task as a sequence-to-
sequence (seq2seq) learning problem [18]. Convolutional neural
network (CNN)-based encoders are often utilized, for example, in
[2, 3, 7, 8, 12, 17], and recurrent neural network (RNN)-based de-
coders can be used in order to generate the captions [1–3, 7, 9, 11–
17]. Recently, more and more methods have involved an atten-
tion mechanism. For example, as a technique to enable the de-
coder to focus only on certain parts of the latent representation

extracted by the encoder [1, 2, 17]. Or more generally, other ap-
proaches [6, 8, 10, 19, 20] employ a Transformer model [21]. This
type of model seems particularly adequate for AAC since it led to
groundbreaking results in multiple fields, such as natural language
processing (NLP), computer vision, and audio processing [22].

Transfer learning is a popular technique often employed in NLP
and machine listening (MaL) tasks. However, existing approaches
in AAC often do not take advantage of any pre-trained resources
and instead train their models from scratch. Only recently, a few
published papers [2,3,5,6] propose to incorporate pre-trained audio
models such as VGGish [23] or to rely on word embedding models
such as word2vec [24]. Given the large number of available pre-
trained models in MaL and NLP, it is still unclear which models are
most suited for AAC. Moreover, incorporating these models into a
Transformer-based AAC system can involve some specific design
choices that are also yet overlooked.

In this paper, we focus on investigating the use of pre-trained
models taken from MaL and NLP in the context of AAC. In par-
ticular, we are interested in identifying which available resources
are the most valuable and how to combine them efficiently in a
Transformer-based AAC system. We use various off-the-shelf pre-
trained audio and word encoding methods. Our contributions are:

• We adapt a Transformer-based AAC method that can use dif-
ferent pre-trained MaL and NLP models,

• We conduct a thorough investigation of the performance of our
method by combining pre-trained models in various settings,

• We identify what combinations of techniques make pre-trained
resources specifically beneficial for an AAC system. We con-
sider fine-tuning word embeddings, using an adapter to process
audio embeddings, and the usage of overlap when extracting
audio embeddings.

The rest of the paper is structured as follows: In Section 2 we
present our method and in Section 3 we outline the evaluation pro-
cess. The results are presented and discussed in Section 4. Finally,
Section 5 concludes the paper.

2. METHOD

In our study, we adopt a Transformer-based model architecture
which has been shown to produce state-of-the-art results for
AAC [10, 19, 20]. An overview of our method is presented in
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Figure 1. It consists of an audio encoder, E(·), an embeddings’
adapter, A(·), and a decoder D(·). As E, we employ different pre-
trained models for general audio processing. For A, we compare the
use of no adapter, a multi-layer perceptron (MLP), and a multi-head
attention (MHA) component. The output of A is used together with
word embeddings of the previously predicted words as an input to
D, a Transformer-based decoder1.

A sequence of audio features X 2 RT⇥F with T vectors of F
features is used as an input to the method, which outputs a sequence
of one-hot encoded tokens S 2 [0, 1]K⇥W , where K corresponds
to the number of tokens in the generated caption and W to the size
of the considered vocabulary. More specifically, X is used as an
input to E as

Z = E(X), (1)

where Z 2 RT 0⇥F 0
is a sequence of T 0 intermediate representa-

tions with F 0 features provided by the pre-trained model (i.e. an
audio embedding sequence). Then, the adapter A will process Z as

Z0 = A(Z), (2)

where Z0 2 RT 0⇥F 00
and F 00 is the dimensionality of the features

that A outputs. Finally, the decoder D will predict the probability
distribution of appearance over the W words at the k-th step, Sk, as

Sk = D(Z0,S0
0, . . . ,S

0
k�1), (3)

where S0
i is a learned word embedding for step i, and S0

0 = {0}W
0
.

As S0, we make use of different pre-trained NLP models.
We employ different audio embedding models that are opti-

mized for a task different from AAC. The extracted audio embed-
dings might contain information that is specific to the corresponding
source task and not necessarily optimal for AAC. We do not fine-
tune the models in our experiment, but instead, we study the usage
of different adapters A that process the audio embeddings Z.

The Transformer decoder D consists of N blocks, each of them
having two serially cascaded MHA layers that perform self and
cross-modal (i.e. between audio and words) attention, respectively.
The output of the second, cross-modal attention, is given as an in-
put to a linear layer and a layer normalization process. The word
embeddings S0 are used as an input to D. Following the original
proposal of the Transformer model, we apply a positional encoding
to the input word embeddings. To generate the captions, the decoder
can be sampled until the desired caption length is met or a special
token indicating the end of a sentence is produced.

3. EVALUATION

In our study, we compare the performance of four pre-trained audio
processing models, two audio embedding adapters, and four pre-
trained NLP models for AAC, using the AAC dataset Clotho [25].

3.1. Dataset, metrics, and experiments

The Clotho dataset contains a training, a validation, and an evalu-
ation split, comprising 3839, 1045, and 1045 audio examples, re-
spectively. Each audio example is annotated with five captions, and
we consider one audio-caption pair a single training example. The
performance is assessed using the SPIDEr score [26]. This metric
is widely established in the community (e.g. in the AAC task from

1For a complete description of the Transformer decoder, refer to [21].
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Figure 1: Model architecture.

the 2021 DCASE Challenge2) as it highly correlates with the human
judgment of caption quality [26].

In all our experiments, the decoder part of our model consists
of N = 3 stacked Transformer decoder blocks with four 128-
dimensional attention heads each, similar to what is used in [10,19].
During training, all models are optimized by minimizing the cross-
entropy loss between the predicted sentence and the target caption
using the Adam algorithm (↵ = 0.001,�1 = 0.9,�2 = 0.999, and
✏ = 10�8) with a minibatch size of 256. Early stopping is applied
after ten epochs with no improvement of the loss calculated on the
held-out validation set. The best model according to this loss is then
evaluated on the evaluation set.

To avoid bias in the results, we repeat all experiments ten times
with different random initialization and report the mean statistic for
all scores. We test all combinations of encoder models with differ-
ent overlaps, audio embedding adapter layers, fixed or fine-tuned
word embeddings. In total, it constitutes 264 different settings.

3.2. Audio embedding models

For each employed audio embedding model, we follow the authors’
methodology to extract audio embeddings using their pre-trained
models. We use the pre-trained models as encoders with frozen
weights, i.e. without fine-tuning.

Existing AAC approaches use audio encoders with different
hop-sizes. In this work, we study the impact of using overlap when
extracting the audio embeddings. More specifically, we use two dif-
ferent settings for the embedding extraction hop-size, correspond-
ing to 50% overlap and no overlap.

Table 1: Audio encoder models compared in this study.

Encoder Dimensionality Window Learning

VGGish 128 0.96 s supervised
YAMNet 1024 0.96 s supervised
OpenL3 512 1.00 s self-supervised
COALA 1152 2.20 s contrastive

2http://dcase.community/challenge2021/
task-automatic-audio-captioning
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Table 1 gives an overview of the audio source models we com-
pared. All four are CNN-based models. The first, VGGish [23],
is inspired by the VGG architecture mainly used in computer
vision [27]. It was trained on a preliminary version of the YouTube-
8M dataset in a supervised fashion [28]. It extracts 128-dimensional
embeddings from roughly 1 second of audio. The second audio em-
bedding model is YAMNet, which also draws inspiration from
computer vision models [23]. It employs a MobileNet [29] ar-
chitecture to extract embeddings with dimensionality 1024 from
almost 1 second of audio. The model was trained to predict 521
audio event classes on the AudioSet dataset [30]. The third model,
OpenL3 [31], is a modified and freely available version of the
L3-Net [32]. OpenL3 is trained in a self-supervised way in an
audio-visual correspondence task, relying on videos from Au-
dioSet. From the multiple variants that the authors provide, we
chose the model configuration that produces an embedding of size
512, and that was trained with 128 Mel bands as input representa-
tion in the environmental sound setting. The fourth and final model
is COALA [33], a model trained by taking advantage of user-
provided tags in Freesound3 [34]. During training, it employed
a contrastive learning approach to align audio and associated tag
embeddings, producing an audio embedding model that can extract
semantically enriched audio representations. The model produces
embeddings from 2.2-second patches.

3.3. Adapter Layers

We compare two different adapter architectures that are depicted in
Figure 2 and contrast them with applying no adapter, which we refer
to as the identity function. The aim is to investigate if one kind of
adapter can improve the performance of a Transformer-based AAC
method. Moreover, the adapters ensure a match in dimension be-
tween the audio embeddings and the internal dimension of the de-
coder. It enables us to compare embeddings of different sizes —
from different models — with a fixed number of decoder parame-
ters. When not using any adapter, the first decoder layer changes in
size depending on the embeddings’ dimensionality.

As the first adapter, we employ a two-layer MLP with a hid-
den layer of size 256 and rectified linear unit (ReLU) as activation
function, as shown in Figure 2, to compute the adapted representa-
tion with weights shared across time. The second adapter layer is
an MHA block, followed by a linear layer and a layer normaliza-
tion process, also known as a Transformer encoder layer [21]. This
type of network was previously combined with a VGGish embed-
ding model in the context of AAC [5]. It complements our decoder
in such a way that our model architecture is similar to a full Trans-
former model for AAC [6]. The MHA block employs four attention
heads of 128 dimensions. A linear dimensionality reduction func-
tion as described in [6] and a positional encoding precede it.

3.4. Word embedding models

Our first word embedding model is word2vec [24], which is based
on the skip-gram algorithm. We use the publicly available model
pre-trained on three million words and phrases from Google News.

Our second model is GloVe [35], which takes a different ap-
proach by learning context information from corpus-level word-
word co-occurrence statistics rather than local context windows.
The authors show that GloVe is an improvement over the word2vec

3The training data from COALA and Clotho are disjoint sets.
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algorithm in downstream word analogy and Named Entity Recog-
nition tasks. We employ the publicly available model trained on
the combination of a 2014 Wikipedia copy and the Gigaword 5 cor-
pus [36], which together contain six billion tokens.

The third word embedding model is fastText, which imple-
ments several optimizations on top of the word2vec skip-gram
algorithm [37]. FastText provides better handling of multi-word
phrases, uses a weighted context, and considers subwords (i.e.
character n-grams). We use the publicly available model trained
with subword information on the Common Crawl corpus, which
contains 600B tokens and is significantly larger than the corpora
used for the Glove and word2vec model [38].

We employ BERT as our fourth model, which is a large lan-
guage model based on the Transformer architecture and can be used
as a feature extractor to extract word embeddings [39]. In contrast
to models mentioned above, such as word2vec, BERT also takes
the context of a token — the entire sentence — into account when
extracting embeddings, i.e. producing embeddings that are context-
sensitive. We use the BERTBASE configuration pre-trained on a
Wikipedia copy (2.5B words) and the BookCorpus dataset (800M
words) [40]. Different ways to use the layers of BERT as word em-
beddings have been discussed in the literature, and it is not clear
what the best choice is for AAC. We decided to use the penultimate
layer as embeddings as this can produce highly contextualized rep-
resentations that are not too task-specific [41]. We extract the word
embeddings from an entire caption. Due to the computational cost
of the model, it will not be fine-tuned in our experiments.

Additionally, to explore if pre-trained word embeddings can be
helpful, we also adopt randomly initialized word vectors and a con-
tinuous bag-of-words (CBOW) word2vec model [24] trained using
the text of the captions in the Clotho training set. Finally, all word
embedding models produce embeddings with W 0 = 300 dimen-
sions, except for those from the BERT model with W 0 = 768.

4. RESULTS AND DISCUSSION

In this section, we show and discuss the results of our experiment.
We organize our discussion around, first, the performance of the
different pre-trained audio encoder models. Second, we discuss the
usage of the different audio embedding adapter components. Third,
we study the performance of different word embedding models and
the impact of fine-tuning them. Finally, we show the potential of
computing audio embeddings on overlapped audio frames.

Table 2 lists the optimal settings for each of the audio encoder
models that we found, and Figure 3 displays box plots of the audio
encoder models’ performance for each adapter. The top-performing
model in the best overall setting (YAMNet, BERT, MHA) achieved
a SPIDEr score of 0.1914. Moreover, we found that YAMNet con-
sistently outperforms the other audio models. Overall, audio en-
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Table 2: Top-performing settings for pre-trained encoder models
and their SPIDEr score when embeddings are extracted with no or
50% overlap (?, and † respectively).

SPIDEr

Encoder Word
embedding Adapter Mean SD

COALA† BERT MHA-based 0.1495 0.0044
OpenL3? BERT MHA-based 0.1620 0.0051
VGGish? BERT MHA-based 0.1677 0.0052
YAMNet† BERT MHA-based 0.1793 0.0066

Figure 3: Comparison of SPIDEr score for different encoder models
averaged over multiple different experiment settings.

coder models trained in a supervised classification task using large
datasets, YAMNet & VGGish, are superior to the models that are
trained in a self-supervised way or using contrastive learning. This
highlights the potential of using large datasets for pre-training audio
encoders in auto-tagging tasks and using them for AAC.

Using an MHA-based encoder as an adapter on top of the au-
dio embeddings consistently provides the best results (Figure 3 and
Table 2), whereas using the MLP does not provide any improve-
ment in comparison with no adapter. Interestingly, the benefit of
the MHA-based adapter is most prominent for OpenL3, which has
been trained in a self-supervised way. This suggests that the audio
embeddings extracted with OpenL3 contain some semantics useful
for AAC that can be exploited using an adapter such as the MHA-
based one. Our results suggest that employing a Transformer-based
encoder using positional encoding and MHA can process sequences
of audio embeddings, leading to better performance in AAC, which
aligns well with findings from previous works [6, 10].

The left part of Figure 4 reports a performance comparison of
the different word embeddings employed in our evaluation. On av-
erage, using the pre-trained BERT model to extract the word em-
beddings leads to the best performance. It is worth mentioning that
we are using BERT as a fixed external word embedding model in-
stead of using its full capacity, for example, by fine-tuning it for
AAC. However, the latter would require much more computational
resources (the BERT model has around 110M parameters).

Training word embedding representations from scratch during
AAC provides already promising results. By using pre-trained
word embeddings, such as word2vec, GloVe, and fastText, we can
slightly improve this performance. Additionally, fine-tuning them
can significantly improve their performance (one-sided Wilcoxon
signed-rank tests p < 0.001, for each pre-trained word embedding
model). Interestingly, optimizing the randomly initialized word

Figure 4: SPIDEr sores for word embedding (left) and audio em-
bedding models (right). Scores are averaged over all combinations
is each case.

representations does not improve their performance. This high-
lights the need for pre-trained word representations in the context
of our AAC task.

The right side of Figure 4 displays the performance of the au-
dio models with and without overlap when extracting the embed-
dings. In particular, we observe that computing the embeddings
with 50% overlap leads to improved performance with two audio
encoders. One-sided Wilcoxon signed-rank tests indicated that this
improvement is significant for COALA (W = 84, p < 8.08e�07)
and YAMNet (W = 112, p < 3.92e�06).

5. CONCLUSION

In this paper, we conduct a comparative analysis of many off-the-
shelf resources from natural language processing (NLP) and the ma-
chine listening field for automated audio captioning (AAC). The
core components of our method are a fixed audio encoder, an audio
embedding adapter, and a Transformer-based decoder. Our results
show that YAMNet outclasses the other audio embedding models
when used as an encoder. The performance can be increased for two
encoders (COALA & YAMNet) by computing the embeddings on
overlapped frames. Processing the audio embeddings with a multi-
head attention-based adapter can increase the performance of our
captioning system while using a multi-layer perceptron is not dif-
ferent from not using any adapter. We found that pre-trained word
embedding models are a valuable resource for AAC, particularly so
when fine-tuned during the training. Using BERT as a fixed embed-
ding extraction model gave the best results. This result motivates
the usage of large pre-trained NLP models such as BERT to create
better AAC methods.

Future work could investigate the impact of the positional en-
coding in the audio adapter by independently evaluating the multi-
head attention adapter. Finally, fine-tuning the audio embedding
models has not been studied in this work. However, it may be an
essential technique that can benefit AAC approaches, as highlighted
by the fact that adding an adaptation model to process the embed-
dings significantly increases the performance of our system.
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ABSTRACT

In this paper, we describe our multi-resolution mean teacher sys-
tems for DCASE 2021 Task 4: Sound event detection and separation
in domestic environments. Aiming to take advantage of the differ-
ent lengths and spectral characteristics of each target category, we
follow the multi-resolution feature extraction approach that we in-
troduced for last year’s edition. It is found that each one of the pro-
posed Polyphonic Sound Detection Score (PSDS) scenarios benefits
from either a higher temporal resolution or a higher frequency reso-
lution. Additionally, the combination of several time-frequency res-
olutions through model fusion is able to improve the PSDS results
in both scenarios. Furthermore, a class-wise analysis of the PSDS
metrics is provided, indicating that the detection of each event cat-
egory is optimized with different resolution points or model combi-
nations.

Index Terms— DCASE 2021, CRNN, Mean Teacher, Multi-
resolution, Model fusion, PSDS

1. INTRODUCTION

The development of competitive evaluations such as the DCASE
(Detection and Classification of Acoustic Scenes and Events) Chal-
lenges, along with the introduction of datasets like Google Au-
dioSet [1] or DESED (Domestic Environment Sound Event Detec-
tion) [2, 3], has supported the research in acoustic event detection
tasks over the recent years.

DCASE 2021 Challenge Task 4 consists in the detection and
classification of 10 different sound events. These sound events be-
long to domestic environments, and each category shows its own
temporal and spectral properties. During the DCASE 2020 Chal-
lenge, we explored the idea of employing multiple time-frequency
resolution points during the feature extraction process, aiming to ex-
ploit these differences, and finding that the combination of different
time-frequency resolutions was beneficial for the performance of a
system derived from the SED baseline, in terms of both event-based
F1 score and Polyphonic Sound Detection Score (PSDS) [4, 5, 6].

One of the advantages of our multi-resolution approach is that
it is, in principle, complementary to other improvements in the
model, such as a different topology of the neural network or ad-
ditional training data. Taking that into account, we have applied

Work developed under the project DSForSec (RTI2018-098091-B-I00),
funded by the Ministry of Science, Innovation and Universities of Spain, and
the European Regional Development Fund (ERDF).

multi-resolution to the DCASE 2021 SED baseline system, which
features the use of mixup [7] for data augmentation, as well as a
larger synthetic subset, as main additions to the Mean Teacher [8]
convolutional recurrent neural network (CRNN) system of previous
years [9].

Our participation for DCASE 2021 Challenge is based on the
provided baseline system and follows the scenario of sound event
detection (SED) without source separation pre-processing. We
propose a multi-resolution analysis of the audio features (mel-
spectrograms) used to train the neural network, in contrast with the
single-resolution approach of the baseline.

2. DATASET

The dataset used for sound event detection in DCASE 2021 Task
4 is DESED, which is composed of real recordings, obtained from
Google AudioSet, and synthetic recordings which are generated us-
ing the Scaper library [10]. Real recordings include the Weakly-
labeled training set (1578 clips), the Unlabeled training set (14412
clips) and the Validation set (1168 clips). Additionally, the Syn-
thetic set contains 12500 strongly-labeled, synthetic clips, gener-
ated such that the event distribution is similar to that of the Valida-
tion set.

The Weakly-labeled, Unlabeled and Synthetic sets are used to
train the neural networks. 10% of the Weakly-labeled set and 20%
of the Synthetic set are reserved for validation. The DESED Vali-
dation set is used to tune hyper-parameters and perform model se-
lection.

3. PROPOSED SOLUTIONS

3.1. Multi-resolution analysis

The baseline system employs mel-spectrogram features, a two-
dimensional representation of audio signals based on the Fast
Fourier Transform (FFT) and the Mel scale. Thus, the audio seg-
ments are transformed into 2-D images that are processed through
the CRNN. The process of mel-spectrogram extraction depends on
several parameters: the sampling frequency of the audio (fs), the
number of points of the FFT (N ), the number of mel filters (nmel),
the analysis window function, and its hop and length (R, L). Given
a set of values for these parameters, a time-frequency resolution
working point is defined.

A particular time-frequency resolution can be more or less fitted
to detect a sound event category depending on its temporal and spec-
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Resolution T++ T+ BS F+ F++

N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 256 384 512
nmel 64 96 128 192 256

Table 1: FFT length (N ), window length (L), window hop (R) and
number of Mel filters (nmel) of the five proposed time-frequency
resolution working points. N , L, and R are reported in samples,
using a sample rate fs = 16000 Hz.

PSDS DTC GTC ↵ST CTTC ↵CT emax

Scenario 1 0.7 0.7 1.0 0.0 - 100
Scenario 2 0.1 0.1 1.0 0.3 0.5 100

Table 2: Parameter configuration for the PSDS scenarios. DTC =
Detection Tolerance Criterion. GTC = Ground Truth intersection
Criterion. ↵ST = Cost of instability across classes. CTTC = Cross-
Trigger Tolerance Criterion. ↵CT = Cost of Cross Triggers. emax

= Maximum False Positive Rate.

tral characteristics, which vary for each target class. For example,
considering the Synthetic training set, some event categories have
an average duration shorter than 2 seconds (Alarm bell/ringing, Cat,
Dishes, Dog, and Speech), while other classes are more than 8 sec-
onds long in average (Electric shaver/toothbrush, Frying, or Vac-

uum cleaner).
Using different mel-spectrogram configurations, we defined

five different time-frequency resolution working points. For each
one of them, we replicated the baseline, modifying it to handle the
corresponding time-frequency resolution. Finally, we combined the
frame-level estimation of the class posterior probabilities provided
by each resolution, obtaining a multi-resolution system.

The reference for time-frequency resolution is the set of param-
eters used by the baseline system for the feature extraction process,
which will be referred as BS. We maintain the sampling frequency
at fs = 16000 Hz and the use of a Hamming window. The rest
of the parameters (N , L, R, nmel) are modified to increase time or
frequency resolution in each case. The resulting resolution points
(T++, T+, BS, F+, and F++) are described in Table 1.

3.2. Model fusion

For each event category i, a binary classification is performed be-
tween classes ✓i,0, which means “event i not detected”, and ✓i,1,
meaning “event i detected”. This classification task is considered
independent of other event categories, and we will call it a detec-
tion task.

Given an audio clip, a CRNN detector generates a different
score sequence for each detection task i, as a time series with a
frame rate that is determined by the resolution point employed. The
fusion of K different detectors consists in a combination of their
sequences (s(1)i , ..., s(K)

i ). This combination is performed as a late
integration, using the sigmoid outputs of each CRNN as score se-
quences. By convention, higher scores indicate a stronger support to
the presence of event i (✓i,1). The final score sequence is obtained
as the frame-wise average of the K score sequences.

Figure 1: Polyphonic Sound Detection Score (PSDS) curves over
the DESED Validation set of the single resolution F++, F+, BS,
T+, and T++ used to obtain the combined systems submitted to the
evaluation.

System Resolutions PSDS 1 PSDS 2 F1(%)
3res F+, BS, T+ 0.380 0.589 45.0
3res-F F++, F+, BS 0.361 0.589 45.1
3res-T BS, T+, T++ 0.386 0.578 46.4
4res F++, F+, BS, T+ 0.372 0.600 45.1
5res F++, F+, BS, T+, T++ 0.386 0.600 46.4

Table 3: PSDS and F1 results of multi-resolution systems over the
DESED Validation set.

System Resolutions PSDS 1 PSDS 2 F1(%)
3res F+, BS, T+ 0.343 0.571 42.6
3res-T BS, T+, T++ 0.363 0.574 43.1
4res F++, F+, BS, T+ 0.345 0.571 42.2
5res F++, F+, BS, T+, T++ 0.361 0.577 42.7
Challenge Baseline 0.315 0.547 37.3

Table 4: PSDS and F1 results of multi-resolution systems over the
DESED 2021 Evaluation set.
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PSDS 1 F++ F+ BS T+ T++

Alarm bell/ringing 0.446±0.009 0.512±0.022 0.556±0.015 0.561±0.012 0.567±0.007
Blender 0.694±0.021 0.627±0.008 0.677±0.018 0.652±0.029 0.671±0.028
Cat 0.378±0.020 0.414±0.004 0.411±0.011 0.439±0.004 0.401±0.024
Dishes 0.107±0.008 0.132±0.010 0.176±0.010 0.172±0.039 0.121±0.020
Dog 0.242±0.003 0.272±0.008 0.306±0.010 0.316±0.005 0.295±0.012
Electric shaver/toothbrush 0.787±0.027 0.798±0.021 0.751±0.057 0.765±0.025 0.687±0.050
Frying 0.582±0.018 0.613±0.013 0.635±0.022 0.639±0.021 0.607±0.023
Running water 0.481±0.026 0.510±0.006 0.540±0.014 0.548±0.020 0.553±0.013
Speech 0.581±0.006 0.603±0.007 0.631±0.004 0.634±0.009 0.620±0.006
Vacuum cleaner 0.732±0.041 0.769±0.085 0.771±0.092 0.770±0.086 0.790±0.068
Overall PSDS 1 0.290±0.004 0.319±0.005 0.352±0.005 0.358±0.015 0.331±0.005

PSDS 2 F++ F+ BS T+ T++

Alarm bell/ringing 0.855±0.003 0.852±0.007 0.836±0.004 0.842±0.004 0.814±0.011
Blender 0.851±0.006 0.783±0.016 0.799±0.014 0.782±0.014 0.791±0.016
Cat 0.717±0.011 0.705±0.009 0.661±0.015 0.665±0.014 0.622±0.016
Dishes 0.394±0.022 0.376±0.019 0.388±0.013 0.374±0.065 0.389±0.021
Dog 0.666±0.014 0.672±0.017 0.661±0.007 0.643±0.017 0.604±0.017
Electric shaver/toothbrush 0.938±0.020 0.913±0.017 0.885±0.016 0.912±0.015 0.851±0.011
Frying 0.771±0.018 0.780±0.009 0.795±0.019 0.795±0.012 0.759±0.018
Running water 0.714±0.011 0.714±0.014 0.749±0.012 0.750±0.015 0.755±0.015
Speech 0.830±0.007 0.821±0.007 0.834±0.007 0.822±0.009 0.813±0.006
Vacuum cleaner 0.892±0.006 0.902±0.011 0.886±0.013 0.879±0.014 0.873±0.018
Overall PSDS 2 0.557±0.009 0.544±0.013 0.553±0.007 0.544±0.029 0.534±0.012

F++ F+ BS T+ T++

Macro F1 (%) 33.94±0.77 38.26±0.77 42.58±0.90 42.20±1.19 41.86±0.79

Table 5: PSDS (scenarios 1 and 2) results for each event category and overall PSDS and F1 scores of single-resolution systems over the
DESED Validation set. Mean and standard deviations are computed across 5 trainings of each system with different random initializations.

PSDS 1 PSDS 2
3res 3res-T 4res 5res 5⇥BS 3res 3res-T 4res 5res 5⇥BS

Alarm bell/ringing 0.572 0.584 0.558 0.577 0.576 0.858 0.855 0.870 0.870 0.852
Blender 0.724 0.744 0.746 0.768 0.727 0.840 0.838 0.853 0.856 0.841
Cat 0.455 0.472 0.435 0.457 0.428 0.701 0.667 0.727 0.712 0.681
Dishes 0.202 0.200 0.197 0.214 0.206 0.415 0.402 0.435 0.436 0.419
Dog 0.319 0.327 0.312 0.324 0.326 0.693 0.681 0.701 0.700 0.689
Electric shaver/toothb. 0.740 0.695 0.739 0.714 0.783 0.902 0.909 0.918 0.916 0.917
Frying 0.677 0.682 0.668 0.674 0.678 0.841 0.836 0.829 0.833 0.832
Running water 0.567 0.574 0.562 0.569 0.560 0.775 0.780 0.771 0.775 0.772
Speech 0.661 0.673 0.659 0.666 0.658 0.851 0.857 0.852 0.855 0.850
Vacuum cleaner 0.893 0.885 0.877 0.890 0.815 0.933 0.923 0.932 0.932 0.921
Global PSDS 0.380 0.386 0.372 0.386 0.380 0.589 0.578 0.600 0.600 0.585
Macro F1 (%) 44.97 46.42 45.13 46.42 45.84 44.97 46.42 45.13 46.42 45.84

Table 6: PSDS (scenarios 1 and 2) results of combined systems for each event category and overall PSDS and F1 scores over the DESED
Validation set. 3res, 3res-T, 4res and 5res are the multi-resolution combinations that were submitted to the challenge, whereas 5⇥BS is a
single-resolution combination of five models trained with the BS resolution point.
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4. EXPERIMENTS AND RESULTS

Our experiments are based upon the 2021 baseline system1 released
by the DCASE Team. The only modification applied to the structure
of the CRNN is the adaptation of the max-pooling layers of the
convolutional stage to the number of mel-filters employed by each
resolution point.

In the first place, we trained the baseline system using each one
of the resolution points for feature extraction, leading to five single-
resolution systems. Afterwards, following the method described in
Section 3.2, several sets of resolution points were combined, ob-
taining multi-resolution systems.

PSDS scores are computed applying 50 different thresholds
(linearly distributed from 0.01 to 0.99) to the combined score se-
quences, obtaining binary time series which are then smoothed by
means of a median filter.

We report the results in terms of PSDS [11] and event-based,
macro-averaged F1-score [12]. In every case, scores are generated
employing the Teacher models obtained from the Mean Teacher
training.

To allow the evaluation of SED performance in different con-
ditions, the challenge organization proposes two PSDS configura-
tions. While the PSDS scenario 1 (PSDS 1) gives special impor-
tance to the precise temporal localization of events, the PSDS sce-
nario 2 (PSDS 2) focuses on the correct detection of the event cate-
gories. The parameters that define these scenarios are described in
Table 2.

The PSDS curves obtained with each of the feature resolution
points described in 3.1 over the DESED Validation set, as well as
their AUC (Area Under Curve) metrics, are shown in Figure 1. Ac-
cording to the results, it seems that a higher time resolution is bene-
ficial for PSDS 1, while PSDS 2 is optimized using finer frequency
resolutions. This behaviour was expected, taking into account that
PSDS 1 is designed to focus on the temporal precision of the sys-
tems.

Aiming to include information from different resolution points
in the SED system, networks trained with different feature resolu-
tions have been combined as described in Section 3.2, obtaining the
PSDS and macro F1 results shown in Table 3. The model combi-
nations include the Baseline resolution (BS) along with some of
the resolution points we have proposed. Combining models trained
with different feature resolutions outperforms the baseline and other
single-resolution models in both PSDS scenarios, as well as in terms
of F1-score.

The best result for the first PSDS scenario over the Validation
set is achieved by the 3res-T and the 5res combinations, both of
them achieving an area under curve (AUC) of 0.386. On the other
hand, the best results for the PSDS 2 scenario are obtained with
4res and 5res, both of them reaching AUCs of 0.600. Thus, al-
though each scenario is optimized by combining either higher time
resolutions or higher frequency resolutions, the fusion of the five
resolution points (5res) seems to optimize both of them at the same
time.

The 3res, 3res-T, 4res, and 5res combinations were submitted
to the challenge, and their results are presented in Table 4. The
best PSDS 1 over the 2021 Evaluation set is achieved by the 3res-T
system (0.363), whereas the highest PSDS 2 is obtained by the 5res
combination (0.577). Moreover, the performance of the submitted
systems over the 2021 Evaluation set is very similar to that observed
over the Validation set.

1https://github.com/DCASE-REPO/DESED task

4.1. Class-wise results

In previous editions of the DCASE Challenge Task 4, SED systems
were evaluated by means of the event-based macro F1 score. Such
metric is an average of the event-based F1 scores for each target cat-
egory, thus the scores for each individual class were usually high-
lighted in the results of the systems. On the other hand, whereas
PSDS overcomes several limitations of the F1 metric [13], the per-
formance for each category is not usually described when reporting
the results. For this reason, and considering that the detection of
each event class is an independent task with an impact on the global
results, we have computed the class-wise PSDS scores in terms of
the Area Under Curve (AUC).

The class-wise PSDS results of the single-resolution systems
are presented in Table 5. In each scenario, the best performing sys-
tem in terms of global PSDS provides the largest AUC for several
classes: in the first scenario, resolution T+ holds the best results
for Cat, Dog and Frying, whereas in the second scenario resolution
F++ obtains the highest scores for Alarm bell/ringing, Blender,
Cat, Dishes and Electric shaver/toothbrush. However, the rest of
the event categories obtain better results with other resolutions, in-
dicating that, as expected, the optimal resolution point depends not
only on the PSDS settings but also on the characteristics of the tar-
get class.

Table 6 shows the PSDS results of combined systems. These
systems include the multi-resolution fusions that have been sub-
mitted to the challenge (3res, 3res-T, 4res, and 5res), as well as
a combination of five different instances of the BS model (5⇥BS)
which aims to contrast the performance of a single-resolution com-
bination against the multi-resolution fusions. In most of the event
categories, the largest AUC is obtained with a multi-resolution com-
bination rather than with the single-resolution combination 5⇥BS,
being Electric shaver/toothbrush the exception in PSDS 1. Addi-
tionally, the 5⇥BS achieves better global performance than the in-
dividual models. Therefore, it seems that the average fusion pro-
vides an improvement in both PSDS scenarios even when combin-
ing systems trained with the same resolution point. However, such
improvement is larger when the systems to be combined have been
trained with different resolutions.

5. CONCLUSIONS

In this work, we present the results of our participation in DCASE
2021 Challenge Task 4. Built upon the baseline provided by the or-
ganization, our proposed system combines different time-frequency
resolution points of the mel-spectrogram features by averaging the
output sequences of several CRNN detectors.

With the described approach, we have been able to outperform
the baseline system in both PSDS scenarios and macro F1 score
over the DESED Validation and 2021 Evaluation sets. Moreover,
the results indicate that certain resolutions and their combinations
allow to optimize either the PSDS 1 (higher time resolutions) or
PSDS 2 scenario (higher frequency resolutions), and that model fu-
sion is more beneficial when different resolutions are combined.

Furthermore, the class-wise analysis of PSDS shows that the
adequacy of each resolution point for sound event detection is re-
lated not only to the evaluation settings but also to the target cate-
gory.
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ABSTRACT

Underspecification and fairness in machine learning (ML) applica-
tions have recently become two prominent issues in the ML com-
munity. Acoustic scene classification (ASC) applications have so
far remained unaffected by this discussion, but are now becoming
increasingly used in real-world systems where fairness and reliabil-
ity are critical aspects. In this work, we argue for the need of a more
holistic evaluation process for ASC models through disaggregated
evaluations. This entails taking into account performance differ-
ences across several factors, such as city, location, and recording de-
vice. Although these factors play a well-understood role in the per-
formance of ASC models, most works report single evaluation met-
rics taking into account all different strata of a particular dataset. We
argue that metrics computed on specific sub-populations of the un-
derlying data contain valuable information about the expected real-
world behaviour of proposed systems, and their reporting could im-
prove the transparency and trustability of such systems. We demon-
strate the effectiveness of the proposed evaluation process in uncov-
ering underspecification and fairness problems exhibited by several
standard ML architectures when trained on two widely-used ASC
datasets. Our evaluation shows that all examined architectures ex-
hibit large biases across all factors taken into consideration, and
in particular with respect to the recording location. Additionally,
different architectures exhibit different biases even though they are
trained with the same experimental configurations.

Index Terms— acoustic scene classification, evaluation, fair-
ness, ethics, transparency

1. INTRODUCTION

Acoustic scene classification (ASC) has been established as a cen-
tral task of artificial auditory intelligence, as exemplified by its
prominent place in the DCASE challenge and workshop series [1,
2] and a generally broad accumulation of literature [3, 4, 5, 6, 7].
Overall, model performance has substantially improved through the
years, and datasets have accordingly evolved to accommodate new
challenges by incorporating factors shown to impact model perfor-
mance. For example, the exact geographical location of the record-
ings was identified as an important factor early on, with datasets
accordingly adapted by keeping data from the same location in the
same partitions [1, 2]. The TUT Urban Acoustic Scenes 2018 Mo-
bile dataset additionally introduced the recording device as a sep-
arate factor [8], with the development set consisting of multiple

recording devices, and the evaluation set including an extra, un-
seen device. Finally, the TAU Urban Acoustic Scenes 2019 dataset
highlighted the importance that the city of origin has by introducing
data from two additional cities in the evaluation set [8].

In general, the community is aware of the influence that record-
ing devices and location have on model performance [9, 10]. Most
works approach these factors from the perspective of domain mis-
match [11]: different cities, locations, and devices, result in slightly
different input representations, and the difference needs to be ac-
counted for to improve overall performance. Several approaches
have been proposed to mitigate the problem, largely drawing from
the wide literature of domain adaptation techniques [11] adapted
for the ASC problem [12, 13, 14], or specifically taking steps to
mitigate the effects of city and device [15, 16].

In this work, we adopt a different perspective: we argue that
those factors deserve a prominent place in the evaluation of ASC
systems as they reveal important insights about the behaviour of
trained models. To do that, we adopt the language of recent works in
the machine learning (ML) fairness literature. In particular, we pro-
pose disaggregated evaluations, a concept highlighted by Mitchell
et al. [17] as a means to expose the effects that these underlying
factors have on system performance. Disaggregation, which corre-
sponds to breaking down an evaluation to more fine-grained levels
of analysis, can be done both in a unitary (how performance is af-
fected by each factor independently) and in an intersectional way
(how performance is affected by combination of factors). For the
task of ASC, we consider the three aforementioned factors, namely
location, city, and device, as warranting a closer investigation. This
choice is primarily motivated by availability (the existing metadata
is already there) and community awareness (past works take them
into account).

The rest of this document is organised as follows. In Section 2,
we formulate our research question by discussing fairness and un-
derspecification for ASC. Our methodological approach, including
a description of the data and deep learning (DL) architectures used
in our experiments, is outlined in Section 3. The results and a dis-
cussion of our disaggregated evaluations are presented in Section 4.
Finally, we summarise our findings in Section 5.

2. FAIRNESS AND UNDERSPECIFICATION IN ASC

The success and increased usage of ML, and in particular DL, sys-
tems in commercial applications has led to rising concerns towards
discriminating biases exhibited by ML applications, for instance
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based on race [18]. Especially in the case of DL, a lack of inter-
pretability can often be observed [19], thus posing additional chal-
lenges to discover and mitigate said biases. Even though ASC mod-
els are not widely considered high risk applications, their increas-
ing usage in smart city [20], security [21], elderly monitoring [22],
and autonomous driving [23] applications means they may soon (or
already) be part of critical decision making systems, thus making
fairness a critical consideration for those algorithms.

Of the three factors, the recording device is perhaps the most
benign; it is hard to justify why an ASC system that only works for
specific devices should raise ethics concerns, although low-income
groups could be excluded if data are only collected with high-end
equipment. On the other hand, city and location (which corresponds
e. g. to specific neighbourhoods) pose potentially bigger problems;
a security application should work equally well for all citizens ir-
respective of where they reside, and autonomous driving systems
should maintain a standard of performance irrespective of where the
vehicle currently is. There is a already a rich body of work in so-
cial sciences discussing inequality across different neighbourhoods
on income, health, and other socioeconomic factors [24], which an
unreliable system may inadvertently exacerbate. This could have
adverse effects against people living in those neighbourhoods, and
may disproportionately affect minorities in demographically segre-
gated communities. Therefore, we anticipate that explicitly commu-
nicating disaggregated performance with respect to all three factors
would enhance trustability in ASC systems used in real-life envi-
ronmental sensing applications.

Disaggregated evaluations can also be viewed under the per-
spective of recent research on the underspecification of ML ar-
chitectures [25], which corresponds to the fact that several archi-
tectures yielding similar in-domain performance nevertheless ex-
hibit different behaviour during system deployment. This unde-
sired property may have negative consequences on the reliability
and trustability of ASC systems. For example, if a person using
an ASC system observed substantially different performance when
visiting different neighbourhoods of the same city, they might even-
tually lose their trust in system performance and stop using it. As
ASC architectures increasingly find their way into more real-life
applications, the need to address this issue becomes more pressing.
Our evaluation reveals that different architectures yielding almost
equivalent performance in standard aggregated evaluations exhibit
different behaviour across different sub-populations of the herein
examined datasets, thus illustrating that underspecification is also
a problem for ASC applications. This shows that disaggregated
evaluations can be a useful tool for practitioners that need to select
among a pool of candidate models.

3. METHODOLOGICAL APPROACH

Our approach consists of the following steps. First, we train several
deep neural network (DNN) models on the training set of each of
the datasets examined here. Each model is trained for 60 epochs
using stochastic gradient descent (SGD) with a Nesterov momen-
tum of 0.9, a learning rate of 0.001, and a batch size of 64. For
all experiments, we use log Mel spectrograms with 64-bins as input
features, extracted with a window size of 32ms and a hop size of
10ms. These hyper-parameters were fixed a priori for all models
and not optimised during our experiments. Each model is trained
with 5 random seeds to mitigate the effect of randomness.

Our experiments are conducted on the TUT Urban Acoustic
Scenes 2018 and TUT Urban Acoustic Scenes 2018 Mobile data

sets [8], which will be henceforth referred to as TUT-Urban and
TUT-Mobile for brevity. Both datasets contain data from 10 acous-
tic scenes recorded across several locations of 6 different European
cities. TUT-Urban contains 8640 stereo samples recorded at 48 kHz
with a single high-quality recording device (Soundman OKM II
Klassik/studio A3), whereas TUT-Mobile additionally contains 720
samples from each of two additional low-quality recording devices
(Samsung Galaxy S7 and iPhone SE). In the case of TUT-Mobile
all data are stored as mono recordings at 16 kHz.

All models are first evaluated in the standard, aggregated way
by computing a single accuracy value, and subsequently assessed
using unitary and intersectional evaluations as described below. We
begin with unitary evaluations, where each factor is considered in
isolation. For city and device, where we have only 6 and 3 different
groups, respectively, we simply report the accuracy for each group.
The location factor is more complicated, as we have 83 different lo-
cations in the test set, thus making it hard to visualise results. More-
over, whereas for each city and device we have all classes available,
each location corresponds to exactly one class, thus making accu-
racy an inappropriate metric for that evaluation. To overcome these
problems, we compute the F1 score, which is the harmonic mean
of precision and recall, for the class corresponding to each location
and further normalise the per location F1 score, F l

1, by the overall
F1 score for that architecture.

Intersectional evaluations are in turn conducted by taking into
account two, or more, factors. Due to space limitations, we only
consider results for two pairs of factors: the variation of cities
across different devices and the variation across locations in differ-
ent cities. For the first case, we report the accuracy for each combi-
nation of factors. For the latter case, we compute the F l

1 score for
each location as in the unitary case, but now normalise over the F1

score for each city, F c
1 .

As DL architectures, we use 5 standard DNN models that be-
long to different architecture families. FFNN: as the most simple
architecture we choose a feed-forward neural network with three
hidden layers of decreasing sizes, 300, 200, and 100 units with a
rectified linear unit (ReLU) activation function. The inputs of of the
network are the flattened log Mel spectrograms. TDNN: we further
employ a time-delay neural network (TDNN) architecture. First
introduced by [26] with the aim of learning temporal relationships,
TDNNs have recently seen great success in the field of speaker iden-
tification [27]. Our TDNN architecture is identical to the DNN ar-
chitecture described as the x-vector system in [27]. CNN6, CNN10,
CNN14: the final architectures considered in our experiments are
CNN-based and were recently introduced by Kong et al. [28] in the
context of audio pattern recognition. The three architectures have a
total of 6, 10, and 14 layers, respectively, excluding pooling layers
after convolutional layers, and take Mel-spetrograms as inputs. The
final two layers of each network are fully connected.

4. RESULTS AND DISCUSSION

Our unitary evaluation results for different cities are presented in Ta-
ble 1, along with the standard aggregated metrics. We show model
accuracy for each factor in isolation, and also report the standard
deviation over all factors. F1 results for different locations in TUT-
Urban are shown in Figure 1, where we show box-and-whisker plots
of the normalised F1 scores. We omit unitary results for different
devices as they can be inferred from the intersectional results in Ta-
ble 2; as expected, all architectures perform best on the high-quality
device A, for which we also have the most data, while doing worse
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Table 1: Aggregated and unitary disaggregated evaluations considering different cities in isolation. For the aggregated evaluation, we show
accuracy[%] for all test data for TUT-Urban and TUT-Mobile. For the unitary disaggregated evaluations, we show accuracy[%] on different
cities for each architecture, as well as its standard deviation (�) over the different cities. Results are averaged across 5 different runs.

TUT-Urban TUT-Mobile

FFNN TDNN CNN6 CNN10 CNN14 FFNN TDNN CNN6 CNN10 CNN14

Aggregated 52.8 57.2 68.7 67.7 66.3 53.1 54.7 66.8 66.3 63.6

City Disaggregated evaluations

Barcelona 52.9 61.7 64.8 60.9 58.9 55.9 56.4 61.3 57.9 57.6

Helsinki 56.1 61.3 70.2 67.3 63.5 50.8 57.1 67.9 66.7 58.3

London 51.1 61.7 71.6 74.2 71.5 52.7 59.2 70.1 72.0 70.8

Paris 45.5 53.8 62.0 61.0 62.4 45.8 54.1 60.1 59.7 60.8

Stockholm 53.0 47.4 73.1 68.4 68.2 56.2 46.9 72.5 68.3 67.3

Vienna 59.8 57.9 69.9 74.0 73.0 58.8 54.3 68.0 72.4 65.7

� 4.4 5.2 3.9 5.4 5.1 4.3 3.9 4.5 5.6 4.9

Table 2: Intersectional evaluations considering recording device and city in combination for the TUT-Mobile dataset. We show accuracy[%]
for each combination of city and device. Cites are Barcelona (B), Helsinki (H), London (L), Paris (P), Stockholm (S), and Vienna (V). The
best performing architecture value per city and device is marked by boldface. Results are averaged across 5 different runs.

Device A Device B Device C

Model B H L P S V � B H L P S V � B H L P S V �

FFNN 56.1 53.1 53.0 46.9 56.5 60.5 4.2 54.8 38.1 54.8 29.0 56.7 48.7 10.2 54.1 31.0 45.2 46.5 52.0 48.7 7.5

TDNN 57.9 60.4 62.9 57.0 47.5 56.3 4.8 44.4 38.1 26.5 34.8 53.3 41.3 8.3 46.7 30.3 34.2 32.9 31.3 43.3 6.2

CNN6 61.9 70.2 71.2 63.1 73.4 69.7 4.2 55.6 58.7 67.7 38.1 65.3 61.3 9.7 57.8 44.5 56.8 39.4 66.0 54.7 8.8

CNN10 58.8 68.9 73.7 62.2 69.1 74.2 5.6 53.3 56.1 64.5 41.9 68.0 61.3 8.5 49.6 46.5 53.5 42.6 56.7 62.7 6.6

CNN14 58.7 60.5 71.9 62.4 68.5 67.2 4.7 48.1 47.1 64.5 43.2 61.3 58.0 7.9 51.9 38.1 60.0 55.5 55.3 56.0 7.0

on the lower quality and less populous B and C devices. Location
results on TUT-Mobile are also omitted due to space limitations but
exhibit the same trend as those on TUT-Urban.

Table 1 can be read both horizontally, thus emphasising which
model works best for a specific factor, and vertically, where we are
interested in how a specific model performs across different factors.
Overall, CNN6 is showing the strongest performance, followed by
CNN10 and CNN14, with TDNN and FFNN performing substan-
tially worse. Furthermore, CNN6 exhibits relative stability across
both cities and devices. However, it is not the best choice for all
cities; in both datasets, CNN10 is outperforming it for London and
Vienna, and CNN14 for Paris, though the latter only marginally.

Of more interest is the vertical interpretation of Table 1. We ob-
serve that different architectures exhibit a different ordering when
it comes to performance per city. In TUT-Urban for example, dif-
ferent architectures yield their best performance on different cities:
FFNN on Vienna, TDNN on Barcelona and London, CNN6 on
Stockholm, CNN10 on London and Vienna, and CNN14 on Vi-
enna. Another interesting case is Stockholm, where CNN6 shows

its best performance and TDNN its worst. Conversely, Vienna,
where FFNN, CNN10, and CNN14 show (near-)best performance
for TUT-Urban, is showing mediocre results for CNN6 and TDNN.

For TUT-Mobile, these results are better visualised in Figure 3
which shows the range of F1 scores per location for the different
cities. Notable differences exist; TDNN shows worse performance
on Stockholm than Paris, whereas all other architectures show the
opposite trend. CNN6 and CNN10, which are almost equivalent in
terms of aggregated performance, also exhibit differences, in par-
ticular for Stockholm and Vienna. Interestingly, TDNN and FFNN
deviate substantially from the other three architectures, which are
more closely clustered together, indicating that models from the
same family exhibit more similar behaviour. These observations
illustrate that the inductive biases introduced by each architecture
manifest themselves as different behaviours on different strata of
each dataset, which is in line with recent research on inductive bi-
ases [29, 30].

Figure 1 additionally shows that location is a very important
factor when it comes to system performance, with some locations
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Figure 1: Distribution of relative F1 score on different locations of
TUT-Urban for all architectures. Box plots show median and inter-
quartile range of relative F1 score.

Figure 2: Intersectional analysis of model performance with respect
to both city and location for TUT-Urban. For each architecture,
cities are (from left to right): Barcelona, Helsinki, London, Paris,
Stockholm, Vienna. Box plots show median and inter-quartile range
of relative F1 score with respect to different locations within each
city.

exhibiting almost half the aggregated system performance. Such
behaviour is highly undesirable because an ASC system deployed
across different locations will consistently exhibit subpar perfor-
mance for some of them, with the risk to equal and fair access to
service that this entails. We note that most locations seem to ex-
hibit better than average performance (the F1 ratio is bigger than
1). This is caused by the fact that the worst performing locations
happen to have more samples, thus having a bigger influence on
aggregate performance.

Intersectional results are shown in Table 2 for the combination
of city and device, and in Figure 2 for the combination of city and
location. The differences amongst all cities and all devices were
found significant for all architectures using Kruskal-Wallis omnibus
H-tests for each factor and architecture, respectively. This shows
that, in general, both factors have a large effect on model perfor-
mance. In addition, Table 2 and Figure 2 both show that different ar-
chitectures exhibit different behaviour on different strata of the two
datasets, even though they were trained on identical settings. Over-

Figure 3: Accuracy for each city and architecture on TUT-Mobile.

all, CNN6 is again showing the strongest performance for most,
though not all, combinations, followed by CNN10. In terms of in-
dividual factors, Paris is showing the biggest drop in performance
when switching from device A to device B for all architectures, indi-
cating that the domain shift introduced by different devices is more
adversely impacting this city.

The most interesting case is TDNN, which is showing its best
and worst performance on London and Stockholm for device A, re-
spectively, but shows the exact opposite for device B, where the
best performance is obtained for Stockholm and the worst for Lon-
don. In fact, the performance of TDNN on Stockholm is far better
for device B than for device A, even though the latter has far more
samples and should thus lead to better performance.

5. CONCLUSION

In this work, we argue for the need of disaggregated unitary and
intersectional evaluations for the task of ASC. Our proposed eval-
uation methodology reveals that several baseline architectures ex-
hibit different behaviour even though they are trained with similar
settings. This illustrates that ASC models trained on the examined
datasets suffer from the underspecification problem, which heavily
impacts the development of reliable and trustworthy systems. In the
future, we intend to further investigate this problem under the per-
spective of inductive biases introduced by each architecture [30].

Moreover, our work raises interesting questions on the fairness
of ASC applications. The architectures examined here exhibit a bias
with respect to different cities, locations, and devices. If these archi-
tectures were deployed in a real-world setting, this would translate
to non-uniform behaviour over these different factors. This poses
a risk to fair and equitable use of ML resources. We believe this
important point needs to be addressed as ASC models are being
increasingly integrated in intelligent decision making systems.
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[16] M. Kośmider, “Calibrating neural networks for secondary recording
devices,” DCASE2019 Challenge, Tech. Rep., Jun. 2019.

[17] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B.
Hutchinson, E. Spitzer, I. D. Raji, and T. Gebru, “Model cards for
model reporting,” in Proceedings of the conference on fairness, ac-
countability, and transparency, 2019, pp. 220–229.

[18] M. Wang, W. Deng, J. Hu, X. Tao, and Y. Huang, “Racial faces in the
wild: Reducing racial bias by information maximization adaptation
network,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), Oct. 2019.

[19] N. Burkart and M. Huber, “A survey on the explainability of super-
vised machine learning,” Journal of Artificial Intelligence Research,
vol. 70, Jan. 2021. DOI: 10.1613/jair.1.12228.

[20] J. P. Bello, C. Mydlarz, and J. Salamon, “Sound analysis in smart
cities,” in Computational Analysis of Sound Scenes and Events,
Springer, 2018, pp. 373–397.

[21] R. Radhakrishnan, A. Divakaran, and A. Smaragdis, “Audio analy-
sis for surveillance applications,” in IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, 2005., IEEE, 2005,
pp. 158–161.

[22] R. Mégret, V. Dovgalecs, H. Wannous, S. Karaman, J. Benois-
Pineau, E. El Khoury, J. Pinquier, P. Joly, R. André-Obrecht, Y.
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ABSTRACT

We present a neural network-based sound event detection system
that outputs sound events and their time boundaries in audio sig-
nals. The network can be trained efficiently with an amount of
strongly labeled synthetic data and weakly labeled or unlabeled real
data. Based on the mean-teacher framework of semi-supervised
learning with RNNs and Transformer, the proposed system employs
multi-scale CNNs with efficient channel attention, which can cap-
ture the various features and pay more attention to the important
area of features. The model parameters are learned with multi-
ple consistency criteria, including interpolation consistency, shift
consistency, and clip-level consistency, to improve the generaliza-
tion and representation power. For different evaluation scenar-
ios, we explore different pooling functions and search for the best
layer. To further improve the performance, we use data augmen-
tation and posterior-level score fusion. We demonstrate the per-
formance of our proposed method through experimental evaluation
using the DCASE2021 Task4 dataset. On the validation set, our en-
semble system achieves the PSDS-scenario1 of 40.72% and PSDS-
scenario2 of 80.80%, significantly outperforming that of the base-
line score of 34.2% and 52.7%, respectively. On the DCASE2021
challenge’s evaluation set, our ensemble system is ranking 7 among
the 28 teams and ranking 14 among the 80 submissions.

Index Terms— sound event detection, Transformer, channel
attention, semi-supervised learning, consistency training

1. INTRODUCTION

Sound event detection (SED) is a useful technique for helping us
what is happening in an environment by identifying sounds [1, 2, 3].
SED predicts not only the sound event types in an audio recording
but also the corresponding onset and offset times. Recently, De-
tection and Classification of Acoustic Scenes and Events (DCASE)
promotes researches on sound detection and classification by an-
nual workshops and challenges. To learn less from human annota-
tion and more from data, DCASE 2021 Task 4 [4] proposes semi-
supervised learning to explore the possibility of learning SED with
the data of strongly labeled, weakly labeled, and unlabeled. Further-
more, DCASE proposed two evaluation metrics: PSDS-scenario
1 (PSDS 1) requires that SED system needs to react fast upon an
event detection; PSDS-scenario 2 (PSDS 2) requires that SED sys-
tem must avoid confusion between classes but the reaction time is
less crucial than in the previous scenario.

One well-known semi-supervised learning approach is to train
CRNN [5] with the mean-teacher framework [6]. CRNN utilizes
CNNs to extract the short-term and local information and RNNs
to capture the long-term contextual information. The mean-teacher

Figure 1: Overview of our proposed system. With the multi-scale
CNNs and ECA-net based on RNNs/Transformer network, learn-
ing of the mean-teacher framework is enhanced with multiple ob-
jectives. ICT/SCT encourages the prediction of interpolated/time-
shifted data to be consistent with the interpolated/time-shifted pre-
diction. CCT encourages the origin output consistent with the clip-
level classifier output. di, dj , dk: the original data points; dmixup:
the mixture of di and dj ; dshift: time-shift of dk; S✓, T✓0 : the
student and teacher model.

framework exploits consistency regularization to stabilize the clas-
sifier output for unlabeled data or weakly-labeled data. Besides, the
transformer architecture [7] can extract global information while
reducing the high computational cost of RNN and achieve state-
of-the-art performance on multiple tasks, such as speech recogni-
tion [8], speaker recognition [9], speaker diarization [10], text-to-
speech [11], audio tagging [12], and sound event detection [13].

In this paper, we first explore the performance of RNNs-based
and Transformer-based neural networks for two evaluation metrics,
PSDS 1 and PSDS 2. Then, since the length of sound events is very
different so that we apply the multi-scale CNNs [14] with efficient
channel attention (ECA-Net) [15] to capture the more various and
important features. Meanwhile, we extend the consistency criteria
for model training in mean-teacher framework to include interpola-
tion consistency (ICT) [16], shift consistency (SCT) [17], and clip-
level consistency (CCT) [18]. In addition, we apply data augmen-
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Figure 2: From left to right, the network architecture of multi-scale CNN block, efficient channel attention network (ECA-Net), and Trans-
former encoder block.

tation and posterior-level score fusion to further improve the model
performance. Finally, on the validation set and public evaluation set
of DCASE 2021 Task4, our proposed system both outperform the
baseline system.

The rest of the paper is organized as follows. In Section 2, we
introduce the proposed network architecture, multiple consistency
schemes, data augmentation, and posterior-level score fusion to im-
prove the SED system. Section 3 describes the dataset, audio pre-
processing, and training setups. Section 4 presents the experimental
results and analysis. Finally, we draw conclusion in Section 5.

2. PROPOSED METHODS

2.1. Network architecture

2.1.1. Multi-scale CRNN / CNN-Transformer

From strongly labeled training data, we estimate duration of each
sound event as below. 0⇠2s: alarm/bell/ringing, cat,
dishes, dog, and speech. 4⇠6s: blender and running
water. 7⇠10s: electric shaver/toothbrush, frying,
and vacuum cleaner. The length of sound events is various and
cause the model to work with inconsistent accuracy for the event of
different scales. Thus, we refer to [14] to build a multi-scale CNN
block to capture the richer features, which contains the kernel size
of 1x1, 3x3, 5x5 and uses addition to integrate features of different
scales, as shown in the left of Figure 2. In 7 layers of multi-scale
CNN block, we also utilize batch normalization and ReLU acti-
vation to speed up and stabilize training, each of which attaches
an average-pooling layer to calculate the average for each patch of
the feature map and downsample feature dimensions along both the
time axis and the frequency axis.

To obtain the long-term contextual information, we use the
RNNs and transformer encoder to form CRNN [19, 5] and CNN-
Transformer [20, 13]. RNNs are applied to two layers of bi-
directional gated recurrent unit (GRU) like DCASE 2021 baseline.
The network architecture of the transformer encoder is as shown in
the right of Figure 2. Positional encoding is used to enhance the out-
put features from the multi-scale CNN blocks with order informa-
tion before the transformer blocks. A transformer encoder block has
layer normalization, multi-head attention, and feed-forward layer.
The multi-head attention estimates the similarity between query and
key and extracts value as a weighted sum. The mechanism allows
the model to jointly pay attention to the information from different

positions. The fully connected feed-forward layer with ReLU acti-
vation is applied to each position identically. For regularization, we
adopt pre-layer normalization (Pre-LN) [21] and residual connec-
tion. Finally, the SED classifier consists of a fully connected layer
and sigmoid function to discriminate the sound event types.

2.1.2. Efficient Channel Attention

The effect of the acoustic feature extraction largely determines the
model ability to predict different sound events and affects the final
classification result. However, the attention mechanism can make
the model pay more attention to areas which may be important fea-
tures, and improve the model ability to distinguish features of sound
events. We combine the efficient channel attention network (ECA-
Net) [15] in multi-scale CNN blocks before adding features of dif-
ferent scales, as shown in the left of Figure 2. ECA-Net is composed
of adaptive average pooling (A-AvgPool) layer, 1D convolutional
(1D-CNN) layer, and sigmoid function, as shown in the middle of
Figure 2. A-Avgpool is applied along the time axis and 1D-CNN
calculate the attention of each channel. The kernel size of 1D-CNN
is defined by

k =

����
log2(C) + b

�

����
odd

(1)

where k and C denote kernel size and channel dimensional, � and b
are set to 2. Clearly, high-dimensional channels have longer range
interaction, vice versa.

2.1.3. Pooling Function

Wang et al. [22] compared five different types of pooling functions
in the multiple instance learning (MIL) framework for SED, namely
attention pooling, max pooling, average pooling, linear softmax,
and exponential softmax. The formula of each pooling function is
presented in Table 2. The attention pooling estimates the weights
for each frame are learned with a dense layer in the network. The
max pooling simply take the large probability in all frames. The
average pooling assigns an equal weight for all frames. The lin-
ear softmax assigns weights equal to the frame-level probability,
while the exponential softmax assigns a weight of exponential to
the frame-level probability. DCASE 2021 Task4 baseline [5] uses
attention pooling to transform frame-level into clip-level. However,
with different evaluation scenarios, there should be a relatively ap-
propriate pooling function to replace.
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2.2. Semi-Supervised Learning

We employ the mean-teacher framework for its fast convergence,
instead of the ⇧ model [23] or temporal ensembling [24], exploit-
ing consistency regularization to stabilize the classifier output for
unlabeled data or weakly-labeled data. In this work, we use Mean
Square Error (MSE) loss for the consistency cost:

MSE(y, ŷ) = (y � ŷ)2, (2)

where y and ŷ denote the target and the prediction, respectively.
Next, we propose multiple consistency criteria to regularize how the
SED system should learn from unlabeled or weakly-labeled data.

2.2.1. Interpolation Consistency Training

The interpolation consistency training (ICT) [16] has been proposed
for semi-supervised learning. ICT encourages the prediction at an
interpolation of unlabeled data points to be consistent with the in-
terpolation of the prediction at these data points. Learning from
interpolation samples can help the model discriminate ambiguous
samples to improve the generalization ability. We define the ICT
loss function by

LICT = MSE(S✓(�di + (1� �)dj),

�T✓0(di) + (1� �)T✓0(dj)),
(3)

where S✓ and T✓0 denote a student model and a teacher model, di
and dj denote data points, and � is randomly sampled from a Beta
distribution.

2.2.2. Shift Consistency Training

Inspired by ICT, we consider time-shift as another way to enhance
consistency which is similar to proposed by [17], called shift con-
sistency training (SCT). We define the SCT loss function by

LSCT = MSE(S✓(shift(dk)), shift(T✓0(dk))). (4)

SCT encourages the prediction of time-shift input to be consistent
with time-shift prediction. In theory, it allows the model to learn
shift-invariance and temporal localization of sound events.

2.2.3. Clip-level Consistency Training

In addition to ICT and SCT, we also apply clip-level consistency
training (CCT) [18] to enhance the ability to extract the features.
We define the CCT loss function by

LCCT = MSE(NN(dx),ClipLevel(fx)), (5)

where NN(dx) is the weighted average pooling of the multi-scale
CRNN or CNN-Transformer frame-level network output of data dx,
and ClipLevel(fx) is obtained by feeding the feature map fx of the
final multi-scale CNN block to a clip-level classifier. As shown in
Figure 1, the clip-level classifier consists of 3 extra multi-scale CNN
blocks, a global average pooling, and a fully connected layer.

2.2.4. Overall Consistency Training

In summary, the overall loss is

L = L0 + LICT + LSCT + LCCT , (6)

where L0 denotes the loss without the proposed consistency,
namely mean square error for original consistency cost and binary
cross-entropy for the supervised cost.

2.3. Data Augmentation

• Mixup [25]. It mixes two randomly selected samples from the
original training data and uses � sampled from Beta distribu-
tion to control the strength of interpolation between two sam-
ples. The linear interpolation technique can enhance the data
diversity and robustness of the network.

• Shift [26]. It shifts a feature sequence on the time axis, and
overrun frames are concatenated with the opposite side of the
sequence. The usage helps the network learn temporal local-
ization information of the sound event.

• Masks [26]. It creates artificial data by masking a block
of consecutive time steps or frequency channels on the mel-
spectrogram instead of the raw audio. It can help the network
learn the beneficial features to be robust to the partial loss of
spectral information or speech segments.

2.4. Posterior-level Score Fusion

To improve generalization performance, we perform score fusion as
a model ensemble technique. We utilize different data augmentation
methods to build several single systems based on multi-scale CRNN
and CNN-Transformer models with different schemes. Then, we
average the raw posterior outputs p(X) for inputs X of the multiple
models:

pfusion(X) =
1
N

NX

n=1

pn(X), (7)

where N means the total number of models for our fusion.

3. EXPERIMENTS

3.1. Dataset and Signal Preprocessing

The DESED dataset of DCASE 2021 Task 4 is comprised of 10-sec
audio clips and 10 classes of sound events. The data are in two do-
mains: real data (44.1kHz) extracted from AudioSet [27] and syn-
thetic data (16kHz) generated by Scaper [28]. Each audio clip can
be strongly labeled with the sound events and their time boundaries
annotated, weakly labeled with only the sound events annotated,
or unlabeled without any annotation. All dataset is divided into
5 subsets: weakly labeled (1,578 clips), unlabeled (14,412 clips),
strongly labeled (10,000 clips), validation set (1,168 clips), public
evaluation set (692 clips). Audio signals are resampled to 16kHz
sampling rate at first by FFmpeg tool [29]. Then, 128-channel mel-
spectrogram from them is extracted with a window size of 2048 and
hop size of 256 by Librosa tool [30]. Consequently, the size of the
input acoustic features to the deep neural network is 626⇥ 128.

3.2. Network Setups

The 7 layers of multi-scale CNN blocks have the number of fil-
ters:[16, 32, 64, 128, 128, 128, 128] and pooling size:[[2, 2], [2, 2],
[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]]. The 6 layers of transformer en-
coder blocks have multi-head attention with 256 units and 8 heads
and a feed-forward layer with 2048 units. For ICT and mixup aug-
mentation, the parameter � is sampled from Beta(↵,↵) and ↵ from
0.1 to 0.9 in increments of 0.1. For SCT and shift augmentation, we
choose the amount of time-shift by sampling from a normal distri-
bution with a zero mean and a standard deviation of 90. For masks
augmentation, the size of time-mask and frequency-mask are sam-
pled from a uniform distribution from 0 to 30 and 40, respectively.
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4. EVALUATION RESULTS

The evaluation of DCASE 2021 Task4 contains PSDS 1 (react fast)
and PSDS 2 (avoid class confusion). From Table 1, we can find
that the results of RNNs-based network is better than Transformer-
based one, especially on PSDS 2. Then, whatever neural network
is CRNN or CNN-Transformer, the incorporation of ICT, SCT,
and CCT has significant achievement on two scenarios. The mul-
tiple consistency training schemes on CRNN improved PSDS 1
from 34.04% to 37.86%, PSDS 2 from 53.30% to 60.87%, and on
CNN-Transformer, PSDS 1 from 33.46% to 37.33%, PSDS 2 from
48.77% to 55.87%. In addition, we observe that multi-scale CNN
blocks and ECA-Net can help the model obtain various and impor-
tant features of sound events so that CRNN can reach 65.54% and
CNN-Transformer can reach 61.10% for PSDS 2. From Table 2,
both types of neural networks are best when using attention pool-
ing at PSDS 1 and using exponential softmax at PSDS 2. We con-
sider that attention pooling learns weights from the network so that
they have a time series relationship. Therefore, it has better perfor-
mance under stricter evaluation standards with time requirements.
Then, exponential softmax uses exponentials as weights to conform
to monotonicity so that the higher the prediction probability of the
time point, the higher the weight. Thus, it has better performance
under the stricter evaluation criteria with category requirements.

We combine CRNN/CNN-Transformer with proposed schemes
to build three single systems so that PSDS 1 and PSDS 2 can have
the best performance:

• (i) CNN-Transformer + ICT, SCT, CCT, Multiscale
• (ii) CRNN + ICT, SCT, CCT, Multiscale
• (iii) CRNN + ICT, SCT, CCT, Multiscale, ECA, ExpSoftmax

Based on mixup data augmentation following the baseline, we find
that (i) and (ii) improve the performance on PSDS 1, and (iii)
reach significant achievement on PSDS 2. To ensemble the sev-
eral systems, we apply several data augmentation methods to build
each single system, which includes mixup, time-shift, and time-
frequency masks, as shown in Table 3. From Table 4, our fusion
systems can achieve 40.72% of PSDS 1 and 80.80% of PSDS 2 on
the validation set, 37.42% of PSDS 1 and 69.73% of PSDS 2 on the
public evaluation set.

Table 1: Results of different schemes, based on two networks with
mixup data augmentation.

Scheme Model PSDS 1 PSDS 2

- CRNN 34.04% 53.30%
CNN-Transformer 33.46% 48.77%

+ICT CRNN 36.38% 55.87%
CNN-Transformer 33.39% 50.07%

+SCT CRNN 37.86% 59.47%
CNN-Transformer 35.61% 52.01%

+CCT CRNN 37.64% 60.87%
CNN-Transformer 37.33% 55.87%

+Multiscale CRNN 37.51% 62.63%
CNN-Transformer 34.75% 61.10%

+ECA-Net CRNN 34.71% 65.54%
CNN-Transformer 35.13% 60.27%

Table 2: Results of different pooling functions, based on above
schemes without ECA. yi and y means frame-level and clip-level.

Pooling Function Formula Model PSDS 1 PSDS 2

Attention y =
P

i yiwiP
i wi

CRNN 37.51% 62.63%
CNN-Transformer 34.75% 61.10%

Max pooling y = maxiyi
CRNN 36.10% 64.59%
CNN-Transformer 31.73% 59.77%

Average pooling y = 1
n

P
i yi

CRNN 5.34% 73.95%
CNN-Transformer 4.53% 60.41%

Linear Softmax y =
P

i y2
iP

i yi

CRNN 26.75% 60.17%
CNN-Transformer 24.21% 60.57%

Exponential Softmax y =
P

i yiexp(yi)P
i exp(yi)

CRNN 5.82% 75.35%
CNN-Transformer 4.13% 61.31%

Table 3: Results of different data augmentations, based on three
single systems.

# Model Schemes Data Augmentation PSDS 1 PSDS 2

0 CRNN - Mixup (↵ = 0.2) 34.04% 53.30%

1

CNN-Transformer ICT, SCT, CCT, Multiscale

Mixup (↵ = 0.2) 34.75% 61.10%
2 Shift 31.39% 55.05%
3 Masks 33.24% 59.04%
4 Mixup (↵ = 0.2)+Shift 33.43% 58.68%
5 Mixup (↵ = 0.2)+Masks 34.29% 61.52%
6 Shift+Masks 33.64% 55.46%

7

CRNN ICT, SCT, CCT, Multiscale

Mixup (↵ = 0.1) 37.69% 63.00%
8 Mixup (↵ = 0.2) 37.51% 62.63%
9 Mixup (↵ = 0.4) 36.71% 64.82%
10 Mixup (↵ = 0.5) 36.84% 64.18%
11 Mixup (↵ = 0.6) 36.55% 61.85%
12 Mixup (↵ = 0.7) 36.70% 63.91%
13 Shift 35.71% 61.29%
14 Masks 36.96% 64.84%
15 Mixup (↵ = 0.2)+Shift 37.03% 63.02%
16 Mixup (↵ = 0.2)+Masks 38.13% 65.32%

17

CRNN ICT, SCT, CCT, Multiscale,
ECA, ExpSoftmax

Mixup (↵ = 0.1) 6.81% 75.59%
18 Mixup (↵ = 0.2) 5.71% 76.16%
19 Mixup (↵ = 0.7) 5.37% 76.29%
20 Shift 4.46% 72.16%
21 Masks 5.29% 75.07%
22 Mixup (↵ = 0.2)+Shift 5.12% 76.19%
23 Mixup (↵ = 0.2)+Masks 4.82% 75.45%
24 Shift+Masks 4.83% 76.08%

Table 4: Results of the fusion systems on the two testing sets.

# Model Schemes
Validation Public eval

PSDS 1 PSDS 2 PSDS 1 PSDS 2

7⇠16 CRNN ICT, SCT, CCT, Multiscale 40.72% 70.25% 37.22% 69.47%

17⇠24 CRNN ICT, SCT, CCT, Multiscale,
ECA-Net, ExpSoftmax 6.08% 80.80% 8.30% 65.39%

1⇠16 CRNN
CNN-Transformer ICT, SCT, CCT, Multiscale 38.79% 67.18% 37.45% 68.42%

1⇠24 CRNN
CNN-Transformer

ICT, SCT, CCT, Multiscale,
ECA-Net, ExpSoftmax 37.02% 72.42% 33.56% 69.73%

5. CONCLUSION

Based on the mean-teacher framework of semi-supervised learning
with RNNs and Transformer, we present a multi-scale CNNs with
ECA-Net to capture various and important features of sound events.
For the multiple consistency criteria, ICT helps the model discrim-
inate the ambiguous samples to enhance the generalization ability,
SCT assists the model to learn better temporal information, CCT
promotes the model feature representation power. Then, an appro-
priate pooling function is applied to the specific scenario. The data
augmentation and posterior-level score fusion further improve the
performance. Finally, on the validation set and challenge’s evalua-
tion set, our proposed system significantly outperforms the baseline.
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ABSTRACT 

We adapted methods from the speaker recognition literature to 
acoustic event detection (or audio-tagging) and applied represen-
tational similarity analysis, a cognitive neuroscience technique, 
to gain a deeper understanding of model performance. Experi-
ments with a feed-forward time-delay neural network architec-
ture (TDNN) were carried out using the FSDKaggle2018 da-
taset. We examined various system optimizations such as speed 
and reverb augmentation, different input features (spectrograms, 
mel-filterbanks, MFCCs and cochleagrams), as well as updates 
to the network architecture (increased or decreased temporal 
context and model capacity as well as drop-out and batch-nor-
malization). Most system configurations were able to outperform 
the original published baseline and, primarily using speed aug-
mentation, our system was able to outperform a harder baseline 
derived from a model pre-trained on many times more data. Ad-
ditional experiments applying representational similarity analy-
sis to the network embeddings allowed us to understand what 
acoustic features the different systems used to perform the task. 

Index Terms— Audio tagging, acoustic event recognition, 
speaker recognition, explainable features, acoustic features 

1. INTRODUCTION 

Objects and events in the environment can be recognized based 
on the sound patterns they generate [1]. Automated sound identi-
fication (also called sound/acoustic event recognition or audio 
tagging) supports many critical information retrieval [2], hearing 
assistance [3], urban planning [4], and monitoring [5] applica-
tions. Recognition systems can also provide insight into human 
[6] and animal [7] auditory processing. Despite its obvious im-
portance, sound recognition is not a solved problem. Continued 
development will help address many remaining gaps in perfor-
mance and yield new insights for acoustics and machine percep-
tion research. 

Many modern approaches to sound recognition take the 
rich deep learning literature on visual object recognition as a 
starting place [8, 9, 10]. These methods essentially treat the task 
as an image classification problem based on a spectrogram input. 
However, such an approach has a number of shortcomings (see 
[11] for discussion). Most notably it is a sub-optimal treatment of 
the inherently temporal nature of sound. That is, to comply with 
the constraints of image recognition methods, an incoming audio 
example is normally chunked into fixed size spectrogram images 

that are fed to a 2-dimensional convolutional network architec-
ture. Chunks are then classified individually or the systems’ hy-
potheses are averaged over time points. This results in a slightly 
awkward treatment of audio examples that frequently vary in du-
ration. Also, if examples are labelled at the file-level, individual 
chunks run the risk of not containing any information related to 
the target sound due to pauses or interruptions. Indeed, some re-
sults have suggested that chunk averaging may be sub-optimal 
relative to systems designed to handle variable length input [12]. 

Other lines of research have emerged for identifying 
specific classes of sound sources such as human speakers [13, 
14]. Speaker recognition in particular has made remarkable pro-
gress using deep learning techniques that stem from language and 
speech modeling [15, 16]. These approaches give special atten-
tion to how information unfolds in time [17], for example, by sta-
tistically pooling time windows to create an intermediate global 
representation within the network [18] that is further processed. 
This approach can also be used to recognize acoustic scenes [19].  

With these branches of acoustic research in mind we 
present a series of experiments where we applied successful tech-
niques from speaker identification to the task of sound event 
recognition. We also study adaptations of this framework to bet-
ter fit the sound event recognition task. In the end, we achieved 
accurate performance on a well-studied recognition dataset [20], 
beating the initial published baseline as well as another stronger 
baseline that uses an image-recognition-based system pre-trained 
on many more hours of data [8]. Finally, we provide insight into 
the performance differences among these systems by exploring 
their respective embedding spaces using representational similar-
ity analysis [21]. 

2. STUDY DESIGN 

2.1. Data and Task 

Our goal was to apply speaker recognition techniques to sound 
event recognition. Thus, we aimed to select a dataset that was or-
ganized analogously to typical speaker recognition datasets [14, 
22]. This involves a large number of discrete target classes with 
numerous training examples where each example corresponds to 
a single target class. We chose to conduct our experiments using 
the popular audio-tagging dataset, FSDKaggle2018 (see [20] for 
details). Briefly, this is a curated collection of publicly available 
data that is user generated and user tagged. The data was then 
binned by the authors of the corpus into 41 discrete classes 
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according to a well-established acoustic event ontology [2]. 
Clips vary in duration and the number of training examples is 
unbalanced across classes. Our experiments were carried out on 
the full (manual and user-labelled) portion of the dataset. This 
dataset does not contain a validation partition, so we created one 
by holding out one third of the manually labelled examples of 
each class from the training partition. Model selection was done 
on this validation set. We then report final system performance 
of the selected model on the test partition. All audio data were 
down-sampled to a 16kHz sampling rate. 

We selected this dataset because, relative to other op-
tions, it strikes a good balance in terms of dataset size (up to 18 
hours of training data), diversity (41 discrete classes), and label 
specificity (generally, a single class-label per clip). Some more 
thoroughly labelled datasets exist but are limited in their number 
of target classes [23] or training examples [24]. While other 
larger datasets often sacrifice label purity and usually contain 
multiple classes per clip [2, 4, 9].  

We compare performance against the published base-
line for this dataset from [20] (mAP@3 = 0.70). A harder base-
line was also generated using Google’s YAMNet system trained 
on their AudioSet corpus [8, 25]. We extracted YAMNet embed-
dings for each sound token (no augmentation) and then trained a 
single fully connected layer between those embeddings and 41 
output units for the corpus’ target classes. The shallow YAMNet 
embedding network was trained for 100 epochs and we retained 
the model with the highest performance on the validation parti-
tion (validation performance: accuracy = 0.79, mAP@3 = 0.86; 
test performance: accuracy = 0.78, mAP@3 = 0.85). 

2.2. Network Architecture and Training 

Our initial TDNN model was an implementation of the x-vector 
system developed by Snyder and colleagues for speaker recogni-
tion [18, 26] that we reproduced in PyTorch (using [27]). Be-
cause it is based on feed-forward units, TDNN networks are 
faster and more efficient to train than recurrent networks, such as 
LSTMs (c.f., [17]).  

A TDNN models temporal context via a hierarchy of 
layers that progressively see larger windows of time via dilations 
that occur in higher layers. Variable length audio input is handled 
by a combination of frame-level and segment-level components 
within the model. At the frame-level, the TDNN structure slides 
over frames of the variable length input. The output of these lay-
ers is projected to a set of units over which the mean and stand-
ard deviation are calculated for a given example (audio file). The 

mean and standard deviation of these units are concatenated to 
comprise a statistics pooling layer that begins the segment-level 
processing. Above the statistics pooling layer are two fully con-
nected layers (which comprise the embedding layers) followed 
by 41 output units, one for each of the target classes. 

Specifically, we re-created the architecture described 
by [26] with a context of five input time-frames (of the input 
spectrogram) in the first layer. Layer two received layer one’s 
output with a context of three frames and a dilation of two before 
sending output to layer three which also has a context of three 
frames with a dilation of three. Layers four and five both have 
contexts of one. Thus, layers three and higher operated over a to-
tal context of 15 spectrogram frames. All TDNN and embedding 
layers have 512 units. The layer just prior to the statistics pooling 
layer projected to 1500 units that were used to calculate a mean 
and standard deviation which were concatenated before output to 
the first fully connected layer, followed by the second fully con-
nected layer (each with 512 units).  

Audio files were represented to the network via a time-
frequency representation. Speaker and sound event recognition 
studies have used a variety of different inputs, so we tested multi-
ple popular representations to determine an optimal set of fea-
tures. We explored many Kaldi-style representations using 
torchaudio all with a 25-ms window and 10-ms hop size. Because 
we used a higher sample rate (16k) than the original x-vector net-
work implementation (8k), we allowed an increase in the number 
of frequency bins for each representation: spectrograms (201 fre-
quency bins), mel-filterbanks (80 mel bins) and MFCCs (mel-fre-
quency cepstral coefficients; 40 cepstral features). We also gen-
erated a cochleagram representation to approximate the periph-
eral auditory system of a human listener (which we instantiated 
via [28]; upper frequency limit = 8k, 4 times overcomplete band-
pass filter sampling, output down sampled to 100 Hz). All audio 
was zero-padded for 5-ms at onset and up to 5 ms at offset before 
windowing. During training, each input spectrogram was normal-
ized (between 0 and 1), and the durations of input examples were 
standardized to between 1-second and 30 seconds either via loop-
ing spectrograms that were too short (until they exceeded 101 
frames), or by truncating them (to 3001 frames if they exceeded 
that).  

Each training run comprised 100 epochs and we re-
tained the model from the epoch with the highest accuracy on the 

Cochleagram Mel-Filterbank MFCC Spectrogram Cochleagram Mel-Filterbank MFCC Spectrogram

Initial Baseline TDNN Model 0.73(Δ0) 0.74(Δ0) 0.24(Δ0) 0.75(Δ0) 0.79(Δ0) 0.8(Δ0) 0.32(Δ0) 0.81(Δ0)
Diff. Maps 0.74(Δ0.016) 0.75(Δ0.012) 0.16(Δ-0.078) 0.75(Δ0.002) 0.8(Δ0.006) 0.81(Δ0.007) 0.24(Δ-0.087) 0.81(Δ-0.005)
Reverb Aug. 0.77(Δ0.043) 0.79(Δ0.043) 0.7(Δ0.464) 0.77(Δ0.022) 0.82(Δ0.03) 0.84(Δ0.035) 0.78(Δ0.453) 0.82(Δ0.011)
Speed Aug. 0.83(Δ0.099) 0.88(Δ0.134) 0.76(Δ0.526) 0.87(Δ0.117) 0.87(Δ0.079) 0.91(Δ0.103) 0.82(Δ0.493) 0.9(Δ0.089)
Smaller Net: 256 Units 0.72(Δ-0.004) 0.76(Δ0.019) 0.45(Δ0.218) 0.74(Δ-0.01) 0.78(Δ-0.012) 0.82(Δ0.013) 0.56(Δ0.234) 0.8(Δ-0.011)
Larger Net: 1024 Units 0.74(Δ0.015) 0.75(Δ0.007) 0.4(Δ0.166) 0.76(Δ0.007) 0.8(Δ0.009) 0.81(Δ0.007) 0.5(Δ0.178) 0.81(Δ0.001)
Reduced Context-Layer 0.72(Δ-0.011) 0.74(Δ-0.002) 0.43(Δ0.194) 0.73(Δ-0.02) 0.78(Δ-0.018) 0.81(Δ0.002) 0.54(Δ0.216) 0.8(Δ-0.015)
Added Context-Layer 0.74(Δ0.007) 0.75(Δ0.011) 0.56(Δ0.326) 0.74(Δ-0.012) 0.79(Δ-0.001) 0.81(Δ0.001) 0.65(Δ0.332) 0.8(Δ-0.015)
Batch-Norm, Drop-Out 0.76(Δ0.031) 0.8(Δ0.055) 0.63(Δ0.39) 0.78(Δ0.033) 0.81(Δ0.016) 0.85(Δ0.044) 0.71(Δ0.392) 0.84(Δ0.026)
Speed+Reverb Aug. NA 0.87(Δ0.126) NA NA NA 0.9(Δ0.093) NA NA
Speed+Reverb, Diff. Maps, Batch-Norm+Drop-Out NA 0.86(Δ0.113) NA NA NA 0.89(Δ0.084) NA NA
Speed+Reverb, Batch-Norm+Drop-Out NA 0.85(Δ0.109) NA NA NA 0.89(Δ0.084) NA NA
Speed+Reverb, Diff. Maps NA 0.87(Δ0.129) NA NA NA 0.91(Δ0.1) NA NA

Accuracy mAP@3

Table 1: Performance of different model architectures and training configurations on the validation partition. Parentheses indicate 
change in performance from our baseline TDNN model on the first line. 

81



Detection and Classification of Acoustic Scenes and Events 2021  15-19 November 2021, Online
  

 

validation partition. Batches were of 16 examples (shuffled be-
tween epochs). We used PyTorch’s cross-entropy loss function 
with a stochastic gradient descent optimizer (learning rate: 0.001, 
momentum: 0.9, weight decay: 0.001). Because there was an im-
balance of training data among classes, weights were applied in 
the loss function that gave more weight to low occurrence classes 
relative to the class with the highest number of training exam-
ples. We report raw accuracy on the validation and test partitions 
as well as mean Average Precision @ 3 (mAP@3).  

2.3. Study of Network Architecture and Training Parameters 

We carried out a number of experiments to optimize inputs and 
model parameters during training. The baseline for these experi-
ments was the performance of a network structured like the orig-
inal x-vector network configuration [26], albeit with a larger in-
put representation to take advantage of the higher sampling rate 
(see above). Throughout, we compared the performance of four 
front-end, time-frequency representations (spectrogram, MFCC, 
mel-filterbank, or cochleagram input). In terms of input optimi-
zations we also attempted to help the network efficiently learn 
spectral and temporal variability cues by appending 2 “differ-
ence maps” to the input time-frequency representation: 1) the 
first derivative in each frequency channel over time and, 2) first 
derivative in each time bin over frequencies.  

We then examined the effectiveness of common data 
augmentation strategies gleaned from work on speech tasks [29, 
30] (see also [31]): simple speed augmentation (plus and minus 
10%, thus altering any pitch by the same amount) and reverb 
augmentation (instantiated via [32]), both of which were carried 
out on the audio files prior to extracting a time-frequency repre-
sentation. Augmentation by background noise and babble was 
not examined, since these recordings already contained some. 
Sounds similar to those in this dataset are also often used in 
noise augmentation for speech tasks, which risked confusing 
class labels during training.  

Next, we turned our attention to optimizing the net-
work architecture in various ways: varying the number of units 
in each layer (feed forward layer 256 or 1024 and number of 

statistics pooling layer units 750 and 3000, respectively), in-
creasing or decreasing temporal context before statistical pooling 
(by removing or duplicating layer 3), and adding batch norm and 
50% dropout. Based on these experiments we studied a final set 
of models that used combinations of the best performing param-
eters and optimizations.  

3. RESULTS 

Model performance is summarized within Table 1. Differences 
relative to our baseline TDNN configuration are indicated in pa-
rentheses. Without any modifications the initial TDNN models 
outperformed the original published baseline given most of the 
feature input options, although performance using MFCCs was 
generally poor. Not every optimization we experimented with 
improved performance and some optimizations varied in how 
much they improved performance given different input features.  
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Figure 1: Our top performing TDNN model's embedding space visualized using t-SNE. Points correspond to examples in the test 
set. Insets in the right panel call out examples for each target class and serves as a color code. 

Table 2: Description of some acoustic features used in 
the representational similarity analyses. 

 

Derived based on: 1) Energy envelope or, 2) ERB (cochleagram) 
representation in the Timbre Toolbox [35, 36], 3) YIN [37],  4) modulation 
power spectrum [38]. Table adapted from [33]. 

Feature Description Interpretation

Log-Attack-Time1 Log of the time difference between 

attack onset and ending

Lower values = faster onset time

Temporal Centroid1 Center of gravity of the energy 

envelope

Lower values = earlier temporal 

centroid

Spectral Centroid2 Center of gravity of the spectral 

(ERB) envelope

High values = higher frequency 

centroid

Spectral Flatness2 Ratio of geometric and arithmetic 

means of the ERB spectra

Measures noise/harmonic content. 

Higher values are flatter/noisier

Spectral Variability2 1 minus the correlation of ERB 

channel spectra between timepoints

Higher values = more variable 

envelope

Aperiodicity3 Amount of aperiodic energy in the 

signal

Higher values = more aperiodic

ERB Energy2 Amount of energy in the spectral 

representation at each timestep

Sum of squared amplitudes in the 

spectral representation.

Raw ERB cochleagram2 Raw ERB representation of each of 

77 channels: 30 Hz to 16 kHz

Energy in each channel over time.

Mod. Power Spectrum4 2D-FFT of Gaussian spectrogram Degree of joint spectral/temporal 

modulation rates

Derived based on: 1) Energy envelope or, 2) ERB cochleagram representation in the Timbre Toolbox 

[39, 40], 3) YIN [41],  4) modulation power spectrum [42]. Adapted from [37].
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Speed and, to a lesser degree, reverb augmentation were particu-
larly beneficial, as was batch-norm and drop-out. Changing tem-
poral context and model capacity often hurt performance. 
 Only with speed augmentation were some of our 
TDNN models able to beat the performance of the stronger 
YAMNet-baseline system on the validation partition. To further 
improve our system we explored combinations of optimizations 
that were beneficial in the initial experiments. These combina-
tion experiments were carried out using mel-filterbank input fea-
tures because these achieved the highest performance relative to 
other initial TDNN systems. A model trained with speed and re-
verb augmentation with the spectrotemporal difference maps us-
ing the mel-filterbanks as input features achieved the highest 
validation performance among these combination experiments. 
However, no combination experiments out-performed the initial 
mel-filterbank TDNN model trained with speed-augmented data, 
so this was selected as our final model to evaluate the test data 
(accuracy = 0.82, mAP@3 = 0.86), which slightly out-performed 
the YAMNet-baseline. Class separation within the embedding 
space of this top-performing model is visualized in Figure 1. 
 

4. REPRESENTATIONAL SIMILARITY ANALYSIS 

Performance of our final model and the YAMNet-baseline were 
both quite high, despite operating over the audio differently. 
Thus, we were interested in better understanding whether any dif-
ferences existed in how these systems internally represented au-
dio examples and the influence of different acoustic qualities. To 
do this, we employed a method called representational similarity 
analysis [21] which can provide a high-level understanding of 
complex systems by correlating inter-item distances among dif-
ferent representations of a set of probe examples. We extracted 
network embeddings (i.e., activations from the layer just prior to 
the 41-class output layer) from our final, best performing model 
and from the YAMNet model for each example in the test parti-
tion. Then among each model’s embeddings, we calculated the 
cosine distance of the network representations for each pair of 
test examples, to populate two 1600 by 1600 network-dissimilar-
ity matrices (one matrix for each network). The network-dissimi-
larity matrices were compared against another set of inter-item, 
acoustic-dissimilarity matrices (absolute value of feature differ-
ences) for a set of well-studied acoustic features derived for each 
test item (see Table 2 and [33] for detailed description). These 
acoustic distances were contained within another set of 1600 by 
1600 acoustic-dissimilarity matrices, (one matrix per feature). 
Note, because these dissimilarity matrices are symmetrical across 
the diagonal, only one unique item pairing was analyzed (e.g., 
item-1 vs item-2 or item-2 vs item-1).  

We carried out rank-order semi-partial Spearman corre-
lations between each network-dissimilarity matrix and the set of 
acoustic-dissimilarity matrices. In each semi-partial test, a corre-
lation was derived between the network-dissimilarity matrix, and 
the target acoustic-dissimilarity matrix, while holding the other 
features constant. Only correlations that were interpretable (i.e., 
positive) and statistically significant after false-discovery rate 
correction were retained. 

The representational similarity analysis is summarized 
in Figure 2. We found that despite their high performance, our 
model and the YAMNet model’s embedding spaces were only 
modestly correlated (rs = 0.31). Both models’ performance was 

most strongly associated with acoustic cues for aperiodicity, 
spectral centroid, and spectral variability, albeit with differences 
in the relative importance of these features. This is similar to fea-
tures that influence dissimilarity ratings among human listeners 
[33] and neural representations [34]. 

5. CONCLUSION 

We examined the effectiveness of different speaker recognition 
methods on an audio-tagging task. We were able to obtain good 
performance, beating the original baseline for this dataset, and a 
more challenging YAMNet-baseline derived from a system 
trained on many hours more data. The TDNN architecture ap-
pears to derive great performance benefit from data augmenta-
tion (particularly speed augmentation). Representational similar-
ity analyses implicated a set of acoustic features that are also as-
sociated with sound recognition in the human auditory system.  
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ABSTRACT

This paper presents the details of Task 1A Low-Complexity Acous-
tic Scene Classification with Multiple Devices in the DCASE 2021
Challenge. The task targeted development of low-complexity so-
lutions with good generalization properties. The provided baseline
system is based on a CNN architecture and post-training quanti-
zation of parameters. The system is trained using all the avail-
able training data, without any specific technique for handling de-
vice mismatch, and obtains an accuracy of 47.7%, with a log loss
of 1.473. The task received 99 submissions from 30 teams, and
most of the submitted systems outperformed the baseline. The most
used techniques among the submissions were residual networks and
weight quantization, with the top systems reaching over 70% accu-
racy, and log loss under 0.8. The acoustic scene classification task
remained a popular task in the challenge, despite the increasing dif-
ficulty of the setup.

Index Terms— Acoustic scene classification, multiple devices,
low-complexity, DCASE Challenge

1. INTRODUCTION

Acoustic scene classification aims to classify a short audio record-
ing into a set of predefined classes, based on labels that indicate
where the audio was recorded [1]. The popularity of the task in
DCASE Challenge throughout the years has allowed the develop-
ment of approaches diverging from the textbook supervised classi-
fication, introducing along the years different devices [2], open-set
classification, and low-complexity conditions [3], along with the
publication of suitable datasets.

The problem of classification of acoustic scenes from different
recording devices is illustrated in Fig. 1. Performance and gener-
alization properties of such a system are strongly affected by mis-
matches between training and testing data, including recording de-
vice mismatch. A variety of solutions were proposed for dealing
with the mismatch: for example in DCASE 2019 challenge, Kos-
mider et al. [4] used a spectrum correction method to account for
different frequency responses of the devices in the dataset, based on
the fact that the provided development data contained temporally
aligned recordings from different devices. Other systems used mul-
tiple forms of regularization that involves aggressively large value
for weight decay, along with mixup and temporal crop augmenta-
tion [5]. In DCASE 2020 Challenge, most of the submitted systems
used multiple forms of data augmentation including resizing and
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under the European Unions H2020 Framework Programme through ERC
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Figure 1: Acoustic scene classification for audio recordings.

cropping, spectrum correction, pitch shifting, and SpecAugment,
which seems to compensate for the device mismatch [3]. The top
system had an accuracy of 76.5% (1.21 log loss), using residual
networks for the 10 scene classification with mismatched data [6].

In addition to dealing with data collected from devices not
available during training, real-world solutions also need to be able
to operate on devices with limited computational capacity [7]. For
instance, in SED, dilated CNN have been applied to reduce the num-
ber of model’s parameters [8] whereas in [9], network dimensions
have been scaled to obtain smaller and efficient architectures. In
DCASE 2020, the low-complexity classification task consisted of a
3-class problem, to which many of the submissions imposed restric-
tions on the model architectures and their representations, such as
using slim models, depth-wise separable CNNs, pruning and post-
training quantization of model weights [3]. The top system [10]
used a combination of pruning and quantization, using 16-bit float
representation for the model weights and having a reported sparsity
of 0.28 (ratio of zero-valued parameters), obtaining 96.5% accuracy
(0.10 log loss).

In DCASE 2021 Challenge, the two problems are merged, tar-
geting good performance for a 10-class setup, multiple devices, and
with model size constraints. The added difficulty of the task comes
from imposing more demanding conditions on both studied direc-
tions: using 10 classes instead of the three classes like in 2020, and
dropping the model size limit from 500KB to 128KB. The choice
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of these conditions is motivated by the good performance demon-
strated in DCASE 2020 Challenge, which showed that it was pos-
sible to achieve high performance results with a low complexity
model.

This paper introduces the results and analysis of the DCASE
2021 Challenge Subtask A: Low-Complexity Acoustic Scene Clas-
sification with Multiple Devices. The paper is organized as follows:
Section 2 introduces shortly the setup, dataset, and baseline system.
Section 3 presents the challenge participation statistics in terms of
numbers and use of methods, and Section 4 presents a detailed anal-
ysis of the submitted systems. Finally, Section 5 presents conclu-
sions and thoughts for future development of this task.

2. TASK SETUP

The specific feature of this task for acoustic scene classification is
generalization across a number of different devices, while enforcing
a limit on the model size. The 11 different devices in the dataset
include real and simulated devices, and the model limit is 128 KB.

2.1. Dataset and performance evaluation

The task used the TAU Urban Acoustic Scenes 2020 Mobile
dataset [11, 12]. The dataset is the same as used in DCASE 2020
Challenge Task 1A, comprised of recordings from multiple Euro-
pean cities, ten acoustic scenes [13]: airport, indoor shopping mall,
metro station, pedestrian street, public square, street with medium
level of traffic, travelling by a tram, travelling by a bus, travelling
by an underground metro and urban park. Four devices used to
record audio simultaneously are denoted as A, B, C, and D (real de-
vices), with an additional 11 devices S1-S11 simulated using the au-
dio from device A. The development/evaluation split, and the train-
ing/test split of the development set are the same as in the previous
challenge, with 64 hours of audio available in the development set
and 22 hours in the evaluation set. For details on the dataset cre-
ation, and the amount of data available from each device, we refer
the reader to [3].

We evaluate the submitted system using multi-class cross-
entropy and accuracy. Accuracy is calculated as macro-average (av-
erage of the class-wise performance for each metric), but because
the data is balanced, this corresponds to the overall accuracy. We
use multi-class cross-entropy (log loss) for ranking the systems, in
order to create a ranking independent of the operating point. Accu-
racy values are provided for comparison with the methods evaluated
in previous years.

2.2. System complexity requirements

A model complexity limit of 128 KB was set for the non-zero pa-
rameters. This limit allows 32768 in float32 (32-bit float) represen-
tation, which is often the default data type (32768 parameter values
* 32 bits per parameter / 8 bits per byte= 131072 bytes = 128 KB).
Different implementation may consider minimizing the number of
non-zero parameters of the network in order to comply with this size
limit, or representation of the model parameters with a low number
of bits.

The computational complexity of the feature extraction stage is
not included in this limit, due to a lack of established methodol-
ogy for estimating and comparing complexity of different low-level
feature extraction implementations. By excluding the feature ex-
traction stage, we keep the complexity estimation straightforward

System Log loss Accuracy Size

keras 1.473 (± 0.051) 47.7% (± 0.9) 90.3KB

Table 1: Baseline system size and performance on the development
dataset

across approaches. Some implementations may use a feature ex-
traction layer as the first layer in the neural network - in this case the
limit is applied only to the following layers, in order to exclude the
feature calculation as if it were a separate processing block. How-
ever, in the special case of using learned features (so-called embed-
dings, like VGGish [14], OpenL3 [15] or EdgeL3 [16]), the network
used to generate them counts in the calculated model size.

3. BASELINE SYSTEM

The baseline system is based on a convolutional neural network
(CNN) with the addition of model parameters quantization to 16
bits (float16) after training, code available on github1. The system
uses 40 log mel-band energies, calculated with an analysis frame
of 40 ms and 50% hop size, to create an input shape of 40 ⇥ 500
for each 10 second audio file. The neural network consists of three
CNN layers and one fully connected layer, followed by the softmax
output layer. Learning is performed for 200 epochs with a batch size
of 16, using Adam optimizer and a learning rate of 0.001. Model
selection and performance calculation are done similar to the base-
line system in DCASE 2020 Challenge Subtask A. Quantization of
the model is done using Keras backend in TensorFlow 2.0 [17], af-
ter training the model, the weights are set to float16 type. The final
model size of the system after quantifying is 90.3 KB.

The classification results on the development dataset train-
ing/test split is presented in Table 2. The class-wise log loss is
calculated taking into account only the test items belonging to the
considered class (splitting the classification task into ten different
sub-problems), while overall log loss is calculated taking into ac-
count all test items. Given the results shown in this table, shopping
mall is the class with the lowest log loss, while public square has
the highest log loss, being the most difficult to classify. The system
behaves similarly to previous year challenge task 1A, the loss only
increases 0.108 while the accuracy drops 6.4 points.

1https://github.com/marmoi/dcase2021 task1a baseline

Scene label Log Loss Accuracy

Airport 1.43 40.5%
Bus 1.32 47.1%
Metro 1.32 51.9%
Metro station 1.99 28.3%
Park 1.17 69.0%
Public square 2.14 25.3%
Shopping mall 1.09 61.3%
Pedestrian street 1.83 38.7%
Traffic street 1.34 62.0%
Tram 1.10 53.0%

Overall 1.473 47.7%

Table 2: Class-wise performance of the baseline system on the de-
velopment dataset.
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Rank System Logloss
±95% CI

Acc
±95% CI(%)

Size
(KB) Weights Sparsity Learning Architecture

1 Kim QTI 2 0.72±0.03 76.1±0.94 121.9 int8 X KD BC-ResNet
3 Yang GT 3 0.74±0.02 73.4±0.97 125.0 int8 X KD Ensemble
9 Koutini CPJKU 3 0.83±0.03 72.1±0.99 126.2 float16 X grouping CNN CP ResNet

12 Heo Clova 4 0.87±0.02 70.1±1.01 124.1 float16 - KD ResNet
13 Liu UESTC 3 0.88±0.02 69.6±1.01 42.5 1-bit - - ResNet
17 Byttebier IDLab 4 0.91±0.02 68.8±1.02 121.9 int8 X grouping CNN ResNet
19 Verbitskiy DS 4 0.92±0.02 68.1±1.03 121.8 float16 - - EfficientNet
22 Puy VAI 3 0.94±0.02 66.2±1.04 122.0 float16 - focal loss Separable CNN
25 Jeong ETRI 2 0.95±0.03 67.0±1.04 113.9 float16 - - Trident ResNet
28 Kim KNU 2 1.01±0.03 63.8±1.06 125.1 int8 - mean-teacher Shallow inception

85 Baseline 1.73±0.05 45.6±1.10 90.3 float16 - - CNN

Table 3: Performance on the evaluation set and complexity management techniques for selected top systems (best system of each team).
“KD” refers to Knowledge Distillation and “BC” stands for Broadcasting.

4. CHALLENGE RESULTS

This section presents the challenge results and an analysis of the
submitted systems. A total of 99 systems were submitted for this
task from 30 teams. The number of participants for the ASC task
is steady in the recent years, showing that its popularity does not
decrease, but continues to attract attention through different setups.

The highest accuracy obtained for the classification was 76.1%,
for the system of Kim QTI [18], with the same system also having
the best log loss of 0.724. Overall, 18 submitted systems had over
70% accuracy. The performance and a few selected characteristics
for systems submitted by the top 10 teams (best system of each
team) are presented in Table 3. Confidence intervals for log loss
were calculated using the jackknife estimation as in [19]. Complete
results are available on the task webpage2.

The ranking of systems is based on log loss; if the systems
would be ranked by accuracy, their order would be quite different:
while top 3 teams would keep their spots, teams ranked 12th and
27th would move to ranks 4th and 8th. Systems ranked 1st, 2nd,
9th and 10th would keep their place, while the others in between
would be shuffled. We calculated the Spearman rank correlation
between accuracy and log loss, to investigate the strength of the as-
sociation between the two. The correlation is 0.73, which, while
strong, indicates quite significant changes in the ranking over the
entire list of 99 systems.

4.1. Features and augmentation techniques

All top 10 teams make use of mel energies as feature represen-
tation, ranging from 40 to 256 mel bands, with three of them
adding also delta and delta-delta values of the energies. Overall,
only three out of 30 teams do not use log mel as input features;
instead, they use gammatone (Naranjo-Alcazar ITI), deep scatter-
ing spectrum (Kek NU) and embeddings from AemNet (Galindo-
Meza ITESO). Augmentation techniques are also used, with most
popular techniques being mixup (used by 20 teams) and specAug-
ment (10 teams). Other augmentation techniques used, known as
label-invariant transformations, are pitch shifting, temporal crop-
ping or speed change, and they are commonly used to improve the
performance of CNN networks.

2http://dcase.community/challenge2021/task-acoustic-scene-
classification-results-a

4.2. Architectures

Residual models are the most popular ones; in fact a total of 15
teams use them, among them the top five models, with the exception
of the second best team, Yang GT, which uses ensembles of CNNs.
In the literature there are only a handful of models suitable for us-
age with devices constrained by processing power and/or memory.
Some of these models are MobileNet [20] and EfficientNet [21],
which are networks based on residual blocks. The most recent one,
EfficientNet, also contains squeeze-and-excitation blocks. A total
of five teams used some modified version of such models. Finally,
the two models that perform below the baseline accuracy make use
of fully convolutional models.

4.3. System complexity

Regarding model complexity, the top 10 systems, belonging to three
different teams, Kim QTI [18], Yang GT [22] and Koutini CPJKU
[23], are close to the allowed model size limit. They range from
110 KB to 126.81 KB, with the system ranked first having a
size of 121.9KB. We have to go down to position 77 (1.464 log
loss, 47.17% accuracy) to find the smallest model of 29 KB by
Singh IITMandi, which used a filter pruning strategy consisting of
3 steps and one extra for final quantization of the weights to 16-bits.

A notable small model, with size 42.5KB, belongs to a top 5
ranked team, Liu UESTC [24]. This specific system is ranked 13th,
with a 0.878 log loss and 69.60% accuracy. The model compres-
sion is performed with 1-bit quantization, similar to the McDon-
nell USA system from DCASE2020 Challenge Task 1B [5]. De-
spite the high performance in DCASE2020, this is the only team
using the one-bit quantization approach this year.

There are only two teams that do not use any quantization:
Pham AIT [25] uses channel restriction and decomposed convolu-
tion, while Qiao NCUT does not mention any quantization; how-
ever, these are not in the top 10 ranked teams. On the other hand,
11 teams perform pruning with some quantization technique, and
two teams perform the Lottery Ticket Hypothesis (LTH) [26] prun-
ing method. One achieved second position, with a model of size
125KB, while the other stayed below the baseline with a model size
of 124KB. The main difference between the two is the use of ensem-
ble of CNN with knowledge distillation vs a single CNN model.

Therefore, sparsity used in combination with quantification is a
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Figure 2: Classification log loss for the 10 top teams (best system per team) on the evaluation dataset.

very popular and efficient way of reducing the model size; however,
model architecture and other learning techniques have to be taken
into account in order to achieve good classification performance.

4.4. Device and class-wise performance

All systems have higher performance on the devices seen during
training (A, B, C, S1, S2, S3) than on the unseen ones (D, S7, S8,
S9, S10), with a difference in accuracy of almost 3% (statistically
significant) for the system ranked first. As seen in Figure 2, this
difference increases as we go down the system ranking, reaching an
almost 10% gap when considering accuracy, and 0.37 when consid-
ering log loss, for team Kim KNU. The Spearman’s rank correla-
tion between the accuracy on seen and accuracy on unseen devices
is 0.92, while between the log loss on the seen devices and the log
loss on the unseen devices is 0.91. These values indicate that while
they are very highly correlated, the gap between the two does not
always preserve the ranking order.

The generalization properties of the systems are worst regard-
ing the unseen devices, while for seen/unseen cities the performance
does not vary as much. Some systems get better performance for
unseen cities. Indeed, the correlation between performance on seen
cities and on unseen cities is 0.95, while device-wise is 0.91. This
indicates that data mismatch due to the unseen devices is more chal-
lenging than the mismatch created by different cities, due to the
different properties of the recorded audio, which are related to the
device-specific processing. In particular, the poor performance on
the unseen devices is mostly due to device D, which is the GoPro,
while the other devices are real and simulated mobile phones and
tablets, developed with closer attention to the voice/audio transmis-
sion quality. Indeed, we can see that accuracy on device D is the
lowest one on average (48.66%) while device A reaches an accu-
racy of 72.45%.

The most difficult to classify are airport and street pedestrian
classes, while the easiest to classify is street traffic with 80% acc.
and 0.283 log loss on average for all the systems. Among the tech-
niques used for increasing the generalization capabilities we can
find residual normalization [18], domain adversarial training [23],
and use of data augmentation techniques as performed in [22, 27].

4.5. Discussion

Residual Networks have been shown to be the most efficient regard-
ing acoustic scene classification for complexity-constrained solu-

tions. Quantization combined with sparsity techniques have kept
the model complexity within the required limit. The solutions pre-
sented in DCASE2021 Challenge follow the trends from previous
year, combining the best characteristics and techniques from both
acoustic scene classification subtasks. It is proven that the use of
data augmentation improves generalization, compensating device
mismatch. However, the reported log loss for seen/unseen devices
and cities, shows that there is room for improvement; e.g. the use
of domain adaptation techniques, like adversarial training used in
[23], is not sufficient to deal with mismatches, since they report the
highest mismatch among the 10-best submissions, while the use of
mixup techniques prove to be more efficient.

Other mechanisms with less direct impact on the model param-
eters can be applied during the training step, the so-called learning
techniques. These algorithms focus on obtaining a more efficient
model by training it differently. Among the submissions, half of the
teams have made use of some version of these techniques, the most
popular ones being the use of focal loss and knowledge distillation.
Focal loss helps the model to pay attention to the more difficult
samples during the training step. However, the use of knowledge
distillation seems to be the more efficient one, considering the rank-
ing of related solutions.

5. CONCLUSIONS AND FUTURE WORK

This paper presented the results of the DCASE 2021 Challenge
Task 1A, Low-Complexity Acoustic Scene Classification with Mul-
tiple Devices. The task combines the need for robustness and gen-
eralization to multiple devices of such systems with the requirement
for a low-complexity solution, bringing the research problem closer
to real-world applications. The method for calculating the model
complexity includes only the parameters of the network, with ex-
ceptions in the case of employing embeddings. However, the strict
model size limit has rendered the use of embeddings impossible, as
most currently available pretrained models are already too big for
the imposed limit. The task has received a large number of submis-
sions that brought into spotlight interesting techniques that combine
the best performing methods from the point of view of robustness,
like data augmentation, with methods directed towards obtaining
light models, e.g., knowledge distillation, weights quantization, and
sparsity. The popularity of the task shows that acoustic scene clas-
sification is still relevant for the audio community, and in particular,
to the development of solutions applicable for real-life devices.
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ABSTRACT

Describing soundscapes in sentences allows better understand-
ing of the acoustic scene than a single label indicating the acoustic
scene class or a set of audio tags indicating the sound events active
in the audio clip. In addition, the richness of natural language allows
a range of possible descriptions for the same acoustic scene. In this
work, we address the diversity obtained when collecting descrip-
tions of soundscapes using crowdsourcing. We study how much the
collection of audio captions can be guided by the instructions given
in the annotation task, by analysing the possible bias introduced
by auxiliary information provided in the annotation process. Our
study shows that even when hints are given with the audio content,
different annotators describe the same soundscape using different
vocabulary. In automatic captioning, hints provided as audio tags
represent grounding textual information that facilitates guiding the
captioning output towards specific concepts. We also release a new
dataset of audio captions and audio tags produced by multiple anno-
tators for a subset of the TAU Urban Acoustic Scenes 2019 dataset,
suitable for studying guided captioning.

Index Terms— audio captioning, bias, lexical diversity.

1. INTRODUCTION

Audio captioning is defined as the general audio content descrip-
tion using free-text [1]. As a free-text description of the content in
terms of sound events in a soundscape, it is an important step in
understanding the dynamics of a sound scene. Most environmental
sound datasets (e.g. AudioSet [2], FSD50K [3], TAU Urban Acous-
tic Scenes [4]) are annotated with one or multiple labels or tags, pro-
viding only basic information on the content, and lack information
on more intricate relationships e.g., how sounds overlap or follow
each other, and other specific attributes. On the other hand, audio
captioning (manual or automatic) has the potential to provide rich
descriptions of audio content for various needs.

Image captioning has been an active research area for long, and
has established certain practices for data collection and for evalu-
ation of automatic methods, that are currently adopted as such in
audio captioning. Often, Amazon Mechanical Turk (MTurk) was
used to collect large amount of annotated data. Image captioning
datasets like PASCAL [5], or Flickr8k [6] also highlight the main
problems of using MTurk to collect annotations, such as grammar
and spelling mistakes or empty annotations. Nevertheless, MTurk
remains the method of choice for efficient and fast data collection.

The amount of audio captioning datasets and related work in
audio captioning is very small in comparison to the vast amounts of
data and related scientific literature available for image and video

This paper has received funding from Academy of Finland grant 332063
”Teaching machines to listen”.

captioning. The few existing datasets for audio captioning include
AudioCaps [7], a large-scale dataset containing 50K audio files,
most files having one human-written description, and Clotho [8],
a dataset of 5K clips, each having five human-written descriptions.

We argue that data collection is always prone to bias, being af-
fected by how the annotation task is presented and what kind of
instructions, examples, and auxiliary information is provided to the
annotator. Moreover, perception of sounds is affected by other co-
occurring and overlapping sounds [9]. On one hand, this can lead to
a diverse set of free-form descriptions, if the clips to be captioned
contain many sounds, because different annotators may choose to
describe different sounds. On the other hand, an observation from
automatic image captioning is that models do not have the capabil-
ity of taking into account user interest: when the image to be de-
scribed is complex, the models produce global descriptions that try
to balance the information from the perspective of readability and
informativeness [10]. This has lead to studies of diversity of auto-
matic image descriptions [11], and novel methods for guiding the
captioning by using a guiding text that refers to either groundable
or ungroundable concepts in the image [10].

In this work, we study how human-produced audio captions are
affected by bias introduced through auxiliary information during the
annotation process. We investigate the lexical diversity of three au-
dio captioning datasets, to determine how the possible bias affects
the vocabulary and similarity of the free-text descriptions provided
to the same clip by different annotators. The main contributions
of this paper are twofold. Firstly, we observe that human annota-
tors can be guided towards describing target content in audio clips
without explicit instructions, and without affecting the richness of
the language used in the descriptions. Secondly, we release a new
crowdsourced dataset of captioned acoustic scene clips and corre-
sponding audio tags, together with the annotator competence esti-
mated based on the tags [12]. The captions provide an extension
to the TAU Urban Acoustic Scenes 2018 dataset, and allow using
it for automated guided captioning based on the tags as grounding
text, while the estimated annotator competence offers a measure of
trust in the individual annotations.

The paper is organized as follows: Section 2 describes how the
collection of free-form descriptions for acoustic scene audio clips
was set up and post-processed. Section 3 explains how we measure
the vocabulary bias, the lexical diversity and the similarity of the
captions. Section 4 shows the results of the analysis; finally, Section
5 presents conclusions and future work.

2. DATASETS FOR AUDIO CAPTIONING

We collected captions for a subset of TAU Urban Acoustic Scenes
2019 [4], through a process designed such that human annotators
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were given hints on the audio content. The comparative analysis
of three datasets allows understanding how the diversity and the
vocabulary of the captions is influenced by the annotation setup.

2.1. MACS: Multi-Annotator Captioned Soundscapes

The data to be annotated consists of recordings from three acoustic
scenes (airport, public square and park) of the TAU Urban Acoustic
Scenes 2019 development dataset. A number of 3930 files were
annotated, each file being 10-seconds long. The 133 annotators,
students taking an audio signal processing course, were randomly
assigned a maximum of 131 files each. Annotators were assigned
into 30 groups, aiming that each group will provide annotations to
the same set of files.

The annotation procedure used a web-based interface, and an-
notators were given examples of correct annotations before they
started. The annotation process consisted in two tasks. The an-
notator was provided with a list of ten classes and an audio clip that
could be played back multiple times, and was required to first select
the sounds present in the audio clip from the given list. Afterwards,
the annotator was required to write a free-form one sentence de-
scription of the clip, using a minimum of 5 words. The sound labels
provided were: birds singing, dog barking, adults talking, children
voices, traffic noise, music, footsteps, siren, announcement speech
and announcement jingle. The instructions neutrally mentioned that
using these sounds in the free-form description is fine. We hypoth-
esize that by giving annotators a tagging task and a preselected list
of sounds, we bring to their attention certain content, and there-
fore influence the produced caption without explicitly mentioning
on what content to focus on. The produced captions were then pro-
cessed by removing punctuation (!., :; ?()�), replacing symbols and
numbers by their non-numerical form (e.g. “100 to “one00, “+00 to
“and00) and correcting minor grammar mistakes (using Ginger Soft-
ware through gingerit).

We publish the complete dataset, which we call MACS1, con-
sisting of the captions and tags assigned by each annotator to each
of the files, and the estimated competence for each annotator. An-
notator competence is calculated using multi-annotator competence
estimation (MACE) [13] as described in [12] as a measure of trust-
worthiness of the individual annotations.

2.2. Other audio captioning datasets

AudioCaps [7], is a collection of sentence-long descriptions for a
subset of AudioSet [2], focused on the audio input. The video was
provided to be played if necessary, and the AudioSet tags were pre-
sented to the annotator as hints. The dataset contains over 46k files
of 10 seconds each, and one caption per file, collected using MTurk.
We consider that the tags given as hints and the video, if played, in-
troduced some bias to the content described by the captions. Clotho
[1] was also collected using MTurk using a three-step framework
composed of captioning, grammar correction, and rating of the cap-
tions [8]. It contains five captions per clip, for audio clips 15 to 30
seconds long that were collected from Freesound [14]. We consider
this dataset as having no bias, since the captions are based solely on
the audio clip provided, and no additional information regarding the
possible active sounds or clip content was available to annotators.

MACS contains audio recorded in the wild, which compared
to Clotho may have more complex acoustic content. Freesound
samples are typically highly representative of the tagged sound and

1MACS dataset: https://zenodo.org/record/5114771

whistling footsteps and adults talking 5 words
adults talking and someone whistling 5 words
adults talk and whistle outside 5 words
people talking followed by footsteps and whistling 7 words
adults chattering and whistling nearby 5 words

total number of words: 27; unique words: 14 TTR = 0.51

Table 1: TTR, which represents the ratio of unique words with re-
spect to the total number of words

often contain only the indicated sound without much background
[15, p.51]. On the other hand, the clips in MACS and AudioCaps
may contain uncontrolled sequences or co-occurrence of multiple
sounds, as they happened naturally in the recorded environment.

3. DIVERSITY, BIAS AND SIMILARITY

This section presents an overview of the metrics we use for assess-
ing diversity and evaluating similarity of the captions. There is no
clear consensus on metrics regarding similarity of text; however, we
employ a few metrics inspired from machine translation, automatic
captioning, and natural language processing, which are most often
used to benchmark certain vocabulary characteristics.

3.1. Lexical diversity

One simple measure that represents the variety in vocabulary, or
lexical diversity, is the type-token ratio (TTR). TTR is often used
in measuring language acquisition in infants or learners of a second
language, to assess if the learner uses the same words over and over,
or uses a variety of different words to communicate [16].

TTR is defined as the number of distinct words (tokens), di-
vided by the total number of words. Therefore, it ranges from a
theoretical 0 (infinite repetition of a single word) and 1 (no repe-
tition at all). In practice, the value is influenced by the length of
the analyzed text: the longer the analyzed text, the lower the cal-
culated TTR, because of using more of the same words. Moving-
Average-TTR (MATTR) [17] was proposed to remove text length
dependency; however it is dependent on the window length, being
equivalent to calculating TTR for a smaller fixed window size. An
example for calculating TTR is presented in Table 1, using five de-
scriptions assigned to the same audio file. We use TTR to have a
simple understanding of the use of different words in the datasets
under study.

3.2. Vocabulary bias

We propose to measure the vocabulary bias as the proportion of
hinted sounds with respect to the number of sounds mentioned in
the caption. For identifying sounds in the caption, we use the Au-
dioSet taxonomy, consisting of approximately 600 classes, consid-
ering that it provides a comprehensive list of the most common
sounds encountered in our everyday environments.

We analyze only AudioCaps and MACS for bias, because they
were provided with hints during the annotation process. For Au-
dioCaps, the hints are the tags associated to the clip in AudioSet
(possibly incorrect). For MACS, the hints are the ten tags among
which the annotator was asked to mark the sounds present in the
clip. For example, “whistling footsteps and adults talking” contains
three sounds (whistling, footsteps and talking) of which two (foot-
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Captions Jaccard BLEU-4 BERTscore sBERT

a person whistling and singing 0.38 0.00 0.92 0.91people are talking and singing

Table 2: Example of similarity metrics calculated for two captions of the same audio clip.

steps, talking) were given as hint, therefore the bias is 0.66, while
for “adults talking and someone whistling” the bias is 0.5.

3.3. Similarity

Automatic captioning methods are evaluated using metrics from
machine translation, to compare the machine-generated captions
with human produced free descriptions of the same items. In this
study, we are interested to evaluate the similarity of descriptions
produced by different annotators for the same audio example. One
basic approach to calculate similarity is the Jaccard similarity coef-
ficient, or intersection-over-union, for two sets that are compared.
For two sentences a and b, Jaccard index is defined as

J(a, b) =
|Sa \ Sb|
|Sa [ Sb|

, (1)

where Sa/b is the tokenized version of the sentence. J(a, b) = 0
means that sentences a and b do not have any token in common,
while J(a, b) = 1 means that they contain the exact same tokens.
Jaccard index is a fast low-cost metric for measuring similarity [8].

BLEU [18] is a commonly-used metric for comparing machine
translated text to human-translated references. It does so by cal-
culating the overlap between n-grams from the reference and can-
didate sentences. BLEU is defined as the geometric mean of the
n-gram precision up to a certain length of n:

BLEU = BP · exp
 

NX

n=1

wn log pn

!
, (2)

where pn is the modified n-gram precision multiplied by positive
weights wn, and BP is a brevity penalty applied when the gen-
erated text is too short. Most commonly reported is BLEU-4 (or
cumulative 4-gram BLEU score), that incorporates 1-, 2-, 3-, and
4-grams, with a weight of 0.25 each. Because it measures overlap
of n-grams, BLEU cannot handle synonyms and paraphrasing. De-
spite this, it is the most widely used automatic evaluation score in
machine translation, and commonly reported in automatic caption-
ing. Recent methods for calculating similarity in natural language
processing use BERT [19], a model pretrained on large amounts
of unlabeled data that can be fine-tuned with smaller amounts of
labeled data. Building on BERT, BERTScore [20] calculates con-
textual embeddings to represent the tokens and computes match-
ing using cosine similarity, optionally weighted with inverse doc-
ument frequency scores. The BERT contextual embeddings can
handle paraphrasing and different ordering, capturing distant de-
pendencies in sentences. A slightly different approach is given by
sentence-BERT (sBERT) [21], a modification of the BERT model
using siamese networks [22]; s-BERT encodes an entire sentence
into an embedding, instead of going token by token, then uses the
cosine measure between the embedding vectors of two sentences.

The three selected measures represent similarity at different
granularity: Jaccard index treats the tokens as a set, disregarding
the order of words; BLEU looks at n-gram overlaps, therefore very
specifically focuses on the ordering of words, while BERTscore and

Dataset Audio Vocab. Unique Sentence
clips size sentences length (std)

AudioCaps 57188 5218 52198 9.17 (4.27)
Clotho 5929 4373 29611 11.34 (2.78)
MACS 3930 2775 16262 9.46 (3.89)

Table 3: Statistics of the studied datasets.

sBERT are state-of-the-art similarity measures that give a holistic
view of the semantic content. Table 2 presents an example of met-
rics values for two captions corresponding to the same audio file in
MACS. The scores produced by the BERT-based models (0.91 and
0.92) reflect the fact that there is a high similarity in the content
of the two sentences; the Jaccard score of 0.38 shows the propor-
tion of identical words within the vocabulary, while BLEU-4 has
difficulties in matching n-grams, returning a score of 0.0.

4. EXPERIMENTAL RESULTS AND ANALYSIS

The statistics of the three studied datasets are presented in Table 3,
with the vocabulary calculated without lemmatization. Note that,
these numbers correspond to the current version of the downloaded
datasets, and may differ from the ones reported in the original paper.
The most used words in the MACS dataset (after lemmatization and
stop word removal) are talk, people and adult, noise, and bird, of
which the first three are parts of the provided tags. Speak is used
in all its forms, but in a considerable less amount, since the given
tag was adults talking. In AudioCaps the most used five words are:
man, speak, follow, talk, and engine. In contrast, in Clotho the clips
were selected specifically to not include speech [1], and the most
used 5 words are: bird, water, background, chirp, and someone.

4.1. Lexical diversity

Lexical diversity is calculated in three different versions: (1) with-
out any processing of the text; (2) with lemmatization; and (3) with
lemmatization and removal of stopwords. Overall lexical diversity,
calculated as TTR using all captions in each dataset, is presented
in Table 4. TTR is lower when lemmatization is performed than
without any processing because lemmatization merges some forms
into the same unique word, decreasing the number of types. When
stopwords removal is added, TTR is slightly higher because a sig-
nificant amount of repetitive words is removed from the overall text.
The overall lexical diversity is very low for all datasets, implying
that, for all of them, a small set of words is used repeatedly to de-
scribe the audio. While the vocabulary of AudioCaps is larger than
the other datasets, the total amount of text in it is also larger, re-
sulting in a small TTR. If MATTR is calculated instead, overall di-
versity values increase when using a small window. AudioCaps has
the highest diversity when MATTR is calculated using a relatively
small window (10-1000 tokens), while for larger windows (5000-
10000), Clotho is more diverse. In all cases, MACS has a smaller
MATTR diversity, showing a high repetition of the vocabulary.

We also calculate local lexical diversity, i.e., TTR for the set of
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S L AudioCaps Clotho MACS
overall overall local overall local

- - 1.09% 1.30% 56.52% 1.80% 69.37%
- X 0.79% 0.91% 52.08% 1.38% 66.06%
X X 1.27% 1.66% 60.43% 2.17% 71.02%

Table 4: Global and local lexical diversity of captions. S: removal of
stopwords; L: lemmatization. AudioCaps has only a single caption
per clip, thus we do not calculate local lexical diversity for it.

Tag bias (std) Word bias (std)

AudioCaps 0.33 (0.35) 0.35 (0.35)
MACS 0.38 (0.36) 0.49 (0.38)

Table 5: Calculated vocabulary bias.

descriptions assigned to the same clip. Here the types and tokens
are counted based on the 5 captions of each clip, and the resulting
clip-wise TTR values are averaged over the dataset. The results
are presented in Table 4 for the datasets with multiple captions per
clip. The comparison of local lexical diversity between Clotho and
MACS shows that while Clotho has a larger vocabulary and slightly
larger overall lexical diversity, MACS has a higher proportion of
different words used to describe individual clips. The reason for
this could be the source of audio clips: even though diverse in terms
of sound categories, many Freesound clips often contain only the
indicated sound, while the clips in MACS, being recorded in the
wild, allow description of different details and sounds.

4.2. Vocabulary bias

We identify sound events present in the captions using the AudioSet
vocabulary. We have merged our tags into the AudioSet vocabulary
to deal with synonyms, e.g we added “talk” and “adult talk” to the
vocabulary, because Audioset contains only the synonym “speech”.
We use a total of 722 labels to identify sounds in the captions. Table
5 shows the calculated bias for the two datasets with given hints. We
also calculate word bias to account for the hints that do not match
exact categories in AudioSet. About one third of the sounds men-
tioned in the captions are found in the given hints for both Audio-
Caps and MACS. On the other hand, for individual words, MACS
has a much higher bias. Considering that we added our tags to the
vocabulary, and that “adults talking” was the most frequently an-
notated tag in MACS, this confirms that the choice of words in the
free-text description is influenced by the given hints. In addition, for
MACS, the ratio of sounds selected by the annotators as tags but not
mentioned in the caption is 29%. This means that, on average, over
one fourth of the tags indicating sounds being active in a clip were
not included in the free-form description. This can be explained by
the complexity of the scenes, for which the caption is only a partial
description of a complex acoustic content. The calculated bias for
the guided annotation tasks is not considerably high, and it is inter-
esting to note the tags missing from the caption. We hypothesize
that the complexity of the acoustic scene can affect the diversity
of the vocabulary more than it affects the observed bias. Indeed, a
closer look at scene-wise lexical diversity shows that airport class
has a local lexical diversity approximately 3 percent points higher
than the park and street scenes, indicating that airport clips have a
higher scene complexity than the other scenes in terms of events
happening.

Figure 1: Similarity metrics for MACS dataset.

Dataset BLEU-4 Jaccard sBERT BERTscore

Clotho 0.06 (0.04) 0.22 (0.09) 0.61 (0.13) 0.88 (0.01)
MACS 0.01 (0.02) 0.16 (0.08) 0.55 (0.12) 0.87 (0.01)

Table 6: Average similarity of the captions, using multiple metrics.

4.3. Similarity

We calculate similarity of the captions produced by different anno-
tators for the same audio clip. The metrics are calculated for every
pair of captions (10 pairs for a clip with 5 captions), and then aver-
aged. Even though BLEU is generally meant to be used at corpus
level, we use it at sentence level for comparison with the other met-
rics. The calculated values are presented in Table 6, and histogram
plots of the clip-wise values for MACS are presented in Fig. 1.

We observe that BLEU provides very low similarity values,
which implies diversity at least through ordering or paraphrasing.
BLEU is higher for Clotho, and so is the Jaccard similarity index,
indicating that descriptions of the same clip have more words in
common for the captions in Clotho. This is in agreement with pre-
viously calculated local diversity that indicates MACS has more
distinct words per clip. On the other hand, metrics based on BERT
embeddings indicate high similarity for the descriptions of the same
content. While sBERT is higher for Clotho, BERTscore is equally
high. This effect may be due to the highly variable caption lengths
in MACS, as sBERT groups sentences of same length for reducing
computational load, and pads them to the longest one in each batch;
according to the sentence length variance, this padding takes place
more often in MACS than in Clotho. Both Clotho and MACS ex-
hibit a high degree of caption similarity at clip level, irrespective of
the difference in the characteristics of their audio content. On the
other hand, the datasets do not have the same degree of diversity in
terms of language used, showing its dependence on the nature of the
complexity of the acoustic content.

5. CONCLUSIONS

This paper presented a study of the lexical diversity, bias, and sim-
ilarity of captions from three audio captioning datasets. A new set
of captions was collected for everyday soundscapes, with provided
sound event hints. However, these hints turned out to not be a sig-
nificant source of bias; instead, the free-text descriptions are more
affected by the complexity of the soundscape. Despite the hints, the
captions in the studied datasets have a high lexical diversity, and
while token and n-gram based similarities are relatively low, the se-
mantic similarity between captions assigned to the same clips by
different annotators was found to be high. The new captions are
freely available, along with the tags provided by the same annota-
tors. This dataset brings novel elements to audio captioning; for
example the tag-caption pairs allow guided captioning, and the es-
timated annotator reliability provides a measure of trustworthiness
for each caption, which can be used in the learning process.
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[12] I. Martı́n-Morató and A. Mesaros, “What is the ground truth?
reliability of multi-annotator data for audio tagging,” in 29th
European Signal Processing Conference 2021 (EUSIPCO
2021), Dublin, Ireland, Aug 2021.

[13] D. Hovy, T. Berg-Kirkpatrick, A. Vaswani, and E. Hovy,
“Learning whom to trust with MACE,” in Proceedings of the
2013 Conference of the NAACL HLT. Atlanta, Georgia: As-
sociation for Computational Linguistics, Jun. 2013, pp. 1120–
1130.

[14] F. Font, G. Roma, and X. Serra, “Freesound technical demo,”
in ACM International Conference on Multimedia (MM’13),
ACM. Barcelona, Spain: ACM, Oct. 2013, pp. 411–412.

[15] N. Turpault, “Analysis of the scientific challenges in ambi-
ent sound recognition in real environment,” Ph.D. dissertation,
Universite de Lorraine, Villers-lès-Nancy, France, May 2021.

[16] G. Youmans, “Measuring lexical style and competence: The
type-token vocabulary curve,” Style, vol. 24, no. 4, pp. 584–
599, 1990.

[17] M. A. Covington and J. D. McFall, “Cutting the gordian
knot: The moving-average type–token ratio (mattr),” Journal
of Quantitative Linguistics, vol. 17, no. 2, pp. 94–100, 2010.

[18] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A
method for automatic evaluation of machine translation,” in
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ser. ACL ’02. USA: Association
for Computational Linguistics, 2002, p. 311–318.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
NAACL HLT, Vol. 1. Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 4171–4186.

[20] T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger, and
Y. Artzi, “BERTScore: Evaluating text generation with
BERT,” in International Conference on Learning Represen-
tations, 2020.

[21] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence em-
beddings using siamese bert-networks,” in EMNLP/IJCNLP
(1), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds. Association
for Computational Linguistics, 2019, pp. 3980–3990.

[22] T. Ranasinghe, C. Orasan, and R. Mitkov, “Semantic textual
similarity with Siamese neural networks,” in Proceedings of
the International Conference on Recent Advances in Natural
Language Processing (RANLP 2019). Varna, Bulgaria: IN-
COMA Ltd., Sep. 2019, pp. 1004–1011.

94



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

A MULTI-MODAL FUSION APPROACH FOR AUDIO-VISUAL SCENE CLASSIFICATION
ENHANCED BY CLIP VARIANTS

Soichiro Okazaki, Quan Kong, Tomoaki Yoshinaga

Lumada Data Science Lab., Hitachi, Ltd.
{soichiro.okazaki.xs, quan.kong.xz, tomoaki.yoshinaga.xc}@hitachi.com

ABSTRACT

In this paper, we propose a system for audio-visual scene classifica-
tion with a multi-modal ensemble way consisting of three features:
(1) Log-mel spectrogram audio features extracted by CNN variants
from audio modality. (2) Frame-wise image features extracted by
CNN variants from video modality. (3) Another frame-wise im-
age features extracted by OpenAI CLIP models which are trained
with a large-scale web crawling text and paired image dataset under
contrastive learning framework. We trained the above three models
respectively and made an ensemble weighted by class-wise confi-
dences of each model’s semantic outputs. As a result, our ensemble
system reached 0.149 log-loss (official baseline: 0.658 log-loss) and
96.1% accuracy (official baseline: 77.0% accuracy) on TAU Audio-
Visual Urban Scenes 2021 dataset which are used in DCASE2021
Challenge Task1B.

Index Terms— Audio-visual Scene Classification, Multi-
modal, CLIP, Convolutional Neural Network, Vision Transformer,
Log-mel Spectrogram, SpecAugment, Random Erasing

1. INTRODUCTION

Audio-visual scene classification is one of the classification prob-
lems which uses both audio and video modalities for classifying the
defined scene. Like human perception, we can expect to create a
better model by exploiting complementary information from differ-
ent modalities.

As recent research, several works tackle audio-visual joint
learning. In [1, 2, 3, 4], the recognition performance of the audio-
visual models is enhanced with a self-supervised manner using
multi-modal information in each way. From action recognition per-
spectives, [5] proposed the Audiovisual SlowFast Networks, which
utilize the SlowFast Networks [6] mainly used in video recognition
tasks. In this research, audio features are concatenated to the im-
age features through the model’s internal pathway for multi-modal
fusion. Other general multi-modal architectures are also used for
audio-visual recognition tasks. [7] proposed the general perception
architecture called Perceiver, which can treat image and audio fea-
tures in the same way through concatenating the over 50 thousand
dimension inputs. For leveraging audio-visual recognition perfor-
mance using multi-modality information, various research has been
proposed vigorously.

This year, Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge 2021 [8] holds the audio-visual scene
classification task as Task1B [9] with a large-scale dataset called
TAU Audio-Visual Urban Scenes 2021. This dataset provided by
the organizer contains synchronized audio and video recordings
from 12 European cities in 10 different scenes [10].

This paper describes the details of our team’s (team name: LD-
SLVision) solution for Task1B of DCASE2021. For this task, we
developed various audio classification models and video classifica-
tion models, and created final submissions by fusing those models
using an ensemble method and a post-processing technique.

The features of our system can be concluded as three folds:
1) Instead of learning raw audio waves directly, we only used

log-mel spectrogram features extracted from audio files as inputs,
and leveraged those features with strong CNN variants which are
used vigorously in the recent computer vision community.

2) We developed CLIP Late Fusion Network, which uses ex-
tracted features from various CLIP image encoders [11] as inputs
for a multi-branch network. As far as we know, this is the first
approach which uses CLIP models for audio-visual scene classifi-
cation task.

3) We applied a post-processing technique to suppress the value
of log-loss, which is defined as the competition’s metric.

2. PROPOSED SOLUTION

In this section, we describe the details of our solution for
DCASE2021 challenge Task1B. For tackling the audio-visual scene
classification task, we created various audio classification models
and video classification models respectively in each modality. After
created various models, we integrated these models with ensemble
method and applied post-processing technique to suppress the log-
loss value for final submissions. The overview of our multi-modal
fusion approach is shown in Fig. 1.

2.1. Audio Classification Models by Log-mel CNN Variants

For utilizing the audio modality of the provided dataset, we created
various audio classification models with 1 second split audio files.
The test dataset is provided as 1 second audio files in this compe-
tition. Therefore, we divided each 10 seconds audio files provided
as development dataset for DCASE2021 Task1B into ten 1 second
audio files.

As inputs for audio classification models, we extracted log-mel
spectrograms with delta/delta-delta features, which are also used
in DCASE2020 Task1A winner’s solution [12]. We used librosa
library [13] for creating log-mel spectrograms. The parameters of
log-mel spectrogram transformation are as follows: sampling rate
(sr) is 48kHz, the number of mel bins (n mels) is 256, the length
of FFT window (n fft) is 4096, and the number of samples between
successive frames (hop length) is 512.

About the choice of inputs type (e.g. log-mel spectrogram,
raw audio waveform, etc.), we referred to the PANNs paper [14]
which proposed a widely used audio classification model. In the
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Figure 1: The overview of our system for DCASE2021 challenge Task1B. This picture shows the case of S02 in Table 3.

experiments of PANNs paper, the recognition performance of log-
mel spectrogram classification with ResNet-38 [15] is competitive
with that of wavegram log-mel CNN which is proposed as state-of-
the-art architecture in the paper. Therefore, we only selected log-
mel spectrogram features as inputs, and uses these features with
strong CNN backbones (EfficientNet [16] with Noisy Student [17],
ResNeSt [18], RegNet [19]) which are better than ResNet-38 in the
recent computer vision community.

2.2. Video Classification Models by CNN Variants

For creating video classification models, we firstly extracted 12 im-
age frames from 10 seconds video file with equal interval. After ex-
tracted all image frames, we created standard image classification
models with strong CNN variants. We selected three backbones
(ResNeSt [18], RegNet [19], HRNet [20]) for expecting different
characteristics. These models have better recognition performances
than ResNet in ImageNet classification task, and the combination of
these models have achieved top accuracy in multi-label multi-class
disaster scene classification task (LADI-only section) [21].

2.3. Video Classification Models by CLIP Late Fusion Network

For leveraging text modality and large amounts of publicly available
data, we used CLIP image encoders which are trained with various
web image and text caption pairs using contrastive learning method
[11] [22]. With CLIP image/text encoders, we first conducted a
zero-shot prediction on the provided TAU dataset. As a result, even
without training, CLIP models achieved strong recognition perfor-
mances which are competitive with our trained audio classification
models as shown in Table 2.

For boosting the CLIP-based approach, we utilized CLIP mod-
els by adding a learnable multi-branch network, which we call CLIP
Late Fusion Network. The architecture of CLIP Late Fusion Net-
work is shown in Table 1. For this multi-branch network, we ex-
tracted image features from three types CLIP image encoders and
feed these features as inputs to the network. In the SI-Score paper
[23] which compares various CNN/ViT/CLIP models, the authors
show that each CNN/ViT/CLIP models have different characteris-

tics. Therefore, we selected to use not a single image encoder but
multiple image encoders (i.e. ResNet50x4, ResNet101, Vit-B/32)
for creating more diversity in input features.

Table 1: The architecture of CLIP Late Fusion Network.

RN50x4 (dim:640) RN101 (dim:512) ViT-B/32 (dim:512)
Linear(640, 512) Linear(512, 512) Linear(512, 512)

BatchNorm1d(512) BatchNorm1d(512) BatchNorm1d(512)
ReLU() ReLU() ReLU()

Dropout(p=0.2) Dropout(p=0.2) Dropout(p=0.2)
Linear(512, 256) Linear(512, 256) Linear(512, 256)

concatenation of 256*3 dimension
Linear(256*3, 128)

Linear(128, 10)

2.4. Ensemble and Post-Processing

After created audio and video classification models, we used these
models to output the confidences for each defined 10 scene classes.
For the validation of the official fold1 split, we firstly inferred con-
fidences for each 10 split audio files and 12 image frame files from
each 10 seconds synchronized files. For each 10 seconds file, we
equally made an ensemble of the output confidences of each split
audio file and image frame file. In the ensemble process, audio
classification models are generally worse than video classification
models (Table 2). Due to the reason, we used the good accuracy’s
class score (e.g. In fold1 validation, the recognition performance of
A04 for tram class is competitive with that of C04/V04.) Therefore,
we used only bus/park/tram classes’ confidence scores and discard
the other classes in ensemble. In addition, for each sample, we re-
placed the confidences of video models with those of audio models
when the maximum confidence of 10 classes from video models is
0.20 lower than that of audio models. This method improves the
recognition performance on night scenes, to which video models
have low confidences due to visual difficulty, but audio models can
correctly classify the class (Fig. 2).
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Table 2: Summary of our created models. In the baseline system, the Audio-only model is trained with 10 sec. audio files, but we trained our
audio classification models with 1 sec. audio files as test audio files are provided as 1 sec. audio files. When we train our audio classification
models with 10 sec. audio files, the recognition performances are more boosted than that of 1 sec. models. About CLIP models indexed as
C01-C03, we provided original labels as sentences to the CLIP text encoders and evaluated the models with the CLIP image features.

Index Architecture Audio Video Notes Logloss Accuracy
B01 OpenL3’s model log-mel CNN - Baseline model of Audio-only 1.048 65.1
A01 RegNet-6.4F log-mel CNN - Training with 1 sec. audio files 0.711 76.6
A02 ResNeSt-50d log-mel CNN - Training with 1 sec. audio files 0.732 76.9
A03 TF-Efficientnet-B1-NS log-mel CNN - Training with 1 sec. audio files 0.821 77.2
A04 A01-A03’s models log-mel CNN - Ensemble of A01-A03 0.721 78.1
B02 OpenL3’s model - CNN Baseline model of Visual-only 1.648 64.9
V01 RegNet-6.4F - CNN - 0.328 90.0
V02 ResNeSt-50d - CNN - 0.367 91.7
V03 HRNet-W18 - CNN - 0.336 90.9
V04 V01-V03’s models - CNN Ensemble of V01-V03 0.316 92.4
C01 ResNet-101 - CLIP CNN No Training 0.671 76.7
C02 ResNet-50x4 - CLIP CNN No Training 0.668 74.5
C03 ViT-B/32 - CLIP ViT No Training 0.725 72.5
C04 C01-C03’s models - CLIP CNN&ViT Late Fusion of C01-C03 0.273 90.9
B03 OpenL3’s model log-mel CNN CNN Baseline model of Audio-Visual 0.658 77.0
E01 A04/V04/C04’s models log-mel CNN CNN / CLIP CNN&ViT Ensemble of A04/V04/C04 0.238 95.8
E02 A04/V04/C04’s models log-mel CNN CNN / CLIP CNN&ViT E01 with Post-Processing 0.149 96.1

About post-processing, we applied the below (1) for replacing
each models’ output confidences. The idea behind this equation is
as follows: For example, in the log-loss metric, when a sample be-
longs to class ”tram” and the output confidence of the sample for
class ”tram” is a too small value (e.g. 0.00001), the log-loss value
for this sample becomes large (i.e. -log(0.00001) = 11.51) and it
will have a large negative impact on the calculation of whole log-
loss value even with a few misrecognition. Therefore, to mitigate
the whole log-loss error, we avoided the extreme confidence value
(e.g. x = 0 ⇠ 0.001 and 0.99 ⇠ 1.0) by clamping with the small off-
set. Also, the samples which have low or high confidence scores
(e.g. x = 0.001 ⇠ 0.06, 0.06 ⇠ 0.20, and 0.70 ⇠ 0.99) almost
always belong to the correct class as the confidence shows, how-
ever, the complete correction of the confidence values is difficult by
only model learning processes. Therefore, to suppress the whole
log-loss error, we introduced this confidence calibration approach
to our system as post-processing. This approach is heuristic, but it
significantly improved the log-loss results on the validation dataset
and test dataset provided in DCASE2021 Task1B (Table 2 and 3).

f(x) =

8
>>><

>>>:

0.001, when 0 < x  0.06

0.06, when 0.06 < x  0.20

x, when 0.20 < x  0.70

0.99, when 0.70 < x  1.0

(1)

3. EXPERIMENTS

In this section, we present our experimental setting and results for
both audio and video classification models.

Experimental setting for 2.1: We created audio classification
models by log-mel CNN variants under the following setting: (1)
Data augmentation: Resized to 256 × 100 × 3, Random Gain, Fre-
quency Masking [24]. We did not use Mixup [25] and Time Warp-
ing/Masking [24] for our final submissions, as these augmentations

did not work in our experimental setting. (2) Train batch size: 24
(3) Epoch: 20 (Best models’ epoch are around 3-5 epoch.)

Experimental setting for 2.2: We created video classification
models by CNN variants under the following setting: (1) Data aug-
mentation: Resized to 448 × 448 × 3, RandomAffine, ColorJitter,
GaussianBlur, Random Erasing [26]. In RandomAffine augmenta-
tion, we set degrees as [-10, 10], translate as (0.1, 0.1), and scale as
(0.5, 1.5). In GaussianBlur augmentation, we set the kernel size as
(11, 11). Other augmentations’ parameters are the default ones of
PyTorch [27]. (2) Train batch size: 20 (3) Epoch: 20 (Best models’
epoch are around 15-20 epoch.)

Experimental setting for 2.3: We created video classification
models by CLIP Late Fusion Network under the following setting:
(1) Data augmentation: We used extracted features from CLIP im-
age encoders and applied no data augmentation to these features in
the late fusion network. (2) Train batch size: 48 (3) Epoch: 20 (Best
models’ epoch are around 3-5 epoch.)

Overall setting: In the above experiments, we used SGD with
Momentum method [28] as the optimizer. The learning rate is di-
vided by 10 when the training model reached 5 epoch, 10 epoch and
15 epoch. Other hyper-parameters are the same as used in IBN-Net
[29] GitHub repository*1. We trained these models with Focal Loss
[30] which � parameter is 2.0. About pre-trained models, we used
ImageNet pre-trained models from timm GitHub repository*2 and
CLIP pre-trained models from official CLIP GitHub repository*3.

For ensemble as noted in Table 3, we used best epoch models in
the validation accuracy of each model. Instead of using Test-Time
Augmentation, we extracted five images from each test video by
ffmpeg, and ensembled the confidences of the five images equally
for each test video. In addition, all our models are trained and tested
on 1 GPU (GeForce RTX 2080Ti).

Results: Table 2 shows the results for all of our models on

*1: https://github.com/XingangPan/IBN-Net
*2: https://github.com/rwightman/pytorch-image-models
*3: https://github.com/openai/CLIP
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Figure 2: The sample inference results for dim scenes from validation dataset. For each scene, audio modality model (A02) can correctly
classify the two dim scenes, however, image modality model (V02) failed to predict the true class. In addition, we can see that image modality
model (V02) and CLIP modality model (C04) have different characteristics even trained with same image dataset of DCASE2021 Task1B.

the validation dataset. In this task, we found that CLIP models
(C01-03) are competitive with the baseline models (B01-03) with-
out training. In addition, our video classification models are much
stronger than our audio classification models and we can classify
10-class scenes well only with our video classification models. In
Table 3, we present the submission results for test dataset. The de-
tails are as follows: S01 consists of V04 and C04. Though C04 uses
extracted features from C01-03, C04 model is constructed from one
multi-branch network. Therefore, we counted the number of mod-
els in C04 as 1. S02 is the same as E02. S01-02 are trained and
tested with official train/val split respectively. S03 consists of five
E01 models. S04 consists of five E02 models. In Table 3, the num-
ber of models for each submission is denoted as ”Models”.

Table 3: Summary of our final submissions and the logloss scores
for test dataset. p.p. in the description means post-processing which
method is explained in 2.4 section. We created five train/val label
files for creating S03-04 submissions. In the process of creating
those five label files, we splitted the whole dataset into train and
validation with keeping no overlapping about the location id.

Index Description Models Logloss (Test)
S01 only-visual, 1fold 4 0.312
S02 audio-visual, 1fold, p.p. 7 0.320
S03 audio-visual, 5folds 35 0.303
S04 audio-visual, 5folds, p.p. 35 0.257

The effect of CLIP Late Fusion Network: Table 4 shows the
effectiveness of our developed CLIP Late Fusion Network. Com-
paring the results for the case with and without CLIP, we can see
that adding CLIP models can greatly improve the recognition per-
formance of our audio-visual scene classification system, as CLIP
models are created from different approach like leveraging text
modality and large dataset. From model’s complexity perspective,
Table 5 compares the space/time complexity of CLIP Late fusion
Network with other models. CLIP models have highly discrimina-
tive features, and the extracted image features from CLIP image en-
coders can be used directly as inputs for training shallow networks.

Table 4: The effect of CLIP Late Fusion Network (C04). With
adding CLIP Late Fusion Network, the recognition performance are
boosted in both logloss and accuracy metric for validation dataset.

Description CLIP Logloss Accuracy
A04/V04 Fusion no 0.293 92.4

A04/V04/C04 Fusion yes 0.238 95.8
A04/V04 Fusion with p.p. no 0.205 93.0

A04/V04/C04 Fusion with p.p. yes 0.149 96.1

Table 5: The space/time complexity of CLIP Late Fusion Network
(C04). Epoch means the each model’s convergence epoch and Pa-
rameters means the number of learned parameters. Comparing with
other models, CLIP Late Fusion Network is lightweight and can be
quickly trained. The feature extraction time is not included in C04’s
epoch, as it can be ignored compared with training time.

Description Epoch Parameters Logloss Accuracy
V01 20 24.60M 0.328 90.0
V02 20 25.45M 0.367 91.7
V03 20 19.27M 0.336 90.9
V04 60 69.32M 0.316 92.4
C04 5 1.35M 0.273 90.9

4. CONCLUSION

In this paper, we described our approach for tackling the Task1B of
the DCASE2021 challenge. We showed that by utilizing the fea-
tures of CLIP variants with each audio classification models and
video classification models, we can improve the recognition perfor-
mance of the audio-visual scene classification task. In addition, we
applied the post-processing method to the ensembled confidences,
and our model achieved 0.149 log-loss (official baseline: 0.658 log-
loss) and 96.1% accuracy (official baseline: 77.0% accuracy) on the
officially provided fold1 validation dataset of Task1B.
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ABSTRACT

Joint sound event localization and detection (SELD) is an
emerging audio signal processing task adding spatial dimensions
to acoustic scene analysis and sound event detection. A popular
approach to modeling SELD jointly is using convolutional recur-
rent neural network (CRNN) models, where CNNs learn high-level
features from multi-channel audio input and the RNNs learn tem-
poral relationships from these high-level features. However, RNNs
have some drawbacks, such as a limited capability to model long
temporal dependencies and slow training and inference times due
to their sequential processing nature. Recently, a few SELD stud-
ies used multi-head self-attention (MHSA), among other innova-
tions in their models. MHSA and the related transformer networks
have shown state-of-the-art performance in various domains. While
they can model long temporal dependencies, they can also be par-
allelized efficiently. In this paper, we study in detail the effect of
MHSA on the SELD task. Specifically, we examined the effects
of replacing the RNN blocks with self-attention layers. We stud-
ied the influence of stacking multiple self-attention blocks, using
multiple attention heads in each self-attention block, and the effect
of position embeddings and layer normalization. Evaluation on the
DCASE 2021 SELD (task 3) development data set shows a signifi-
cant improvement in all employed metrics compared to the baseline
CRNN accompanying the task.

Index Terms— Sound event localization and detection, Self-
attenion, acoustic scene analysis

1. INTRODUCTION

Sound event localization and detection (SELD) is a research prob-
lem associated with spatiotemporal analysis of acoustic scenes, pro-
viding temporal activity information of target sound classes along
with their spatial directions or locations while they are active. The
problem has seen increased research activity recently [1, 2], which
culminated into the introduction of a new SELD task in the De-

tection and Classification of Acoustic Scenes and Events (DCASE)
challenge in 2019, currently on its third iteration1. The task brings
together two long-standing problems in acoustical signal process-
ing: sound event detection (SED) aiming at only a temporal de-
scription of target sound classes in the scene, and sound source lo-
calization (SSL) aiming at detecting localized sound sources with-
out regard to the type of the emitted sound events. Formulating and
addressing the joint problem brings new possibilities in machine lis-
tening, robot audition, acoustical monitoring, human-machine inter-
action, and spatially informed deployment of services, among other
applications.

1http://dcase.community/challenge2021/

The SELD task has been addressed in literature predominantly
with deep learning models, with a few exceptions combining deep-
learning SED classifiers with model-based localization [3, 4]. The
seminal work of [1] proposed SELDnet, a model performing both
SED and SSL tasks jointly, based on a convolutional and recur-
rent neural network (CRNN) architecture. SELDnet used a series
of convolutional layers as feature extractors, operating on multi-
channel spectrograms, followed by layers of gated recurrent unit
(GRU) layers modeling longer temporal context. Such a CRNN
architecture had proved successful in the SED task [5], and was
extended in [1] with a localization inference output branch, pre-
dicting the frame-wise direction of arrival (DOA) of each detected
class, in a regression manner. While alternative architectures have
been explored (e.g. ResNets [6], TrellisNets [7], the R3Dnet of
[8]), the CRNN architecture has remained the most popular through
the submissions in DCASE2019 and DCASE2020. On the other
hand, many innovations were network-independent, focusing on
improved input features [9], separate modeling of SED and SSL
tasks and fusion [9, 4], and improved SELD representations and
loss functions [10, 8].

Recently, the Transformer [11] architecture has shown state-of-
the-art performance in a variety of tasks ranging from NLP [11],
to image classification [12] and video object tracking [13], among
others, and has been proposed as a replacement for both CNNs and
RNNs, or combined with convolutional layers in a Conformer [14]
architecture. Transformers base their representational power on
self-attention (SA) layers that can model longer temporal or spatial
dependencies than typical convolutional layers, while, in contrast
to RNNs, they can be efficiently parallelized making them signif-
icantly faster during inference. Recently transformers have shown
strong state-of-the-art performance in SED tasks [15], while their
use in SSL and SELD proposals has remained limited. Regarding
source localization, Schymura et al. integrated self-attention into
the outputs of the RNN layers in a CRNN model [16] showing per-
formance gains over the standard CRNN. In subsequent work [17],
RNNs are dropped for transformer layers including linear positional
encoding, bringing further performance improvements. With regard
to SELD, the first work using SA seems to be the DCASE2020 chal-
lenge submission of [10] which follows a SELDnet-like CRNN ar-
chitecture, augmented with SA layers following the bidirectional
RNN layers. The best performing team in DCASE2020 also seems
to employ attention in the form of conformer blocks, as detailed in
a later report [18]. Following DCASE2020, Cao et al. [19] pro-
posed their Event Independent Network V2 (EINV2), realizing a
track-based output format instead of the class-based one of standard
SELDnet, using multi-head self-attention (MHSA) layers following
convolutional feature extractors. Sinusoidal positional encoding is
used before the MHSA as in [11]. Since the above SELD proposals
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include various other improvements and modifications over the ba-
sic SELDnet CRNN, such as modified loss functions [10], partially
independent models for SED and SSL with parameter sharing [19],
or various data augmentation strategies [18], the effect of adding
self-attention in isolation to the result is not clear.

In this work we exclusively investigate the effects of self-
attention in a SELD setting. The rest of this paper is organized
as follows. Section 2 presents our baseline method and the multi-
head self-attention mechanism. In section 3, we describe in detail
our experimental set up used to analyze the effect of self-attention.
In section 4, we discuss the results of all our experiments. Finally,
in section 5, we present our conclusion of this study.

2. METHOD

For our study, we employ a widely used SELD method that is based
on a learnable feature extraction and a learnable temporal pattern
identification, that operate in a serial fashion. We call this com-
monly used SELD method as our baseline. We replace the temporal
pattern identification with a self-attention mechanism, that attends
to the output of the learnable feature extraction layers.

The input to both the baseline and the version with the self-
attention, is a tensor of K sequences of features from different audio
channels, each sequence having T feature vectors with F features,
X 2 RK⇥T⇥F . X is given as an input to the learnable feature
extractor. For the baseline, the output of this feature extractor is
used as an input to a function that performs temporal pattern iden-
tification, and the output of the temporal pattern identification is
given as an input to a regressor. In the case of the method used for
our study, the output of the learned feature extraction is given as
an input to self-attention blocks, and then the output of the latter is
given as an input to a regressor. The regressor in both cases pre-
dicts the directions-of-arrival for all classes and at each time step,
represented by the directions of the output Cartesian vectors. Using
the ACCDOA [8] representation, the detection activity is also in-
tegrated into the same vector representation, with the length of the
vectors encoding the probability of each class being active. The
output of the regressor and the targets are Ŷ 2 RT⇥C⇥3 and
Y 2 RT⇥C⇥3 respectively, where C is the number of classes and 3
represents the Cartesian localization co-ordinates.

2.1. Baseline

As the baseline, we use the CRNN architecture proposed in [20],
with ACCDOA representation for the output. The baseline has
three convolutional neural network (CNN) blocks, CNNBlockn

with n = 1, 2, 3. CNNBlockn acts as the learnable feature ex-
tractor, extracting high level representations from X as,

Hn = CNNBlockn(Hn�1) (1)

where Hn is the output of the n-th CNN block and H0 = X. Each
CNN block consists of a 2D convolution layer, a batch normaliza-
tion process (BN), a rectified linear unit (ReLU), and a max pooling
operation, and process its input as

Hn = (MPn � ReLU � BNn � 2DCNNn)(Hn�1) (2)

where � indicates function composition. BNn and MPn are the
batch normalization and max-pooling processes of the n-th CNN
block, and 2DCNNn is the 2D convolution layer of the n-th CNN
block. The output of the last CNN block is H3 2 RT

0⇥F
0
, where

T 0 is the time resolution of the annotations and F 0 is the feature di-
mension down sampled from input dimension F in the CNNBlocks.

H3 is used as an input to a series of m recurrent neural networks
(RNNs), with m = 1, 2 as

H
0
m = RNNm(H0

m�1) (3)

where H0
m 2 RT

0⇥F
00

is the output of the m-th RNN, where F 00 is
the hidden size of the RNN and H

0
0 = H3

The output of the RNN blocks is fed to a fully connected layer.
The fully connected layer combines the learnt temporal relation-
ships and it is followed by the regressor layer which predicts the
detection and direction of arrival for all the classes for each time
step in ACCDOA format.

y
0 = FC1(H0

2) (4)

Ŷ = FC2(y0) (5)

where Ŷ 2 RT
0⇥C⇥3 is the predicted ouput from the model.

2.2. ACCDOA representation

The annotations in the dataset for detections are of the form Ydet 2
RT

0⇥C , where T 0 is the number of time frames and C is the number
of classes. For each time frame, the value is 1 for a class which is ac-
tive, 0 otherwise. For localization, the labels are Yloc 2 RT

0⇥C⇥3,
which gives the 3 Cartesian localization co-ordinates for the classes
in each time step that the classes are actrive.

The ACCDOA output representation simplifies these two labels
into a single label Y 2 RT

0⇥C⇥3. In this representation, the detec-
tion probalility score is the magnitude of the predicted localization
vector. This value is thresholded to predict the detection activity
for each class. Thus the need for two different output branches to
predict detection and localization separately becomes unnecessary.

2.3. Multi-head Self-Attention in SELD

The motivation of this study is to quantify the effect of replacing
the RNN blocks in the baseline with self-attention blocks to capture
the temporal relationships. In our experiments, the convolutional
feature extractor is kept exactly the same as in the baseline archi-
tecture. The output H3 from the convolutional feature extractor is
passed through a series of N self-attention blocks, with N = 1, 2, ..
as,

H
0
N = SABlockN{M,P,LN}(H0

N�1) (6)

where H
0
N 2 RT

0⇥F
00

is the output of the N -th self-attention
block, where F 00 is the attention size and H

0
0 = H3.

In particular, we systematically study the effects of number of
self-attention blocks (N), number of attention heads (M) in each
self-attention block, positional embeddings (P)) for each time step
and the effect of layer normalization (LN) on the detection and lo-
calization metrics.

The self-attention layer calculates the scaled dot-product atten-
tion [11] of each time step in the input with itself. For any input
H 2 RT⇥I , where T is the number of time steps and I is the input
dimension, its self-attention is calculated as,

SA(H) = softmax(HWqW
T
k H

T)HWv (7)

Here, Wq,Wk 2 RI⇥K and Wv 2 RI⇥O are learnable query,
key and value matrices respectively. K is the key dimension in the
attention layer and O is the output dimension.
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Table 1: Detection and localization results for different configurations of self-attention block on DCASE 2021 Development set. (* - Size of
self-attention head in each layer)

N M P LN # params ER20 F20 LECD LRCD

Baseline-CRNN 0.5 M 0.69 33.9 24.1 43.9
1 4 No No 0.3 M 0.65± 0.01 38.11± 1.44 23.17± 0.85 46.73± 1.44
1 8 No No 0.6 M 0.65± 0.01 39.12± 1.48 22.78± 0.73 46.71± 1.25
1 12 No No 0.9 M 0.65± 0.01 38.96± 1.06 22.96± 0.88 46.74± 1.94

2 8 No No 1.1 M 0.67± 0.01 36.95± 1.16 23.44± 1.27 44.66± 1.53
3 8 No No 1.6 M 0.78± 0.02 19.57± 3.63 27.05± 0.90 22.96± 4.83
2 8 No Yes 1.1 M 0.62± 0.01 44.62± 1.34 22.03± 0.66 55.04± 1.34
3 8 No Yes 1.6 M 0.62± 0.01 44.11± 0.74 22.04± 0.53 54.61± 1.07
2 12 No Yes 1.6 M 0.63± 0.01 43.95± 0.69 22.13± 0.36 54.23± 0.90
3 12 No Yes 2.4 M 0.64± 0.01 43.10± 0.70 22.38± 0.54 54.00± 1.49

3 (128-256-128)* 8 No Yes 2.2 M 0.63± 0.01 44.65± 1.88 21.98± 0.51 55.15± 1.47
3 (128-64-128)* 8 No Yes 1.4 M 0.63± 0.01 43.64± 1.23 22.06± 0.46 54.24± 1.11

2 8 Yes Yes 1.1 M 0.61± 0.01 45.84± 1.06 21.51± 0.74 54.99± 1.87
3 8 Yes Yes 1.6 M 0.62± 0.01 44.63± 1.14 21.56± 0.46 54.46± 0.94

3 (128-256-128)* 8 Yes Yes 2.2 M 0.62± 0.01 45.14± 1.03 21.67± 0.41 55.29± 1.23

First, we ran experiments to determine the optimal number of
attention heads for the task. A single attention head allows each
time step to attend only to one other time step in the input. For
SELD task, it is useful to attend to more than one timestep to estab-
lish semantic relationships in the input audio scene. A multi-head
self-attention (MHSA) layer is described as,

MHSA(H) = Concat
m=1,2,..,M

[SAm(H)]Wp (8)

where M is the number of heads. The output from all the heads
are concatenated and Wp 2 RMO⇥O , a learnt projection matrix
projects it into the desired output dimension.

Next, we studied the effect of stacking multi-head self-attention
blocks. It enables the model to learn high level temporal features of
different time scales. We also experimented with different ways to
stack these MHSA blocks. Specifically, we compared the effect of
having layer normalization (LN) and residual connections between
successive blocks and not having both. The first multi-head self-
attention layer takes as input the features from the CNN. The inputs
to the successive layers of MHSA are given by,

HN = LN(MHSA(N�1)(HN�1) +HN�1) (9)

At last, we assessed the effect of having position embeddings in
the self-attention block. Position embeddings are helpful in keep-
ing track of the position and order of features that occur in an audio
scene. This helps the model to learn temporal dependencies based
on order of the sound events. Instead of using a sinusoidal position
vector originally proposed in [11], since the data is split into chunks
and the number of time steps is always fixed in our case, we used
a fixed size learnable embedding table. If P 2 RT⇥I is the po-
sition embedding, then the self-attention of input H with position
embedding is calculated as SA(H + P) in equation (7).

3. EVALUATION

3.1. Dataset

We trained and evaluated our models using the dataset provided for
the DCASE 2021 sound event localization and detection challenge

[21]. The development set contains 600 one-minute audio record-
ings with corresponding detections belonging to 12 different classes
(alarm, crying baby, crash, barking dog, female scream, female
speech, footsteps, knocking on door, male scream, male speech,
ringing phone, piano) and their localization labels.

The multi-channel audio data is available in two recording for-
mats, 4-channel first-order ambisonics (FOA) format and 4-channel
tetrahedral microphone recordings (MIC) format. We used the 4-
channel FOA recordings with a sampling rate of 24kHz. The au-
dio recordings also contain realistic spatialization and reverberation
effects from multiple multi-channel room impulse responses mea-
sured in 13 different rooms. The data is split into 6 folds of 100
recordings each. Folds 1-4 are used for training while 5 and 6 are
used for validation and evaluation respectively.

3.2. Network Training

As described in section 2.3, we analysed the effect of different set-
tings for the self-attention block. First, we replaced the two GRU
layers in the baseline, with a single self-attention layer with 4 heads
and an attention size of 128. This early result already suggested that
using self-attention layers were beneficial compared to RNN layers.
With the single layer self-attention, we then set the number of heads
to 8 and 12 to evaluate the best hyper-parameter for the number of
heads.

Next, we studied the effect of number of self-attention blocks.
Specifically, we modified the architecture to have 2 and 3 attention
blocks. For each of these configurations, we also varied the number
of heads to be 8 and 12. The self-attention dimension was kept at
128 for all these experiments. When stacking self-attention blocks,
we studied the effect of having and not having layer normalization
and residual connections between sucessive blocks. In architectures
having three self-attention blocks, we also studied the effect of the
attention dimension in the multi-head self-attention blocks. In par-
ticular, we used 128-128-128, 128-256-128 and 128-64-128 config-
urations. Finally, we studied the effect of adding positional embed-
ding vectors to the input of the first self-attention layer. We added
learnable position embedding of vector size 128 to each time step
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Figure 1: MHSA model configuration for SELD task.

in the input sequence to the self-attention.
For all our experiments, as input features, we extracted log

mel spectrograms with 64 mel bins for each channel in the multi-
channel audio. For the spectrogram extraction, we used short-time
Fourier transform (STFT) with a Hann window, 50% overlap be-
tween frames and a hop length of 0.02 seconds. Further, we also
calculated the intensity vectors [22] of the multi-channel audio sig-
nal from its linear spectra. The log mel spectrograms and the inten-
sity vectors are concatenated along the channel dimension and fed
as input to our model. The model is trained for 100 epochs using
Adam optimizer with �1 = 0.9, �2 = 0.999 and a learning rate of
0.001. We employed mean squared error as our objective function
for this regression task and the model with the best validation score
was chosen for evaluation.

The detection metrics are F score and error rate, they are also
location-dependent, using a spatial threshold for true positives as
detailed in [2]. Similar to DCASE2020, true positives occur only if
events are localized within 20° from the ground truth of the same
class. The localization metrics are localization error and localiza-
tion recall and they are class dependent. For each setting, we train
the model 10 times and report the average scores along with the
standard deviation for each metric.

4. RESULTS

The results of all our experiments are summarized in Table 1. Our
results from the first set of experiments for determining the appro-
priate number of attention heads showed that using 8 attention heads
was marginally better than 12 heads when the number of attention
blocks is fixed to one. Compared to the baseline, the detection error

rate decreased from 0.69 to 0.65 and the F score increased from 33.9
to 39.12. There was also a decrease in the localization error from
24.1 to 22.78 and increase in the recall score from 43.9 to 46.71.

Our next set of analysis was to find the optimal number of
self-attention blocks. Experimental results clearly demonstrate
that serially connecting more self-attention blocks without layer
normalization drastically reduces the performance of the model.
Adding residual connections and layer normalization between the
self-attention blocks significantly improves the performance of the
model. We also verified that with multiple self-attention blocks, 8
attention heads was still the best performing configuration. With
two self-attention blocks and 8 heads each, there was a steep in-
crease in the F score to 44.62 and the localization recall jumped to
55.04.

Finally, we examined the importance of position embeddings
to the first self-attention block and it proved to further increase the
performance of our SELD system. From all our experiments, the
best model configuration had two self-attention blocks with eight
attention heads each with an attention dimension of 128, a learnt
fixed size position embedding and residual connections with layer
normalization between successive self-attention blocks. For this
configuration, the detection error rate ER20 (lower the better), de-
creased by 11.6% and F-score F20 (higher the better), increased by
35.2% compared to the baseline. Similarly, the localization error
rate LECD(lower the better) reduced by 10.7% and the localiza-
tion recall LRCD (higher the better) improved by 25.2% from the
baseline. This model configuration is shown in Figure 1.

The best model configuration has close to twice the number
of parameters as the baseline. However, due to the parallelization
achieved by the self-attention blocks, it is also 2.5x faster than the
baseline model during inference, based on our experiments on a
V100 GPU. Hence, MHSA based models can be useful over RNN
based models for real-time SELD tasks.

5. CONCLUSIONS

In this study, we systematically assessed the effect of self-attention
layers for the joint task of sound event detection and localization.
To account only for the impact of self-attention on this task, we
employed the common SELDnet model using CRNN architecture
and studied the effects of replacing the temporal pattern recogni-
tion RNN blocks with self-attention blocks. We experimented with
various hyper parameter settings for the self-attention block such as
number of blocks, number of attention heads in each self-attention
block, size of the attention, layer normalization and residual con-
nections between sucessive self-attention blocks and adding posi-
tional embedding to the input of self-attention block. Our experi-
ments showed that, multi-head self-attention blocks with layer nor-
malization and position embeddings significantly improve the F20

score and LRCD score compared to the baseline. There is also a
considerable decrease in the detection and localization error metrics
compared to the baseline. The self-attention blocks also reduced the
time required for training and inference compared to RNN blocks
by exploiting parallel computations.
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ABSTRACT

Over the past few years, convolutional neural networks (CNNs)
have been established as the core architecture for audio classifica-
tion and detection. In particular, a hybrid model that combines a
recurrent neural network or a self-attention mechanism with CNNs
to deal with longer-range contexts has been widely used. Re-
cently, Transformers, which are pure attention-based architectures,
have achieved excellent performance in various fields, showing that
CNNs are not essential. In this paper, we investigate the reliance
on CNNs for sound event localization and detection by introducing
the Many-to-Many Audio Spectrogram Transformer (M2M-AST),
a pure attention-based architecture. We adopt multiple classifica-
tion tokens in the Transformer architecture to easily handle various
output resolutions. We empirically show that the proposed M2M-
AST outperforms the conventional hybrid model on TAU-NIGENS
Spatial Sound Events 2021 dataset.

Index Terms— Sound event localization and detection, self-
attention, Transformer

1. INTRODUCTION

Convolutional neural networks (CNNs) have become essential for
designing deep neural networks for image understanding tasks. The
translation equivariance and locality of CNNs are known to be ef-
fective for image understanding. Due to the success of CNNs
in image understanding, CNNs have also been used in other pat-
tern recognition fields [1, 2]. Especially in audio understanding,
CNNs have been applied to spectrogram images which are extracted
from audio recordings by applying short-time Fourier transform
to recognize image patterns. However, it is necessary to under-
stand the longer context as well as the local context of the spec-
trogram in audio understanding fields. To understand this longer
context, networks combining recurrent neural networks (RNNs) or
self-attention with CNNs have been widely used [3, 4].

Self-attention mechanisms [5], especially Transformers, have
become the new standard for natural language processing (NLP).
The main approach of NLP is to fine-tune large pre-trained net-
works on small task-specific datasets. Transformers are well known
for their computing efficiency and scalability. Using these Trans-
formers, large models trained on large-scale text corpus datasets
have been released [6]. These large models are known to extract
generality from large amounts of training data. With the success
of Transformers in NLP, Transformers are starting to be utilized in
other fields [7, 8, 9, 10]. However, architectures combined with
CNN rather than pure transformer architectures are mainly used.

Recently, Vision Transformer (ViT) [7, 8] using only pure
Transformers for image understanding has been introduced. The
outstanding performance of ViT is starting to question whether

CNNs are still essential in many applications. Since then, research
on Transformers replacing CNNs has become a trend in various
fields. The Keyword Transformer (KWT) [9] and Audio Spectro-

gram Transformer (AST) [10] have been introduced as the first at-
tempts to replace CNNs with Transformers in audio understanding.
These studies demonstrate the potential of a pure Transformer to
lower the dependence on CNNs in audio understanding. Inspired
by the strength of the simple Transformer model in computer vision
and audio classification, we propose an adaptation of this architec-
ture to sound event localization and detection (SELD) [11].

In this paper, we propose a pure transformer architecture,
Many-to-Many Audio Spectrogram Transformer (M2M-AST), for
sound event localization and detection (SELD). M2M-AST enables
efficient training of large models through transfer learning from
large pre-trained models. AST provides one audio classification
output for a single channel audio input (one-to-one). M2M-AST
can have different resolution output sequences for multi-channel au-
dio inputs (many-to-many).

2. RELATED WORK

2.1. Sound Event Localization and Detection

SELD [11] is the task of classifying multiple sound events with
temporal activity into specific classes and detecting their directions.
Therefore, SELD can be separated into two small tasks: sound event
detection (SED) and direction of arrival estimation (DOAE). Specif-
ically, SED is the task of classifying sound events into specified tar-
get classes to identify their onsets and offsets when sound events oc-
cur. DOAE is the task of detecting directions in which sound events
occur in every frame. The DCASE challenge has published datasets
for SELD since 2018. The TAU-NIGENS Spatial Sound Events
2020 dataset [12] consists of data that allow up to two simultaneous
occurrences of sound events with directional activities. Addition-
ally, up to three target sound events can occur simultaneously in the
TAU-NIGENS Spatial Sound Events 2021 dataset [13]. Also, TAU-
NIGENS Spatial Sound Events 2021 dataset is more difficult than
TAU-NIGENS Spatial Sound Events 2020 dataset because there is
background noise from unknown spatial acoustic events.

In SELD, the two-stage approach [14] and the joint modeling
approach are dominant. The two-stage approach splits SELD into
two models, SED and DOAE, and trains each separately. In the joint
modeling approach, SED and DOAE are co-trained or integrated
into a single system. Both methods commonly use convolutional
recurrent neural networks (CRNNs) [4, 15, 16] or hybrid networks
[17] that combine CNNs with self-attention layers. For CNNs, the
output resolution depends on the pooling size. Therefore, SELD
models using CNNs have limited output resolution by pooling size
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and cannot freely construct output resolution depending on the ap-
plication.

2.2. Self-Attention and Transformers

As pure self-attention-based networks, Transformers became the
standard for NLP. Then, with the advent of ViT [7], the pure Trans-
former model expanded to the field of image understanding. ViT
outperforms CNNs in image classification with self-attention com-
putations between different image patches. However, ViT requires
a significant amount of training data. To improve this, DeiT [8],
which uses data augmentations and a knowledge distillation token
to improve data efficiency, has been proposed. With the success of
understanding images without CNNs, other research fields are also
studying the reliance on CNNs.

KWT [9] and AST [10] are the first studies using a pure trans-
former in the field of audio understanding. These studies show that
the pure Transformer models can replace CNNs in audio classifica-
tion. In particular, KWT is a model that has adjusted the structure
of the DeiT model for audio classification. AST is a model for ef-
ficiently training large-scale Transformer networks using ImageNet
pre-trained models. The above studies are about a one-to-one struc-
ture that performs one classification on one audio recording. We
propose an M2M-AST architecture that outputs sequences of vary-
ing resolutions from multi-channel audio recordings.

3. MANY-TO-MANY AUDIO SPECTROGRAM

TRANSFORMER

3.1. Features

We use logmel and intensity vectors as input features [13] for
SELD. The proposed SELD system is based on two-stage approach.
The proposed SED network and DOAE network take different in-
put features. The SED network uses logmel energy extracted from
the microphone array data segmented into a single channel as input
features. The DOAE network uses 7-channel inputs by extracting
logmel and intensity vectors from Ambisonic data. This is summa-
rized in Table 1. Table 2 shows the pre-processing parameters to
extract input features

Format Feature # Channels (C) Label
SED Microphone array Logmel 1 Multi label binarization
DOAE Ambisonic Logmel, intensity vector 7 Cartesian coordinate (xyz)

Table 1: Feature and label configuration for SED and DOAE

Pre-processing
Time window length 20 ms
Time window stride 10 ms
Frame length (T) 300 (3 sec)
# Mel-bins (M) 128

Table 2: Pre-processing parameters

3.2. Model Architecture

As shown in Figure 1, the proposed M2M-AST uses a Transformer
encoder in the same way as AST [10]. M2M-AST uses only the
encoder layer of the Transformer for classification and regression.

Compared to AST, M2M-AST has differences in input feature and
classification token configuration. Neural Networks for SELD ex-
tract multi-channel feature images from 4-channel audio recordings
and use them as input features. Therefore, M2M-AST uses multi-
channel feature images extracted from 4-channel audio recordings.
Then we segment the extracted multi-channel feature images into
the 16x16 patch sequence. At this point, we split the feature images
by applying the same stride to the time and frequency dimensions.
Afterwards, patch tokens are extracted through a linear projection
for each patch. Like ViT [7, 8], the learnable classification token
for classification is appended at the beginning of the patch token se-
quence. However, since SELD performs SED and DOAE every 100
ms, M2M-AST should output a series of outputs rather than a single
output like AST. Therefore, patch embedding consists of appending
a classification token sequence of equal length to the length of the
output sequence at the beginning of the patch token sequence. The
length of the classification token sequence determines the output
resolution. For example, configuring an output resolution of 100
ms for 3 seconds input data would use a sequence of 30 classifi-
cation tokens. On the other hand, configuring an output resolution
of 20 ms for 3 seconds of input data would use a sequence of 150
classification tokens. The Transformer has no convolution or recur-
rence, so it cannot leverage the relative spatial information of the
patch tokens in the 2D feature images. To take advantage of the po-
sition information of the patch tokens, we add a learnable positional
embedding pi(2 Rd) to the patch embedding. The Transformer en-
coder’s outputs of the classification token sequence learn the audio
spectrogram representation by computing the self-attention between
each patch token. Then, we use a dense layer with an activation
layer for SED and DOAE from the Transformer encoder’s output of
classification tokens. M2M-AST’s model parameters are the same
as AST and are summarized in Table 3.

Model parameter
Patch shape (h x w) 16x16
Patch overlap 6
# Patches (n) 348
Patch dimension (d) 768
# Encoder layer (L) 12
# Attention head 12
Output size (t') 20
Dropout 0.1

Table 3: Model parameters

3.3. Transfer Learning

M2M-AST uses only a Transformer encoder like AST [10]. M2M-
AST uses the same Transformer encoders as ViT [7, 8]. ViT re-
quires a large dataset for sufficient performance. To overcome
this problem, DeiT [8] uses knowledge distillation. Unlike image
datasets, audio datasets contain relatively small amounts of data.
Therefore, AST uses transfer learning to distill knowledge from the
ImageNet pre-trained model. M2M-AST uses transfer learning in
the same way as AST. The weight can be easily transferred because
the same Transformer encoder is used. However, the layer learning
patch embeddings vary in size and require some adjustments.

DeiT uses 3-channel input images, while M2M-AST uses vari-
able multi-channel input images. In M2M-AST, the weight cor-
responding to each channel in the linear projection layer uses the
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(a) AST (b) Many-to-Many AST

Figure 1: Architecture of AST and Many-to-Many AST; B: batch size, T: time, M: # mel-bins, C: channel, t': output size, (h x w): patch
shape, n: # patchs, d: patch dimension, Cl: # class

average weight of the three channels in DeiT. While DeiT has
a fixed length of patch embedding sequence, M2M-AST has not
fixed length of patch embedding sequence because the classifica-
tion token sequence that determines the output resolution is vari-
able. Therefore, the positional embeddings for the patch tokens in
M2M-AST [p1, · · · , pn] are transferred as scaled values through
cut and bilinear interpolation to map the relative positions of the
positional embeddings in DeiT to the input feature. Individual posi-
tional embeddings of classification token sequence [p1�t0 , · · · , p0]
are equally initialized by the average value of classification token
and distillation token in DeiT. This transfer learning method makes
it easy to extract pre-trained network knowledge for ImageNet into
the audio domain.

3.4. Post-processing

The input time window for our system is 3 seconds. We slide this
window with a small hop size to create many overlapped results and
average these results during the inference [15]. Additionally, we
apply median filtering and tuning the threshold for each class during
SED inference. Finally, we apply a 16-way rotation augmentation
to infer the test data and average the values obtained by rotating the
results in reverse [15, 16].

4. EXPERIMENTS

We provide experimental results on TAU-NIGENS Spatial Sound
Events 2021 development dataset [13]. The development dataset
consists of 600 1-minute wave files. We use 400 minutes of data for
training, 100 minutes for validation, and the remaining 100 minutes
for testing. Our system is trained using the hyper-parameters in Ta-
ble 4. We use transfer learning with the pre-trained model. The pre-
trained model used in our system is shown in Table 5. We fine-tune
the SED model with 85M parameters and the DOAE model with
86M parameters for 50 epochs independently. We use the Adam
optimizer. For the development dataset, the training time consumed

by the M2M-AST is 4 hours for SED and 2 hours for DOAE at
4-TITAN Xp. The model mentioned in Table 5 is used for the ex-
periment. The models mentioned in Table 5 are for each SED and
DOAE task. Because of the large model size of M2M-AST, we use
a two-stage approach rather than joint training for SELD.

Training
Epoch 50
# Batch (B) 24
Learning rate 0.0001
Optimizer Adam

Table 4: Hyper-parameters for proposed system

Task Pre-trained model Loss
M2M-AST1 SED DeiT BCE
M2M-AST2 SED M2M-AST1 soft f-loss [18, 19]
M2M-AST3 DOAE DeiT MSE
M2M-AST4 DOAE M2M-AST3 masked MSE

Table 5: Model configuration

4.1. Results

Table 6 reports the results on the TAU-NIGENS Spatial Sound
Events 2021 dataset [13]. All results are based on logmel energy
and intensity vectors as input features. Baseline-Large is a model
in which the filter size of the baseline is increased to be similar to
the model size of M2M-AST. Using M2M-AST with the two-stage
approach significantly improves the performance of all metrics over
the baseline. In addition, the proposed pure Transformer model,
M2M-AST, outperforms the CRNN-based models listed in Table 6,
demonstrating that it is a sufficient replacement for CRNNs. There-
fore, we show that self-attention computing within the Transformer
on SELD, SED, and DOAE can reduce the reliance on CNNs.
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# Params ER20� F20� LECD LRCD

CRNN (Baseline FOA) 0.5M 0.69 33.9 % 24.1� 43.9 %
CRNN (Baseline-Large) 184M 0.65 45.6 % 22.6� 55.0 %
CRNN [20] 14M 0.65 48.3 % 22.0� 62.6 %
M2M-AST1&3 172M 0.55 62.6 % 17.5� 74.0 %
M2M-AST1&4 172M 0.52 64.4 % 16.0

� 74.0 %
M2M-AST2&3 172M 0.52 64.0 % 17.7�

74.7 %

M2M-AST2&4 172M 0.50 65.7 % 16.3
�

74.7 %

Table 6: Experimental results for development dataset

4.2. Ablation Study

We perform a series of ablation studies to explain M2M-AST design
choices. We conduct ablation studies based on M2M-AST1 and
M2M-AST3 initialized with ImageNet pre-training models while
using loss functions commonly used in SELD.

4.2.1. Batch size and frame length

We compare the performance of M2M-AST with different batch
sizes and frame lengths of input features through grid search. Ta-
ble 7 shows the results of this comparison. Performance for SED
under the ideal DOAE condition is evaluated through the F1 score
and LRCD(F1 score). F1 score represents the balanced score of
precision and recall. Besides LRCD represents the recall dominant
score. On the other hand, longer input frames improve both preci-
sion and calls. This is because longer input frames make M2M-AST
use more patches for training. For DOAE, smaller batch sizes and
longer input frame lengths improve performance.

SED (F1, LRCD) DOAE (LECD)
# Batch 1 sec 2 sec 3 sec (Used) 1 sec 2 sec 3 sec (Used)

24 (Used) (68.3, 66.3) (75.0, 73.2) (74.0, 74.0) 26.3� 22.2�
21.8

�

48 (69.5, 70.9) (75.7, 72.1) (75.2, 73.6) 27.9� 23.1� 23.0�

96 (70.7, 70.3) (75.8, 68.7) - 27.0� 24.4� -

Table 7: Experimental results with different batch sizes and input
frame lengths

4.2.2. Patch split with overlap

Table 8 shows a performance comparison with patch splits of 16x16
sizes using various sizes of strides. Configuring dense patch seg-
mentation with large overlap helps both SED and DOAE improve
performance. However, for SED, performance improvements con-
verge on overlap size 6. Thus, exploiting patch splits with a larger
overlap size than 6 leads to the burden of memory and computation
cost.

# Patches SED (F1, LRCD) DOAE (LECD)
No Overlap 144 (71.6, 60.2) 27.3�

Overap-2 189 (73.8, 68.6) 24.6�

Overap-4 240 (74.1, 70.6) 24.1�

Overap-6 (Used) 348 (74.0, 74.0) 21.8
�

Overap-8 540 (74.9, 72.5) 21.0
�

Table 8: Experimental results with different lengths of patch overlap

4.2.3. Output resolution

M2M-AST can adjust the number of classification tokens to have a
variety of output resolutions. Table 9 shows a performance compar-

ison of M2M-AST with output resolution from 100 ms to 25 ms.
Since the resolution of the ground truth data is 100 ms, we use the
nearest-neighbor interpolation to construct labels with high resolu-
tion and use them for training. Then we apply a median filter to
construct an output of 100 ms. For SED, smaller resolution results
in slight performance gains due to median filtering. On the other
hand, for DOAE, the results do not vary significantly with changes
in output resolution.

Output resolution Output size (t') SED (F1, LRCD) DOAE (LECD)
25 ms 120 (75.3, 73.8) 22.2�

33.3 ms 90 (76.5, 75.1) 22.1�

50 ms 60 (74.4, 72.8) 22.7�

100 ms (Used) 30 (74.0, 74.0) 21.8�

Table 9: Experimental results with different output resolutions

4.2.4. Pre-training and loss function

We compare the performance of randomly initialized M2M-AST
and M2M-AST transferred from pre-trained models. As shown in
Table 10, the weight transferred model from ImageNet pre-trained
model outperforms the randomly initialized model in SED. On the
other hand, transfer learning from ImageNet pre-trained model im-
proves DOAE performance slightly. In addition, we compare M2M-
AST using different loss functions while using a pre-trained model.
In SED, soft f-loss [18, 19] is slightly better than binary cross-
entropy (BCE), but there is no significant difference. On the other
hand, with the DOAE pre-trained model, masked MSE improves
performance by 2.7 degrees over BCE.

Pre-trained model Loss SED (F1, LRCD) DOAE (LECD)
No pre-train (SED) - BCE (60.4, 54.5) -
ImageNet pre-train (M2M-AST1) DeiT BCE (74.0, 74.0) -
SELD pre-train (M2M-AST2) M2M-AST1 soft f-loss (75.8, 74.7) -
No pre-train (DOAE) - MSE - 22.5
ImageNet pre-train (M2M-AST3) DeiT MSE - 21.8
SELD pre-train (M2M-AST4) M2M-AST3 masked MSE - 19.1

Table 10: Experimental results with different loss functions and pre-
trained models

5. CONCLUSIONS

In this paper, we describe how to apply the standard Transformer
architecture to SELD. As a consequence, we introduce M2M-AST,
a pure Transformer model for SELD. Existing SELD networks
have commonly used hybrid architectures that combine CNNs with
RNNs or self-attention layers. We empirically show that M2M-AST
can replace these hybrid networks in SELD, SED, and DOAE. The
experimental results represent the potential of a pure Transformer to
lower the reliance on CNNs in SELD. Traditional neural networks
use pooling layers to change the output shape. However, due to the
pooling size of this pooling layer, the output resolution cannot be
configured freely. On the other hand, M2M-AST has the advantage
of being able to easily design to have a variety of output resolutions.
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ABSTRACT

This paper presents an ensemble approach based on two unsuper-
vised anomalous sound detection (ASD) methods for machine con-
dition monitoring under domain-shifted conditions in DCASE 2021
challenge Task 2. The first ASD method is based on a conformer-
based sequence-level autoencoder with section ID regression and a
self-attention architecture. We utilize the data augmentation tech-
niques such as SpecAugment to boost the performance and com-
bine a simple scorer module for each section and each domain to
address the domain shift problem. The second ASD method is
based on a binary classification model using metric learning that
uses task-irrelevant outliers as pseudo-anomalous data while con-
trolling centroids of normal and outlier data in a feature space. As a
countermeasure against the domain shift problem, we perform data
augmentation based on Mixup with data from the target domain,
resulting in a stable performance for each section. An ensemble ap-
proach is applied to each method, and the resulting two ensembled
methods are further ensembled to maximize the ASD performance.
The results of DCASE 2021 challenge Task 2 have demonstrated
that our proposed method achieves a harmonic mean of 63.745%
of area under the curve (AUC) and partial AUC (p = 0.1) over all
machines, sections, and domains.

Index Terms— Anomalous sound detection, autoencoder, bi-
nary classification, metric learning

1. INTRODUCTION

Anomalous sound detection (ASD) is the task of detecting anoma-
lous sounds caused by atypical events, such as the malfunction or
breakdown of a machine. The detection of anomalous sounds can
be used to improve the efficiency of maintenance work on manu-
facturing equipment and infrastructure, and to monitor equipment
installed in locations which are difficult for people to enter. The use
of ASD technology is expected to become widespread during the
coming fourth industrial revolution, in applications such as factory
automation utilizing artificial intelligence [1].

When training ASD models, it would be difficult to collect data
representing every possible anomalous sound that could occur, be-
cause these sounds rarely occur during the normal operation of fac-
tory equipment, and the types of anomalous sounds which are pos-
sible are very diverse. Therefore, it is desirable to train ASD models
without using anomalous data. In addition, real-world environments

are often complicated and different conditions than those foreseen
during the training of the ASD models may be encountered. There-
fore, it is desirable to develop models that can detect anomalous
sounds even when the normal state distribution is changed (i.e., af-
ter domain shift).

The two main approaches that have been proposed for perform-
ing ASD are generative methods and classification methods. Gen-
erative methods use only the normal data of a target sound to model
its probability distribution and detect data that does not correspond
to the model, categorized as anomalous. As a result of advances in
deep learning technology, typical generative methods now involve
the training of autoencoders (AE) to reconstruct normal data and
calculate reconstruction error, or the use of autoregressive models
with recursive neural networks to calculate the model likelihood,
which is then used as an anomaly score [2, 3, 4, 5]. On the other
hand, more recently developed classification methods distinguish
between normal and outlier data by calculating anomaly scores
based on distance from a decision boundary [6, 7, 8, 9], which have
attracted much attention. Normal data from the operation of dif-
ferent machines is often used as outlier data during training. This
method assumes that anomalous data is distributed outside the nor-
mal data, and that the outlier data is distributed even further outside
the normal data. Based on this assumption, a binary classifier is
trained using the normal data as positive examples, and the outlier
data as pseudo-negative examples. Although generative and classi-
fication methods are both able to achieve good performance, they
are unable to resolve the domain shift problem because the training
and test data are recorded in the same environment.

Therefore, in this paper we propose an ASD method which is
an ensemble of an autoencoder and a binary classification model, al-
lowing it to function well even under domain shift conditions. The
first component is a conformer-based, sequence-level autoencoder
with section ID regression and a self-attention architecture [3].
We then utilize data augmentation techniques such as SpecAug-
ment [10] to boost performance, and add a simple scorer module to
each section and each domain to address the domain shift problem.
The second component of our ASD method is a binary classification
model employing metric learning, that uses task-irrelevant outliers
as pseudo-anomalous data while controlling the centroids of normal
and outlier data in a feature space [9]. As a countermeasure against
the domain shift problem, we also perform data augmentation based
on Mixup [11] using data from the target domain, resulting in sta-
ble performance for each data section. An ensemble approach is
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applied to each of the two components of our method, and the re-
sulting ensemble methods are then ensembled to maximize ASD
performance. We conduct our experimental evaluation using the
DCASE 2021 Challenge Task 2 dataset.

2. BASELINE METHODS

This section provides an overview of methods that achieved high
ASD performance when using the DCASE 2020 Task 2 data [12].
The Task 2 datasets contain recordings of six types of machines, and
each set of audio data for each type of machine consists of seven or
eight different machines of that type. ID information is provided to
indicate which machine the audio data belonged to.

2.1. Conformer-based autoencoder [3]

The autoencoder method [3] assumes that an autoencoder would
not be able to accurately reconstruct anomalous data, i.e., data other
than normal data used to train the autoencoder. We assume that the
input of an autoencoder at frame t is xt, and that the corresponding
output is x̂t. Reconstruction error et can be computed as follows:

et = abs(x̂t � xt), (1)

where abs(·) denotes an element-wise absolute operator. If xt

contains anomalous data, the norm of et should be large. Thus,
anomaly detection can be performed by simple thresholding.

In this paper, we use a conformer [13] as an autoencoder. ID
regression is used to accurately detect anomalous sounds combined
with the sound of the target machine. We concatenate the integer
machine ID to the input features, and the autoencoder then recon-
structs the input acoustic features and the machine ID. The autoen-
coder tends to misidentify the machine ID when the audio clip in-
cludes anomalous sound, even if we provide the correct machine
ID as an input. Therefore, we can detect whether the audio clip
includes anomalous sound from the estimated machine ID. In ad-
dition, we modify e1:T based on the distribution of the reconstruc-
tion error to improve detection accuracy. Specifically, frame-level
anomaly score, at, represent the negative likelihood of a Gaussian
mixture model (GMM) consisting of K-mixture Gaussians for et:

at = �
KX

k=1

wkN (et |µk,⌃k), (2)

where wk, µk, and ⌃k are the weight, mean vector, and covariance
matrix of the k th mixture component, respectively. For training
the parameters, we use the reconstruction error calculated from the
validation set, which is not used for training the autoencoder, but is
randomly selected 10% from the development data set. The frame-
by-frame anomaly scores obtained by the GMM are aggregated into
the final anomaly scores by removing some outlier data and using
the softmax weighted average, since some of the lowest or high-
est negative likelihood may have adversely affected the anomaly
scores. The aggregated anomaly score â is given by:

â =
1

T 0

T 0X

i=1

a
(M)
i

exp(↵a
(M)
i )

PT 0
i=1 exp(↵a

(M)
i )

, (3)

where a(M)
i represents the frame-by-frame anomaly scores selected

from ai, T 0 is the number of selected frames, and ↵ is a scalar
hyperparameter.

2.2. Binary classifier with metric learning [9]

A binary classifier is trained using normal data as positive examples
and with outlier data as pseudo-negative examples. We perform
learning for each particular machine ID. The normal data for a par-
ticular target machine ID is used as the normal data, and the normal
data of other machine IDs of the same machine type, as well as the
normal data of all of the other machines in the same dataset, are
used as outlier data.

Consider a set X = {x1,x2, ...,xN} that has N samples of
normal and outlier data. Normal and outlier data sets are assigned
labels yi 2 {+1,�1} (i = 1, 2, ..., N) for each data sample. When
performing ASD using a method based on binary classification, the
network is trained to minimize the following binary cross-entropy
(BCE) loss function:

LBCE = �
1

N

NX

i=1

⇢
u(yi)log (pi) + (1� u(yi))log(1� pi)

�
, (4)

where p represents the posterior probabilities output of network �p

(e.g., p = �p(x)), which minimizes (4) when x is used as input,
and where u(y) is a binary function that takes 1 for y > 0 and
0 for y  0. To further improve binary classification, we use the
Deep Double-Centroids Semi-supervised Anomaly Detection (DD-
CSAD) loss function proposed in [9], which considers the centroids
of both the normal and outlier data. The objective of the DDCSAD
loss function is to minimize intra-class variance and maximize inter-
class variance. The DDCSAD loss function is calculated as follows:

LDDCSAD =
1

N

NX

i=1

⇢
k zi � cp k2yi + k zi � cn k�2yi

�
, (5)

where z is the embedding vector output by encoder network �z

(e.g., z = �z(x)), which minimizes (5) when x is used as the in-
put, and where cp 2 RD and cn 2 RD represent the centroid of
the normal and outlier data, respectively. Note that the initial val-
ues of centroids cp and cn are calculated using randomly initialized
parameters, and are then recalculated at each epoch using the entire
training data set. They are updated at each epoch by recalculating
the centroids using the entire training data set. The following equa-
tion expresses the final loss function:

L = LBCE + �LDDCSAD, (6)

where � > 0 is a hyperparameter that controls the balance be-
tween the loss functions. Multi-task learning using both the cross-
entropy of the posterior probability and the DDCSAD loss function
increases accuracy when learning the decision boundaries, resulting
in more accurate ASD.

During inference, posterior probability p, and distance d =k
z� cp k2 between embedding vector z and centroid cp of the nor-
mal class, are used to obtain the anomaly score. First, we compute
distance d across the entire set of evaluation data, and then calculate
standardized distance d0 across the entire dataset. Finally, anomaly
score s is calculated using the following equation:

s = � ⇥ (1� p) + (1� �)⇥ d0, (7)

where, � is a hyperparameter that determines the proportion of
anomaly scores using posterior probability p.

3. PROPOSED METHODS

This section describes our proposed ASD methods working under
domain shift conditions. We use section ID instead of machine ID
due to the dataset change, but they have almost the same meaning.
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Figure 1: Overview of proposed autoencoder method.

Figure 2: Overview of proposed binary classification method.

3.1. Ensembled, comformer-based autoencoder

The first component of our method is a sequence-level autoencoder
with ID regression, which is based on the method described in Sec-
tion 2.1. An overview is shown in Fig. 1. To boost the autoen-
coder’s performance, we utilize SpecAugment [10] and dropout for
the input feature sequence. Inspired by the interpolation deep neu-
ral network approach proposed in [14], we apply SpecAugment and
dropout for the input feature sequence not only during training but
also during inference, where we replicate the input sequence and
apply different masking for each sequence. We then calculate the
reconstruction error for each sequence and integrate the results us-
ing a pooling operation (e.g., average or max). This allows us to
obtain the gain by using an ensemble model, even when using a
single model. To address the domain shift problem, we build sepa-
rate reconstruction error scoring modules for each section and each
domain. This method is enabling us to capture differences in the
anomaly score range between the sections and domains.

To further improve performance, we ensemble the model by
selecting the N -best models when using the development data for
each machine and each domain, and then integrate the outputs of
these models to obtain the final score. We normalize the outputs and
combine the normalized scores using the following four methods:
average, median, maximum, and ranking which converts the scores
into a rank and then calculates the average of the rankings.

3.2. Ensembled, binary classifier with metric learning

The second component of our proposed method is a binary classifi-
cation model using metric learning, based on the method described

in Section 2.2. An overview is shown in Fig. 2. We build the model
for the source domain, and then perform fine-tuning for the target
domain. When training for the source domain, only data from the
source domain is used. On the other hand, when fine-tuning the
model for the target domain, we create pseudo-target domain data
using Mixup [11], using source and target domain data. It is ex-
pected that the use of Mixup will increase variation within each
class and create data with an intermediate representation between
the positive and negative examples.

The performance of the binary classification method is less sta-
ble than that of the autoencoder method, since the binary classi-
fication method builds a different model for each section of data.
Therefore, we create many models in order to improve the perfor-
mance of the model ensemble; for example, we change the method
of pseudo-anomalous example selection, introduce additional data
augmentation using methods such as Gaussian Noise and Volume
control, change the architecture of the feature extraction module,
and use an additional loss function (ArcFace [15]). ArcFace is a
loss function used to achieve a clear geometric interpretation within
a feature space, and the combination of ArcFace with DDCSAD re-
sults in further improvement in ASD performance. During pseudo-
anomalous example selection, we also select samples from within
the same dataset, resulting in more stable performance across the
data sections. Finally, we use various different models as our fea-
ture extraction module, including ResNet34 [16], ResNeXt50 [17]
and EfficientNet b3 [18] in PyTorch Image Models [19]. We aver-
age N ⇥ S models for each machine and each domain, where S
represents the number of sections in the validation set.

3.3. Ensemble of the autoencoder and binary classifier models

We normalize the anomaly score of each of the two ensembled mod-
els to mean = 0 and variance = 1, and average the normalized scores.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

We conducted our experimental evaluation using the DCASE 2021
Challenge Task 2 dataset [20, 21]. The dataset consists of the
normal and anomalous operating sounds of seven types of real
machines: ToyCar, ToyTrain, fan, gearbox, pump, slider, and
valve. Data for each type of machine includes six sections. Each
section is further divided into two domains, containing source
and target data, respectively. Each recording is a single-channel,
10 second segment of audio sampled at 16 kHz. The training
data includes 1,000 samples in the source domain and only 3
samples in the target domain. The development and evaluation data
consists of around 200 samples in each domain. The training data
includes only normal sounds, but the development data includes
both normal and anomalous sounds to allow the evaluation of
anomaly detection performance. To evaluate the performance of
our proposed method, we included the following models in our
experiment for comparison:
Baseline (AE): The official autoencoder-based baseline
method [22], trained with normal training data, which mini-
mizes reconstruction error.
Baseline (MNV2): The official classification-based baseline
method, which uses MobileNetV2 [22] trained using section ID
classification.
Our baseline (AE): Our baseline, sequence-level autoencoder
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Table 1: Evaluation results. Values represent the harmonic mean of AUC [%] and pAUC (p = 0.1) [%] for each section of each domain.
“All / har-mean” column values represent the harmonic mean of AUC and pAUC over all machines, sections and domains.

ToyCar ToyTrain fan gearbox pump silder valve All
Method source target source target source target source target source target source target source target har-mean

dev

Baseline (AE) 59.44 54.74 64.31 51.99 59.14 56.72 56.42 61.04 63.85 53.01 67.09 55.71 52.43 51.45 57.28
Baseline (MNV2) 57.19 55.89 58.81 50.77 63.31 61.58 65.54 60.72 62.20 57.36 65.43 52.17 53.99 55.17 58.22
Our baseline (AE) 80.41 63.05 80.50 61.46 71.82 66.35 62.69 70.01 72.61 62.41 86.04 62.01 80.60 64.30 69.05
Our baseline (BC) 57.91 58.68 76.23 49.04 67.36 59.36 74.85 74.59 72.12 59.86 80.64 57.24 86.18 70.10 69.08
AE ens 83.29 68.70 81.06 62.83 74.37 69.75 64.14 72.32 74.60 65.68 86.12 65.41 82.94 67.81 71.67
BC ens 60.93 64.55 76.16 55.40 82.29 66.62 74.49 70.58 75.20 60.70 89.28 57.69 92.70 79.35 73.29
AE+BC ens (mix) 79.90 70.08 80.23 59.85 82.25 71.58 72.95 76.25 77.29 64.03 89.06 68.49 93.03 80.15 76.59
AE+BC ens (max) 83.29 68.70 81.16 62.83 82.29 69.75 74.49 72.32 75.20 65.68 89.28 65.41 92.70 79.35 75.68

eval

Baseline (AE) 61.33 55.63 61.86 63.26 57.99 52.54 61.17 60.58 56.38 52.55 56.76 51.78 51.22 50.69 56.38
Baseline (MNV2) 41.81 57.59 49.76 43.50 63.65 59.24 53.31 49.55 63.79 64.00 66.17 66.34 53.86 50.86 54.77
AE ens 54.94 54.95 65.84 54.82 62.84 59.00 66.18 60.31 58.13 62.14 71.45 62.49 63.30 49.52 59.92
BC ens 64.39 55.07 54.86 52.90 65.97 63.70 55.91 50.44 81.40 79.86 84.22 75.69 66.23 58.49 63.21
AE+BC ens (mix) 60.83 56.30 64.64 54.84 70.01 63.12 60.93 56.21 70.46 64.84 82.26 77.36 68.78 55.10 63.75
AE+BC ens (max) 54.94 54.95 65.84 54.82 65.97 59.00 55.91 60.31 81.40 62.14 84.22 62.49 66.23 58.49 62.26

model, trained for 50,000 steps using the Adam optimizer [23]
with Warmup scheduler [24]. The batch size was set to 64 and
the number of warmup steps was 8,000. The hyperparameters
were optimized for each machine and each domain, including
Mel-spectrogram extraction condition (e.g., shift size and Mel
basis), model architecture (e.g., the number of blocks, units and
kernel size) and post-processing. In SpecAugment, the number
of time masks was set to 50, with a width range from one to five,
while the number of frequency masks was set to five, with a width
range from zero to ten. The dropout rate for the input sequence was
set to 0.2.
Our baseline (BC): Our baseline, binary classification-based
model was ResNet34 [16]. The size of the spectrogram was
256⇥ 256. The model was trained for 8,000 steps using the Adam
optimizer, with a learning rate for the fully-connected layer of
1.0e-3, and a learning rate for the convolution layer of 5.0e-4. The
OneCycleLR scheduler [25] was used, and the batch size was 64.
The ratio of normal to outlier data was set to 1:1 in the mini-batch.
When fine-tuning for the target domain, we trained the pre-trained
model created using source domain data for 800 steps. Sampling
was performed during fine-tuning so that the mini-batch always
contained 16 samples of target domain or pseudo-target domain
data, which was obtained by mixing up data from the target and
source domains.
AE ens: An ensemble of the proposed autoencoder models. The
value of N was selected from among 3, 5, 10 and 20, and the
ensemble methods were optimized for each machine and each
domain.
BC ens: An ensemble (average) of the proposed binary-
classification models. The value of N was set to two.
AE+BC ens (mix): The average of AE ens and BC ens.
AE+BC ens (max): The ensemble of AE ens and BC ens. We took
the maximum output value between AE ens and BC ens for each
machine and each domain.

The hyperparameters and post-processing parameters of each
model were optimized for each section and each domain.

4.2. Experimental results

Our experimental results are shown in Table 1. First, we focus on
the results when using the development data. When comparing the
performance of our baseline (AE) and AE ens, and our baseline
(BC) and BC ens, we can see that performance of harmonic mean

generally improved. When comparing the results when using our
two baseline methods, we can see that AE outperformed BC for
machine types ToyCar and ToyTrain, while BC outperformed AE
for machine types gearbox and valve, and further improvements are
yielded by ensembling these two methods, suggesting that each of
them focuses on different features of each machine type.

Next, we focus on performance when using the evaluation data.
BC ens outperformed AE ens for machine types pump, slider and
valve, regardless of the domain. In these types of machines, where
the sound generated is non-stationary (i.e., it includes a variety
of intermittent sounds, such as clicks), the BC-based method was
found to be superior. Unlike our results when using the develop-
ment data, ASD performance for ToyCar when using AE ens de-
creased. These results suggest that model performance tends to be
influenced not only by machine type, but also by the type of anoma-
lous sound that is present. Finally, we found that all of the pro-
posed methods outperformed all of the baseline methods with both
datasets, and that the AE+BC ens (mix) model achieved the best
ASD performance.

These results demonstrated that our proposed method per-
formed well under domain shift conditions. Furthermore, we found
that using an ensemble of the results from different ASD models fo-
cusing on different features contributes to score improvement, since
the outputs of the models complement each other.

5. CONCLUSION

In this paper, we presented an ensemble ASD approach using both
a conformer-based autoencoder and a binary classification model
with metric learning. Our experimental evaluation showed that the
proposed methods significantly outperformed the baseline methods
by achieving higher ASD scores. We also demonstrated that by us-
ing an ensemble of completely different ASD methods, we were
able to obtain better performance. These results suggest that differ-
ent ASD methods focus on different audio data features to detect
anomalous sounds, so it is important to ensemble models that can
pick out different features. In future work, we will develop a method
that can obtain the better ASD performance using fewer models.
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ABSTRACT

Detection and Classification Acoustic Scene and Events Chal-
lenge 2021 Task 4 uses a heterogeneous dataset that includes both
recorded and synthetic soundscapes. Until recently only target
sound events were considered when synthesizing the soundscapes.
However, recorded soundscapes often contain a substantial amount
of non-target events that may affect the performance. In this paper,
we focus on the impact of these non-target events in the synthetic
soundscapes. Firstly, we investigate to what extent using non-target
events alternatively during the training or validation phase (or none
of them) helps the system to correctly detect target events. Sec-
ondly, we analyze to what extend adjusting the signal-to-noise ratio
between target and non-target events at training improves the sound
event detection performance. The results show that using both tar-
get and non-target events for only one of the phases (validation or
training) helps the system to properly detect sound events, outper-
forming the baseline (which uses non-target events in both phases).
The paper also reports the results of a preliminary study on evalu-
ating the system on clips that contain only non-target events. This
opens questions for future work on non-target subset and acoustic
similarity between target and non-target events which might con-
fuse the system.

Index Terms— Sound event detection, synthetic soundscapes,
open-source datasets, deep learning

1. INTRODUCTION

The main goal of ambient sound and scene analysis is to au-
tomatically extract information from sounds that surround us and
analyze them for different purposes and applications. Between the
different area of interest, ambient sound analysis have a consider-
able impact on applications such as noise monitoring in smart cities
[1, 2], domestic applications such as smart homes and home se-
curity solutions [3, 4], health monitoring systems [5], multimedia
information retrieval [6] and bioacoustics domain [7]. Sound Event
Detection (SED) aims to identify the onset and offset of the sound
events present in a soundscape and to correctly classify them, label-
ing the events according to the target sound classes that they belong
to. Nowadays, deep learning is the main method used to approach

This work was made with the support of the French National Research
Agency, in the framework of the project LEAUDS Learning to understand
audio scenes (ANR-18-CE23-0020), the project CPS4EU Cyber Physical
Systems for Europe (Grant Agreement number: 826276) and the French re-
gion Grand-Est. Experiments presented in this paper were carried out using
the Grid5000 testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as well as other
organizations (see https://www.grid5000).

the problem. However, one of the main limitations of deep learn-
ing models is the requirement of large amounts of labeled train-
ing data to reach good performance. The process of labeling data
is time-consuming and bias-prone mainly due to human errors and
disagreement given the subjectivity in the perception of some sound
event onsets and offsets [8]. To overcome these limitations, recent
works are investigating alternatives to train deep neural networks
with a small amount of labeled data together with a bigger set of
unlabeled data [3, 9, 10, 8, 11]. Among them, Detection and Clas-
sification Acoustic Scenes and Events Challenge (DCASE) 2021
Task 4 uses an heterogeneous dataset that includes both recorded
and synthetic soundscapes [8]. This latter soundscapes provide a
cheap way to obtain strongly labeled data. Until recently, synthe-
sized soundscapes were generated considering only target sound
events. However, recorded soundscapes also contain a considerable
amount of non-target events that might influence the performance
of the system.

The purpose of this paper is to focus on the impact on the
system’s performance when non-target events are included in the
synthetic soundscapes of the training dataset. The study has been
mainly divided into three stages. Firstly, we investigate to what
extent using non-target events alternatively during training or vali-
dation helps the system to correctly detect the target sound events.
Mainly motivated from the results of the first experiment, in the
second part of the study, we focus on understanding to what extend
adjusting the target to non-target signal-to-noise ratio (TNTSNR) at
training improves the sound event detection performance. Results
regarding a preliminary study on the evaluation of the system using
clips containing only non-target events are also reported, opening
questions for future studies on possible acoustic similarity between
target and non-target sound events which might confuse the SED
system. 1.

2. PROBLEM DEFINITION AND DATASET GENERATION

2.1. Problem definition

The primary goal of the DCASE 2021 Challenge Task 4 is the
development of a semi-supervised system for SED, exploiting an
heterogeneous and unbalanced training dataset. The goal of the
system is to correctly classify the sound event classes and to lo-
calize the different target sound events present in an audio clip in
terms of timing. Each audio recording can contain more than one
event. Some of those could also be overlapped. The use of a larger

1To promote reproducibility, the code, https://github.

com/DCASE-REPO/DESED_task, and pre-trained models
https://zenodo.org/record/5529692, are made available
under an open-source license.
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amount of unlabeled recorded clips is motivated by the limitations
related to annotating a SED dataset (human-error-prone and time-
consuming). Alternatively, synthesized soundscapes are an easy
way to have strongly annotated data. In fact, the user can easily
generate the soundscapes starting from isolated sound events. On
the other hand, in most of the recorded soundscapes the target sound
classes are almost never present alone. For this reason, one of the
main novelties of the DCASE 2021 Challenge Task 4 is the intro-
duction of non-target isolated events in the synthetic soundscapes2.
This paper explores the impact of the non-target sound events on the
baseline system performance, with the final goal of understanding
and highlighting how to correctly exploit them to generate realistic
soundscapes.

2.2. Dataset generation

The dataset used in this paper is the DESED dataset3 [12, 13], which
is the same provided for the DCASE 2021 Challenge Task 4. It is
composed of 10 seconds length audio clips either recorded in a do-
mestic environment or synthesized to reproduce such an environ-
ment4. The synthetic part of the dataset is generated with Scaper
[14], a Python library for soundscape synthesis and augmentation,
which allows to control audio parameters. The recorded sound-
scapes are taken from AudioSet [15]. The foreground events (both
target and non-target) are obtained from the Freesound Dataset
(FSD50k) [16], while the background sounds are obtained from the
SINS dataset (activity class “other”) [17] and TUT scenes 2016 de-
velopment dataset [18]. In particular, non-target events are the in-
tersection of FUSS dataset [19] and FSD50k dataset in order to have
compatibilty with the source separation baseline system.

In this article, we modify only the synthetic subset of the
dataset. Starting from the synthetic part of the DESED dataset,
we generated different versions of it in order to investigate how
non-target events impact the system performance and to what extent
their relationship with the target events affects the training phase of
the system. The following subsections describe the different subsets
used for the experiments, which have been generated using Scaper.

2.2.1. Synthetic training set

The synthetic training set is the same set of data released for the
DCASE 2021 Challenge Task 4. It includes 10000 audio clips
where both target and non-target sound events could be present in
each clip. The distribution of the sound events among the files have
been determined considering the co-occurrences between the differ-
ent sound events. The co-occurrences have been calculate consider-
ing the strong annotations released for the AudioSet dataset [20]5.
A second version of this dataset has been generated where only tar-
get events are present. The datasets will be hereafter referred as
synth tg ntg (used by the official baseline system) and synth tg
for the synthetic subset including target and non-target events and
the synthetic subset including only target events, respectively.

2
http://dcase.community/challenge2021

3https://project.inria.fr/desed/
4For a detailed description of the DESED dataset and how it is generated

the reader is referred to the original DESED article [13] and DCASE 2021
task 4 webpage: http://dcase.community/challenge2021

5The co-occurrences distribution and the code used to compute them will
be distributed.

2.2.2. Synthetic validation set

The synthetic validation set is the same as the synthetic valida-
tion dataset supplied for the DCASE 2021 Challenge Task 4. It
includes 3000 audio clips including target and non-target events,
which distribution has been defined calculating the co-occurrences
between sound events. We generated a second version of the dataset
containing only target events. The datasets will be referred to as
synth tg ntg val (used by the baseline system) and synth tg val
(only target sound events).

2.2.3. Synthetic evaluation set

The synthetic 2021 evaluation set is composed by 1000 audio clips.
In the context of the challenge, this subset is used for analysis
purposes. We will refer to it as synth tg ntg eval. It contains
target and non-target events distributed between the different au-
dio clips according to the pre-calculated co-occurrences. Two dif-
ferent versions of the synth tg ntg eval set have been generated,
synth tg eval (only target sound events) and synth ntg eval (only
non-target sound events).

2.2.4. Varying TNTSNR training and validation set

With the aim of studying what would be the impact of varying
the TNTSNR on the system performance, different versions of
synth tg ntg and synth tg ntg val have been generated. In par-
ticular, for each of them, three versions have been created. The
SNR of the non-target events have been decreased by 5 dB, 10
dB and 15 dB compared to their original value. The original
SNR of the sound events is randomly selected between 6 dB and
30 dB, so the more we decrease the SNR, the less the sound
will be audible, with some of the events that will not be au-
dible at all. These subsets will be subsequently referred to as
synth 5dB, synth 10dB, synth 15dB for the training subsets and
synth 5dB val, synth 10dB val, synth 15dB val for the valida-
tion subsets.

2.2.5. Public evaluation set

The public evaluation set is composed of recorded audio clips ex-
tracted from Youtube videos that are under creative common li-
censes. This is part of the evaluation dataset released for the eval-
uation phase of the DCASE 2021 Challenge Task 4 and considered
for ranking. The set will be referred to as public.

3. EXPERIMENTS TASK SETUP

In order to compare the results with the official baseline, we used
the same SED mean-teacher system released for this year challenge.
More information regarding the system can be found at Turpault et
al. [8] and on the official webpage of the DCASE Challenge Task 4.
All the different models have been trained 5 times. This paper re-
ports the average of the scores and the confidence intervals related to
those. Only for the baseline model we do no report the confidence
intervals because we have considered the results using the check-
point made available for it 6. The metrics considered for the study
are the two polyphonic sound detection score (PSDS) [21] scenar-
ios defined for the DCASE 2021 Challenge Task 4, since these are
the official metrics used in the challenge.

6
https://zenodo.org/record/4639817

116



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

Non-target PSDS1 PSDS2Train Val

33.81 (0.36) 52.62 (0.19)
35.92 (0.49) 54.85 (0.29)
34.90 (0.82) 53.07 (1.22)

36.40 58.00

Table 1: Evaluation results for the public set, considering the dif-
ferent combinations of using target and non-target sound events at
training and validation.

The scope of these experiments is twofold: understand the im-
pact of non-target events on the system performance and investigate
to what extend the TNTSNR helps the network to correctly predict
the sound events in both matched and mismatched conditions. In
order to do so, we divided the experiment into three stages. The
first part of the study is focused on understanding the influence of
training the system with non-target events. This experiment is de-
scribed and discussed in Section 4. Section 5 reports the results and
the relative discussion of the second part of the experiment where
we investigate if a mismatch in terms of TNTSNR between datasets
could have an impact on the output of the system. Section 6 reports
preliminary results of the last stage of the experiment, regarding the
evaluation of the system on the synth ntg eval dataset, formed by
only non-target sound events, in order to investigate if some classes
could get acoustically confused at training, having a negative im-
pact on the performance. The last stage has been motivated by the
results of the second part of the experiment.

4. USING TARGET/NON-TARGET AT TRAINING

In the first experiment we concentrate on training the system with
different combinations of the training dataset. Table 1 reports the
results of the experiment evaluating the system on the public set.
We check-marked the columns NT Train or/and NT Val according
to if the non-target sound events are present or not in the synthetic
sounscapes. From the results it is possible to observe that using non-
target sound events during training and validation improves the per-
formance by a large margin with relaxed segmentation constraints
(PSDS2) but only marginally with strict segmentation constraints
(PSDS1). In this latter case what matters the most is the use of non-
target sound events during the validation. A possible explanation is
that synthetic soundscapes with non-target sound events are actually
too difficult and confuse the systems when used during the training
but they still help reducing the mismatch with recorded soundscapes
during model selection (validation).

Table 2 reports the results considering the synth tg ntg eval
and synth tg eval evaluation sets. In all cases the best perfor-
mance is obtained in matched training/evaluation conditions. The
performance obtained on synth tg ntg eval are lower than the per-
formance obtained on synth tg eval even in matched conditions.
Not surprisingly, this confirm that including non-target sound events
makes the SED task more difficult. Interestingly, as opposed to the
previous experiment, the most important here is to have matched
conditions during training and to a lesser extent during validation.
In order to verify the low impact of non-target sound events at train-
ing when evaluating on recorded soundscapes, in the next experi-
ment we investigate a possible mismatch in terms in TNTSNR.

Non-target Eval set PSDS1 PSDS2Train Val

synth tg ntg eval 23.22 (1.33) 36.44 (2.62)
synth tg ntg eval 20.08 (0.39) 31.33 (1.29)
synth tg ntg eval 20.13 (0.35) 30.99 (1.07)
synth tg ntg eval 25.14 40.12

synth tg eval 42.82 (2.42) 58.26 (2.08)
synth tg eval 46.92 (1.02) 62.79 (0.55)
synth tg eval 47.73 (0.33) 62.54 (1.00)
synth tg eval 43.22 61.09

Table 2: Evaluation results for the synth tg ntg eval set and
synth tg eval set, considering the different combination of using
target and non-target sound events at training and validation.

Non-target PSDS1 PSDS2Train Val

Original 5 dB 35.57 (0.28) 56.68 (1.77)
5 dB Original 36.25 (1.26) 57.53 (1.06)
5 dB 5 dB 35.46 (0.46) 58.09 (0.74)

Original Original 36.40 58.00

Table 3: Evaluation results for the second part of the experiment,
varying TNTSNR by 5 dB (synth 5dB and synth 5dB val). Eval-
uating with public set.

Non-target PSDS1 PSDS2Train Val

Original 10 db 36.23 (1.11) 57.82 (1.37)
10 db Original 36.42 (0.77) 58.94 (0.89)
10 db 10 db 36.20 (1.14) 57.92 (1.04)

Original Original 36.40 58.00

Table 4: Evaluation results for the second part of the experiment,
varying TNTSNR by 10 dB (synth 10dB and synth 10dB val).
Evaluating with public set.

Non-target PSDS1 PSDS2Train Val

Original 15 dB 36.08 (1.13) 57.78 (1.33)
15 dB Original 37.37 (0.70) 58.64 (1.34)
15 dB 15 dB 36.10 (0.50) 57.36 (0.89)

Original Original 36.40 58.00

Table 5: Evaluation results for the second part of the experiment,
varying TNTSNR by 15 dB (synth 15dB and synth 15dB val).
Evaluating with public set.

5. VARYING TNTSNR AT TRAINING

The second part of the study focuses on understanding the impact
of varying the TNTSNR at training and validation aiming at finding
a TNTSNR condition that could match better the recorded sound-
scapes. For each TNTSNR, we use similar combinations as the ones
used in Section 4, replacing the set without non-target sound events
by a set with adjusted TNTSNR. For example, considering the 5 dB
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Validation set PSDS1 PSDS2

synth 5dB val 38.68 (1.07) 60.57 (0.78)
synth 10dB val 39.07 (0.75) 60.75 (0.80)
synth 15dB val 37.95 (0.53) 59.99 (1.14)

Table 6: Evaluation results of the SED system, training with
synth tg, validating with varying TNTNSNR set and evaluating
with public set.

case, the combinations considered would be:

• training using the synth tg ntg set and validating with
synth 5dB val;

• training with synth 5dB and validating with synth tg ntg val;
• training and validating with synth 5dB and synth 5dB val.

The fourth combination is the official DCASE Task 4 baseline. Re-
peating the experiment with all the varying TNTSNR, allow us
to analyse to what extend the loudness of the non-target events
helps matching the evaluation conditions on recorded clips. Ta-
ble 3, 4 and 5 report the performance on the public set when
using a TNTSNR of 5 dB, 10 dB and 15 dB, respectively. When
the TNTSNR is 5 dB or 10 dB, the performance changes only
marginally between configurations. Increasing the TNTSNR to
15 dB leads to a behaviour more similar to the one obtained in
Table 1. The best performance is obtained when training with
TNTSNR is 15 dB and validating on synth tg ntg val. This could
be explained by the fact TNTSNR 15 dB is a condition closer to that
of the recorded soundscapes and the fact that it allows for selecting
models that will be more robust towards non-target events at test
time.

In the last experiment, we investigate the impact of varying the
TNTSNR during validation phase, while using the synt tg for train-
ing. Results are reported on Table 6, where it is possible to ob-
serve that all of them overcome the baseline or are comparable with
it, with the best performance obtained for 10 dB TNTSNR. These
experiments could indicate that recorded soundscapes in public in
general have a TNTSNR of about 10 – 15 dB which should be con-
firmed by complementary experiments.

6. EVALUATING ON NON-TARGET EVENTS ONLY

Based on the previous experiments, TNTSNR could be one reason
of mismatch between the synthetic soundscapes and the recorded
soundscapes. But this could not explain all the performance dif-
ferences observed here. In particular why in general having lower
TNTSNR during training is decreasing the performance regardless
of the validation. One possibility is that the system gets acous-
tically confused by a possible similarity in sound between events
when soundscapes tend to be less dominated by target events. So
we evaluated the system using the synth ntg eval, where only non-
target events are considered, to see for which classes the system
would output false positives. We evaluated the system on the pub-
lic set; considering the systems trained for the first experiment (see
Table 1). Results show that some sound events are detected more
than others. For some classes as Speech, this could be explained
by the original event distribution (indicated in the first column) but
for some other classes as Dishes there is a discrepancy between the
original distribution and the amount of false alarms. Interestingly

Nref Nsys
Classes A B C Base

Dog 197 135 126 146 79
Vacuum cleaner 127 31 42 44 47
Alarm bell 191 47 50 52 59
Running water 116 34 41 61 30
Dishes 405 1478 395 1270 305
Blender 100 63 32 55 19
Frying 156 70 41 60 33
Speech 1686 206 181 180 201
Cat 141 99 103 98 73
Electric shaver 103 21 18 18 7

Table 7: Preliminary evaluation results by classes, evaluating the
system with synth ntg eval. Nsys (A): training with synth tg, val-
idating with synth tg val; Nsys (B): training with synth tg ntg,
validating with synth tg val; Nsys (C): training with synth tg, val-
idating with synth tg ntg val; Base: baseline using target and non-
target events for training and validation.

the amount of false alarms is decreased sensibly for most of the
classes when including non-target sound events during training.

7. CONCLUSIONS AND FUTURE WORK

This paper analyzes the impact of including non-target sound events
in the synthetic soundscapes of the training dataset for SED systems
trained on heterogeneous dataset. In particular, the experiments are
divided into three stages: in the first part, we explore to what ex-
tend using non-target sound events at training has an impact on the
system’s performance, secondly we investigate the impact of vary-
ing TNTSNR and we conclude the study by analyzing a possible
confusion of the SED model in case of false alarms triggered by
non-target sound events.

From the results reported on this paper, we can conclude that
using non-target sound events can help the SED system to better
detect the target sound events, but it is not clear to what extend and
what would be the best way to generate the soundscapes. Results
show that the final SED performance could depend on mismatches
between synthetic and recorded soundscapes, part of which could
be due to the TNTSNR but not only. Results on the last experiment
show that using non-target events at training decreases the amount
of false alarms at test but from this experiment it is not possible to
conclude on the impact of non-target sound events on the confusion
between the target sound events. This is a first track for future in-
vestigation on the topic. Additionally, the impact of the non-target
sound events at training on the ability of the system to better seg-
ment the target sound events in noisy soundscapes would have to be
investigated. A final open question is the impact of the per class dis-
tribution of the sound events (both target and non-target) and their
co-occurrence distribution on the SED performance.
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ABSTRACT

Sound event localization and detection (SELD) is an emerging re-
search topic that aims to unify the tasks of sound event detection
and direction-of-arrival estimation. As a result, SELD inherits the
challenges of both tasks, such as noise, reverberation, interference,
polyphony, and non-stationarity of sound sources. Furthermore,
SELD often faces an additional challenge of assigning correct cor-
respondences between the detected sound classes and directions of
arrival to multiple overlapping sound events. Previous studies have
shown that unknown interferences in reverberant environments of-
ten cause major degradation in the performance of SELD systems.
To further understand the challenges of the SELD task, we per-
formed a detailed error analysis on two of our SELD systems, which
both ranked second in the team category of DCASE SELD Chal-
lenge, one in 2020 and one in 2021. Experimental results indicate
polyphony as the main challenge in SELD, due to the difficulty in
detecting all sound events of interest. In addition, the SELD sys-
tems tend to make fewer errors for the polyphonic scenario that is
dominant in the training set.

Index Terms— DCASE, error analysis, polyphony, sound
event localization and detection

1. INTRODUCTION

Sound event localization and detection (SELD) has many applica-
tions in urban sound sensing [1], wildlife monitoring [2], surveil-
lance [3], autonomous driving [4], and robotics [5]. SELD is an
emerging research field that aims to combine the tasks of sound
event detection (SED) and direction-of-arrival estimation (DOAE)
by jointly recognizing the sound classes, and estimating the direc-
tions of arrival (DOA), the onsets, and offsets of detected sound
events [6].

The introduction of the SELD task in the 2019 Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) has significantly accelerated SELD research. Many sig-
nificant contributions have been made over the last three years in
terms of datasets, evaluation metrics, and algorithms [7]. The
TAU Spatial Sound Events dataset [8] used in DCASE 2019 in-
cluded only stationary sound sources, with 72 room impulse re-

This research was supported by the Singapore Ministry of Education
Academic Research Fund Tier-2, under research grant MOE2017-T2-2-060.

K. N. Watcharasupat acknowledges the support from the CN Yang
Scholars Programme, Nanyang Technological University, Singapore.

sponses (RIRs) from 5 different locations, and only 20 distinct sam-
ples for each of the 11 sound classes. The TAU-NIGENS Spatial
Sound Events dataset [9] used in DCASE 2020 saw an introduction
of moving sound sources, more RIRs from 15 different locations,
and 14 sound classes extracted from the NIGENS General Sound
Events Database [10], with around 30 to 50 distinct samples per
class. The 2021 edition [11] introduced unknown directional in-
terferences, making the sound scenes more realistic, in addition to
the increase in the maximum polyphony of target events to three,
from two in the 2019 and 2020 runs. The number of sound classes
was reduced to 12, as some classes were used as interferences. All
three SELD datasets provide both first-order ambisonic (FOA) and
microphone array (MIC) formats.

The SELD evaluation metrics have evolved over the past three
years. In DCASE 2019, SED and DOAE performances were eval-
uated independently. Segment-wise error rate (ER) and F1 score
evaluation were used for SED [12], while frame-wise DOA error
and frame recall were used for DOAE [13]. Since 2020, SED and
DOAE were evaluated jointly with location-dependent ER and F1
score for SED, and class-dependent localization error (LE) and lo-
calization recall (LR) for DOAE [14]. The 2021 metrics further take
into account overlapping same-class events [11].

On the algorithm aspect, there have been many developments
for SELD, inside and outside the DCASE Challenges, in the ar-
eas of data augmentation, feature engineering, model architectures,
and output formats. In 2015, an early monophonic SELD work
by Hirvonen [15] formulated SELD as a classification task, where
each output class represents a sound class-location pair. In 2018,
Adavanne et al. pioneered a seminal polyphonic SELD work that
used a single-input multiple-output convolutional recurrent neural
network (CRNN) model, SELDnet, to jointly detect sound events
and estimate the corresponding DOAs [6]. In 2019, Cao et al. pro-
posed a two-stage strategy by training separate SED and DOA mod-
els [16], then using the SED outputs as masks to select the DOA
outputs, significantly outperforming the jointly-trained SELDnet.
Cao et al. later proposed an end-to-end SELD network [17] that
used soft parameter sharing between the SED and DOAE encoder
branches and output trackwise predictions. An improved version
of this network [18] replaced the bidirectional gated recurrent units
(GRU) with multi-head self-attention (MHSA) to decode the SELD
outputs [18]. In 2020, Shimada et al. proposed a new output for-
mat for SELD which unified SED and DOAE into one loss func-
tion [19]. This was amongst the few works which successfully used
the linear-frequency for spectrograms and interchannel phase dif-
ferences as input features, instead of the mel spectrograms. A new
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CNN architecture, D3Net [20], was adapted into a CRNN for this
work and showed promising results. In another research direction,
Nguyen et al. proposed to solve SED and DOAE separately, use a
bidirectional GRU to match the SED and DOAE output sequences,
then produce event-wise SELD outputs [21, 22]. This was based
on the observation that different sound events often have different
onsets and offsets, resulting in temporal matching in the SED and
DOAE output sequences. In 2021, Nguyen et al. proposed a new
input feature, SALSA, which spectrotemporally aligns the spatial
cues with the signal power in the linear-frequency scale to improve
SELD performance [23].

The top SELD system for DCASE 2019 trained four separate
models for sound activity detection, SED, single-source DOAE, and
two-source DOAE [24]. The top systems for both DCASE 2020 and
2021 synthesized a larger dataset from the original data, employed
many data augmentation techniques, and combined different SELD
models into ensembles [25, 26]. Other highly ranked solutions also
intensively used data augmentation and ensemble methods.

Since SELD consists of both SED and DOAE tasks, it inher-
its many challenges from both SED and DOAE, such as noise, re-
verberation, interference, polyphony, and non-stationarity of sound
sources. Furthermore, SELD often faces an additional challenge in
correctly associating SED and DOAE outputs of multiple overlap-
ping sound events. In an attempt to dissect the difficulties of the
SELD task, Politis et al. compared the performances of the same
SELD system in different acoustic environments [11] with different
combinations of noise, reverberation, and unknown interferences.
The authors founded that, in absence of unknown interferences,
ambiance noise has little negative effects on SELD performance,
while reverberation significantly reduces the SELD performance in
all noise combinations. Unknown interferences degrade SELD per-
formances by the largest margin compared to noise and reverbera-
tion. In addition, using the FOA format generally produces better
performance than the MIC format.

To further understand the challenges facing SELD, we per-
formed detailed error analysis on the SELD outputs, with the fo-
cus on polyphony, moving source, class-location interdependence,
class-wise performance, and DOA errors, using our two SELD
systems which both ranked second in the team category for the
2020 and 2021 DCASE Challenges [23, 27]. Experimental results
showed that polyphony is the main factor that decreases the SELD
performance across all the evaluation metrics, explaining why un-
known interferences reduced the SELD performance by the largest
extent. Interestingly, we also found that SELD systems do not nec-
essarily favor single-source scenarios, which is easier than poly-
phonic cases. Instead, SELD systems achieved lower error rates in
polyphonic cases which dominate the training dataset. The rest of
the paper is organized as follows. Section 2 describes our analysis
method. Section 3 presents the experimental results and discus-
sions. Finally, we conclude the paper in Section 4.

2. ANALYSIS METHOD

In this section, brief descriptions of the SELD datasets and systems
are provided. Error analyses were performed on the SELD outputs
of the two SELD systems which both ranked second in the team cat-
egory for the 2020 and 2021 DCASE Challenges [23, 27]. The 2021
version of the evaluation metrics was used in all analyses. For con-
venience, the TAU-NIGENS Spatial Sound Events 2020 and 2021
datasets used in the DCASE Challenges [9, 11] are referred to here
as the SELD 2020 and 2021 datasets, respectively.

Characteristics 2020 2021

Channel format FOA FOA
Moving sources X X
Ambiance noise X X
Reverberation X X
Unknown interferences ⇥ X
Maximum degree of polyphony 2 3
Number of target sound classes 14 12
Evaluation split eval test

Table 1: Comparison between 2020 and 2021 SELD datasets

2.1. Dataset

Table 1 summarizes some differences between the two SELD
datasets. Since both of the SELD systems require the FOA format,
only the FOA subset of the datasets were used in our experiments.
Each of the dataset consists of 400, 100, 100, and 200 one-minute
audio recordings for the train, validation, test, and evaluation splits
respectively. The azimuth and elevation ranges are [−180°, 180°)
and [−45°, 45°], respectively. During the developmental stage, the
validation set was used for model selection while the test set was
used for evaluation. During the evaluation stage, the train, vali-
dation, and test data (collectively known as the development split)
were used for training evaluation models. For the 2020 SELD
dataset, the results on the evaluation split were used for the error
analyses. Since the ground truth for the evaluation split of the 2021
SELD dataset has not been publicly released at the time of writing,
the results on the test split of the 2021 SELD dataset were used for
error analysis instead.

2.2. Evaluation metrics

To evaluate the SELD performance, we used the official SELD eval-
uation metrics [7] from the DCASE 2021 Challenge. The metrics
not only jointly evaluate SED and DOAE, but also take into account
the cases where multiple instances of the same class overlap. The
SELD evaluation metrics consist of location-dependent error rate
(ERT ) and F1 score (FT ) for SED; and class-dependent local-
ization error (LECD), and localization recall (LRCD) for DOAE. A
sound event is considered a correct detection only if it has a cor-
rect class prediction and its estimated DOA is also less than T away
from the DOA ground truth, where T = 20° for the official chal-
lenge. The DOAE metrics are also class-dependent, that is, the
detected DOA is only counted if its corresponding detected sound
class is correct. A good SELD system should have low ERT , high
FT , low LECD, and high LRCD.

2.3. SELD systems

We denote two of our SELD systems that ranked second in the team
categories of the 2020 and 2021 DCASE challenges as NTU’20 and
NTU’21, respectively. Table 2 shows the performances of the base-
lines, the top-ranked solutions, and our second-ranked systems in
2020 and 2021. NTU’20 is an ensemble of sequence matching net-
works [21, 27] while NTU’21 is an ensemble of different models
trained on our new proposed SALSA features for SELD [23]. Both
systems use the class-wise output format, which can only detect a
maximum of one event of a particular class at a time. Both systems
outperformed the respective baselines by a large margin, and only
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Year System ER20° F20° LECD LRCD

2020 Baseline [9] 0.69 0.413 23.1° 0.624
(eval) #1: USTC’20 [25] 0.20 0.849 6.0° 0.885

#2: NTU’20 [27] 0.23 0.820 9.3° 0.900

2021 Baseline [11] 0.73 0.307 24.5° 0.448
(test) #1: Sony’21 [26] 0.43 0.699 11.1° 0.732

#2: NTU’21 [23] 0.37 0.737 11.2° 0.741

Table 2: Performance of selected SELD systems.

(a) Polyphonic distribution (b) Static vs moving

Figure 1: Segment-wise polyphonic and static distribution per year.

perform slightly worse than the respective top-ranked system. The
2020 results in Table 2 were computed using the 2020 SELD eval-
uation metrics. For subsequent sections, the results of the NTU’20
system were recomputed using the 2021 metrics.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In each subsection concerning a factor of variation, we performed
an analysis on the data distribution of 2020 and 2021 SELD
datasets, followed by an analysis of the SELD results. Overall, the
2021 dataset is much more challenging than the 2020 dataset. For
detailed analyses, ERT is further broken down into substitution,
deletion, and insertion errors, while FT is further broken down
into precision and recall. Since the SELD metrics are segment-
based, i.e., outputs are divided into segments of 1 s before being
evaluated, we used the provided ground truth to group the segments
based on polyphony (0, 1, 2, and 3 sources), static and moving
sources to compute the metrics for each case.

3.1. Effect of polyphony

Figure 1(a) shows the segment-wise polyphonic distribution of 2020
and 2021 datasets, which are dominated by single-source and two-
source segments, respectively. On average, there are 1.11 and 1.85
events per segment in the 2020 and 2021 datasets, respectively. Ta-
ble 3 shows the breakdown of the SELD performance for each poly-
phonic case. The DOAE metrics clearly show that polyphony is a
major cause of performance degradation. For both NTU’20 and
NTU’21 systems, as the number of overlapping sources increases,
LECDincreases and LRCD decreases. Interestingly, polyphony does
not always degrade SED performance. The peak performances of
ER20° and precision were achieved in the degree of polyphony
that dominates the respective dataset, which is single-source for the
2020 dataset and two-source for the 2021 dataset. This result sug-

2020 2021

Metrics 1 2 All 1 2 3 All

# ER20° 0.108 0.331 0.232 0.349 0.338 0.394 0.372
# Substitution 0.029 0.072 0.052 0.093 0.104 0.129 0.114
# Deletion 0.042 0.155 0.103 0.091 0.137 0.182 0.152
# Insertion 0.038 0.104 0.078 0.164 0.096 0.083 0.105

" F20° 0.930 0.765 0.845 0.784 0.763 0.704 0.737
" Precision 0.932 0.788 0.875 0.757 0.780 0.746 0.756
" Recall 0.928 0.743 0.833 0.813 0.747 0.666 0.719

# LECD 5.6 13.4 9.4 6.8 10.3 13.5 11.2
" LRCD 0.930 0.775 0.846 0.816 0.764 0.701 0.741

Table 3: SELD performance w.r.t. degree of polyphony

2020 2021

Metrics Static Moving All Static Moving All

# ER20° 0.214 0.239 0.232 0.379 0.357 0.372
" F20° 0.854 0.841 0.845 0.731 0.745 0.737
# LECD 8.7 10.0 9.4 10.5 11.7 11.2
" LRCD 0.847 0.846 0.846 0.725 0.751 0.741

# ER180° 0.166 0.168 0.171 0.334 0.298 0.318
" F180° 0.898 0.891 0.892 0.778 0.800 0.789

Table 4: SELD performance of static and moving sources.

gests that one possible solution to tackle polyphony is to introduce
more data samples for difficult cases.

When the number of overlapping sources increases, the SED
error compositions also change. The deletion error rate rapidly in-
creases, the insertion error rate sharply decreases, and the substitu-
tion error rate increases. In addition, the recall rate decreases sig-
nificantly. It is clear that the SELD systems struggle to detect all the
present events in polyphonic cases.

In the absence of any event of interest, the insertion error rates
are 0.030 and 0.122 for NTU’20 and NTU’21 systems, respec-
tively. When comparing the SELD performances between the 2020
and 2021 setups, the single-source results in 2021 are significantly
worse than those in 2020 across all metrics. In addition, the substi-
tution errors across all degrees of polyphony are much higher in the
2021 setup, than in 2020. These results show the detrimental effect
of unknown interferences that were introduced in the 2021 dataset,
consistent with the findings in [11].

3.2. Effect of moving sound sources

Figure 1(b) shows the segment-wise distribution of static and mov-
ing sound sources, not counting empty segments, based on the pro-
vided ground truth. A segment is considered a moving one if at
least one sound source is moving. Since there are more overlap-
ping sources in the 2021 dataset, the proportion of moving seg-
ments is significantly higher than the 2020 dataset. Table 4 presents
the SELD performance for both cases. The LECD of moving-
source cases is higher than those of static-source cases, as ex-
pected. For the 2020 dataset, the LRCD are similar for both cases,
and the performance gap for SED disappears when we compute
location-independent SED metrics (by setting the DOA threshold
to T = 180°). These results suggest that moving sources have lit-
tle effect on SED performance and mainly affect DOAE. For the
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Figure 2: SED performance across different DOA thresholds.

(a) Localization error (b) Localization recall

Figure 3: Localization error and recall by class dependencies.

2021 dataset, all metrics are better for moving-source cases com-
pared to single-source cases. This contradictory result may be due
to the skewed distribution and requires further investigation once
the evaluation ground truth is made available.

3.3. Class and location interdependency

To understand the dependency of location-dependent SED metrics
on the correctness of the detected DOAs, we investigate the effect
of the different DOA thresholds T ° on ERT ° and FT °, as shown
in Figure 2. The gaps between the SED metrics for T = 20° and the
location-independent T = 180° are not significantly large, suggest-
ing that many estimated DOAs are within the 20° threshold. How-
ever, the location-dependent SED metrics deteriorate quickly as the
DOA threshold reduces to 10°, suggesting a significant number of
the estimated DOAs deviate by more than 10° from the ground truth.

To understand the dependency of classification-dependent DOA
metrics on the correctness of the predicted classes, we show the
classification-dependent and classification-independent LE and LD
in Figure 3. When not accounting for the predicted class, the LR
significantly increases, leading to some unwanted rise in LE.

3.4. Class-wise performance

Due to space constraints, we only included the segment-wise class
distribution and the class-wise performance of 2021 setup in Fig-
ure 4. The segment-wise class distribution in Figure 4(a) is highly
skewed, with the footstep class accounting for the highest propor-

(a) Class distribution (b) Class-wise F20°

Figure 4: Segment-wise class distribution of 2021 SELD dataset
(test split) and class-wise location-dependent F score of NTU’21
system.

tion of 21.2 %, while the female speech accounting for the lowest at
1.3 %. However, the class-wise F20° scores are more even, and the
class with the highest segment-wise proportion does not correspond
to highest F20° score. One possible reason is that it is difficult
to detect all footstep sound due to discontinuities, low bandwidth,
and low energy. In addition, class-wise performance is highly de-
pendent on the SELD model and the quality of training samples.
Interestingly, the female speech class with the highest F20° score
of 94.2 % has the lowest segment-wise proportion. Other classes
such as knock and male speech also have high F20° scores despite
the low segment-wise proportions.

3.5. Azimuth vs elevation error

For the NTU’20 system, the LECD contributed by azimuth and ele-
vation are 6.3° and 5.3°, respectively. For the NTU’21 system, the
LECD contributed by azimuth and elevation are 7.9° and 6.2°, re-
spectively. The azimuth and elevation errors are similar although
the azimuth range of [−180°, 180°) is much larger than elevation
range of [−45°, 45°], suggesting that it is more difficult to estimate
elevation angles than azimuth angles.

4. CONCLUSION

In realistic acoustic conditions with noise and reverberation,
polyphony and unknown interferences appear to be the biggest chal-
lenges for SELD. In the presence of unknown interferences, SELD
systems tend to make more substitution errors. When there are
several sound events, either due to polyphony or unknown interfer-
ences, the SELD systems struggle to detect all events of interests,
leading to low recall and high deletion error rate. Interestingly, the
overall SED error rate is at the lowest for the polyphonic case that
dominates the dataset. Moving sound sources mainly increase the
localization errors, leading to small reduction in location-dependent
SED metrics. High segment-wise representation of a class also does
not necessary translate to high SED performances. Localization er-
ror reduction poses significant challenge beyond a threshold, espe-
cially as elevation errors are often as high as azimuth errors. The
study of same-class polyphonic events is left for future works due
to the limitations of the current systems studied.
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ABSTRACT

This report presents the dataset and baseline of Task 3 of the
DCASE2021 Challenge on Sound Event Localization and Detection
(SELD). The acoustical synthesis remains the same as in the previ-
ous iteration of the challenge, however the new dataset brings more
challenging conditions of polyphony and overlapping instances of
the same class. The most important difference is the introduction of
directional interferers, meaning sound events that are localized in
space but do not belong to the target classes to be detected and are
not annotated. Since such interfering events are expected in every
real-world scenario of SELD, the new dataset aims to promote sys-
tems that deal with this condition effectively. A modified SELDnet
baseline employing the recent ACCDOA representation of SELD
problems accompanies the dataset and it is shown to outperform the
previous one. The new dataset is shown to be significantly more
challenging for both baselines according to all considered metrics.
To investigate the individual and combined effects of ambient noise,
interferers, and reverberation, we study the performance of the base-
line on different versions of the dataset excluding or including com-
binations of these factors. The results indicate that by far the most
detrimental effects are caused by directional interferers.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

Sound event localization and detection (SELD) is an audio process-
ing task that aims to jointly detect temporally target classes of sound
events and localize them in space when active. In that sense it differs
from the classic sensor array task of sound source localization (SSL)
which utilizes only spatial information to detect, localize, and track
sources independently from their signal content [1]. It also differs
from the popular sound event detection (SED) task which is focused
on the temporal detection and classification part, omitting the spa-
tial information of the scene. The spatiotemporal characterization
of the scene produced by SELD makes it suitable for a range of ap-
plications such as robot audition and machine listening in general
[2, 3], acoustic monitoring [4, 5], smart home environments [5, 6],
improved human-machine interaction [7], speech recognition [8],
and sonic information visualization [9], among others.

Research interest in SELD grew quickly during the last couple
of years, with deep learning methods handling the task jointly [10],
or fusing information from solving individual subtasks of SED and
SSL [11, 12]. This interest culminated in the task becoming part
of the DCASE Challenge in 2019, with participants bringing novel
approaches to the problem, summarized in [13]. The dataset used in

the challenge [14] included sound scenes from two different array
formats with sound events spatialized in both azimuth and eleva-
tion using spatial room impulse responses (SRIRs) of real rooms.
Additionally, spatial ambient noise captured in situ was added to
the recordings. For the next iteration of the task in the DCASE
Challenge 2020, a new dataset was generated based on SRIRs from
additional rooms with more realistic and challenging conditions be-
yond the limitations of the first one [14]. More specifically, the
discrete grid of potential directions-of-arrival (DOAs) of the older
dataset was replaced with continuous DOA trajectories and, apart
from static events, moving sources using interpolated SRIRs were
emulated at different speeds. Furthermore, the newer SRIRs were
captured in rooms of more diverse acoustical properties and from
a wider range of distances, resulting in longer reverberation times
and more challenging direct-to-reverberant ratios (DRRs).

The second iteration of the SELD task in DCASE2020 brought
additional innovations, with participants experimenting with homo-
geneous joint loss functions [15, 16], self-attention layers [16, 17],
advanced spatial augmentation strategies [15, 17], combinations of
model-based localization with learning-based SED [18, 19], data-
based fusion of individual SSL and SED systems [18, 20], and
event- or track-based prediction modeling, instead of class-based
prediction [21, 19]. The latter development specifically tried to
address the case of same-class events occurring simultaneously
[12, 21, 22], a case that distinguishes the SELD task from SED
and becomes possible mainly due to spatial information. Research
following the DCASE2020 challenge investigated fusion of pre-
trained SED and SSL models [20], or parameter sharing between
joint, semi-joint SELD models, and models fusing SSL and SED
subsystems [22].

This report introduces the new TAU-NIGENS Spatial Sound
Events 20211 dataset and the baseline2 of the SELD challenge task
in DCASE20213. The major difference of this dataset with the pre-
vious one is the introduction of localized interfering events outside
of the target classes. This condition, naturally encountered in a real
environment, introduces new challenges to the task. Apart from the
dataset and baseline description, we present an extensive evaluation
of the baseline on different versions of the dataset with and without
the presence of ambient noise, directional interferers, and reverber-
ation.

1https://doi.org/10.5281/zenodo.4844825
2https://github.com/sharathadavanne/

seld-dcase2021
3http://dcase.community/challenge2021/

task-sound-event-localization-and-detection
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2. DATASET

Similarly to the dataset of the previous iteration, the current one
consists of 800 one-minute spatial recordings, of which 600 consti-
tute the development set of the dataset, and the other 200 the evalua-
tion set. The recordings are sampled at 24kHz, and they are offered
in two 4-channel spatial audio formats, the raw signals of a tetra-
hedral microphone array and first-order Ambisonics, abbreviated as
MIC and FOA for the rest of the paper. Detailed descriptions of
the formats in terms of their directional encoding properties can be
found in the previous challenge dataset report [14].

2.1. Sound events

The sound event samples are sourced from the NIGENS general
sound events database [23], which consists of 14 classes of specific
sound types, and an additional general one with disparate sounds
not belonging to any of the other classes. We use the sounds in the
12 classes alarm, crying baby, crash, barking dog, female scream,
female speech, footsteps, knocking on door, male scream, male
speech, ringing, phone, piano as target events, and the sounds in the
classes running engine, burning fire and the general class as direc-
tional interferers. This division results in about 500 distinct sound
samples distributed across the target events of the dataset, and about
400 across the interfering events.

2.2. Dataset synthesis

The synthesis of the spatial sound reccordings are based on a col-
lection of SRIRs acquired continuously along measurement trajec-
tories inside 13 enclosures of Tampere University. The RIR collec-
tion and synthesis process is described in more detail in [14]. We
summarize briefly the acoustical properties of the dataset. SRIRs
are extracted along the measurement trajectories with an approxi-
mate resolution of 1 degree, resulting on about 1184 to 6480 pos-
sible RIRs/DOAs per room, depending on the type (circular/linear)
and number of measurement trajectories. Events added in a single
recording can be static or moving. The source position for a static
event is drawn randomly from the pool of SRIRs of a single room
used in that recording, while moving events are synthesized for one
of the measured trajectories in the room. Moving events are synthe-
sized to have an approximate speed of 10�/sec, 20�/sec, or 40�/sec,
drawn randomly. The dataset is split into 8 folds with distinct rooms
and samples in each of them. Distinct rooms result in different re-
verberation conditions, and even though similar ranges of DOAs
may occur between rooms, the source distance, DRR, and reverber-
ation conditions are distinct between folds for a certain DOA.

The events are laid out in layers in each recording, with the
total number of layers determining the maximum polyphony pos-
sible. The parameter determining the density of events per layer
and, hence, the average per-frame polyphony is the total gap time
distributed between events in each layer. A larger gap time re-
sults in fewer events per layer and a lower average polyphony,
while a smaller gap time results in higher event density and aver-
age polyphony. The last event per layer is truncated to fit the total
1 minute duration. For the present dataset there are three layers of
target events and an additional layer of interfering events, resulting
in a total maximum polyphony of 4. In addition to the spatialized
reverberant events, multichannel ambient noise that was collected in
each room with the same recording setup as the SRIRs is truncated
to 1 minute segments and added to the event mixtures. The noise
is scaled to result in signal-to-noise ratios (SNRs) drawn uniformly

Figure 1: A graphic depiction of an emulated recording, with col-
ored objects indicating target classes, gray objects indicating inter-
ferers and ambient noise, and arrows indicating moving events.

from noiseless (30dB) to noisy (6dB) conditions, with respect to the
total energy of the target events excluding silences. An example of
the layering of events in one recording is shown in Fig. 1.

2.3. Differences with DCASE2020 task 3 dataset

Even though the acoustical and synthesis characteristics of the new
dataset are similar to the dataset of the previous DCASE2020 Chal-
lenge, the following differences make it more challenging:

1. Directional interferers, out of the target classes of a detec-
tion system, are common in real conditions and they add to
the challenge by forcing a strong joint modeling and training
strategy that can learn to ignore them.

2. The overall maximum polyphony is increased from 2 to 3
target events.

3. The recordings are not anymore divided into recordings with
no overlap (polyphony 1), and recordings with two simulta-
neous events (polyphony 2). Instead all recordings have the
maximum level of polyphony, with all intermediate levels
(from silence to 3 simultaneous target events + interference)
varying during the duration of the recording. This choice
reflects more natural recording conditions in a real dataset.

4. Even though the dataset of DCASE2020 had instances of
the same class occurring at the same time, such occurrences
were fairly rare. In the present dataset, these occurences have
been increased in order to give a clear advantage to systems
that can resolve this difficult but realistic case.

3. BASELINE

Similar to the previous iterations of the challenge, we adopt a modi-
fied version of SELDnet [10] as the baseline method, due to its con-
ceptual simplicity. Its architecture remains a convolutional recur-
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Figure 2: Convolutional recurrent neural network with ACCDOA
loss for SELD.

rent neural network (CRNN) receiving multichannel log-mel spec-
trograms as inputs, together with acoustic intensity vectors [24] for
the FOA dataset, and generalized cross-correlation (GCC-PHAT)
sequences for the MIC dataset, added as extra channels. The base-
line implementation extracts log-mel spectrograms in 64 mel-bands
from 1024-point FFTs, using a 40 ms window and 20 ms hop length
at 24kHz. The intensity vectors are similarly extracted for every
FFT bin and aggregated in the same number of mel-bands as the
spectrograms, while the GCC sequences are also truncated to the
same number of lag values as the mel-bands, adopted from [11].
More details on the architecture and features can be found in [14].

The only difference of the current SELDnet baseline with re-
spect to the previous DCASE challenge iteration is the output for-
mat and the respective loss function. The original SELDnet archi-
tecture employs separate output branches for detection and localiza-
tion, with as many classification outputs and as many localization
regressors as the number of classes. In the current baseline, we
adopt the activity-coupled cartesian direction of arrival representa-
tion (ACCDOA) introduced in DCASE2020 Challenge by Shimada
et al. [15], which unifies the SED and SSL losses into a single
homogeneous regression loss, simplifying the overall architecture
while simultaneously improving its performance. Using the ACC-
DOA representation, the network receives a sequence of T STFT
frames of multichannel features and outputs T/5⇥3 Cartesian vec-
tor coordinates for each of the target classes, with the direction of
each vector indicating DOA and the vector length indicating class
activity probability. A value of 0.5 on the length is used as the class
activity threshold. The reduction in temporal resolution is intended
to match the 100 ms resolution of annotations in the challenge. A
block diagram of the current baseline is shown in Fig. 2.

4. EVALUATION

The dataset and baseline are delivered to the challenge participants
at the commencement of the challenge, along with the development
set of the dataset consisting of the 6 first folds, while the last two
folds are made available during the evaluation phase of the chal-
lenge. Participants are required to report results on the test set of
the development set using the predefined split of Table 1, so that
conclusions can be drawn among the submissions on the same con-
figuration. The evaluation split on Table 1, however, applies only
to the evaluation results of the baseline presented herein, since dur-
ing the evaluation phase participants have to report results on the
testing folds (7–8) using the development dataset (folds 1–6) for
training and validation in any way they see fit.

Table 1: Evaluation setup
Splits

Dataset Training Validation Testing
Development 1,2,3,4 5 6
Evaluation 2, 3, 4, 5, 6 1 7, 8

The submissions are evaluated using the same combination of
joint detection/localization metrics studied in [25, 13] and intro-
duced in DCASE2020. Closer to SED evaluation, the localization-
dependent error rate (ERX ) and F1-score (FX ) express detection
performance but they penalize correct detections that occur further
from the reference than some threshold distance X . On the other
hand, the class-dependent localization error (LECD) and localiza-
tion recall (LRCD) are inspired by classical localization metrics,
but are computed for each class individually before being averaged.
The LECD is a mean angular localization error after pairing the
predicted DOAs to their closest reference DOAs, while LRCD is
a simple recall metric on the detected localized events without any
spatial threshold. Since in the SELD case there can be multiple si-
multaneous references of the same class, the detection metrics are
modified to consider multiple instances of the same class and pe-
nalize cases where, e.g., only one of the predictions belong to that
class. For the exact formulation of the metrics the reader is referred
to [13]. The submissions are first ranked for each of the four metrics
individually, and the final rank of each system is determined by the
sum of the four individual ranks.

5. RESULTS

In order to evaluate the performance of the new baseline utilizing
the ACCDOA loss, we compare it against the previous SELDnet
baseline of DCASE2020, on the development set of DCASE2020
and the current one. Table 2 shows a clear improvement of the AC-
CDOA version in all metrics. Especially in the more challenging
new dataset, the ACCDOA loss brings large gains in detection and
improves localization accuracy by about 25%. A significant de-
crease of performance for both methods is also observed from the
DCASE2020 dataset to the DCASE2021 dataset. This suggests that
the new dataset is more challenging, as intended.

To get a more detailed picture on the effect of the various
components in the scene, namely reverberation, ambient noise,
and directional interferers, we generate various versions of the
dataset including those components in various combinations. More
specifically, the targets, targets+ambience, targets+interferers, tar-
gets+ambience+interferers develop from the presence of targets
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Table 2: Comparison between the DCASE2020 baseline (2020-multi) and the current one (2021-accdoa) on the development set of
DCASE2020 and the current development set.

FOA MIC
ER20� # F20� " LECD # LRCD " ER20� # F20� " LECD # LRCD "

DCASE2020 development set
2020-multi 0.70 44.4% 24.3� 61.9% 0.71 40.4% 25.4� 55.4%
2021-accdoa 0.60 51.9% 17.9� 59.8% 0.61 48.5% 19.3� 55.2%
DCASE2021 development set
2020-multi 0.77 24.7% 32.1� 44.8% 0.81 19.1% 41.6� 47.4%
2021-accdoa 0.73 30.7% 24.5� 40.5% 0.75 23.4% 30.6� 37.8%

Table 3: Performance of the DCASE2021 baseline for different versions of the dataset with increasingly adverse conditions. The highlighted
row corresponds to the version of the dataset used in the challenge.

Development set Evaluation set
FOA MIC FOA MIC

ER20� # F20� " LECD # LRCD " ER20� # F20� " LECD # LRCD " ER20� # F20� " LECD # LRCD " ER20� # F20� " LECD # LRCD "
Non-reverberant results
targets 0.49 62.0% 16.3� 65.7% 0.54 55.4% 20.8� 63.7% 0.45 64.7% 15.8� 69.2% 0.50 58.7% 19.0� 67.0%
targets+ambience 0.49 61.2% 16.4� 65.6% 0.57 51.2% 20.8� 58.9% 0.47 62.7% 16.4� 67.6% 0.49 59.6% 18.6� 66.1%
targets+interferers 0.69 36.9% 24.1� 45.2% 0.72 27.7% 30.5� 42.2% 0.61 45.8% 21.2� 53.2% 0.69 31.5% 27.8� 44.9%
targets+ambience+
interferers 0.66 40.3% 22.7� 46.9% 0.73 26.7% 30.4� 42.5% 0.63 44.5% 22.0� 52.8% 0.70 32.1% 28.2� 46.6%

Reverberant results
targets 0.55 53.7% 19.9� 61.3% 0.59 47.0% 22.0� 57.3% 0.52 56.4% 19.6� 64.7% 0.53 54.6% 20.8� 61.2%
targets+ambience 0.57 50.3% 20.2� 59.3% 0.62 44.2% 22.8� 53.6% 0.52 56.4% 19.0� 62.7% 0.56 51.6% 21.0� 58.5%
targets+interferers 0.71 32.7% 26.7� 44.2% 0.76 24.0% 32.6� 39.4% 0.69 34.8% 24.7� 43.7% 0.75 24.8% 32.7� 40.4%
targets+ambience+
interferers 0.73 30.7% 24.5� 40.5% 0.75 23.4% 30.6� 37.8% 0.67 37.2% 23.9� 45.8% 0.73 27.1% 30.8� 40.6%

only, to the inclusion of ambient noise or interferers separately, to
the full dataset combining all components. Excluding the effect of
reverberation is less straightforward due to the use of real SRIRs for
the synthesis. In order to generate reverberation-free versions of the
dataset, the sound events for each recording in the original dataset
are spatialized with anechoic IRs of the same Eigenmike spherical
microphone array used to capture the SRIRs. The anechoic array
IRs are computed for the same measurement trajectories and DOAs
as the measured SRIRs in each room, and stored in a similar data
structure. Additionally, each IR is delayed and scaled according to
the source distance of the respective measured SRIR, following an
inverse distance law and a speed of sound of c = 343m/sec. De-
laying and scaling ensures that the events between the reverberant
and non-reverberant versions are approximately time-aligned and
with comparable distance-dependent attenuation. The Eigenmike
responses were measured in an equirectangular grid of 5� azimuth
and 5� elevation in the large anechoic chamber of Aalto University,
as described in [26]. Since the DOAs in the reverberant dataset do
not necessarily coincide with the measurement grid of the array, ar-
ray response interpolation is performed to recover anechoic IRs at
the DOAs of the measured SRIRs, based on a spherical harmonic
expansion of the array steering vectors, as in [26].

The results are presented in Table 3. As expected, reverbera-
tion affects negatively all combinations, increasing error rates and
decreasing F-scores and localization recall in a consistent manner
between the same scenarios. Additionally, it decreases localization
accuracy by 2�–4�. Inclusion of the ambient noise has a small but
noticeable effect when added to the targets, without interferers. The
small effect may be due to the large range of possible positive SNRs
(6–30dB) distributed uniformly across the recordings. Interestingly,
together with directional interference, inclusion of ambient noise
seems to improve certain results slightly. This may be due to poten-
tial regularization effects of noise and is worth further investigation.

The most detrimental effects happen with the inclusion of the

directional interferers, proving that this challenging case will need
to be taken into account for future SELD systems. Error rate ER
increases up to about 40% in the non reverberant case for the FOA
recordings, and up to about 33% for the MIC recordings. Simi-
larly, in reverberant scenarios, the ER increases up to about 28%
for both FOA and MIC formats. F-scores decrease by up to 40%
on the FOA dataset and up to 50% on the MIC dataset, for both
anechoic and reverberant conditions. The localization recall (LR)
also drops by about 30% for both formats and both anechoic and
reverberant conditions. Finally, localization errors increase by up to
about 7� in the case of FOA recordings and up to 10� in the case of
MIC recordings, for both anechoic and reverberant conditions. In
general, the MIC dataset exhibits a worse performance than FOA
in all cases. This fact may be attributed to the input features em-
ployed in the baseline for each format. GCC sequences for the MIC
format may become very noisy in complex scenes with multiple
simultaneous events, while the intensity vectors of the FOA format
can potentially retain robustness due to their narrowband nature and
sparsity of the event signals in the time-frequency domain.

6. CONCLUSIONS

In this report we describe the new dataset and baseline for the SELD
task of the DCASE2021 challenge. The differences with the dataset
of DCASE2020 challenge are highlighted; namely, inclusion of di-
rectional interferers, higher polyphony, and more frequent simul-
taneous same-class event occurences. The evaluation task setup is
also described, including a predefined fixed split on the develop-
ment data for straightforward comparison of submissions. The new
baseline using the ACCDOA representation shows improved per-
formance compared to the previous one. A detailed analysis of the
baseline on various versions of the dataset shows that between re-
verberation, ambient noise, and directional interferers, the latter has
the most detrimental effect in all evaluation metrics.
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ABSTRACT
Sound event localization and detection (SELD), which jointly per-
forms sound event detection (SED) and sound source localiza-
tion(SSL), detects the type and occurrence time of sound events as
well as their corresponding direction-of-arrival (DoA) angles simul-
taneously. In this paper, we propose a method based on Adaptive
Hybrid Convolution (AHConv) and multi-scale feature extractor.
The square convolution shares the weights in each of the square ar-
eas in feature maps making its feature extraction ability limited. In
order to address this problem, we propose a AHConv mechanism in-
stead of square convolution to capture the dependencies along with
the time dimension and the frequency dimension respectively. We
also explore a multi-scale feature extractor that can integrate in-
formation from very local to exponentially enlarged receptive field
within the block. In order to adaptive recalibrate the feature maps
after the convolutional operation, we design an adaptive attention
block that is largely embodied in the AHConv and multi-scale fea-
ture extractor. On TAU-NIGENS Spatial Sound Events 2021 devel-
opment dataset, our systems demonstrate a significant improvement
over the baseline system. Only the first-order Ambisonics (FOA)
dataset was considered in this experiment.

Index Terms— DCASE2021, Sound source localization,
Sound event detection, Adaptive hybrid convolution

1. INTRODUCTION

Sound Event Localization and Detection refers to the problem of
identifying the presence of independent or temporally-overlapped
sound sources, correctly identifying to which sound class it belongs,
and estimating their spatial directions while they are active. In real-
istic aural environments, there are numerous co-occurring different
sounds emitted from the sources distributed in space. Even humans
cannot all correctly identify and locate multiple sources of sound,
so it is very challenging for machines. To solve the SELD problem,
two key issues denoted as sound event detection (SED) [1–5] and
sound source localization (SSL) [6–13] have to be addressed.

The methodology proposed in this paper is based on the SELD-
Net proposed by Adavanne et al [14]. A convolutional recurrent
neural network (CRNN) model was proposed for joint SSL and
SED of multiple overlapping sound events in three-dimensional
space. The phase and magnitude of spectrogram were calculated
separately on each audio channel as input features. In order to
learn both inter-channel and intra-channel features, the input was
fed through three consecutive convolutional blocks. Bidirectional

Gate Recurrent Unit (BiGRU) was used for temporal context infor-
mation learning. The output of the BiGRU is fed into two parallel
branches of fully-connected blocks. The classes for all sound events
would be output on each time-frame, and the sound source would
be located in the three-dimensional Cartesian coordinate system.

Compared with DCASE2020 challenge task 3, the main dif-
ference is the emulation of scene recordings with a more natural
temporal distribution of target events and, more importantly, the in-
clusion of directional interferences, meaning sound events out of
the target classes that are also point-like in nature. For each re-
verberant environment and every emulated recording, Interferences
are spatialized in the same way as the target events, resulting in
recordings that are more challenging and closer to real-life condi-
tions. The other difference is the elimination of the dedicated event
classification output branch, by adopting the activity-coupled carte-
sian direction of arrival (ACCDOA) training target which unifies
the localization and classification losses in a homogenous regres-
sion vector loss, pioneered by Shimada et al [15].

In this paper, we also propose a CRNN framework based on
SELD-Net architecture. We adopt Adaptive Hybrid Convolution
(AHConv) mechanism and multi-scale feature extractor to handle
feature learning insufficiently. The logmel spectrogram and nor-
malized sound intensity vector are extracted as input features. In-
stead of conventional square convolution, the AHConv structure is
design to process richer spatial features and increase feature diver-
sity by asymmetric convolution. We adopt a multi-scale feature to
extract strategy that was designed to capture the longer temporal
context information than the conventional convolution. Moreover,
the parallel structure is applied in adaptive attention block which
adaptive mitigates interference between the channel-wise and time-
frequency-wise by exploring two different branches. Additionally,
the adaptive attention block can also promote the robustness when a
single branch is disturbed by the ambient noise without the presence
of sound events. Furthermore, we conduct experiments on TAU-
NIGENS Spatial Sound Events 2021 development dataset to verify
the effectiveness of our proposed method.

This paper is organized as follow: we will introduce the pro-
posed method in Section 2. The experiment setup will be stated
in Section 3. The development results compared with the baseline
method will be described in Section 4. Finally, we draw a conclu-
sion and future work in Section 5.
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Figure 1: The overall of our proposed method.

2. PROPOSED METHOD

We proposed a method with Adaptive Hybrid Convolution (AH-
Conv) and multi-scale feature extractor which achieves great perfor-
mance to deal with SELD task in the noisy and reverberant scenes.
The proposed network can predict the sound event classes active
for each of the input frames along with their respective spatial loca-
tion, and produce the temporal activity and DOA trajectory for each
sound event class. The network diagram is illustrated in Fig. 1. For
the multichannel audio, the logmel spectrogram and sound inten-
sity vector are extracted as the input features of the network. The
multi-scale feature extractor as depicted in Fig. 2, then followed
five AHConv blocks and five average pooling layers. After that, the
time dimension is downsampled 5 times and the frequency dimen-
sion is downsampled 32 times. Bidirectional Gated Recurrent Unit
(Bi-GRU) is used to learn the temporal context information. This is
followed by fully connected layers. We adopt the ACCDOA output
which unifies the SED and SSL losses into a single homogeneous
regression loss.

2.1. Multi-scale Feature Extractor

Among the various CNN architectures, if the network contains
shorter connections between layers close to the input and those
close to the output, it can be substantially deeper, more accurate,
and efficient to train, to further improve the information flow be-
tween layers [16]. In this work, we combine the advantages of
DenseNet and dilated convolution, and propose an extractor called
multi-scale feature extractor. To properly combine DenseNet with
the dilated convolution [17], we propose a multi-scale feature ex-
tractor that has a multiple dilation factor within a single layer. The
dilation rate depends on which skip connection the channels come
from, as shown in Fig. 2. The output of each dilated layer is
fed into an adaptive attention block. The adaptive attention block
reweighs the information of channel-wise and of spatial-wise di-
mension. That can enhance the important features and weaken the
less important features. The outputs of the lth layer xl receives the
feature-maps of all preceding layers express as:

Conv2d(dilation_rate=1, 2)

Conv2d(dilation_rate=1)

Conv2d(dilation_rate=1, 2 , 4)

Adaptive attention block

Figure 2: Multi-scale feature extractor, the feature maps of each
layer are concatenated together, and the dotted box indicates the
concatenate operation

xl = ψ([x0, x1, x2, ...xl−1]! kd=1,2,...2l−1

l ) (1)
where [x0, x1, x2, ...xl−1] denotes the concatenation of the feature
maps from 1, ...l − 1 layers, ψ is a nonlinear transformation con-
sisting of batch normalization (BN) followed by ReLU and dilated
convolution with the kl kernel, ! denotes convolution operation and
d is the dilated rate in each layer.

2.2. Adaptive Hybrid Convolution

Some of the prior works [18, 19] have shown that a standard square
convolutional layer with a filter size of k × k can be factorized as
a sequence of two layers with k × 1 and 1 × k filters to reduce
network complexity and lighten the computational burden. This
asymmetrical convolutional [18] structure is better than a square
convolutional structure for processing more and richer spatial fea-
tures and increasing feature diversity. In addition, asymmetric con-
volution can obtain faster calculation speed and smaller parameter
amounts while ensuring performance. The weight learning of the
square convolution relies on the network but is limited by the size
of the filter. Therefore, the square convolution is not captured fine-
grained time-frequency features. In order to address this problem,
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 Adaptive attention block

 Adaptive attention block

!

Figure 3: Adaptive Hybrid Convolution (AHConv). Each color rep-
resents a different convolution kernel, and the squares represent the
convolution graph.

we propose a hybrid convolution mechanism based on the asym-
metric convolutional structure, as shown in Fig. 3.

A parallel structure is composed of a filter size 1 × 3 and 1× 5
for time frames, and a filter size 3 × 1 and 5 × 1 for frequency bins,
thus the time dependency and frequency dependency are capture re-
spectively. Then, the feature maps concatenated along the channel
dimension will undergo an adaptive attention block to select the
feature adaptively according to the importance. The output of the
adaptive attention module will be fed into four asymmetric convo-
lutions and one adaptive convolution again, and the importance of
features will be marked more accurately. Finally, in order to pre-
serve the original feature information, we add the original input to
the recalibrated output.

2.3. Adaptive Attention block

We design an adaptive attention block as seen in Fig 4. The up half
part denotes the path of channel attention (CA) [20], and the lower
half part the time-frequency attention (TFA) [21]. In the channel
attention path, Global Average Pooling (GAP) converts the infor-
mation of the TF field of each channel into a value that has the
overall information of the channel. To make full use of the aggre-
gated information in the GAP operation, we follow it with fully
connected convolution which aims to capture channel-wise depen-
dencies. In the time-frequency attention path, a 2-D convolutional
layer with (1,1) kernel size is employed to obtain the global fea-
ture maps across the time-frequency (TF) domain. Then sigmoid
activation limits the values in the range of (0,1).

After that, different weights are applied to the channel and the
TF domain, which can guide the network to pay different attention
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Figure 4: Adaptive attention block.

to the features of channel-wise and time-frequency-wise. The fea-
ture maps of each part will concatenate along the channel dimension
and then pass through a depthwise separable convolution [22]. The
depthwise separable convolution can not only adaptively capture
useful information between channels, but also reduce the number
of operational parameters. The adaptive attention block is largely
embodied in the AHConv and multi-scale feature extractor.

3. EXPERIMENT SETUP

3.1. Dataset

The development set of TAU-NIGENS Spatial Sound Events 2021
has two types of data, one is 4 channel directional microphone
array (MIC) from the tetrahedral array and the other one is first-
order ambisonic (FOA) data. We used the FOA format for the chal-
lenge. The SELD development dataset consists of 600 one-minute
audio clips divided into training, validation, and test set of size 400,
100, and 100 clips, respectively. The development dataset is dis-
tributed between 12 classes of alarm, crying baby, crash, barking
dog, footsteps, knocking on door, female speech, male speech, fe-
male scream, male scream, ringing phone and piano. Additionally,
dry recordings of disparate sounds not belonging to any of those
classes are also spatialized in the same way to serve as directional
interference. The sounds are sourced from the running engine, burn-
ing fire, and general classes of NIGENS database [23]. The source
position for a static event is drawn randomly from the pool of spa-
tial room impulse responses (SRIRs) of a single room used in that
recording, while moving events are synthesized for one of the mea-
sured trajectories in the room.

3.2. Evaluation metrics

The performance of our proposed model is evaluated by the indi-
vidual metrics for SED task and SSL task. Standard polyphonic
SED metrics, F-score (F1) and error rate (ER) across segments of
one second without overlapping are utilized [24]. The DOA estima-
tion in the SSL task was evaluated using frame-wise metrics [25]
of DOA error (DE) and frame recall (FR). Considering that a TP is
predicted only when the spatial error for the detected event is within
the given threshold of 20◦ deviates from the reference, ER and F1
replaced with ER20◦ and F20◦ . Classification-dependent localiza-
tion metrics are computed only across each class, instead of across
all outputs, DE and FR are replaced with LECD and LRCD . A
more detailed description can be obtained in [25, 26].
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3.3. Training procedure

The sampling frequency was used at 24 kHz in our method. Extract-
ing log-mel spectrograms in 64 melbands from 1024-point FFTs,
using a 40 ms window and 20 ms hop length. We use a batchsize of
64. Moreover, to ensure a fair comparison, all models were trained
for 500 epochs with the Adam optimizer of the same initialized pa-
rameters. An early stopping mechanism is used to avoid overfitting
during training, where the training is stopped if no improvements
on validation split for 50 epochs.

4. RESULT AND DISCUSSION

In this section, we will describe and discuss the experimental re-
sults. Firstly, we explored the most appropriate combination of
asymmetric convolution for AHConv, and then analyzed the effect
of dilated convolution and adaptive attention block in the multi-
scale feature extractor with ablation experiments. All the experi-
ments were performed without data augmentation.

Table 1: Explore the combination type of AHConv (+A denotes
adding adaptive attention block)

The type of combination ER20◦ F20◦ (%) LECD LRCD(%)

Baseline(3×3) 0.73 30.7 24.5 44.8

1×3,3×1 0.68 42.2 22.6 51.6

(1×3,3×1)+A 0.61 44.7 21.0 54.4

1×5,1×3,3×1,5×1 0.64 43.7 21.9 52.4

(1×5,1×3,3×1,5×1)+A 0.56 46.0 20.7 55.7

1×7,1×5,1×3,3×1,5×1,7×1 0.66 43.1 23.1 50.7

(1×7,1×5,1×3,3×1,5×1,7×1)+A 0.58 44.8 20.8 53.3

In order to explore the AHConv in Fig. 3, we performed the
experiments without the multi-scale feature extractor. That is the
input features of log-mel spectrum and sound intensity vector were
directly fed into AHConv. In table. 1, we have explored many com-
binations of asymmetric convolution. Only using 1×3 and 3×1
can’t get enough features on frequency domain and time domain,
while using 1×7, 1×5, 1×3, 3×1, 5×1 and 7×1 will degrade
performance which may result in too many useless features being
captured. The effect is best when the combinations of asymmetric
convolution are 1×5, 1×3, 3×1 and 5×1. The results show that
this combination of hybrid convolution can fully learn the features
of different frequency domains and time domains simultaneously,
which is very effective for SELD task. In addition, we also add
adaptive attention block to the experiment. The experimental com-
parison of the same kind of hybrid convolution shows that the per-
formance can be improved by adding the adaptive convolution.

Table.2 shows the results of ablation experiments of our pro-
posed method. The first row denotes the scores of the baseline
method. This method is the official baseline system of DCASE
2021 challenge task 3, and all of our experiments are based on
it. The second row denotes the scores of the baseline method that
adding the multi-scale feature extractor. After the multi-scale fea-
ture extractor, the AHConv is replaced by conventional CNN sim-
ilar to the baseline method. Compared with the results of the first

Table 2: The results of ablation experiments

Method ER20◦ F20◦ (%) LECD LRCD(%)

baseline 0.73 30.7 24.5 44.8

+Extractor 0.57 49.4 20.0 56.8

+Extractor +AHConv 0.53 55.1 18.8 61.6

row, the scores in the second row decrease 0.16 and 4.5 on ER20◦

and LECD , and increase 18.7% and 12.0% on F20◦ and LRCD ,
respectively. This proves the usefulness of multi-scale feature ex-
tractor. The last row denotes the scores of the method that adding
multi-scale feature extractor and AHConv. This is the network that
we proposed in Fig. 1. Compared with the results of the second row,
the scores in the last row further decrease 0.04 and 1.2 on ER20◦

and LECD , and increase 5.7% and 4.8% on F20◦ and LRCD , re-
spectively. These results verified the effectiveness of the AHConv.

Table 3: The results of exploring the validity of depthwise separable
convolution (DSConv)

Method ER20◦ F20◦ (%) LECD LRCD(%)

Conv(1×1) 0.57 52.6 19.6 58.1

DSConv 0.53 55.1 18.8 61.6

In addition, we also explored the effectiveness comparison of
conventional 2-D convolution and DSConv in the adaptive attention
block. The method in the first row denotes adding a 2-D convolution
with 1×1 kernel at the end of each path and then adding it. The sec-
ond row is using depthwise separable convolution in our proposed
method as seen in Fig. 4. Comparing two adaptive methods, the
results showed that DSConv performed better.

5. CONCLUSIONS

In this paper, we propose a SELD method based on Adaptive Hy-
brid Convolution (AHConv) and multi-scale feature extractor. AH-
Conv is designed to capture the time and frequency dependencies.
Multi-scale feature extractor is designed to extract the multi-scale
feature maps. We also propose an adaptive attention block embod-
ied in AHConv and multi-scale feature extractor. Through a series
of ablation experiments on the development dataset, we verify the
effectiveness of AHConv and multi-scale feature extractor respec-
tively. The results also show that our proposed method outperforms
the baseline method on four evaluation metrics. Next we will intro-
duce data augmentation methods to improve the performance of our
proposed method.
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ABSTRACT
Previous DCASE challenges contributed to an increase in the per-
formance of acoustic scene classification systems. State-of-the-art
classifiers demand significant processing capabilities and memory
which is challenging for resource-constrained mobile or IoT edge
devices. Thus, it is more likely to deploy these models on more
powerful hardware and classify audio recordings previously up-
loaded (or streamed) from low-power edge devices. In such sce-
nario, the edge device may apply perceptual audio coding to reduce
the transmission data rate. This paper explores the effect of percep-
tual audio coding on the classification performance using a DCASE
2020 challenge contribution [1]. We found that classification ac-
curacy can degrade by up to 57% compared to classifying original
(uncompressed) audio. We further demonstrate how lossy audio
compression techniques during model training can improve classi-
fication accuracy of compressed audio signals even for audio codecs
and codec bitrates not included in the training process.

Index Terms— acoustic scene classification, data augmenta-
tion, audio coding, internet of things

1. INTRODUCTION

As it can be observed in the annual DCASE challenges, classifica-
tion models to understand complex acoustic soundfields are becom-
ing increasingly robust and accurate. The evaluation scenario indi-
rectly presumes that scene classification is performed on the captur-
ing device. However, many mobile and IoT devices are resource-
constrained and may not be able to store and execute all proposed
classification architectures due to limited memory and processing
capabilities. Such models can be executed on more powerful per-
sonal companion devices or remote cloud servers. Figure 1 visu-
alizes three scenarios where the audio capture and the scene clas-
sification are split between different devices. In such scenarios,
the captured audio signals would be uploaded or streamed from the
capture device to the scene classification device. The service limita-
tions of the (often wireless) network are met by utilizing perceptual
audio codecs. Perceptual audio coding can significantly reduce the
data rate of an audio signal for storage or transmission by removing
imperceivable signal components based on psychoacoustic princi-
ples [2]. Compared to the original audio material, perceptual audio
coding does not intend to preserve the signal waveform, it rather
aims to maintain a perceptually similar or even equal audio expe-
rience. The transcoding of an audio signal from one audio codec
to another when passing through a network may introduce further
coding artifacts. Given the maturity of perceptual audio coding, one
can presume that today’s perceptual audio codecs do not affect the
human ability to classify acoustic scenes. But is this also true for
state-of-the-art classification algorithms? In this contribution, we

will study the effect of lossy perceptual coding on the model accu-
racy. To our knowledge, this may be the first study in the context of
acoustic scene classification.

Wireless Audio 
(e.g.. Bluetooth) Cellular, 

WAN

Scene Classification  
on Cloud Server

Scene Classification  
on Companion Device

Cellular, 
WAN

Wireless Audio 
(e.g.. Bluetooth)

Trans- 
coding

Coding

Figure 1: DCASE application scenarios where acoustic sensing and
classification are decoupled and signals are coded for data transmis-
sion.

The paper is organized as follow: We start with introducing the
classification architecture we use as a basis for this study. In Sec-
tion 2 we present an experiment where the overall accuracy of the
pre-trained reference model is evaluated as a function of differently
coded audio files. Section 3 reports on a series of experiments with
the goal to improve the model accuracy by various training condi-
tions. Before we conclude the paper we summarize and discuss our
findings in Section 4.

1.1. Hu et al. DCASE 2020 Classification Model

Thanks to the authors of [1] who made source code and pre-trained
models publicly available, we are able to study the effect of audio
coding artifacts on one of the best performing models of the DCASE
2020 Scene Classification Challenge. For Task 1a, this proposal was
ranked as the third best architecture, achieving a model accuracy of
76.2% on the secret 10-class evaluation dataset1. With a total of
130 million parameters, this architecture would likely be deployed
on cloud servers rather than on resource-limited edge devices.

1taken from challenge results at http://dcase.community/
challenge2020/task-acoustic-scene-classification-
results-a
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This architecture (see Figure 2) consists of two groups of en-
semble classifiers namely 3-class and 10-class. The 10-class mod-
els classify the input features (Log-mel filterbank features) to one of
the ten original scene classes: airport, shopping mall, metro station,
pedestrian street, public square, street traffic, tram, bus, metro, and
park. The 3-class classifier is trained to predict one of the three cat-
egories: indoor, outdoor, and transportation. The final scene class is
estimated by score fusion of the 3-class and the 10-class classifier.

3-class FCNN

3-class Resnet

10-class FCNN

10-class fsFCNN

10-class Resnet

Feature
Extraction

3-class 
Fusion

Scene 
ClassFusion

10-class
Fusion

Audio  
In

Figure 2: The scene classification ensemble architecture by [1]
.

2. EXPERIMENT A

In this experiment we want to explore whether the classification
accuracy in the classification architecture described in Section 1.1
changes when inference is done on perceptually coded audio data
rather than on original (uncompressed) audio.

2.1. Methodology

For this experiment we evaluate the complete pre-trained ensemble
classifier for DCASE 2020 Task 1a by the authors of [1] using the
official evaluation split from the DCASE 2020 development set [3].
Figure 3 visualizes the data flow of this experiment. The evalua-
tion split consists of 2968 monaural audio files at 44.1 kHz, each
10 seconds long. For the sake of reproducibility, all audio files are
encoded using [4] with the perceptual audio codecs listed in Table
1. The codecs are chosen because of their support in popular mo-
bile operating systems and thus, likely to be used for compressing
recorded signals prior scene classification. As model input log-mel
filterbank features are extracted from the decoded audio signals.
The evaluation compares the classification result with the ground
truth class labels of the dataset.

Table 1: Overview of perceptual audio codecs used in this paper
Codec Reference Bit Rates [kbps]

Exp A Exp B
AAC (LC) [5] 64 32, 48, 64
HE-AAC (v1) [6] 32 16, 32
MP3 [7] 32, 64 32, 64
Opus [8] 32 64
SBC [9] 64 64

Labels

DCASE  2020 
Development Set 

fold1 evaluate

Audio encoding

Audio decoding

Scene Classification

Inference

Hu et al. 
Pre-trained  

Models

Evaluation

Model Accuracy

Feature extraction

Figure 3: Exp A: Evaluation of pre-trained models with coded audio

2.2. Results

Table 2 summarizes the results of Experiment A. We found sig-
nificant degradation of the overall model performance when scene
classification is performed on previously compressed audio data. In
our experiments, the performance of the model accuracy could drop
from 0.820 (classification accuracy on the uncompressed original
evaluation files) to 0.352, a decrease by 57.1%. Not surprising, au-
dio compression using higher bit rates (e.g., AAC at 64 kbps) tends
to achieve a better model performance.

To understand if the model accuracy changes with the percep-
tual audio quality due to audio coding, we computed the PEAQ
objective difference grade (ODG) [10] between the uncompressed
and the previously compressed audio files. For a comparative anal-
ysis of PEAQ and other quality metrics see [11]. We computed
the average ODG across all evaluation files per codec under test
and compare it with the model accuracy from Table 2. As visi-
ble in Figure 4 a high ODG (i.e., little coding artifacts) results in
a good model performance. However, for lower ODGs (more cod-
ing artifacts), this relationship vanishes: Two codecs that achieved
an ODG around �3.1 result in a very different classification accu-
racy (0.61 vs. 0.35). Further, the model accuracy is also not a reli-
able predictor for PEAQ’s ODG: A scene classification accuracy of
about 0.65 could be achieved for codecs with an ODG between -3.1
and -2.1. In summary, the scene classification performance corre-
lates only weakly with PEAQ’s estimated perceptual audio quality
(R2 = .44).

3. EXPERIMENT B

Based on the results of Experiment A and to improve the scene
classification performance of previously compressed audio data, we
propose to retrain the model using additional data augmentation. In
this series of experiments, we focus on the 10-class FCNN classi-
fication sub model (see highlight in Figure 2). These experiments
also contribute to a better understand of the trade-offs between ex-
ecuting low-complexity classification models on the edge using un-
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Table 2: Exp A: Model accuracy for differently coded signals
Codec Bit Rate Model Relative

[kbps] Acc. Decrease
None (Original) 1058 .820 N/A

AAC 64 .741 9.6 %
MP3 64 .724 11.7 %
Opus 32 .691 15.7 %

HE-AAC 32 .653 20.4 %
SBC 64 .632 22.9 %
MP3 32 .352 57.1 %
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Figure 4: Experiment A: Relationship between PEAQ ODG and
model accuracy for differently coded signals

compressed audio vs. executing complex DCASE models on a
cloud server using compressed audio.

3.1. Methodology

The 10-class FCNN sub model is retrained with different sets of
pre-compressed audio data. The workflow is shown in Figure 5.
All hyperparameters for the training are kept as in [1] to allow for
comparison across experiments. First, augmentation data are gener-
ated by converting the training dataset into different encoded audio
formats and bitrates [4]. To decide which codec configurations to
use for the training, we analysis the log-mel features across uncom-
pressed and previously compressed audio data. The aim of this anal-
ysis was to maximize the differences in the feature data via a subset
of audio codec configurations. As a result of this analysis, MP3 at
64kbps, AAC at 32kbps and HE-AAC at 16kbps and 32kbps were
selected.

The newly trained models are evaluated with the same audio
content as in Experiment A in the following conditions: First, the
original evaluation data are used to verify that the re-training has no
degrading effects on the classification of uncoded audio data. Then,
a subset of the evaluation conditions use codecs at bit rates that were
part of the training (i.e., MP3 at 64 kbps, AAC at 32 kbps), other
conditions feature the same codec used for training, but at different
bit rates (i.e., MP3 at 32 kbps, AAC at 48 and 64 kbps). In the
final two conditions, audio codecs that were not part of the model
training are applied (i.e., Opus at 64 kbps, SBC at 64 kbps).

DCASE  2020 
Development Set 

fold1 evaluate

Audio encoding

Audio decoding

Labels

DCASE  2020 
Development Set 

fold1 train

Feature extraction

Audio encoding

Audio decoding

Feature extraction

Trained Model

10-class FCNN Model Training

Inference

Evaluation

Sound Classification

Labels

Model Accuracy

Figure 5: Exp B: Model training and evaluation with coded audio

3.2. Results

The results of experiment B are summarized in the Table 3. From
the first row in Table 3 we can see that accuracy of the model when
trained with no augmentation data and evaluated with compressed
audio codecs was poor compared to the accuracy with the original
audio data. When the model was trained using the data augmenta-
tion methods as proposed in [1] (essentially our baseline), the ac-
curacy when evaluated with the original files increased moderately
from 0.703 to 0.721, but the accuracy was still comparatively lower
when evaluated with coded signals (e.g., 0.301 for MP332). Notably,
as we start including coded audio files in the training, the perfor-
mance for the codec evaluation conditions improved significantly.
With inclusion of MP3 files at 64 kbps, there was decrease in the
accuracy when evaluated with original files but the performance of
the model improved when evaluated with coded files e.g., AAC files
and MP3 files at 64 kbps. The variation of the accuracy when the
model was evaluated with different codec conditions is discussed
below:
No Coding condition: The classification performance of uncoded
audio decreased when the MP364 files were included in the training.
The performance improved gradually with inclusion of HE-AAC16
and AAC32 and further increased when the model was trained in the
final training condition (fully augmented dataset as in [1], MP364,
HE-AAC16, and AAC32). Here, the accuracy (0.72) was compara-
ble to the baseline [1], suggesting that additional data augmentation
using perceptual audio codecs does not degrade the classification of
original audio signals.
Seen Codec With Bitrate conditions (AAC32, MP364): The per-
formance increased with the baseline training from 0.458 to 0.558
and from 0.550 to 0.615 respectively. The accuracy further im-
proved with the addition of MP364, and HE-AAC. The highest
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Table 3: Experiment B: Model accuracy for different training conditions evaluated with different types of previously compressed signals. The
subscript in the codec name indicates the bitrate in kbps

Training Codec for Evaluation
Index Condition File count None AAC32 MP364 MP332 AAC48 AAC64 Opus64 SBC64

1 None (only original training data) 13962 .703 .458 .550 .261 .477 .525 .587 .391
2 Fully augmented data set as in [1] 121911 .721 .558 .615 .301 .573 .622 .638 .555
3 1+MP364 27924 .668 .566 .635 .249 .602 .630 .556 .363
4 3 + HE-AAC16 41886 .696 .631 .662 .477 .638 .651 .587 .534
5 3 + HE-AAC32 41886 .699 .630 .666 .319 .648 .663 .593 .508
6 4 + AAC32 55848 .697 .673 .675 .561 .664 .671 .610 .560

7 2 + 6 163797 .720 .670 .685 .598 .685 .690 .650 .589
relative performance increase from 2 [%] -0.1 20.1 11.4 98.7 19.6 10.9 1.9 6.1

achieved accuracy for the MP364 condition was 0.685 when the
model was trained with the baseline augmentation data [1] as well
as MP364, AAC32, and HE-AAC16 as additional training data. The
highest accuracy for the AAC32 condition (0.673) was obtained
when the model was trained by including the HE-AAC16 and AAC32
training data. The relative performance for the classes AAC32 and
MP364 improved by 20.1% and 11.4% respectively, as compared to
the baseline performance.
Unseen Bitrate conditions (MP332, AAC48, AAC64): Here, the
models were trained with MP3 and AAC but evaluated at different
bitrates. Initially, the accuracy of these conditions was low: 0.261,
0.477, and 0.525 respectively. In case of the condition MP332 the
performance of the model improved with the inclusion of HE-AAC
at 16kbps and AAC at 32 kbps training data. The model accuracy
for both AAC evaluation conditions improved for every audio codec
added to the training. The relative performance of classes MP332,
AAC48, AAC64 improved by 98.7%, 19.6% and 10.9% respectively,
as compared to the baseline performance.
Unseen Codec conditions (Opus64, SBC64): Opus and SBC were
not used in training. The performance of Opus64 initially did
not improve when augmented with different coded files, but when
the model was trained with fully augmented dataset as in [1] and
MP364, HE-AAC16, and AAC32, there was a slight improvement in
the performance by 1.9%. The performance of SBC64 decreased
with inclusion of MP364 as augmentation data but improved by the
inclusion of HE-AAC16 and AAC64 as augmentation file. The rela-
tive classification accuracy for SBC64 improved by 6.1% compared
to the baseline performance.

In summary the final training condition resulted in an average
increase in classification accuracy by 24.1% across all 7 codec con-
ditions. Moreover, at the final training condition, every evaluated
codec condition achieved now at least 81% of the classification ac-
curacy as if original audio data would have been inferred. Com-
pared to the initial training method this is a significant improvement
in the robustness across codec conditions.

4. DISCUSSION AND FUTURE WORK

As a result of our experiments, we can state that perceptual com-
pression artifacts can significantly degrade the accuracy of today’s
scene classification models. Including perceptual audio coding in
the data augmentation strategy:

1. does neither harm nor improve model performance when
classification is performed on the original audio data.

2. improves model accuracy when the inferred signals have
been perceptually coded.

3. can improve model accuracy even when the inferred signals
have been perceptually coded with an unseen codec or from
a seen codec with an unseen bitrate configuration.

4. seems to better harmonize the classification accuracy for in-
put signals with unknown coding history.

Whereas we used the coding framework [4] for the sake of repro-
ducibility, results may differ when other encoder implementations
are used. Also, since we studied one recent scene classification ar-
chitecture, our results may not translate perfectly to other systems.
However, since many architectures use log-mel filterbank input fea-
tures, we believe our findings generally hold for those architectures.

Although our proposed data augmentation strategy is working,
it generally increases the training time due to the additional training
data and requires retraining of existing models. Thus, it would be
interesting to consider alternative approaches to improve robustness
against perceptual coding artifacts, e.g., hyperparameter optimiza-
tion, or transfer learning [12].

5. CONCLUSION

We demonstrated how lossy perceptual audio coding can degrade
the scene classification accuracy of a state-of-the-art system by up
to 57% compared to uncompressed audio captures, depending on
audio codec and bit rate. To increase robustness against compres-
sion artifacts, we propose a data augmentation strategy for model
training that includes perceptual audio coding. We showed that
such strategy can increases the accuracy when classifying perceptu-
ally coded signals even for audio codecs and/or bitrates not part of
the model training. These findings are beneficial to improve scene
classification robustness whenever audio signals are subject to per-
ceptual audio coding, e.g., due to transmission or lossy data storage.
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ABSTRACT

Automated audio captioning (AAC) is the task of automatically cre-
ating textual descriptions (i.e. captions) for the contents of a gen-
eral audio signal. Most AAC methods are using existing datasets
to optimize and/or evaluate upon. Given the limited information
held by the AAC datasets, it is very likely that AAC methods learn
only the information contained in the utilized datasets. In this pa-
per we present a first approach for continuously adapting an AAC
method to new information, using a continual learning method. In
our scenario, a pre-optimized AAC method is used for some unseen
general audio signals and can update its parameters in order to adapt
to the new information, given a new reference caption. We evalu-
ate our method using a freely available, pre-optimized AAC method
and two freely available AAC datasets. We compare our proposed
method with three scenarios, two of training on one of the datasets
and evaluating on the other and a third of training on one dataset
and fine-tuning on the other. Obtained results show that our method
achieves a good balance between distilling new knowledge and not
forgetting the previous one.

Index Terms— Automated audio captioning, continual learn-
ing, learning without forgetting, WaveTransformer, Clotho, Audio-
Caps

1. INTRODUCTION

Automated audio captioning (AAC) is the inter-modal translation
task, where a method takes as an input a general audio signal and
generates a textual description of the contents of the audio sig-
nal [1]. AAC methods learn to describe sound sources/events, spa-
tiotemporal relationships of events, textures and sizes, and higher-
level knowledge like counting [1, 2], but not speech transcrip-
tion [3, 4]. In a typical AAC scenario, a deep learning method is
optimized in a supervised or reinforcement learning scheme and us-
ing an AAC dataset [5, 6, 7, 8, 9]. Audio clips are given as an input
to the AAC method and the method generates captions for its inputs.
Then, the method is optimized by trying to reduce the difference be-
tween the predicted and the actual (i.e ground truth) captions. Given
that the existing AAC datasets are limited, the above scheme creates
some limitations. For example, since the available information from
the audio clips in the different datasets are most likely not overlap-
ping and the described information and expression variability dif-
fers given that different annotators have been used [3, 10], then an
AAC method optimized with one dataset will have problems when
evaluated with another AAC dataset. Even if some technique is used
for adapting an AAC method to another dataset, e.g. like transfer
learning, it would be required to have all the new data for the adap-
tation. This creates limitation of continuously adapting an AAC

method to new information.
The above presented problem of continuously adapting is not

new and has been attacked using continual learning, sometimes also
called lifelong learning [11, 12], which is the process of continu-
ously adapting a method to new data and/or tasks. The advantage
of continual learning over other techniques, e.g. transfer learning,
is that the latter usually introduces the phenomenon of catastrophic
forgetting, where the method is adapted to the new information but
forgets the initially learned one [11, 13, 14, 15]. Though, contin-
ual learning methods seem that tackle this phenomenon [14, 15].
There are different approaches for continual learning, e.g. like joint
training [12], though our focus is on the cases where the new data
are not required a priori, because it is often not possible to have
all data beforehand due to storing reasons (e.g. cannot store all the
data) or to degradation of data (e.g. data have been lost over time).
Approaches that do not require having the data to do the adapta-
tion, can be roughly divided into three categories [11], namely regu-
ralization methods like learning without forgetting (LwF) [15] and
elastic weight consolidation (ECW) [14], dynamic architectures like
dynamically expandable networks (DEN) [16], and replay models
like gradient episodic memory (GEM) [17].

In this paper we consider the scenario where an AAC method
continuously adapts to new and unseen data, using unseen ground
truth captions. This scenario can resemble, for example, an online
platform where new audio data and captions can be provided by
human users and the AAC method continuously learn from the new
data. Focusing on this, we present a first method for continual learn-
ing for AAC, adopting the LwF approach. Although there are pub-
lished continual learning approaches for audio classification using
different approaches [18, 19], we employ LwF due to its simplicity,
reduced need for resources, and the facts that LwF is model agnos-
tic and no modifications are needed for the employed AAC model.
Although, previous research has shown that one of the weaknesses
of LwF is that its effectiveness is dependent on the similarity of the
tasks at hand [20, 11, 21], we deem that this is not applicable to our
case since we use LwF for continuously adapting to new data on the
same task.

For our work presented here, we employ a freely available and
pre-optimized AAC method called WaveTransformer (WT) [22]
and two freely available AAC datasets, namely Clotho [3] and Au-
dioCaps [10]. Since WT method has achieved state-of-the-art re-
sults on Clotho, we use AudioCaps as the new data that the AAC
method will adapt. Given that there are no other published continual
learning approaches for AAC, in this paper we do not consider the
case of the mismatched set of words in the two employed datasets.
The rest of the paper is organized as follows. Section 2 presents
our method and Section 3 presents the adopted evaluation process.
Obtained results are in Section 4 and Section 5 concludes the paper.
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2. METHOD

Our method is model agnostic, based on LwF and knowledge dis-
tillation [15, 23]. It employs a pre-optimized AAC model, a copy
of the AAC model, an iterative process, a regularization-based loss,
and a stream of new audio data with captions that are used for learn-
ing the new information. The stream of new audio data and captions
is used to provide input to the original and copy AAC models. The
output of both models is used against the provided captions from
the stream, but only the parameters of the copy model is updated.
At every update of the parameters, the copy model can be used as
an output of our continual learning method. An illustration of our
continual learning approach is in Figure 1.

In more detail, we start by having a pre-optimized AAC model
Mbase(·; ✓base), having the pre-optimized parameters ✓base. Mbase is
pre-optimized using a dataset of K input-output examples Dori =
{(X0,Y0)k}Kk=1, where X0 2 RTa⇥F is a sequence of Ta audio fea-
ture vectors having F features and Y0 2 {0, 1}Tw⇥W a sequence of
Tw one-hot encoded vectors of W elements, that indicate the most
probable word for each tw-th word index. Mbase generates its output
as

Ŷ0
k = Mbase(X

0
k; ✓base), (1)

where Ŷ0
k is the predicted caption by Mbase when having as input

the X0
k. The optimization of ✓base is performed by minimizing the

loss

L(✓base,Dori) =
KX

k=1

CE(Y0
k, Ŷ

0
k), (2)

where CE is the cross-entropy loss between Y0
k and Ŷ0

k.
Then, we create a copy of Mbase, Mnew(·; ✓new), having same

hyper-parameters as Mbase and the parameters ✓new. Our target is
to continuously update ✓new for new data, without making Mnew to
deteriorate its performance on Dori. The new data are coming from
a stream of data, S, which continually produces new and unseen
data (i.e. data not in Dori). We sample data from S in batches of B
examples, creating the input-output examples as

Dnew = {(X,Y)b : (X,Y) ⇠ S ^ b = 1, . . . , B}, (3)

where X 2 RTa⇥F is a sequence of audio features, similar to X0,
and Y 2 {0, 1}Tw⇥W is a sequence of one-hot encoded vectors
similar to Y0. Here has to be noted that the captions coming from
S can (and most likely will) have different set of words with Y0.
Though, our approach is not considering the problem of the differ-
ent set of words. For that reason, we consider from Y only the
words that are common with Y0.

We use the sampled data Dnew as an input to both Mbase and
Mnew, resulting to

Ŷbase
b = Mbase(Xb; ✓base), and (4)

Ŷnew
b = Mnew(Xb; ✓new), (5)

where Ŷbase
b and Ŷnew

b are the predicted outputs of Mbase and Mnew,
respectively, when having as an input Xb.

Having Ŷbase
b and Ŷnew

b , we define the loss

Figure 1: Our proposed continual learning method for AAC. The
dotted line represents the copying of the parameters of Mbase to
Mnew, and it takes place only once at the beginning of the process.
Red line indicates backpropagation for updating the parameters of
Mnew.

Ltot(✓base, ✓new,Dnew) = (1� �)Lnew(✓new,Dnew)+

�Lreg(✓base,Dnew), where (6)

Lnew(✓new,Dnew) =
BX

b=1

CE(Yb, Ŷ
new
b ), (7)

Lreg(✓base, ✓new,Dnew) =
BX

b=1

KL(Ŷbase
b , Ŷnew

b ), and (8)

� is a factor that weights the contribution of Lnew and Lreg to Ltot,
and KL(a, b) is the KL-divergence between a and b. We use �
in order to balance the learning of the new information and the
non-forgetting of the old information. The non-forgetting is im-
plemented with the Lreg, where the predictions of Mnew are sought
to be as similar to the predictions of Mbase.

Finally, after calculating the Ltot for each sampling of data from
S, we obtain new optimized parameters for Mnew as

✓?new = argmin
✓new

Ltot(✓base, ✓new,Dnew), (9)

where ✓?new are the new, optimized parameters. After obtaining ✓?new,
we update ✓new as

✓new = ✓?new. (10)

Thus, Mnew is updated with the new information and also remem-
bers old learned information, after applying (10). The iterative pro-
cess of our continual method for AAC is the process described by
Equations (3) to (10). The result of our method is the Mnew after the
application of Eq. (10).

3. EVALUATION

In order to evaluate our method, we use a freely available and pre-
optimized method as our Mbase and a freely available dataset dif-
ferent from Dori to simulate S, namely WaveTransformer (WT) and
AudioCaps, respectively. Dori used for WT is Clotho. We use mini-
batches of size B from AudioCaps to simulate Dnew, using only one
epoch over AudioCaps. The performance of the continual learning
is evaluated using metrics adopted usually in AAC task. Our code
used for the implementation of our method can be found online1.

1https://github.com/JanBerg1/AAC-LwF
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3.1. Datasets and pre-processing

Clotho [3] is a freely available dataset for AAC, containing 3840
audio clips for training, 1046 for validation, and 1046 for evalua-
tion. Each audio clip is of 15-30 seconds long and is annotated with
five captions of eight to 20 words. This results to 19 200, 5230, and
5230 input-output examples for training, validating, and evaluating
an AAC method, respectively. AudioCaps [10] is also a freely avail-
able AAC dataset, based on AudioSet [24]. AudioCaps has 38 118
audio clips for training, 500 for validation, and 979 for testing. All
audio clips are 10 seconds long, and clips for training are annotated
with one caption while clips for validation and testing with five cap-
tions. These result to 38 118, 2500, and 4895 input-output examples
for training, validating, and evaluating, respectively. In all experi-
ments, as Dori we use the training split of the corresponding dataset
and as Dnew the training split from the other AAC dataset. Dur-
ing the stage of hyper-parameter tuning we used as the validation
split from Dori and Dnew to evaluate the performance of our method,
while during testing we used the evaluation split as Dnew, from the
corresponding dataset. These result to K = 19200 for Clotho and
K = 38118 for AudioCaps.

From all audio clips we extract F = 64 log mel-band energies,
using a 46 second long Hamming window with 50% overlap. This
results to 1292  Ta  2584 for Clotho and Ta = 862 for Au-
dioCaps. Additionally, for Clotho there are 8  Tw  20 words
in a caption and there are W = 4367 unique words, while for Au-
dioCaps there are 2  Tw  51 words in a caption and there are
W = 4506 unique words. But, when Mbase is optimized on ei-
ther Clotho or AudioCaps the Mnew is evaluated at the other dataset
(i.e. Mbase trained on Clotho and Mnew evaluated on AudioCaps,
and vice-versa). Since in our method we do not consider the case
of learning new words, we keep only the common words from the
dataset used for evaluation. For example, in the case of training
on Clotho and evaluating on AudioCaps, we keep from AudioCaps
only the words that exist in Clotho. The amount of words that we
remove from AudioCaps is 1715.

3.2. Mbase model

As Mbase we use the WT AAC model, presented in [22]. WT con-
sists of four learnable processes, three used for audio encoding and
one for decoding the learned audio information to captions. WT
takes as an input a sequence of audio features, e.g. X0 or X, and
generates a sequence of words, e.g. Y0 or Y. Input audio fea-
tures are processed in parallel by two different learnable processes,
one for learning temporal patterns, Etemp(·), and one for learning
time-frequency patterns, Etf(·). Etemp consists of 1D convolutional
neural networks (CNNs), set-up after the WaveNet model [25] and
using gated and dilated convolutions. Etf is based on 2D depth-wise
separable CNNs, capable to learn time-frequency information and
proven to give state-of-the-art results in sound event detection [26].
Both Etemp and Etf do not alter the temporal resolution of their in-
put and their output is concatenated and given as an input to a third
learnable process, Emerge(·). Emerge learns to intelligently merge the
information from Etemp and Etf, producing as an output an encoded
sequence of the input audio, containing both temporal and time-
frequency information.

The output of Emerge is given as an input to a decoder, D(·) that
is based on the Transformer model [27], using three stacked multi-
head attention blocks. Each attention block takes as an input a se-
quence of tokens/words and uses two different multi-head attention
processes. The first is a masked self-attention, for each token/word

Figure 2: WT architecture, where a) is the encoder and b) the de-
coder, after [22].

attending only to its previous ones in the input sequence. The sec-
ond multi-head attention is a cross-modal attention, attending to the
output of Emerge given the output of the first, self-attention process.
The first multi-head attention block D takes as an input its outputs
shifted right and applies a positional encoding. The output of the
last multi-head attention block is given as an input to a classifier,
which shares its weights through time and predicts the most proba-
ble word in each time-step of the output caption. WT is illustrated
in Figure 2, after [22].

3.3. Training, hyper-parameters, and evaluation

We compare the performance of our proposed method against the
following baseline scenarios: i) WT pre-trained on Clotho and eval-
uated on Clotho and AudioCaps, ii) WT pre-trained on AudioCaps
and evaluated on Clotho and AudioCaps, and iii) WT pre-trained on
Clotho, fine-tuned on AudioCaps, and evaluated on Clotho and Au-
dioCaps. We term the above cases as WTcl-au, WTau-cl, and WTcl-ft,
respectively. For pre-training Mbase, we use the training split of the
corresponding dataset, employing the early stopping policy by using
the corresponding validation split and the associated SPIDEr score.
For both datasets we use 10 consecutive epochs for early stopping,
detecting not improving SPIDEr score. As an optimizer we use
Adam [28] with the proposed values for the hyper-parameters. Ad-
ditionally, we use a temperature hyper-parameter at the softmax
non-linearity of the classifier of Mnew, as this has been found to
improve the performance [15]. We use the value of 2 for this hyper-
parameter.

Using the above protocol, we evaluate the performance of our
method using � = 0.70, 0.75, . . . , 0.95, 1.0 and B = 4, 8, 12.
We use the pre-trained WT on Clotho, and we simulate S as mini-
batches of size B from AudioCaps, as described by Eq. 3. We as-
sess the performance of the Mnew at the 50th, 75th, and 150th up-
date, and after using only once all data from AudioCaps, using SPI-
DEr score [29]. SPIDEr [29] is the weighted average of CIDEr and
SPICE metrics. CIDEr [30] employs weighted cosine similarity of
n-grams, based on the term-frequency inverse-document-frequency
(TFIDF), effectively quantifying the difference of the predicted and
ground truth captions on using the same words to convey informa-
tion. On the other hand, SPICE [31] analyzes the described scene
and quantifies the differences of the predicted and ground truth cap-
tion in describing the same objects, attributes, and their relation-
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Table 1: SPIDEr score of the baseline scenarios
Baseline scenario SPIDEr DoriDoriDori SPIDEr DnewDnewDnew
WTcl-au 0.182 0.108
WTau-cl 0.318 0.102
WTcl-ft 0.065 0.247

ships.

4. RESULTS

In Table 1 are the results of Mbase, regarding the three different base-
line scenarios. In Table 2 are the obtained results of our method, for
various values of B and �, focusing on the SPIDEr score for Dori
and Dnew. As can be seen from Table 1 and from the cases of WTcl-au
and WTau-cl, the AAC method performs better on the Dori than Dnew.
This clearly shows that the model cannot perform equally well on
the two different datasets, just by pre-training on one of them. Fo-
cusing on the WTcl-ft, can be seen that the AAC method can per-
form good on the second dataset, i.e. Dnew, but the performance
of the method on Dori degrades considerably. This strengthens the
need for our method, which aims at alleviating the degradation of
performance on the Dori.

As can be seen from Table 2, it seems that the value of B has an
observable impact on the performance on Dori. That is, lower values
of B seem to not benefit the performance on Dori for any value of
�. Specifically, for values of B = 4, the SPIDEr score on Dori is
lower than the SPIDEr score for Dori and for B > 4, for any value
of �. The same stands mostly true for B = 8 and B > 8, with the
exception where � = 0.7. The above observation for B suggests
that the batch size for sampling the stream of data S can also act
as a regularizer for the not-forgetting of information from the Dori.
Regarding the impact of �, one can directly see the effect of the
1�� and � factors in Eq. (6), having 1�� for scaling the effect of
Lnew and � for scaling the effect of Lreg. Specifically, for � = 1 the
SPIDEr score for Dnew is lower than the SPIDEr score for Dori. This
trend is in accordance with the observations from Table 1, and is an
expected trend since the loss from Dnew is turned to 0 for � = 1.
Given the observations for B from the same Table 2, it is indicated
that using just the loss Lreg(✓base, ✓new,Dnew) for updating ✓new can
enhance, up to an extent, the performance of the Mnew on the new
data from S. Similarly, for values of � < 1.00 the performance
of Mnew on Dnew increases for all values of B. Additionally, the
value of � and the SPIDEr score on Dnew have a reverse analogous
relationship.

In terms of better performing combination of � and B, we see
two trends. There is the combination of B = 4 and � = 0.85,
which yields the best performance on Dnew of SPIDEr= 0.239. Ad-
ditionally, there is the combination of B = 12 and � = 0.80, which
seems to act as the best regularizer for the performance on Dori, with
SPIDEr= 0.186. These results are in accordance with the previous
observations for B and �, indicating some kind of trade-off for the
values of B and �. Finally, comparing Tables 1 and 2, one can see
the benefit of our method, giving a good balance between the top
performance on Dnew and not deteriorating the performance on Dori.

5. CONCLUSIONS

In the paper we presented a first study of continual learning for
AAC. Our method is based on the learning without forgetting

Table 2: Results of continual learning using Learning without
Forgetting for AAC, for various B and �. With bold are indicated
the best SPIDEr scores for each dataset.

batch size B � SPIDEr DoriDoriDori SPIDEr DnewDnewDnew

4

0.70 0.098 0.239
0.75 0.102 0.215
0.80 0.093 0.214
0.85 0.115 0.230
0.90 0.133 0.215
0.95 0.155 0.192
1.00 0.163 0.119

8

0.70 0.113 0.210
0.75 0.119 0.223
0.80 0.132 0.220
0.85 0.133 0.190
0.90 0.156 0.187
0.95 0.178 0.157
1.00 0.165 0.114

12

0.70 0.109 0.211
0.75 0.160 0.197
0.80 0.186 0.157
0.85 0.171 0.179
0.90 0.182 0.153
0.95 0.185 0.145
1.00 0.176 0.115

method, which focuses on continuously updating the knowledge of
a pre-trained AAC method on new AAC data, without degrading
the performance of the AAC method on the originally used dataset
during pre-training. For that reason, we employed a freely avail-
able and pre-trained AAC method and two freely available AAC
datasets. We use the adopted AAC method which is pre-trained
on one of the employed AAC datasets, and we use the other AAC
dataset as a continuous stream of AAC data. We update the knowl-
edge of the employed AAC method given the stream of AAC data.
We compare our method against three baselines, two for training on
one of the AAC datasets and evaluating on the other, and a third
of training on one of the AAC datasets and fine-tuning the trained
method to the other. Our results show that our method manages to
not let the performance of the AAC method to deteriorate on the
original AAC dataset, while, in the same time, manages to distil
information from the new data to the employed AAC method.

For future research, utilizing AAC datasets set in more distinct
domains and training those in consecutive way to the model would
provide more data on how effective these methods can be when used
for AAC. Recent years continuous learning has been a hot issue and
more methods have been introduced just during last few years, many
of which might effective when utilized for AAC as well.
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ABSTRACT
Few-shot bioacoustic event detection is a novel area of research
that emerged from a need in monitoring biodiversity and animal be-
haviour: to annotate long recordings, that experts usually can only
provide very few annotations for due to the task being specialist and
labour-intensive. This paper presents an overview of the first eval-
uation of few-shot bioacoustic sound event detection, organised as
a task of the DCASE 2021 Challenge. A set of datasets consist-
ing of mammal and bird multi-species recordings in the wild, along
with class-specific temporal annotations, was compiled for the chal-
lenge, for the purpose of training learning-based approaches and for
evaluation of the submissions in a few-shot labelled dataset. This
paper describes the task in detail, the datasets that were used for
both development and evaluation of the submitted systems, along
with how system performance was ranked and the characteristics
of the best-performing submissions. Some common strategies that
the participating teams used are discussed, including input features,
model architectures, transferring of prior knowledge, use of pub-
lic datasets and data augmentation. Ranking for the challenge was
based on overall performance of the evaluation set, however in this
paper we also present results on each of the subsets of the eval-
uation set. This new analysis reveals submissions that performed
better on specific subsets and gives an insight as to characteristics
of the subsets that can influence performance.

Index Terms— Few-shot learning, bioacoustics, sound event
detection, DCASE challenge

1. INTRODUCTION

The task of bioacoustic event detection refers to the retrieval of ani-
mal vocalizations in terms of onset and offset times. Thus, it shares
a common methodology with other sound event detection (SED)
contexts, such as offices [1], homes [2], city streets [3], and high-
security spaces [4]. Yet, the application domain of bioacoustics is
particularly challenging for SED, in part because of the high di-
versity of possible recording conditions and of vocalisation types
[5]. For this reason, the field of machine learning for bioacoustics
remains divided into many subfields: birds [6], land mammals, ma-
rine mammals [7], and so forth.

Figure 1: Overview of the proposed few-shot bioacoustic event de-
tection task at the DCASE 2021 challenge. Green and purple rect-
angles represent labeled and predicted events, respectively.

The past decade witnessed the surge of deep convolutional net-
works (CNNs) in the time–frequency domain, which have the po-
tential to outperform feature engineering. However, a supervised
CNN for SED requires a predefined taxonomy of acoustic events as
well as hundreds of annotated examples per class. Yet, collecting
a large training set of animal vocalizations is not always feasible in
practice, because species are unequally abundant [8]; audio anno-
tation is costly and time-consuming [9]; and, more fundamentally,
the taxonomy may vary depending on the use case [10].

We address this problem by introducing few-shot bioacoustic

event detection as a new task to the DCASE 2021 challenge. In con-
trast to traditional deep learning approaches that use a large amount
of data to train models, the key idea behind few-shot learning is
to build accurate models with less training data [11]. More specifi-
cally, few-shot learning is usually studied using N -way-k-shot clas-
sification, where N denotes the number of classes and k the number
of known examples for each class. Figure 1 illustrates the function-
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ing of the system in deployment. After being trained on the first
k = 5 occurrences of an event of interest, the system detects all the
remaining occurrences of the same event in the rest of the recording.

Diverse approaches have been used to address the few-shot
learning problem for classification, with no consensus on the best.
Some use prior knowledge about similarity between sounds by com-
puting embeddings (learnt representation spaces) while training and
discriminate between unseen classes [11], while others exploit prior
knowledge about the structure of the data by using augmentation to
synthesize new data [12]. Finally, some approaches can learn mod-
els with parameters that can be fine-tuned to smaller datasets [13].
All of the above approaches deal with classification tasks in a few-
shot learning setting and there is still much to be learnt in the field
of few-shot SED; especially in concern to bioacoustic events.

While typical SED models must be retrained from scratch for
each new use case, this few-shot formulation aims at learning
generic representations of bioacoustic sounds. We encourage the
community to develop an open-set SED system which bioacoustics
practitioners will use on their own data after a modest amount of an-
notation, i.e., identifying the first k examples for each sound type.

2. DATASETS

A development dataset was provided for the task when the challenge
was launched, consisting of predefined training and validation sets
to be used for system development.1 The development set consists
of datasets from multiple sources with audio recordings and associ-
ated reference annotations in a task-specific format. More specifi-
cally, for the training set multi-class temporal annotations were pro-
vided for each recording as: positive (POS), negative (NEG) and
unknown (UNK), while for the validation set single-class temporal
annotations (POS/UNK) were provided for each recording.

A separate evaluation set was kept for evaluating the perfor-
mance of the systems.2 It consists of datasets from multiple sources.
During the task five event annotations were provided for each of the
recordings for the class of interest. The developed systems had to
use those five annotated events and then learn to detect the same
type of events throughout the rest of the recording.

Table 1 presents an overview of all the datasets in the develop-
ment and evaluation sets, with information about the microphones
used during recording, number of audio files, total time duration of
the set, number of labels and number of annotated events.

BirdVox-DCASE-10h (BV): The BirdVox-DCASE-10h (BV)
contains five audio files from four different autonomous recording
units, each lasting two hours. These autonomous recording units
are all located in Tompkins County, NY, US. They follow the same
hardware specification: the Recording and Observing Bird Identifi-
cation Node (ROBIN) developed by the Cornell Lab of Ornithology
[14]. All recordings were acquired in 2015, during the fall migra-
tion season. An expert ornithologist, Andrew Farnsworth, has an-
notated flight calls from four families of passerines, namely: Amer-
ican sparrows, cardinals, thrushes, and New World warblers. The
annotator found 2,662 flight calls from 11 different species in total.
These flight calls have a duration in the range 50–150 milliseconds
and a fundamental frequency in the range 2–10 kHz.

Hyenas (HT, HV): Spotted hyenas are a highly social species
that live in “fission-fusion” groups where group members range
alone or in smaller subgroups that split and merge over time, us-
ing a variety of types of vocalizations to coordinate with one an-

1https://doi.org/10.5281/zenodo.4543504
2https://doi.org/10.5281/zenodo.4864755

other. Spotted hyena vocalization data were recorded on custom-
developed audio tags designed by Mark Johnson and integrated into
combined GPS/acoustic collars (Followit Sweden AB) by Frants
Jensen and Mark Johnson. Collars were deployed on female hye-
nas of the Talek West hyena clan at the MSU-Mara Hyena Project
(directed by Kay Holekamp) in the Masai Mara, Kenya as part of
a multi-species study on communication and collective behavior.
Recordings used as part of this task contain a variety of different
vocalisations which were identified and classified into types based
on the established hyena vocal repertoire [15]. The HT subset of the
hyena recordings and their accompanying annotations were used as
part of the development set, while the HV subset of recordings and
their annotations were used as part of the validation. There is no
overlap between the vocalisations annotated in the two sets. Field
work was carried out by Kay Holekamp, Andrew Gersick, Frants
Jensen, Ariana Strandburg-Peshkin, and Benson Pion; labeling was
done by Kenna Lehmann and colleagues.

Meerkats (MT, ME): Meerkats are a highly social mongoose
species that live in stable social groups and use a variety of dis-
tinct vocalisations to communicate and coordinate with one another.
The meerkat vocal repertoire has been well characterized based on
previous research, allowing calls to be reliably classified by hu-
man labellers [16, 17]. Recordings used in this task were acquired
at the Kalahari Meerkat Project (Kuruman River Reserve, South
Africa; directed by Marta Manser and Tim Clutton-Brock), as part
of a multi-species study on communication and collective behavior.
Recordings of the development set (MT) were recorded on small
audio devices (TS Market, Edic Mini Tiny+ A77, 8 kHz) integrated
into combined GPS/audio collars which were deployed on multiple
members of meerkat groups to monitor their movements and vocal-
isations. Recordings of the evaluation set (ME) were recorded by
an observer following a focal meerkat with a Sennheiser ME66 di-
rectional microphone (44.1 kHz) from a distance of less than 1 m.
Recordings were carried out during daytime hours while meerkats
were primarily foraging and include several different call types.
Field work was carried out by Ariana Strandburg-Peshkin, Bap-
tiste Averly, Vlad Demartsev, Gabriella Gall, Rebecca Schaefer and
Marta Manser. Audio recordings were labeled by Baptiste Averly,
Vlad Demartsev, Ariana Strandburg-Peshkin, and colleagues.

Jackdaws (JD): Jackdaws are corvid songbirds that usually
breed, forage and sleep in large groups, but form a pair bond with
the same partner for life. They produce thousands of vocalisa-
tions per day, but many aspects of their vocal behaviour remain
unexplored due to the difficulty in recording and assigning vocal-
isations to specific individuals. In a multi-year field study (Max-
Planck-Institute for Ornithology, Seewiesen, Germany), wild jack-
daws were equipped with small backpacks containing miniature
voice recorders (Edic Mini Tiny A31, TS-Market Ltd., Russia) to
investigate the vocal behaviour of individuals interacting with their
group and behaving freely in their natural environment. The JD
dataset contains a 10-minute on-bird sound recording (22050 Hz) of
one male jackdaw during the breeding season 2015. Field work was
conducted by Lisa Gill, Magdalena Pelayo van Buuren and Mag-
dalena Maier. Sound files were annotated by Lisa Gill, based on a
previously established video-validation in a captive setting [18].

Polish Baltic Sea bird flight calls (PB): The PB dataset con-
sists of six 30 minute recordings of bird flight calls recorded along
the Polish Baltic Sea coast. The recordings are the excerpt from
Hanna Pamuła’s project, focused on the acoustic monitoring of
birds migrating at night along the Polish Baltic Sea coast. Three
autonomous recording units were used with the same hardware set-
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Dataset mic type # audio files total duration # labels (excl. UNK) # events (excl. UNK)

Development Set: Training

BV fixed 5 10 hours 11 2,662
HT mobile 3 3 hours 3 435
MT mobile 2 70 mins 4 1,234
JD mobile 1 10 mins 1 355

Development Set: Validation HV mobile 2 2 hours 2 50
PB fixed 6 3 hours 2 260

Evaluation Set
ME handheld 2 20 mins 2 70
ML various 17 20 mins 17 1,035
DC fixed 13 105 mins 3 967

Table 1: Information on each dataset.

tings (Song Meters SM2, Wildlife Acoustics, Inc). They were de-
ployed close to each other (<100m) - near the lake, on the dune, and
on the forest clearing - to provide diverse acoustic background. The
recordings were acquired during the 2016, 2017 and 2018 fall mi-
gration seasons. The passerines night flight calls were annotated by
Hanna Pamuła. The PB dataset is part of the development set used
for validation. In each recording only one bird species is the tar-
get class: song thrush, Turdus philomelos (3 recordings); blackbird,
Turdus merula (3 recordings). Each recording contains 22–93 calls
in the 8–400 milliseconds range. The usual fundamental frequency
range for calls of the chosen species is 5–9 kHz.

Macaulay Library (ML): The Macaulay Library is a digital
archive of images, videos, and sounds from animals.3 As of 2021,
it contains 175k audio recordings from 10k species of birds and 2k
species of amphibians, fish, mammals and insects. These record-
ings are contributed by amateur and professional recordists around
the world, and the catalogue is maintained by the Cornell Lab of
Ornithology. For the DCASE 2021 challenge, one author (DB) cu-
rated 17 recordings from the Macaulay Library and annotated them
in terms of animal vocalizations. Each recording contains calls from
a different species: 14 terrestrial mammals (not including hyena or
meerkat) and 3 birds (not including passeriformes). The average
duration of each recording is of the order of one minute and the
number of calls per minute varies in the range 10–150.

BIOTOPIA Dawn Chorus (DC): Many bird species produce
vocalisations during the entire day, but their vocally most active pe-
riod by far usually occurs around dawn. This natural phenomenon
is called dawn chorus. The Dawn Chorus project is a worldwide cit-
izen science and arts project bringing together amateurs and experts
to experience and record the dawn chorus at their doorstep.The DC
dataset used as part of the evaluation set stems from dawn chorus
recordings, made using Zoom H2 recorders at 44100 Hz, at three
different locations in Southern Germany (Haspelmoor, Munich’s
Nymphenburg Schlosspark, and Nantesbuch), by Moritz Hertel and
Rudi Schleich. The vocalisations of three target species were an-
notated by LG (Common cuckoo, Cuculus canorus: 6 files, ca. 9
minutes, 543 labels; European robin, Erithacus rubecula: 3 files,
ca. 43 min, 381 labels; Eurasian wren, Troglodytes troglodytes: 3
files, ca. 50 min, 268 labels).

3. BASELINE METHODS

We propose two systems as baselines to measure submitted methods
performance with. One is an approach commonly used in bioacous-
tics based on spectrogram cross-correlation and the other is a deep
learning approach based on prototypical networks [11].

3Official website: https://www.macaulaylibrary.org/

3.1. Template Matching

Our first baseline is a spectrogram cross-correlation method, based
on scikit-image’s match template function that uses fast, nor-
malized cross-correlation to find instances of a template in an im-
age, returning values ranged between -1.0 and 1.0, with higher val-
ues corresponding to higher correlation. Our few-shot template
matching method computes cross-correlation across the time axis
between each of the events (shots) provided for a file and the rest of
the recording. A different detection threshold is set for each audio
file based on the max value of the cross-correlation results between
the shots provided. Peak picking is performed on the results of the
template matching algorithm, with any peak above the threshold
corresponding to the center of a detected event in that recording.
Borders of the predicted event are computed based on the length
of the shot it was correlated with. Predictions from all shots of a
recording are collapsed into a single binary prediction vector which
will produce the final events predicted for the class of interest.

3.2. Prototypical Network

Our second baseline is based on prototypical networks [11]. The
goal of prototypical networks and episodic training is to learn a
classifier which can adapt quickly to new classes with only a few
examples. Each episode of the training is configured as a N -way-

k-shot classification, where N denotes the number of classes and
k the number of known samples per class. A mini batch is sam-
pled from the training set and split into a support set consisting of
k labelled samples, S = {(x1, y1), (x2, y2), . . . , (xk, yk)} where
xi 2 RD and yi 2 {1, 2, . . . , N} is the corresponding label, with
the remaining samples comprising the query set Q. Prototypical
networks compute an M -dimensional class prototype cn 2 RM ,
through an embedding function f� : RD �! RM with learnable
parameters �. In our baseline D = 128 and M = 64.

We compute a prototype for each class as the mean of the em-
bedded support points belonging to it. Then, for each sample xq

from the query set, a distance function is used to calculate the Eu-
clidean distance of xq from each prototype, following which a soft-
max function over the distances produces a distribution over the
classes. Learning proceeds by minimizing the negative log prob-
ability J(�) = � log p�(yq = n|xq) over the true class k via
stochastic gradient descent.

During evaluation, we adopt a binary classification strategy in-
spired by [26]. The first 5 positive (POS) annotations are used for
calculation of positive class prototype and the rest of the audio file is
treated as the negative class, based on the assumption that the posi-
tive class is relatively sparse in the recording. We randomly sample
from the negative class to calculate the negative prototype. Each
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Rank Team name Evaluation set:
F-score % (97.5% confidence interval)

Validation set:
F-score %

DC
F-score %

ME
F-score %

ML
F-score %

1 Zou PKU [19] 38.4 (36.2 - 40.6) 55.3 20.6 68.0 67.3
2 Tang SHNU [20] 38.3 (36.1 - 40.5) 51.4 25.6 61.5 43.3
3 Anderson TCD [21] 35.0 (33.1 - 37.0) 26.2 19.9 56.6 56.8
4 Baseline TempMatch 34.8 (32.6 - 37.1) 2.0 32.2 47.1 29.5
5 Cheng BIT [22] 23.8 (21.9 - 25.7) 46.3 10.6 53.5 78.8
6 Baseline PROTO 20.1 (18.2 - 21.9) 41.5 8.5 72.7 55.7
7 Zhang uestc [23] 16.8 (15.5 - 18.2) 54.4 8.1 45.1 29.9
8 Johannsmeier OVGU [24] 15.2 (13.7 - 16.7) 58.6 6.5 64.3 35.8
9 Bielecki SMSNG [25] 8.4 (7.1 - 9.7) 51.8 3.1 56.3 51.4

Table 2: F-score results per team on evaluation and validation sets.

query sample is assigned a probability based on the distance from
the positive and negative prototype. Onset and offset predictions are
made based on thresholding probabilities at a value of 0.5 across the
query set. The prediction process for each file is repeated 5 times,
with the negative prototype created by random sampling each time.
The final prediction probability for each query frame is the average
of predictions across all iterations. Finally, post-processing is ap-
plied to the outputs in order to remove possible false positives. For
each audio file, predicted events with shorter duration than 60% of
the duration of the shortest shot provided for that file are removed.

4. EVALUATION AND RESULTS

For the evaluation of this task we employ an event-based F-measure
with macro-averaged metric. The main challenge is related to the
detection of a match between ground truth events and predicted
events. Traditional approaches use onset detection based metrics
and fixed-size evaluation windows. Given the great variation be-
tween datasets and characteristics of the events we want to detect
in this task, these approaches are not suitable. Instead, we use the
Intersection over Union (IoU), with 30% minimum overlap to pro-
duce a list of possible matches of the predictions. For each ground
truth event, a single best match is selected by applying the Hopcroft-
Karp-Karzanov algorithm for bipartite graph matching.

In a SED task we can define True Positives (TP) as predicted
events that match ground truth events, False Positives (FP) as pre-
dicted events that do not match any ground truth events, and False
Negatives (FN) as ground truth events that are not predicted. In
this task, ground truth events consist of POS events of the class and
UNK events that have some uncertainty associated to the assigned
class. The procedure we employ is:

1. Apply IoU and bipartite graph matching between predicted
events and ground truth POS events only, resulting in TP.

2. Apply IoU and bipartite graph matching between remaining
predicted events, that did not match with any POS event, and
ground truth UNK events only.

3. Compute FP as the number of predicted events that were not
matched to either POS or UNK events.

4. Compute FN as the number of POS ground truth events that
were not matched by any predicted event.

This is applied to each dataset in the evaluation set where we com-
pute the F-score metric. The reported results are the harmonic mean
over all the datasets, which is appropriate for combining percentage
results, and ensures that a system should perform well across all
datasets to achieve a strong score.

4.1. Results

DCASE 2021 task 5 had 7 teams participating with a total of
24 submitted systems. F-score results per team are presented in
Table 2. All submitted systems adopted prototypical networks.
Data augmentation was applied by the majority of the teams with
SpecAugment[27] being the most popular choice. All systems rely
on some sort of post-processing mechanism designed to removing
superfluous predictions and many teams report important improve-
ments in results due to it. Another popular choice was using Per-
channel Energy Normalization (PCEN) [28] as acoustic features.

The best ranked system [19] improved over the baseline pro-
totypical approach by applying a transductive inference method,
where supplemental information is used to convey more representa-
tive prototypes of each category. A mutual learning framework de-
signed to make the feature extraction network more task dependent
is also adopted. The system ranked in second place [20] also im-
proved over the prototypical baseline by using additional data from
Audioset to train a ResNet for the feature extraction part. They have
also adopted embedding propagation (EP) [29], with the objective
of smoothing the decision boundaries as a way of increasing the
generalisation capabilities of the few-shot system. The third ranking
system [21], follows the same approach as the prototypical network
baseline, with the main differences being the use of data augmen-
tation and reducing the size of the network. Interestingly, although
the results in the validation set are not on par with the other systems,
this system outperforms most systems in the evaluation set.

Also of note, the work in [22] uses i-vectors as input features;
both submissions in [23] and [24], explicitly create a negative class
to model background noise and construct a negative prototype; and
in [25], the team opted for combining the prototypical loss, with
knowledge distillation and attention transfer loss.

An important observation from Table 2 is the drop in F-score
from the validation to the evaluation set for the majority of the sys-
tems. This suggests that the systems are generally dataset sensi-
tive. To highlight this aspect further, we report the F-score results
per dataset in the evaluation set. Most systems tend to have a de-
crease in performance on the DC set, comprised of dawn chorus
recordings, while perform better on ME and ML that include mainly
mammal vocalisations. This leads to the conclusion that very com-
plex environments, such as dawn chorus, need further techniques to
be employed for robust SED. Our template matching baseline im-
proved performance from the validation set to the evaluation set.
This is mainly due to template matching not being trained over spe-
cific recordings, treating each audio file as a unique task without any
knowledge about the rest of the set with performance only depends
on the templates (shots) used for cross-correlation.
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ABSTRACT

Labeling audio material to train classifiers comes with a large amount
of human labor. In this paper, we propose an active learning method for
sound event classification, where a human annotator is asked to manually
label sound segments up to a certain labeling budget. The sound event
classifier is incrementally re-trained on pseudo-labeled sound segments
and manually labeled segments. The segments to be labeled during the
active learning process are selected based on the model uncertainty of
the classifier, which we propose to estimate using Monte Carlo dropout, a
technique for Bayesian inference in neural networks. Evaluation results on
the UrbanSound8K dataset show that the proposed active learning method,
which uses pre-trained audio neural network (PANN) embeddings as input
features, outperforms two baseline methods based on medoid clustering,
especially for low labeling budgets.

Index Terms— sound event classification, active learning, Monte
Carlo dropout, self-training, transfer learning

1. INTRODUCTION

Sound event classification, being an important part of machine audition [1],
aims at differentiating between situations or events based on their
acoustic properties [2–4]. Some of its applications include acoustic
scene classification [5], environmental noise classification [6], traffic
surveillance [7], monitoring of patient health [8], wildlife sound
classification [9] and music genre classification [10]. To train a sound
event classifier, a corpus of labeled recordings is required. While recording
a sufficiently large audio corpus can be time-consuming by itself, the
subsequent manual labeling of the recordings typically requires even more
effort and is usually the bottleneck in the data preparation process.

In active learning (AL) [11,12], a human annotator is queried to man-
ually label unlabeled data during the training process. AL is usually
formulated as a process that iterates between re-training the classifier upon
receiving new labels from the annotator, and selecting unlabeled data to be
manually labeled next. For a given labeling budget, i.e. the maximum num-
ber of labels a human annotator is asked to provide within the AL process,
the aim is to maximize the accuracy of the classifier. Hence, algorithms are
typically designed to maximize the informativeness of the received labels.
In the context of sound event classification, AL has been applied to train

⇤This work was partially funded by the German Ministry of Science and
Education (BMBF) in the project KI-MUSIK4.0 - Universal microelectronic-based
sensor interface for industry 4.0.

support vector machine (SVM) classifiers [13,14], a random forest [15],
and a combination of an SVM and a nearest-neighbor classifier [16].

Rather than fitting a single or a handful of classifiers, one can
instead model a Bayesian distribution over hypotheses, e.g., using neural
networks [17–21]. In [17] it was shown that variational Bayesian inference
can be performed by training a neural network in which a dropout
layer precedes every weight layer. This technique, known as Monte
Carlo (MC) dropout, allows to sample hypotheses from an approximate
Bayesian posterior by means of sampling dropout masks. Although MC
dropout has been successfully employed to improve informativeness
estimates in AL [22, 23], to the best of our knowledge it has not yet
been applied to sound event classification. Our proposed method, MC
dropout active learning (DAL), combines AL, self-training by generating
pseudo-labels for unlabeled sound segments, and transfer learning by
using pre-trained audio neural network (PANN) embeddings [24] as input
features. Evaluation results on the UrbanSound8k dataset [25] show that
the proposed DAL method yields a larger classification accuracy than
two baseline methods, especially for low labeling budgets.

In Section 2, we formalize the underlying active learning problem. Base-
line AL methods based on medoid clustering are described in Section 3.
Section 4 describes the proposed MC dropout AL method. In Section 5,
the evaluation procedure and the experimental results are presented.

2. PROBLEM DEFINITION

Given is a labeling budget N , a set of sound event classes C, and a
partially labeled set of sound segments, where each segment contains
sound events from exactly one class c in C. The ith segment is represented
by its corresponding feature vector xi. We define the unlabeled set
SU = {xi}, containing feature vectors xi of unlabeled segments, and
the (manually) labeled set SL={(xi,li)}, containing tuples of feature
vectors xi and labels li of labeled segments. Each label corresponds to
exactly one class in C. In the following, we use the term “segment” to
refer to the feature vector corresponding to a segment.

The goal is to fit a classifier that predicts the class label l̂ of any segment
x as accurately as possible. To train the classifier, we have access to the
sets SU and SL, and we are allowed to request labels for up to N�|SL|
unlabeled segments, with |SL| the cardinality of SL. The choice of the
unlabeled segments that are labeled within the AL process may have a
large impact on the resulting classifier’s accuracy.
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3. BASELINE METHODS

In this section we briefly review the medoid active learning (MAL)
method for sound event classification proposed in [14] and a modified
version using PANN embeddings [24], referred to as MAL-PANN.

In MAL, a fully unlabeled set of segments is first split into small
clusters using k-medoid clustering. The inter-segment distance metric used
for clustering is based on segment-wide statistics of mel frequency cepstral
coefficients (MFCCs) and their first- and second-order time derivatives.
Specifically, for each MFCC and each time derivative, a normal distribu-
tion is fitted, and the distance between segments is computed based on the
Kullback-Leibler divergence between the respective normal distributions.
Starting from the largest cluster, medoids are then selected for labeling,
where a medoid’s label is propagated to other segments in the respective
cluster. Once the number of labeled medoids matches the labeling budget
N , an SVM classifier is fitted on both manually assigned as well as prop-
agated labels. Acoustic features used for training the SVM are minimum,
maximum, median, mean, variance, skewness, kurtosis of MFCCs as
well as mean and variance of the first- and second-order time derivatives.

MAL-PANN is our modification of the MAL method, where we
replace the MFCC-based features with the recently proposed PANN em-
beddings [24], i.e. the activations in the penultimate layer of the CNN-14
model that was trained on the AudioSet dataset [26]. Employing these
pre-trained features instead of the original arbitrarily chosen features makes
for a more fair benchmark to compare the DAL method (see Section 4)
against. The inter-segment distance metric s(x1,x2) in MAL-PANN is
based on the cosine similarity between PANN embeddings x1 and x2, i.e.

s(x1,x2)=1� xT
1 x2

||x1||·||x2||
, (1)

where (·)T denotes transpose, and ||·|| denotes the L2-norm of a vector.

4. MONTE-CARLO DROPOUT ACTIVE LEARNING (DAL)

Instead of only fitting the classifier once the labeling budget is depleted
(as in MAL), in the proposed DAL method the classifier is incrementally
re-trained during the AL process. To enhance the training process, self-
training is applied to generate pseudo-labels for unlabeled segments, which
act as additional training targets for the classifier. Furthermore, the selec-
tion of segments to be manually labeled is based on a so-called acquisition
function, which estimates the informativeness of labeling a segment. The
acquisition function employed is based on model uncertainty, i.e. on the dis-
agreement between individual hypotheses in a Bayesian posterior. To draw
hypotheses from the posterior, and to measure the disagreement between
their predictions, we propose to employ Monte Carlo dropout. To this end,
the classifier is designed as a neural network that contains a dropout layer
followed by a dense layer. Section 4.1 describes the architecture of the neu-
ral network classifier. In Section 4.2 the proposed iterative AL algorithm is
presented, where the classifier is incrementally re-trained on each iteration.

4.1. Classifier

Figure 1 depicts the architecture of the neural network classifier, which
maps a 2048-dimensional PANN embedding x of a sound segment to the
respective class. The neural network consists of a dense layer preceded by
a dropout layer with 50% dropout probability, and followed by a softmax
layer. The dropout layer is kept in stochastic mode both during training
and during inference.

A single forward pass through the network results in the class probabil-
ity distribution P(c|x,d) where d is the randomly sampled dropout mask.
This output can be interpreted as the prediction of a hypothesis about the

2048-dimensional PANN embedding x

dropout (0.5 probability), mask d

dense (2048! |C|)

softmax

class probability distribution P(c|x,d)

Figure 1: Neural network used in DAL for sound segment classification.

class distribution associated with the segment x. The posterior distribution
over classes P(c|x) can be computed via a Monte Carlo estimate by sam-
pling multiple dropout masks and averaging the individual outputs [17], i.e.

P(c|x)= 1
|D|

X

d2D

P(c|x,d), (2)

where D denotes the set of sampled dropout masks. The number of
sampled dropout masks |D| is a parameter of DAL.

The classifier’s predicted label for segment x corresponds to the class
with the highest predicted probability, i.e.

l̂(x)=argmax
c2C

P(c|x). (3)

4.2. Iterative active learning algorithm

In addition to the unlabeled set SU and the (manually) labeled set SL,
DAL maintains a set SP of pseudo-labeled [27] sound segments, which
act as additional training targets for the classifier. The AL process starts
with an initialization stage, and then iterates between stage I and stage II
until the labeling budget N is depleted.

4.2.1. Initialization stage

DAL requires an initial set of labeled segments, on which the classifier is
trained by minimizing the cross-entropy loss for a fixed number of gradient
descent steps. The initial labeled set counts toward the labeling budget N .

4.2.2. Stage I: scanning SU and generating SP

For each unlabeled sound segment x2SU , the confidence of the classifier
is defined as as the highest class probability P (̂l(x)|x). If the confidence
is larger than a certain threshold ⇥, the tuple (x,̂l(x)) is copied into the
pseudo-labeled set

SP ={(x,̂l(x))|x2SU ;P (̂l(x)|x)>⇥}, (4)

whereby the confidence threshold ⇥ is a parameter of DAL. Setting ⇥=1
corresponds to turning off pseudo-labeling, whereas ⇥=0 corresponds
to assigning pseudo-labels to all unlabeled segments. It should be noted
that SP is generated anew in each iteration.

In addition, to estimate the informativeness of labeling a segment, for
each unlabeled segment x 2 SU we compute the acquisition function
value [22,28]. For that, each hypothesis sampled via MC dropout produces
a single vote in favor of one class, resulting in the so-called vote distribution

P̃(c|x)= 1
|D|

X

d2D

�c,vote(x,d), (5)
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with � the Kronecker-delta and

vote(x,d)=argmax
c2C

P(c|x,d) (6)

the class with the highest predicted probability when using the dropout
mask d. As acquisition function we use the vote entropy [29], i.e. the
entropy of the vote distribution P̃(c|x), i.e.

HP̃ (x)=�
X

c2C

P̃(c|x)·logP̃(c|x). (7)

The acquisition function thus captures the model uncertainty, i.e. the degree
of disagreement between predictions of the individual hypotheses. The
unlabeled segment with the highest vote entropy HP̃ is then presented to
the annotator, removed from the unlabeled set SU and added to the labeled
set SL along with the corresponding label. Each acquired label counts
toward the labeling budget. It should be noted that in the first T0 iterations
no manual labels are requested, enabling the classifier to train on labeled
and pseudo-labeled segments, without consuming the labeling budget.

4.2.3. Stage II: re-training the classifier

The classifier is re-trained on labeled segments in SL and pseudo-labeled
segments in SP by minimizing the cross-entropy loss. Segments are sam-
pled into minibatches such that a minibatch contains the same number B
of segments for each class. It is well known that unconstrained training on
pseudo-labeled data degrades model performance due to self-amplifying
classification errors in the training dataset [30]. Hence, to reduce the
impact of pseudo-labeled segments, for each class c we draw BL,c

labeled and BP,c pseudo-labeled segments into a minibatch such that

BP,c=

�
↵B

|SP,c|
|SL,c|+↵|SP,c|

⌫
, (8)

BL,c=B�BP,c, (9)

where |SL,c| and |SP,c| denote the number of labeled and pseudo-labeled
segments belonging to class c, and ↵ is a parameter of DAL. This
effectively makes the chance of a pseudo-labeled segment to be drawn into
the minibatch ↵

�1 times smaller than the chance of a labeled segment.
Setting ↵=0 prevents pseudo-labeled segments to be used for training,
whereas for ↵=1 pseudo-labeled and labeled segments attain the same
weight. Minibatch sampling and gradient descent are repeated a fixed
number of times.

5. EVALUATION

In this section we evaluate the performance of the proposed DAL method
and compare it with the baseline methods (MAL, MAL-PANN).

After presenting the used dataset and the performance metrics in
Section 5.1, the default parameter values for DAL are discussed in
Section 5.2. The experimental results are presented in Section 5.3.

5.1. Dataset and performance metrics

The performance of the considered AL methods is evaluated on the
UrbanSound8K dataset [25], an environmental dataset containing 8732
short sound segments (up to 4 seconds). Each segment is weakly labeled
with one of the following 10 classes: air conditioner, car horn, children
playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren,
and street music.

In the experiments, DAL is initialized with a labeled set SL (see
Section 4.2.1) which contains 3 randomly chosen segments for every

class, i.e. 30 labeled segments in total. Manual labeling is simulated by
revealing the ground truth label to an AL algorithm.

We assess the performance of an AL algorithm by means of the
classification accuracy for different labeling budgets evaluated on the test
split via 10-fold cross-validation. The accuracy is evaluated as the macro-
averaged recall [31], which computes the percentage of correctly predicted
ground-truth labels for each class, and averages these percentages over
all classes. Depending on the computational cost of an experiment, we
either conducted one or 10 experimental trials, i.e. repeated the experiment
10 times. For each experiment, 80% confidence intervals for the macro-
averaged recall were computed using the bootstrap method. For the case of
one experimental trial we treated each fold in the 10-fold cross-validation
as an individual experiment when computing confidence intervals.

5.2. Default parameters

Table 1 summarizes default parameter values of the DAL method that
were used in the experiments described in Section 5.3.

parameter value
pseudo-labeling

confidence threshold ⇥ in (4) 0.5
sampling weight ↵ in (8)
of pseudo-labeled segments 0.01

number T0 of initial iterations
without new acquisition 3

Monte Carlo dropout
number of sampled dropout
masks |D| in (2) and (5) 128

optimization
per-class minibatch size B in (8) 256
number of gradient
descents per iteration 40 (1600 at initialization)

optimizer Adam
learning rate 1e�3
weight decay 1e�3

Table 1: Parameter values for the DAL method.

5.3. Results

In Sections 5.3.1 and 5.3.2 we investigate the performance of the proposed
DAL method while variating two important parameters: the confidence
threshold ⇥ and the sampling weight ↵. It is worth noting that whenever
one parameter was variated, the other was set to its default value (cf. Ta-
ble 1). For the default values of all parameters as in Table 1, we then com-
pare the performance of DAL with the baseline methods in Section 5.3.3.

5.3.1. DAL performance sensitivity to ⇥

As discussed in Section 4.2, using pseudo-labels to train the classifier is an
important aspect of DAL. Since the assignment of an unlabeled segment
in the pseudo-labeled set SP depends on the confidence threshold ⇥
in (4), it is important to understand the impact of this parameter on the
overall performance.

Figure 2 depicts the performance of DAL for different values of the
confidence threshold⇥ for labeling budgets between 30 and 130. Studying
and optimizing the performance for low labeling budgets is especially
relevant for real-world applications. Results suggest that the best perfor-
mance is achieved for a moderate value around ⇥=0.5. As discussed
in Section 4.2.2, setting ⇥ = 1 corresponds to effectively turning off
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Figure 2: Macro-recall R over labeling budget N for different values
of the confidence threshold ⇥ for assigning pseudo-labels in DAL.
Confidence intervals are computed from 10 experimental trials.

Figure 3: Macro-recall R over labeling budget N for different values of
the sampling weight ↵ of pseudo-labeled segments in DAL. Confidence
intervals are computed from 10 experimental trials.

pseudo-labeling, resulting in worse performance, since DAL cannot benefit
from unlabeled segments in this case. On the other hand, pseudo-labeling
all unlabeled segments (⇥ = 0) also yields suboptimal performance,
because segments are more likely to be assigned an incorrect pseudo-label.

5.3.2. DAL performance sensitivity to ↵

The impact of pseudo-labeled segments on the training depends on the
value of ↵ in (8), which regulates the amount of pseudo-labeled segments
in a minibatch. Figure 3 depicts the performance of DAL for different
values of ↵ for labeling budget is between 30 and 130. It is evident that
setting ↵= 0 results in a suboptimal performance, since this prevents
pseudo-labeled segments from appearing in a minibatch, as discussed
in Section 4.2.3. In the case ↵=1 pseudo-labeled segments attain the
same weight as labeled segments, which is known to degrade model
accuracy due to mislabeled segments in the training dataset [23, 30].
In our experiments the value ↵=0.01 seemed to perform well, i.e. a
pseudo-labeled segment is 100 times less likely to be drawn into a
minibatch than a labeled segment with the same label. Given the large
imbalance of data in favor of unlabeled segments it is reasonable that the
sampling weight ↵ of pseudo-labeled segments should be chosen small.

Figure 4: Macro-recall R over labeling budget N for baseline methods
(MAL, MAL-PANN) and the proposed method (DAL). The confidence
intervals for DAL are computed from 1 experimental trial whereby each
cross-validation split is treated as an individual experiment. MAL and
MAL-PANN are deterministic algorithms and their performance can be
computed exactly.

5.3.3. Performance of DAL vs baseline methods

Using ⇥=0.5 and ↵=0.01 determined in the previous experiments,
Figure 4 depicts the performance of DAL against the labeling budget,
now ranging from 30 to 7000. This figure also depicts the performance
of the baseline methods (MAL, MAL-PANN).

First, it can be observed that simply switching from MFCC-based fea-
tures as originally proposed in [14] to PANN embeddings greatly improves
MAL performance, increasing the macro-recall for N=7000 labels from
about 65% (MAL) to about 85% (MAL-PANN). Second, we see that
the proposed DAL method outperforms MAL for all considered labeling
budgets and outperforms MAL-PANN (using the same features as DAL)
for low labeling budgets (below 300), which is most relevant in practice.

6. CONCLUSION

In this paper, we proposed an active learning method for classifying sound
segments that makes an efficient use of manual labels. The label-efficiency
is established by a combination of active learning, self-training on pseudo-
labels and transfer learning by means of using pre-trained embeddings.

The self-training aspect of DAL has a considerable influence on the
classifier’s accuracy. This is reflected in the performance sensitivity of
DAL to the parameters controlling the pseudo-labeling policy and the
pseudo-label weighting.

We have shown that the performance of the benchmark method, MAL,
considerably improves when employing the same pre-trained PANN
embeddings as in DAL, leading to a similar classification accuracy for
larger labeling budgets. This indicates the importance of transfer learning
that was applied in DAL.

In the experiments, the proposed method, DAL, outperforms
benchmark methods especially for low labeling budgets.

In principle, DAL could be extended to the problem of multi-tagging,
where a sound segment may have multiple class labels; this is a potential
subject of future research. Furhtermore, a more complex strategy for
assigning pseudo-labels could use adaptive confidence thresholds for each
class to account for class imbalance.

The ability to perform approximate Bayesian inference via Monte Carlo
dropout enables us to leverage model uncertainty and incorporate it into
the AL process. Whether or not the employed acquisition function, vote
entropy, is the best way of doing so, remains yet another open question.
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ABSTRACT

Sound scene in real environment is generally composed of differ-
ent types of sound events meanwhile the time-frequency scales of
these events are diverse. Thus, it is important to design a proper
mechanism to extract the multi-scale features for sound event de-
tection (SED). In order to improve the discriminative ability of dif-
ferent types of sound events, we propose a multi-scale SED network
based on split attention. We design a Multi-scale (MS) module to
extract the fine-grained and the coarse-level features in parallel. A
Channel Shuffle (CS) operation is introduced to enhance the cross-
channel information communication among the features with dif-
ferent scales. Also, a Split Attention (SA) module is designed to
learn several sub-features separately and an attention mechanism
is followed to generate the corresponding importance coefficients
for each sub-features. Experiments on DCASE2021 Task4 dataset
demonstrate the effectiveness of our proposed multi-scale network.

Index Terms— sound event detection, multi-scale, channel
shuffle, split attention

1. INTRODUCTION

The purpose of sound event detection (SED) is to identify the cate-
gories of sound events and detect the onset and offset of the target
events in an audio sequence. Unlike audio classification task that
it only needs to determine the event categories, detection task also
needs to predict the temporal position of occurring events. Thus,
SED is a more difficult task. SED has drawn great attention recently
in a variety of applications, such as surveillance [1], smart cities
and homes [2], [3], as well as multimedia information retrieval [4].
There are three kinds of learning approaches in SED: fully super-
vised SED, weakly supervised SED and semi-supervised SED. Fol-
lowing the baseline of DCASE2021 Task4 , this paper only focuses
on semi-supervised SED based on mean teacher method [5].

Real-life SED is challenging since different sound events ex-
hibit different time-frequency properties. For example, "Dog" and
"Dishes" last shorter while "Running water" and "Blender" last
longer in the time domain and cover a wider frequency range. If
the model performs on a single resolution, it’s hard to deal with the
different types of sound events. Thus, how to obtain the multi-scale
features and integrate the features with inconsistent scales is a key
point in SED.

Multi-scale mechanism has drawn great attention in SED task.
Zhang et al. [6] proposed Multi-Scale Time-Frequency Attention

⇤equal contribution with Xiujuan Zhu

module to extract the information at multiple resolutions. Ding et
al. [7] further proposed an multi-scale detection method based on
Hourglass network. The mechanism of Feature pyramid [8] has
proved to be useful to obtain multi-resolution features in SED [9]
, [10]. Another way to get multi-scale features is to use dilated
convolution. Li et al. [11] proposed a dilated convolution recurrent
neural network (CRNN) to verify the effectiveness of different di-
lation rates in convolution layers. Drossos et al. [12] proposed to
use dilated convolution instead of GRU to capture long temporal
context. Different from the above mentioned methods, in this pa-
per, the multi-scale is only reflected from the convolution kernels
of different sizes, it is a relatively simple structure. Su et al. [13]
proposed a channel shuffle module to promote cross-channel in-
formation communication between the high-level and low-level in-
formation. Zhang et al. [14] proposed the ResNeSt based on the
split-attention and proved its effectiveness. The group learning
mechanism in split-attention ensures the network only to learn sub-
features in adjacent channels. Wang et al. [15] also showed that the
channel features are mainly related to their adjacent channel fea-
tures while little related to the remote channel features.

Inspired the above related works, we propose a multi-scale
SED network based on split attention. The multi-scale module ex-
ploits convolution kernels of different sizes to learn the multi-scale
features in parallel, which improves its ability to recognize sound
events. Motivated by [13], the channel shuffle operation is adopted
to enable the cross-channel information flowing among the features
with different scales. Inspired by ResNeSt [14], we adopt split at-
tention module based on group convolution to separately learn sub-
features and also generate attention weights to re-weight these sub-
features.

This paper is organized as follows. We introduce the proposed
SED network in Section 2 , describe the dataset and evaluation met-
rics in Section 3 , analyze the experimental results in Section 4 , and
conclude the paper in Section 5 .

2. PROPOSED METHOD

In this section, we firstly present the overall network structure. Then
we separately introduce the proposed multi-scale module, channel
shuffle operation and split attention module.

2.1. Network Architecture

As illustrated in Figure 1 , the proposed network adopts CRNN as
the backbone architecture. It mainly consists of three parts: multi-
scale feature extraction part, bi-directional GRU (Bi-GRU) and lo-

155



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

M
S 

m
od

ul
e

B
N

R
eL

U

B
N

R
eL

U

M
S 

m
od

ul
e

C
on

v1
x1

R
eL

U

M
S 

m
od

ul
e

B
N

R
eL

U

R
eL

U

C
on

v1
x1

M
S 

m
od

ul
e

B
N

R
eL

U

R
eL

U

Po
ol

in
g

R
es

id
ua

l b
lo

ck

...

Log-mel 
Spectrogram

Po
ol

in
g

R
es

id
ua

l b
lo

ck
 

...

Localization

X 3X 3 X 3X 3

AT

Dense Layer

LinearSoftmax

Sigmoid

SED

Multi-scale Feature Extraction

R
es

id
ua

l b
lo

ck
 

Po
ol

in
g

R
es

id
ua

l b
lo

ck
 

Po
ol

in
g

X 1X 1

GRU

GRUGRU

GRU

GRU

GRU

GRU

Figure 1: The overall architecture of the Multi-scale network based on Split Attention.

calization parts. The multi-scale feature extraction part is based on
7 residual blocks, each block followed by a pooling layer. In the
first one and the last three residual blocks, each of them consists
of one multi-scale (MS) module shown in Figure 2, and in the mid
three residual blocks, each of them consists of two MS modules.
Then a Bi-GRU is used to capture temporal information. The local-
ization part produces frame-level predictions for SED and clip-level
predictions for audio tagging (AT). Note that linear softmax [16] is
introduced as an aggregation function to produce the clip-level pre-
dictions.

2.2. Multi-scale Module

In order to effectively model time-frequency context information,
the multi-scale module exploits convolution kernels of different
sizes to extract the features of different scales.

As shown in Figure 2 , where a three-branch case is shown, each
branch used to learn one single-scale feature map . Thus, multi-
scale module can process the input feature at multiple scales in par-
allel. For a given feature map X2 RC⇥H⇥W , it firstly undergoes
three kinds of scale transformations based on different kernel sizes
ki, thus [X1, X2, X3] are obtained. Xi2 RC⇥H⇥W represents a
specific scale feature can be generated as:

Xi = SA(X, ki), i = 1, 2, 3 (1)

where SA denotes split attention module that is going to be de-
scribed in details in Section 2.4 . ki denotes the kernel size
used in SA module. Then a pre-processed multi-scale feature
F

02 R3C⇥H⇥W is obtained by concatenating the multi-scale fea-
tures Xi:

F
0 = Concat([X1, X2, X3]) (2)

where Concat means the concatenation operation along the channel
dimension.

In order to help the network learn a better multi-scale feature, a
channel shuffle operation is applied to F

0 that it improves the infor-
mation flowing among the features with different scales. A convo-
lution layer with the kernel size of 1 ⇥ 1 is followed to change the
channel numbers of output features. Thus, the final output features
F 2 RC⇥H⇥W can be obtained by:

F = Conv1⇥ 1(CS(F 0)) (3)

Concat
Channel  
Shuffle

X2X2

X1

X3

Conv1x1

X FF’

SA k3 =7x7=7x7SA k3 =7x7SA k2 =5x5=5x5SA k2 =5x5SA  =3x3k1SA  =3x3k1 SA k3 =7x7SA k2 =5x5SA  =3x3k1

Concat
Channel  
Shuffle

X2

X1

X3

Conv1x1

X FF’

SA k3 =7x7SA k2 =5x5SA  =3x3k1

Figure 2: Illustration of our proposed multi-scale (MS) module. SA
denotes split attention module.

Where CS denotes channel shuffle operation.

2.3. Channel Shuffle operation

In [17], channel shuffle operation can be used to improve the in-
formation flowing among the feature within different groups. In
this paper, channel shuffle operation aims to enhance the cross-
channel information communication among the features with differ-
ent scales. A channel shuffle operation can be modeled as a process
composed of “Reshape-Transpose-Reshape” operations. As shown
in Figure 2 , the channel dimension of F

0 is reshaped to (g, c),
where g is the number of groups, c = 3C/g. The channel di-
mension is further reshaped to (c, g) and then flatten back to 3C.
Through this operation, the channel information among different
features can interact with each other.

2.4. Split Attention Module

As shown in Figure 3 , inspired by group convolution (GN) [18],
SA module firstly adopts group convolution to learn different sub-
features, which represent diverse semantic features such as different
sound event patterns. Then, in order to measure the importance of
different sub-features, a set of attention weights Wi corresponding
to each sub-features are generated. This process can be abstracted
into two parts: Group, Attention.
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Figure 3: Illustration of the proposed split attention (SA) module. Blue arrow denotes group convolution operation, red arrow split operation
along the channel dimension

Group: Assuming an input feature map X2 RC⇥H⇥W , we
firstly adopt the group convolution to learn g sub-features in dif-
ferent groups separately. As a result, the C-channel feature map
X is expanded into the rC-channel feature map X

02 RrC⇥H⇥W .
Then the expanded feature map X

0 is split into r branches along
the channel dimension that represented as [X1, ..., Xi..., Xr]. Xi2
RC⇥H⇥W . i✏1, 2, ..., r. The number of group g and branch r will
be discussed in the experiment.

Attention: Multiple sub-features [X1, ..., Xi..., Xr] are firstly
fused via an element-wise summation U =

P
r

i=1Xi. Then, global
average pooling is calculated to squeeze the fused feature U into a
channel-wise statistics S2 RC⇥1⇥1:

S =
1

H ⇥W

HX

i=1

WX

j=1

U(i0, j0) (4)

Then, a simple attention mechanism with a Softmax function
is performed on the channel-wise statistics S. The attention weight
W2 RrC⇥1⇥1 can be obtained by:

W = r � Softmax((Conv(�(BN(Conv(S))))) (5)

Where � means the ReLU activation function, BN the batch normal-
ization, Conv the group convolution with the kernel size of 1 ⇥ 1
and group number is g. The attention weight W2 RrC⇥1⇥1 is then
splitted into a set of attention weights Wi2 RC⇥1⇥1.

Finally, by applying the weights Wi to the sub-features Xi, the
output feature map of SA module Z 2 RC⇥H⇥W is obtained by:

Z =
rX

i=1

Si ⇥Xi (6)

3. EXPERIMENTS

3.1. Dataset and Experimental setup

The audio samples in the DCASE2021 Task4 dataset are 10s clips
recorded in domestic environment or synthesized to simulate a do-
mestic environment. It contains 10 kinds of sound events. Three
types data (i.e. the weakly labeled data (1578), unlabeled data
(11412) and strong labeled data (10000)) are used for training. The
ratio among them is 1:2:1 in each batch. The performance of the
proposed method is evaluated on the validation data (1168).

Following the default experiment settings of DCASE2021
Task4 baseline, we also take the log-mel energies as input extracted
with 128 mel-scale filters. The window length is 2048 with the hop
size of 256. The audio is resampled to 16kHz. The training is set
for 200 epochs using the Adam optimizer with an initial learning
rate of 0.001. A learning rate exponential warmup [19] during the
first 50 epochs is used. A detection threshold is fixed to 0.5 for
each class. The binary SED predictions are further processed with
a 7 frames median filter. For the 7 residual blocks in multi-scale
extraction part, the number of channels for each residual block is
[16, 32, 64, 128, 128, 128, 128], respectively and the pooling size
is [[1, 2], [1, 2], [2, 2], [2, 2], [1, 2], [1, 2], [1, 2]], respectively.
The dropout rate is 0.3. Note that due to the continuous pooling
operation along the frequency dimension, its receptive field along
the frequency dimension keeps increasing. Thus, in the last three
residual blocks, the kernel sizes used in MS module are set to [[3,
3], [5, 3], [7,3]], that is the kernel sizes used in time dimension keep
different values, while in frequency dimension the same.

3.2. Loss Function

The loss function for training the model is a sum of four loss compo-
nents: two binary cross entropy (BCE) losses for supervised train-
ing and two mean square error (MSE) losses for consistency train-
ing, which are combined as follows:

L(✓) =LBCE(swout, lw) + �(�)LMSE(swout, twout)

LBCE(ssout, ls) + �(�)LMSE(ssout, tsout)
(7)

Where swout, ssout denote the AT output and SED output of the
student model, respectively, twout, tsout the AT output and SED
output of the teacher model, lw and ls the weakly label and strong
label of the labeled data.

3.3. Evaluation metrics

In DCASE2021 Task4, the evaluation metrics include PSDS-
scenario1 (PSDS1), PSDS-scenario2 (PSDS2), Intersection-based
F1 (IB-F1) and Collar-based F1 (CB-F1). The PSDS1 measures
the model’s capability of detecting the onset and offset of the event
within an audio clip, and the PSDS2 measures that of avoiding con-
fusion among the event classes. More details about PSDS evalua-
tion metrics can refer to [20]. IB-F1 and CB-F1 are used as sup-
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Table 1: Ablation experiments on multi-scale (MS) mechanism with
different kernel sizes. We adopt vanilla convolution instead of SA
module in MS module of all residual block in this experiment.

Network PSDS1 PSDS2 IB-F1(%) CB-F1(%) Parameter

Base-2021 0.342 0.527 76.60 40.10 1.1M

MS-K=[3] 0.358 0.599 81.88 44.48 1.2M

MS-K=[3,5] 0.349 0.602 83.24 44.13 3.0M

MS-K=[3,5,7] 0.336 0.601 83.50 42.21 5.7M

Table 2: Ablation experiments on channel shuffle (CS) operation
based on MS-K=[3,5] system. CS-g denotes the channel shuffle
operation with g groups. g controls the fusion degree of features.

Network PSDS1 PSDS2 IB-F1 (%) CB-F1 (%)

MS-K=[3, 5] 0.349 0.602 83.20 44.13

+ CS-g=2 0.349 0.594 82.83 43.58

+ CS-g=4 0.358 0.606 82.98 45.36

plementary evaluation metrics to validate a model’s performance in
SED. For all these metrics, the value larger, the performance better.

4. RESULTS AND ANALYSIS

We separately investigate the contribution of each component to the
overall network, including the multi-scale mechanism with different
kernel sizes, the channel shuffle operation and the split attention
module. All experiments are repeated 4 times and the average result
of these experiments is reported.

Evaluations of MS mechanism
Table 1 shows the SED performance of the MS mechanism with

difference kernel sizes. MS-K=[3] means there is only one branch
with the kernel size of 3⇥3 in MS module, and MS-K=[3, 5] de-
notes there is two branches with the kernel sizes of 3⇥3 and 5⇥5.
MS-K=[3, 5, 7] means exactly the processing depicted in Figure 2
but no channel shuffle operation. Experimental results show that
our proposed MS network outperform the baseline of DCASE2021
Task4 [21] in terms of four evaluation metrics, demonstrating the ef-
fectiveness of the multi-scale mechanism for SED. However, com-
pared with MS-K=[3], the performance of network applying two
types of convolution kernels (MS-K=[3, 5]) or three types of con-
volution kernels (MS-K=[3, 5, 7]) has barely improved. The reason
for this phenomenon may be that the network does not handle the
features of different scales well.

Evaluations of CS operation
Table 2 lists the results of our proposed network with channel

shuffle operation. In particular, compared with the network with-
out CS operation denoted as MS-K=[3,5], the network applying CS
operation with 4 groups achieve a better performance in terms of
all evaluation metrics except IB-F1. This result demonstrates the
effectiveness of channel shuffle operation.

Evaluations of SA module
Table 3 lists the results of network applied SA module. In this

experiment, we only adopt vanilla convolution in MS module of

Table 3: Ablation experiments on split attention (SA) module based
on MS-K=[3,5] system. SA(g, r) means the number of group is g,
splitted sub-feaatures r in shuffle attention module.

Network PSDS1 PSDS2 IB-F1(%) CB-F1(%) Parameter

MS-K=[3, 5] 0.349 0.602 83.24 44.13 3.0M

+ SA(1, 1) 0.354 0.598 84.59 47.99 3.2M

+ SA(1, 2) 0.350 0.602 84.40 46.64 5.5M

+ SA(2, 1) 0.367 0.606 83.80 48.59 1.9M

+ SA(2, 2) 0.376 0.599 83.63 49.02 3.3M

+ CS-g=4 0.373 0.602 83.98 50.28 3.3M

the 1-th residual block, while SA module in MS module of the rest
residual blocks. Compared with the results of first row, we can see
that the network with split attention module achieves significantly
improvement in terms of all evaluation metrics expect PSDS2 met-
ric. The results demonstrate the effectiveness of SA module for
SED. However, Table 3 shows that three are no significant differ-
ence among networks with different SA module on PSDS2 and IB-
F1 metrics. Compared with the results between the second and
fourth row or the third fifth row, we can see that the network ap-
plying group convolution with 2 group can achieve a better perfor-
mance on PSDS1 and CB-F1 metrics than without applying group
operation. This manifests that adopting group operation to learn
sub-features is effective. Compared with the results between the
fourth and fifth row, we can find that the performance of network
splitting 2 sub-features (r=2) is better than without splitting opera-
tion in SA module. This indicates that generating attention weights
to treat the learned sub-features differently is important. From the
results of the last row, the performance of network applying chan-
nel shuffle get further improvements in terms of four metrics except
PSDS1. It also shows the effectiveness of CS operation.

5. CONCLUSION

In this paper, we propose a multi-scale SED network based on split
attention that it can deal with the short- or long- duration sound
events. Multi-scale module can learn features with multiple scales
in parallel. Specifically, channel shuffle operation is used to pro-
mote the cross-channel information flowing among the features
with different scales. Split attention module can learn the differ-
ent sub-features separately and generate attention used to weight
the importance of sub-features. A set of experiments are conducted
to verify their effective. The final results of the proposed network
outperform the baseline of DCASE2021 Task4 significantly. In our
future work, we would like to explore the issue that how to deal
with the features with different scales in SED.
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ABSTRACT

This paper details our work towards leveraging state-of-the-art ASR
techniques for the task of automated audio captioning. Our model
architecture comprises of a convolution-augmented Transformer
(Conformer) encoder and a Transformer decoder to generate nat-
ural language descriptions of acoustic signals in an end-to-end
manner. To overcome the limited availability of captioned audio
samples for model training, we incorporate the Audioset-tags and
audio-embeddings obtained from pretrained audio neural networks
(PANNs) as an auxiliary input to our model. We train our model
over audio samples from Clotho & AudioCaps datasets, and test
over Clotho dataset’s validation and evaluation splits. Experimental
results indicate that our trained models significantly outperform the
baseline system from DCASE 2021 challenge task 6.

Index Terms— Automated Audio Captioning, Conformer, ES-
PNet, PANNs

1. INTRODUCTION

Automated audio captioning was first proposed by [1] as a task of
generating descriptive captions for a give audio signal using the con-
cepts of audio processing and natural language processing. Datasets
for this task consist of audio samples mapped to at least one corre-
sponding human-generated caption [2, 3]. To generate a caption
of sufficient quality, it is essential that the training model distills
meaningful audible representations from an audio signal.

Similar to established image caption generators [4], a typi-
cal audio captioning model also comprises of an encoder-decoder
framework. The encoder computes an encoded representation of
relevant acoustic features in an input audio sample, and the decoder
outputs a sequence of tokens using the encoded representation to
form a suitable descriptive caption [1, 5]. Popular and effective
frameworks for audio captioning in literature comprise of CNN en-
coders and Transformer decoders. A 10-layer CNN encoder and a
Transformer decoder with multi-head self-attention was proposed
by [5], where the CNN encoder was first pretrained for a multi-
label classification task. To overcome the issue of limited number of
training samples, [6] used a mix-up based data augmentation to cre-
ate training samples from convex combinations of two given audio
samples and their word token embeddings. Reinforcement learning
in the form of self-critical sequence training (SCST), introduced for
image captioning [7], was also explored for audio captioning by [8]

to directly optimize the evaluation metrics (BLEU, CIDEr etc.) in-
stead of the cross-entropy loss during greedy decoding at test-time.

Our proposed method is based on state-of-the-art auto-
matic speech recognition (ASR) techniques such as convolution-
augmented Transformer (Conformer) [9] and the fusion of a lan-
guage model, incorporated in the end-to-end speech processing
toolkit ESPnet [10]. Furthermore, we utilize the pretrained audio
tagging model PANNs [11] to extract auxiliary information (e.g.,
Audioset [12] tags and embedding vector) and integrate them with
the ASR model, enabling us to generate consistent captioning re-
sults. The contributions of this paper are as follows:

• We apply an attention-based encoder-decoder with the Con-
former architecture, which allows capturing both local and
global contexts in the input sequence. We also employ the lan-
guage model trained on the captions and integrate its score with
shallow fusion, resulting in a more stable prediction.

• We also introduce a pretrained audio tagging model PANNs
to extract the auxiliary information, including Audioset tags
and embedding vectors, and then utilize them as the additional
inputs for the encoder-decoder model.

• Experimental evaluation with DCASE 2021 Task 6 dataset [13]
shows that the proposed framework significantly outperforms
the baseline system. Our best trained model shows a SPIDEr
score of 0.224 and 0.246 on the development-validation and
development-evaluation sets, respectively.

• This work expands on our DCASE2021 challenge report [14]
with detailed description of the proposed framework and key
insights into the contributions of auxiliary input features and
language model fusion.

• Towards supporting accessible and reproducible research, we
intend to release our audio captioning system and pretrained
models to the ESPNet toolkit1.

2. PROPOSED METHODOLOGY

2.1. Overview

Fig. 1 illustrates an overview of the proposed method. Similar
to other speech-related tasks, we use log-mel filterbank features
as the primary input. Data augmentation is performed over these

1https://github.com/chintu619/espnet/tree/aac_
wordtokens/egs/clotho/aac_word
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Figure 1: An overview of the proposed network architecture based on a Conformer encoder and a Transformer decoder. SpecAug based data
augmentation is performed on the log-mel filterbank features. The pretrained wavegram-logmel-CNN14 PANNs model extracts the 527-tags
vector and 2,048-embedding vector, and are fed as auxiliary inputs. Finally, a shallow fusion of decoder output and RNN-LM is performed
to generate the output caption.

primary features to improve noise robustness. In addition to the
primary input, we employ auxiliary inputs such as Audioset tags
and an embedding vector, which are extracted with the pretrained
audio tagging model PANNs [11]. Both inputs are fed into the
attention-based encoder-decoder model. Inspired by the success of
Conformer-based models for tasks like speech recognition, transla-
tion, and separation [15], our model uses a Conformer encoder for
processing these audio features and a Transformer decoder to pro-
cess words in a corresponding caption. To further improve the per-
formance, we introduce the RNN-based language model and com-
bine it with the encoder-decoder model in the decoding stage. The
following subsections describe each of the components of our pro-
posed Conformer model.

2.2. Encoder-Decoder Framework

The encoder incorporates a convolution sub-sampling layer and sev-
eral Conformer blocks, where each block consists of a first feed-
forward module (FFN), a multi-head self-attention (MHSA) mod-
ule, a convolution module and a second feed-forward module in the
aforementioned sequence. Similar to Transformer ASR models, a
residual connection is added to the output of the feed-forward mod-
ule followed by a layer normalization (LN) [16]. To regularize the
network, the module employs dropout and Swish activation [17].

The self-attention module uses relative positional encoding in
order to make the encoder robust to varying input length. This fea-
ture makes Conformer an ideal encoder for audio samples of vary-
ing length as seen in the present task. This module also employs
dropout and a residual connection to regularize the network. For
an input sequence X 2 RT⇥datt

, where T is the number of time
frames and datt is the attention dimension, the positional encod-
ing and regularization are computed according to Eq. 1. Finally the
convolution module employs a point-wise convolution, a gated lin-
ear unit (GLU) activation [18], 1-dim depth-wise convolution layer,
a batch normalization layer, Swish activation and a point-wise con-
volution. Both feed-forward modules employ a half-step scheme,
and a residual connection and dropout are again used for regular-
ization as shown in Eq. 2.

X = X+ Dropout(MHSA(LN(X))) (1)
X = X+ 0.5⇥ Dropout(FFN(LN(X))) (2)

The decoder also incorporates several Transformer blocks,
where each block consists of a multi-head self-attention layer, and

a linear layer with ReLU activation sandwiched between two layer
normalization layers.

2.3. Auxiliary Input Features

To improve the generalization ability of our model, we provide an
auxiliary input to our encoder framework, similar to the use of ro-
bust audio embeddings in speaker recognition tasks [19]. For this
purpose, we use CNN14 - one the PANNs models trained on the
large scale Audioset dataset of over 5,000 hours of audio samples
labeled with 527 audio tags. The CNN14 model is a wavegram-
logmel-CNN system trained on 32kHz audio samples using 14 con-
volution layers. The model outputs a 527-tags vector, whose each
element corresponds to the prediction of an audio tag. In addition
to this 527-tags vector, we also extract a 2,048-embedding vector
from each audio sample that is inputted to final classification layer.

The tags and/or embeddings obtained using PANNs are used as
an auxiliary input to our model. When using both the tags and em-
beddings, the two feature vectors are simply concatenated to form
a single column vector. These features are first L2 normalized and
then passed through a feed-forward layer to be projected to the same
size as that of the attention dimension. The projected features are
finally added to the output of the Conformer encoder, before being
sent as an input to the Transformer decoder.

2.4. Shallow Fusion with Language Model

We also separately train a word-token RNN language model (RNN-
LM) using the captions in the training data and integrate it with the
decoder using shallow fusion [20]. During inference, for each par-
tial hypothesis h, the decoder combines its attention scores ↵att(h)
with the look-ahead word-token scores ↵lm(h) provided by RNN-
LM according to Eq. 3, where � is a scaling factor.

↵(h) = ↵att(h) + � · ↵lm(h) (3)

3. EXPERIMENTS

3.1. Data Preparation and Pre-processing

Our proposed model takes 16 kHz audio samples as input and com-
putes 80 log-mel energies from each 64 ms frame, shifted every 32
ms. Accordingly, all the audio files in Clotho-v2 dataset were down-
sampled from 44.1 kHz to 16 kHz. The overall development split of
the Clotho-v2 dataset has 3,839 training samples, 1,045 validation
samples and 1,045 evaluation samples. Each audio sample is 15-30
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seconds long and contains 5 human generated captions with 8-20
words each. Since the Clotho-v2 dataset is relatively small to train
large neural networks, we additionally augment the training data
with roughly 46,000 single caption audio samples from the Audio-
Caps dataset [3]. Audio samples in this dataset are carefully chosen
from the 2M samples in Audioset dataset [12]. Each audio sample
is roughly 10 seconds long.

We perform input feature augmentation using SpecAug [21]
consisting of three kinds of deformations - time warping, frequency
masking and time masking. We set the maximum time warp pa-
rameter to W = 5, and randomly choose w 2 [0,W ] such that
the log-mel filterbank feature matrix is warped by w. Frequency
and time masking are based on Cutout [22] regularization technique
which masks a randomly chosen rectangular portion of the log-mel
filterbank matrix. Dimensions of the mask were chosen randomly
based on the maximum frequency and time masking parameters of
Fm = 30 and Tm = 40 respectively.

3.2. Comparison Models and Training Parameters

3.2.1. Baseline System

The DCASE 2021 challenge task 6 provided a baseline encoder-
decoder framework consisting of a 3 layer bi-directional GRU en-
coder, and a decoder with one GRU layer and one classification
layer. The input acoustic features are extracted using 64 log-mel
energies estimated over a 46ms frame, shifted every 23ms. Each
encoder and decoder GRU layer has 256 bi-directional features, and
the classification layer outputs the probability of 4637 unique words
in each decoder iteration (time-step).

3.2.2. Proposed Model

The proposed Conformer model used in our experiments has 16 en-
coder layers and 4 decoder layers, each with 1,024 units along with
4 heads, datt = 256 for attention layers and a depth-wise con-
volution with kernel size of 15. For better predictive performance
through model ensemble, we also explored several variations in the
dimensions of the proposed model. Decoding module for a model
ensemble performs posterior averaging of the attention score output
of constituent model decoders. A variation of the proposed Con-
former model was trained with smaller encoder-decoder layers hav-
ing 512 units each. Another variation was trained with a smaller
attention framework having 128-dim layers with 2 heads. Final
model variation was trained with above mentioned smaller atten-
tion framework, but with a larger kernel size of 31.

In addition to the log-mel energies, we extract a softmax vector
of 527-tags and a 2,048-embedding vector from each audio sam-
ple using the CNN14 PANNs model [11] as detailed in Section 2.3.
Each element of 527-tags vector represents the probability of a cor-
responding class-label in the Audioset ontology. All the proposed
model variations employ shallow fusion using a 2-layer RNN-LM
trained for 25 epochs with a batch-size of 64 and dropout of 0.5.
Scaling factor � for shallow fusion is set to 0.2.

3.2.3. Hyper-Parameters

During training, 64 audio-caption pairs were batched together and
trained for 50 epochs with a learning-rate of 0.5, dropout of 0.1,
cross-entropy loss function and noam optimizer [23]. To prevent ex-
ploding gradients, we set the gradient threshold to 5. Label smooth-
ing [24] was set to 0.1 to avoid high confidence training predictions.
Upon completion of training, we average the model parameters over

the final-10 epochs and this averaged model was used for inference.
During inference, beam search was performed with a beam-size of
10 and RNN-based language model weight of 0.2. We note that the
above hyper-parameters are optimized based on our prior experi-
ence in tuning ASR systems.

3.3. Evaluation Metrics

Experimental evaluation for audio captioning is conducted using
six metrics: BLEU-n [25], ROUGE-L [26], METEOR [27], CIDEr
[28], SPICE [29] and SPIDEr [30]. Precision of output captions for
1,2,3,4-grams (contiguous sequence of n words) are evaluated by
BLEU-n. F-measure between output and ground-truth captions is
estimated by ROUGE-L by estimating their longest common sub-
sequence. METEOR is a machine translation metric which com-
putes a harmonic mean of 1-gram precision and recall between out-
put and ground-truth captions. CIDEr computes the average co-
sine similarity of n-grams between output and ground-truth cap-
tions. SPICE evaluates the semantic similarity between output and
ground-truth captions by first performing lemmatisation of captions
and then computing the F-score between their scene graphs. Lem-
matisation maps all the inflected forms of a word to its root form,
and scene graphs are a semantic representation which encode the
objects, attributes and relations present in captions. SPIDEr simply
computes an average score of CIDEr and SPICE metrics.

4. RESULTS

The performance of our trained models were evaluated on both the
development-validation and development-evaluation splits and are
summarized in Table 1 and Table 2. All our proposed models out-
perform the DCASE 2021 baseline system by a significantly mar-
gin. Summarized results also show the contribution from various
components of our proposed model: encoder-decoder, self-attention
and auxiliary features.

4.1. Observations

We observe a slight degradation in performance when varying our
model’s architecture as compared to the baseline Conformer model.
However these variations help to improve the performance of a
model ensemble. Auxiliary input features of tags and embeddings
were able to improve the scores of most metrics, especially over
the development-validation split. We also observe that augmenting
the training data with the development-evaluation split was indeed
able to improve the proposed Conformer’s performance over the
development-validation split and vice-versa. Model ensemble was
also performed over various combinations of our trained models,
and was further able to increase the overall system performance.

4.2. Discussion

4.2.1. Understanding Auxiliary Features

We explore the individual contribution of extracted tags and em-
beddings towards the performance boost provided by the auxiliary
input features. Table 3 details the performance of the proposed
Conformer model when trained with only the extracted 2,048-
embeddings and 527-tags as secondary inputs. Although the ex-
tracted tags provide sufficiently good CIDEr score, using both the
tags and embeddings improves the SPICE score.

We additionally observed that the captions generated using
Conformer model with auxiliary features for 520 samples (⇠ 25%),
among the combined 2090 validation and evaluation samples, had
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Method BLEU-1,2,3,4 ROUGE-L METEOR CIDEr SPICE SPIDEr
Baseline 0.389 0.136 0.055 0.015 0.262 0.074 0.084 0.033 0.054
Conformer 0.512 0.317 0.205 0.131 0.336 0.148 0.310 0.100 0.205

smaller enc-dec 0.500 0.311 0.203 0.129 0.336 0.144 0.299 0.099 0.199
smaller attention 0.490 0.307 0.199 0.127 0.332 0.143 0.310 0.096 0.203

+ larger-kernel 0.496 0.307 0.198 0.124 0.336 0.143 0.297 0.098 0.198
+ auxiliary features 0.521 0.330 0.217 0.138 0.345 0.154 0.323 0.107 0.215
+ dev-eval split 0.515 0.321 0.207 0.131 0.340 0.149 0.314 0.101 0.208

Ensemble 0.533 0.343 0.226 0.146 0.355 0.154 0.341 0.106 0.224

Table 1: Scores of evaluation metrics for the development-validation split.

Method BLEU-1,2,3,4 ROUGE-L METEOR CIDEr SPICE SPIDEr
Baseline 0.378 0.119 0.050 0.017 0.078 0.263 0.075 0.028 0.051
Conformer 0.534 0.343 0.233 0.158 0.354 0.157 0.351 0.106 0.228

smaller enc-dec 0.524 0.331 0.219 0.144 0.356 0.153 0.329 0.103 0.216
smaller attention 0.506 0.320 0.212 0.140 0.349 0.152 0.337 0.102 0.219

+ larger-kernel 0.518 0.330 0.224 0.150 0.355 0.154 0.340 0.105 0.223
+ auxiliary features 0.536 0.341 0.225 0.146 0.357 0.160 0.346 0.108 0.227
+ dev-val split 0.541 0.346 0.231 0.152 0.356 0.161 0.362 0.110 0.236

Ensemble 0.546 0.356 0.243 0.165 0.369 0.163 0.381 0.110 0.246

Table 2: Scores of evaluation metrics for the development-evaluation split.

a SPICE score of zero. Note that SPICE score is measured over
all 5 ground-truth captions and these zero scores can imply a com-
plete semantic mismatch for a significant portion of testing samples.
Among these zero score samples, we also observe that extracted Au-
dioSet tags (auxiliary features) are sometimes match very closely
with the caption words. Consider ‘18 Little Group.wav’,
an audio sample from validation split with a ground-truth caption of
‘sea animals make strange blips, groans and other vocalizations’.
Our generated caption is ‘a cat is meowing and making noises’.
However, the top-2 AudioSet tags extracted for this audio sample
are ‘Whale vocalization’ and ‘Animal’. A potential improvement
from this analysis would be to increase the weight of projected aux-
iliary features when mixing them with the encoder output. To better
integrate the extracted tags and embeddings, it is also possible to
use an additional pretrained encoder from the PANNs model, and
fine-tune the auxiliary features during training.

Method CIDEr SPICE SPIDEr
Conformer + auxiliary input 0.323 0.107 0.215

- 527-tags 0.325 0.102 0.214
- 2048-embeddings 0.315 0.098 0.207

Conformer + auxiliary input 0.346 0.109 0.227
- 527-tags 0.346 0.104 0.225
- 2048-embeddings 0.342 0.106 0.224

Table 3: Evaluating contributions of PANNs tags and embeddings
towards model performance on development-validation split (top)
and development-evaluation split (bottom).

4.2.2. Evaluating Shallow Fusion with RNN-LM

Shallow fusion with a pretrained language model is equivalent to a
model ensemble approach where the scores of the acoustic model

and the language model are combined. Table 4 shows the perfor-
mance improvement, especially of CIDEr scores, provided by an
RNN-LM optimized on the word sequences in the training dataset.

Method CIDEr SPICE SPIDEr
Conformer 0.310 0.100 0.205

- RNN-LM 0.300 0.098 0.199

Conformer 0.351 0.106 0.228
- RNN-LM 0.344 0.105 0.225

Table 4: Evaluating contribution of RNN-LM towards model per-
formance on development-validation split (top) and development-
evaluation split (bottom).

5. CONCLUSION

This work provides a detailed description and analysis of our sub-
mission to 2021 DCASE challenge Task 6: automated audio cap-
tioning. The proposed methodology employs existing state-of-the-
art ASR techniques including Conformer-encoder, Transformer-
decoder, data augmentation, Audioset tags & embeddings as aux-
iliary inputs and shallow fusion with a pretrained RNN language
model. Our experiments qualify the ability of ASR techniques for
effective captioning of audio samples by significantly outperform-
ing the DCASE baseline system. Leveraging ASR techniques for
audio captioning opens potential research directions towards devel-
oping an integrated framework for joint modeling of ASR and cap-
tioning tasks, and will be tackled as part of our future work.
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ABSTRACT

The goal of Unsupervised Anomaly Detection (UAD) is to detect
anomalous signals under the condition that only non-anomalous
(normal) data is available beforehand. In UAD under Domain-
Shift Conditions (UAD-S), data is further exposed to contextual
changes that are usually unknown beforehand. Motivated by the
difficulties encountered in the UAD-S task presented at the 2021
edition of the Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge1, we visually inspect Uniform Mani-
fold Approximations and Projections (UMAPs) for log-STFT, log-
mel and pretrained Look, Listen and Learn (L3) representations of
the DCASE UAD-S dataset. In our exploratory investigation, we
look for two qualities, Separability (SEP) and Discriminative Sup-

port (DSUP), and formulate several hypotheses that could facilitate
diagnosis and developement of further representation and detection
approaches. Particularly, we hypothesize that input length and pre-
training may regulate a relevant tradeoff between SEP and DSUP.
Our code as well as the resulting UMAPs and plots are publicly
available2.

Index Terms— DCASE2021, Unsupervised Anomaly Detec-
tion, Domain Shift, UMAP, Interpretability

1. INTRODUCTION

The goal of Unsupervised Anomaly Detection (UAD) is to detect
anomalous instances under the condition that only non-anomalous
(i.e. normal) instances are available beforehand. This has relevance
in monitoring applications where anomalous data is hard to col-
lect whereas normal data is abundant. Unsupervised Anomaly De-
tection under Domain-Shift Conditions (UAD-S) presents an extra
challenge: both normal and anomalous data can be exposed to do-

main shifts, i.e. changes in the environment that cause an impact in
the data and are usually unknown beforehand. This can result in
false negatives, if the detector is not sensitive enough, or false posi-
tives, if the detector does not tolerate or adapt to domain shifts.
In the audio domain, UAD has attracted attention as a promis-
ing Predictive Maintenance (PdM)[1] solution for Industrial Sound
Analysis (ISA)[2]: Sound monitoring is non-invasive, is robust to
occlusions, can be carried out during production, and anomalous
sounds can signal issues long before critical faults occur. UAD-S is
a natural extension to UAD, since even in controlled environments,

1DCASE website: http://dcase.community
2Online Resources:

Code: https://github.com/andres-fr/dcase2021_umaps
Webpage: https://ai4s.surrey.ac.uk/2021/dcase_uads

new non-anomalous sources of sound can arise (e.g. due to mainte-
nance work or upgrades). Given that it is difficult or undesirable to
completely isolate the analyzed sound source from its environment,
PdM-ISA solutions must be able to detect slight deviations (includ-
ing short-duration events like clicks) while embracing stronger en-
vironmental changes.
The 2020 and 2021 editions of Detection and Classification of
Acoustic Scenes and Events (DCASE) have incorporated UAD
(2020, task 2) and UAD-S (2021, task 2) challenges. In both edi-
tions, a broad variety of approaches has been explored, but the re-
sults achieved in 2021 were significantly lower than in 2020 in terms
of numeric performance. This may indicate a higher complexity of
the 2021 task, independently of the choice of model and training
scheme. In order to gain further insights, we propose to inspect the
data distribution itself. Specifically, our proposed contributions are:

• We showcase a method for of UAD-S data exploration via
visual inspection of Uniform Manifold Approximations and
Projections (UMAPs) and assessment of 2 beneficial qualities:
Separability (SEP) and Discriminative Support (DSUP).

• We apply the proposed analysis procedure to the DCASE 2021
dataset, revealing insights on its macro- and microstructure.

• Based on the analysis and literature, we formulate a series of
verifiable hypotheses that we believe can facilitate diagnosis
and developement of further approaches.

Section 2 reviews UAD in DCASE. Section 3 describes our
methodology. Section 4 describes our experiments. Section 5
presents and discusses some results. Section 6 concludes and pro-
poses future work.

2. UAD IN DCASE

The DCASE 2020 dataset was a result of combining two recently
curated datasets (ToyAdmos[3] and MIMII[4]), each featuring 10-
second audio segments from different well-functioning devices (toy
car, valve, fan, etc). Each segment was mixed with different back-
ground sounds to simulate real environments. The devices were
then intentionally damaged/disrupted to provide anomalous data,
which was only available for validation. The proposed models
had to provide a real-valued anomaly score for each validation au-
dio segment, and their performance was evaluated by ranking the
Area Under ROC Curve (AUC) and Area Under Partial ROC Curve
(pAUC) obtained across different devices[5].
The 10 best performing submissions in 2020 applied Deep Learn-
ing (DL), treating the developement dataset as training data. Some
used different forms of data augmentation and additions from ex-
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ternal datasets such as AudioSet[6] and Fraunhofer’s IDMT-ISA-
EE dataset[2]. For inference, most submissions directly applied the
trained DL models, often via multi-task ensembles. The most popu-
lar alternative was to apply K-Nearest Neighbors (KNN) to learned
embeddings of the training set[7, 8]. Most best performing models
incorporated the information of the specific device upon training
and evaluation. An exception was [9], which treated the data for all
devices jointly. In general, a broad variety of models and training
schemes achieved scores over 90%.
The 2021 UAD-S edition also combined two datasets (MIMII
DUE[10] and ToyAdmos2[11]), extended in several aspects. Partic-
ularly, for each device, the 2021 dataset includes 7 devices, 6 sec-

tions and 2 domains, totalling 84 splits. Each device has 6 sections,
which are balanced partitions of the data for evaluation purposes.
Each section presents 2 domains: source and target, which differ
in aspects like operating speed, machine load and environmental
noise. As in 2020, the training data does not contain any anomalous
sounds. The training data is also highly imbalanced: in all sections,
only ⇠0.3% of the training samples are on the target domain. Test
data is balanced in terms of devices, splits and domains. The evalu-
ation procedure is similar to 2020, but this time an overall score is
given as the harmonic mean across all AUC and pAUC scores[12].
Out of 27 submissions for 2021, the autoencoder (AE) baseline
ranked 21st with a score of ⇠56.4% on the evaluation set. The
2021 winners[13] (⇠66.8%) propose a particularly heterogeneous
ensemble, combining different “complementary” representations,
objectives and models, rather than “relying on well-known domain

adaptation techniques”. A related concept is the contrastive loss
applied by [14], (9th place, ⇠61%). Second place was achieved
by [15] (⇠65%) with a simpler setup based on applying non-
parametric inference methods (Local Outlier Factor (LOF) and
KNN) to trained embeddings. We note that, while it was observed
that Representation Learning (RepL)-based methods generally un-
derperform reconstruction-based ones for UAD[16], this does not
seem to be the tendency here: reconstruction objectives are barely
present in the top ranks, possibly due to sensitivity to domain shifts,
and the emphasis is on representations, e.g. the importance of spec-
trogram hyperparameters noted by [13] and the implications and
effectiveness of different embeddings analyzed by [17] (3rd place,
⇠64.2%) which propose to use AdaCos[18]. An exception is [19]
(4th place, ⇠63.75%), which did propose a reconstruction-based
method that compensates domain shift conditions.
Like in 2020, a variety of DL-related approaches were adopted, but
the scores were substantially lower in the 2021 edition. Keeping
in mind the small differences in the evaluation procedure, we argue
that the emphasis on RepL-based methods, the relative success of
non-parametric inference and the difficulty directly addressing do-
main shifts via well-known techniques point at the complexity of
the task and the relevance of an adequate data representation, inde-
pendently of the choice of model and training scheme. Therefore, in
this exploratory work we propose to inspect the UAD-S data distri-
bution itself. The goal is to gain further insights in order to facilitate
diagnosis and developement of further approaches.

3. INSPECTING REPRESENTATIONS WITH UMAP

Generally, direct exploration of high-dimensional data like that en-
countered in the discussed approaches is difficult. Fortunately,
when data is organized in lower-dimensional structures it can be
possible to retain some of its structure while projecting the data onto
as few as 2 dimensions, allowing for informative visual inspection.

Figure 1: Excerpt from the device UMAP plot for pump with
annotations in black. For example, region 1 presents good SEP
and DSUP, since there is a simple boundary that clearly separates
anomalies from normals and training data, and train/normal sup-
ports test/normal. FPos stands for false positives, and FNeg for
false negatives. Each dot corresponds to 5 stacked log-mel frames.
Color shades correspond to dataset sections. Training data is shown
on both sides. Zoom to ⇠1000% for detail.

UMAP[20] is a non-linear projection technique that has been shown
to surpass alternatives like Principal Component Analysis (PCA)
and t-SNE[21] in terms of speed, stability against reparametriza-
tions and “meaningfulness” when applied on biological data[22].
Nevertheless, dimensionality reduction usually entails information
loss, and artifacts arise: dense clusters may appear spread out and
well-separated structures may collide when projected. For this rea-
son, we restrict ourselves to the assumption that if two regions ap-

pear separable on the UMAP projection, they are also separable on

the original representation. Crucially, the opposite is not necessar-

ily true: two regions appearing mixed could be due to a projection
artifact. With this in mind, we focus on two UAD-S properties:

• Separability (SEP): In a projection with “good” SEP, a simple
boundary can be drawn between anomalous and normal data
with small error.

• Discriminative Support (DSUP): If the training data provides
set support for all normal data, and is separable from anoma-
lous data, that set support can be directly used to discriminate
anomalies. We consider that to be “good” DSUP.

Thus, by our assumption, if a given UMAP projection presents
good SEP and DSUP, we infer that the corresponding high-
dimensional representation has a simple boundary to separate nor-
mal from anomalous data (i.e. good SEP), and can be expressed
using proximity to the training data (good DSUP). We argue that
this is beneficial for the UAD-S task. Figure 1 illustrates this.
The concept of SEP could be quantified at a local level via e.g.
Support Vector Machines (SVMs)[23]: given a set of data vectors
(xxx1, . . . ,xxxN ), labeled with -1 or 1 as (y1, . . . , yN ), the SVM ob-
jective is to find the hyperplane parametrized by � that creates the
biggest margin between both classes, allowing for some error ", via
the following objective[24, ch. 12]:

min k�k s.t.

8
<

:

yi(x
T
i � + �o) � 1� ⇠i
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(1)
Good SEP would be then achieved when a simple boundary sepa-
rates normal and anomalous data with low ". DSUP could be sim-
ilarly quantified by comparing training and anomalous data, pro-
vided training data supports all normal data. But here we propose
a complementary approach: to qualitatively assess SEP and DSUP
via visual inspection of UMAPs. To that end, we render a series of
dual plots, showing anomalous test data on the right and normal
test data on the left.
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4. UMAP FOR DCASE 2021

For our data sources, we merged the Development and Additional

Training datasets[12] from DCASE 2021, task 2. To illustrate the
role of external datasets, we also incorporated the 10-second cut
variant of Fraunhofer’s IDMT-ISA-EE dataset[2], and a custom
subset of AudioSet consisting of 10-second segments from ⇠40k
unique videos. All audio files were converted to mono 16kHz,
and (�1, 1) normalization was applied. Based on high-performing
systems from 2020, we computed amplitude spectrograms via the
square modulus of Short-Term Fourier Transforms (STFTs) with
1024 samples per window and 50% overlap for all datasets. We
then converted amplitudes to dB, yielding the log-STFTs. From
the STFT spectrograms, we also computed 128-bin melgrams[25]
and converted them to dB, yielding the log-mels. We ended up with
⇠300k frames per source split and 927 frames per target split, total-
ing ⇠13 million for source and 39k for target. Our AudioSet subset
had then ⇠12.2 million frames, and Fraunhofer ⇠223k. We used
librosa[26] for the above audio computations. We also com-
puted 512-dimensional Look, Listen and Learn (L3) embeddings
with a hop size of 0.1 seconds using openl3[27]. L3 embeddings
encode longer-term relationships and this results in less frames (e.g.
⇠3.5 million for our AudioSet). STFTs from environmental Au-
dioSet videos were used for L3 audio training.
To encode temporal relationships, we stacked consecutive frames.
In this work we explored 3 stack sizes: 1, 5 and 10. We computed
a set of 2D UMAP projections for each of the 3 computed repre-
sentations and 3 stack sizes. To get resolution at different scales,
we computed one UMAP per device plus a global UMAP, totalling
72 UMAPs. Due to hardware limitations, the full datasets couldn’t
be processed and random samples were taken: For the per-device
projections with stack size 1 and 5, we took 20k random samples
for each validation split, and a maximum of 10k for every other
split (recall that target training splits have just 927 frames). For the
global projections with stack size 1 and 5, we took 2k samples per
validation split, a maximum of 1k per training split, 50k for Au-
dioSet and 50k for Fraunhofer. We also computed the stack size
10 UMAPs with no external data. For any given representation and
stack size, we developed 3 kinds of scatter plots to enable different
levels of detail: Global plots like Figure 2 are based on the global
UMAPs and show the full dataset, coloring the different devices.
Device plots like Figure 3 are based on the per-device UMAPs and
color the different sections and domains. Section plots like Figure 5
are based on the per-device UMAPs, but they show a single section
and color the specific audio files.

5. DISCUSSION

In general, SEP patterns across different devices and sections could
be observed, but regions with both good SEP and DSUP were very
hard to find, the best example we found has been already presented
in Figure 1. Distinctively anomalous patterns are also scarce and do
not appear to follow any obvious repeating patterns. We also ob-
serve that data from the target domain generally overlaps with the
source domain.
The difference between ToyAdmos2 and MIMII DUE datasets can
be seen at multiple scales: the ToyCar and ToyTrain clusters are
clearly distinguishable from all other devices (see Figure 2), and
the internal structure for the ToyAdmos2 devices is also apparently
simpler than for MIMII DUE devices (compare Figures 3 and 4).
Another distinctive feature is the “horn” shape formed by the Au-

Figure 2: Global UMAP plot, sampled from the DCASE 2021
dataset. Each dot corresponds to 10 stacked log-STFT frames.
Smaller dots correspond to anomalies on the right, and normal data
on the left. Training data is shown on both sides. Zoom to ⇠1000%
for detail.

dioSet data samples (e.g. Figures 5 and 4). Since energy spec-
trograms are non-negative, they are confined to the first quadrant,
which is a cone with a vertex on the zero-energy point. By check-
ing the energies, we have observed that the lowest-energy samples
are highly concentrated on all observed “horns” (a few outliers get
projected elsewhere). This indicates that, accounting for the log-
arithmic conversion to dB, the representations conserve the conic
geometry and the observed “horn” shape likely corresponds to the
tip of the cone, giving a sense of origin that can aid interpretation.
Interestingly, in all L3 device plots for fan, the training data appears
almost completely separated from the test data (see e.g. Figure 4:
the “shadows” have almost no test data on them). This means that a
single L3 frame is enough to distinguish the fan training data from
the test data fairly well. This should not be confused with a different
phenomenon: some “shadow” clusters lack any overlying test data
(e.g. the dark blue ones in Figure 3), but that is likely because those
regions correspond to evaluation splits for which the challenge or-
ganizers did not release the test data. This is likely the case if the
behavior is consistent across all representations.
Another particularity is that the AudioSet cluster appears to be
smaller on the L3 representations, and the non-AudioSet data ap-
pears more scattered. This may be due to the fact that the L3 em-
beddings were trained on AudioSet and achieve a more compact
representation there.
In the following we highlight several modelling hypotheses based
on the above observations and the literature. We refer to our online
resources for extensive results and code.

1. Mixing ToyAdmos2 and MIMII DUE data may hinder
performance: Trivially distinguishable categories may lead
to inefficient boundaries for anomaly discrimination. This
was already proposed in [28].

2. Temporal context and pretraining regulate a tradeoff be-
tween SEP and DSUP: Generally, we observe that longer
stack sizes provide better SEP. This makes sense because
given enough length all audio files can be uniquely identified.
But we also observed that this tends to scatter data apart and
worsen DSUP. With pretrained embeddings, the observed
tendency of concentrating the pretrained domain and scatter-
ing the rest may also entail a similar tradeoff. An ensemble
with different tradeoff configurations may be beneficial. The
complementary and contrastive approaches discussed in Sec-
tion 2 may implicitly leverage this fact.
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Figure 3: Device UMAP plot for ToyCar. Each dot corresponds
to a single L3 frame. Color shades correspond to dataset sections.
Training data is shown on both sides. Zoom to ⇠1000% for detail.

3. Normalization is a dominating factor: If we interpret the
data in Figure 5 as a cone with the vertex at the tip of the Au-
dioSet “horn”, renormalizing a frame would shift that frame
roughly along the cone axis, which can greatly impact SEP
and DSUP. The importance of proper normalization is sup-
ported by top-performing approaches like [9] and [17].

4. Incorporating domain-related priors may help perfor-
mance: Bad DSUP only means that the the training data sup-
port can’t be directly used for discrimination, but other kinds
of prior knowledge still could be used to leverage the exist-
ing SEP. The 2021 dataset provides domain-related labels
describing the domain shifts in the training data that could
be used as priors. To the best of our knowledge, none of the
participants made use of it, and could be a beneficial addi-
tion.

Lastly, we are aware of several methodological shortcomings:

1. We are only observing a subsample of the data, so extreme
outliers are likely to be missed. Taking them into account
may be crucial for successful analysis and detection.

2. As discussed in Section 3, data projections can only be used
to confirm SEP and DSUP, not to discard them.

3. Qualitative, visual inspection may also be subject to percep-
tual biases, e.g. by color strength or shape consistency. Fur-
thermore, plotting anomalous and normal data on different
sides hinders the visual detection of slight differences.

4. Encoding temporal relations by stacking successive frames
can lead to suboptimal representations due to e.g. conditional
relations among frames, normalization and weighting issues.

Points 1 and 2 can be tackled by applying quantitative methods to
the non-projected data, since the artifacts and size restrictions are
imposed by the UMAP step. To overcome any issues related to high
data volume and dimensionality, LOF and/or KNN-based methods
like the ones used in [29, 7, 15] can be explored. Interactive ex-
ploration of the plots can help identifying small differences and
overcoming perceptual biases. Representations that encode broader
temporal context and other kinds of context can be explored to re-
place the frame stacks. Particularly, giving more weight to anoma-
lous frames (or even ignoring very common frames) may help im-
proving SEP and DSUP.

6. CONCLUSION AND FUTURE WORK

In this paper we performed an analysis of fixed and learned UAD-S
data representations, based on the visual inspection of UMAPs

Figure 4: Device UMAP plot for fan. Each dot corresponds to a sin-
gle L3 frame. Color shades correspond to dataset sections. Training
data is shown on both sides. Zoom to ⇠1000% for detail.

Figure 5: UMAP plot for valve, section 0. Each dot corresponds to
a single log-mel frame. Smaller dots correspond anomalies on the
right, and normal data on the left, and are colored by audio filename.
After ignoring the 500 lowest-energy frames, the cross signals the
average position of the following 100 ones. Zoom to ⇠1000% for
detail.

and assessment of separability (SEP) and discriminative support

(DSUP). In line with the difficulties encountered at the DCASE
challenge, we did not find consistently good SEP and DSUP in
any of the observed representations. The representations helped to
expose potential issues in connection with the literature, and ways
to address them. Despite the discussed methodological shortcom-
ings, we defend that visual UMAP inspection can complement well
other quantitative forms of analysis, and we hope that the software
we provide can become a useful tool in the context of UAD-S.
The analysis could be enhanced with interactive plots providing
sonification (to better understand the topology by hearing it),
and highlighting corresponding datapoints across different rep-
resentations. Analysis of further representations and techniques
like X-vectors and the Teager-Kaiser energy operator[13] may
also be of interest, as well as the impact of different embedding
objectives on SEP and DSUP. Another possible extension could
be to visualize the actual predictions of a system, extending this
analyisis framework to supervised scenarios.
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ABSTRACT
Automated audio captioning is the multimodal task of describing
environmental audio recordings with fluent natural language. Most
current methods utilize pre-trained analysis models to extract rele-
vant semantic content from the audio input. However, prior infor-
mation on language modeling is rarely introduced, and correspond-
ing architectures are limited in capacity due to data scarcity. In
this paper, we present a method leveraging the linguistic informa-
tion contained in BART, a large-scale conditional language model
with general purpose pre-training. The caption generation is condi-
tioned on sequences of textual AudioSet tags. This input is enriched
with temporally aligned audio embeddings that allows the model to
improve the sound event recognition. The full BART architecture
is fine-tuned with few additional parameters. Experimental results
demonstrate that, beyond the scaling properties of the architecture,
language-only pre-training improves the text quality in the multi-
modal setting of audio captioning. The best model achieves state-
of-the-art performance on AudioCaps with 46.5 SPIDEr.

Index Terms— Audio captioning, language models, transfer
learning, BART, audio tagging

1. INTRODUCTION

The task of automated audio captioning [1] aims at improving the
description of environmental sounds through the production of tex-
tual descriptions of input audio. This field of research has seen re-
cent growth in interest within the audio community, with a recurring
dedicated task introduced in 2020 to the DCASE challenge1.

Audio captioning methods typically rely on sequence-to-
sequence approaches, that encode audio features and produce sen-
tences through a separate decoder [2]. With increasing focus on the
format and vocabulary of captions [3, 4], recent advances have been
achieved by encoding textual inputs in addition to audio represen-
tations. In particular, keyword prediction [5, 6] or similar captions
retrieval [7] have been investigated as supplementary guidance ma-
terial for captioning systems. Any such supplementary information
must be inferred directly from the audio signal.

In terms of audio features, pre-trained embeddings such as VG-
Gish [8] are commonly utilized. These embeddings are highly infor-
mative compared to other representations (eg. Mel spectrograms),
which reduces the model capacity necessary to extract relevant se-
mantic content as a result. In previous studies, however, text-based
conditioning inputs are produced by a dedicated module trained on
the captioning dataset. The small amounts of available data and the
diversity of sound objects heavily limit the capabilities of such ar-
chitectures. This often leads to poor accuracy in guidance inputs,

This work was funded under the ANR project LEAUDS (Grant No.
ANR-18-CE23-0020).

1https://dcase.community

and thus a lower semantic correctness of the resulting captions.
For instance, Koizumi et al. [7] find that a model conditioned on
ground truth similar captions in the dataset reaches near-human per-
formances, whereas learned audio-based similar caption retrieval
leads to significantly worse results.

Beyond textual input extraction, the language generation mod-
ule in captioning systems is often trained from scratch. Thus, the
model must learn to reproduce a fluent language structure with
diverse vocabulary in addition to conveying semantic information
from the input audio. Concurrently, many pre-trained models have
been proposed in the natural language processing (NLP) commu-
nity that efficiently model the syntax of natural language for rep-
resentation learning [9] or generation [10]. Nevertheless, directly
applying language models to multi-modal tasks such as captioning
is not straightforward. Koizumi et al. [7] integrated a frozen GPT-
2 [10] instance as the main language modeling part in their caption-
ing system, and obtained results on par with the previous state of
the art with fewer trainable parameters.

In this paper, we investigate scaling audio captioning architec-
tures to the capacity of large-scale language models by utilizing au-
dio and language pre-training. To do so, we present a novel method
that adapts a transformer encoder-decoder with the BART general
purpose pre-training [11] to produce captions by attending to both
audio and text embeddings. This setting is illustrated in Figure 1.
Thus, contrary to Koizumi et al. [7] no additional module combin-
ing audio and text information is learned from scratch. Furthermore,
instead of learning guidance textual guidance inputs on the caption-
ing dataset, we condition generation on AudioSet tags [12] obtained
from a pre-trained model, YAMNet [13].

Specifically, the contributions of the present work are as fol-
low:

• We propose a multi-modal conditioning scheme based on
aligned temporal sequences of text and audio embeddings ob-
tained from pre-trained models. The combination method re-
lies on very few additional trainable parameters.

• We demonstrate that fine-tuning BART on these inputs results
in high audio captioning performance, outperforming previous
state-of-the-art systems.

• Through complementary experiments, we show the scaling
properties of the BART architecture, as well as the potential
of pre-training in tackling smaller captioning datasets.

To encourage the use of the proposed method in future work, the
code for all presented experiments is made available2.

2https://github.com/felixgontier/dcase2021aac
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Figure 1: BART transformer architecture (residual connections and
layer normalization omitted for clarity) and proposed setting in the
captioning application.

2. METHODS

2.1. The BART model

The architecture associated with BART is a standard sequence-to-
sequence transformer [14]. It is composed of a bi-directional en-
coder and an autoregressive decoder as illustrated in Figure 1. En-
coder transformer blocks contain a multi-head self-attention layer
followed by a multi-layer perceptron (MLP), as well as residual
connections and layer normalization after each transformation. De-
coder layers are further conditioned on the encoder output through
an additional multi-head cross-attention layer after self-attention.
Lastly, a dense layer outputs logits across all tokens in the data vo-
cabulary. The main BART model comprises 12 layers in both the
encoder and decoder with and internal dimension of 1024 in all hid-
den layers. The language tokenizer uses byte-pair encoding with
a vocabulary of 50265 tokens. As a result, the architecture totals
about 400 million parameters.

2.2. Text conditioning

In accordance with previous studies, we condition captioning with
inputs describing the semantic content in text form. To do so, we
propose to infer AudioSet tags from the audio input using YAM-
Net [13]. The YAMNet model achieves high tagging accuracy, and
operates on 1 s audio frames. Contrary to other textual condition-
ing (e.g. keyword prediction), this results in a temporal sequence of
identified sound objects in audio extracts. Such sequential detail is
often found in ground truth captions, although at a coarser scale.

To obtain the conditioning input, YAMNet is applied to 1 s non-
overlapping frames xi of the audio input. This process is shown in
Figure 2. Instead of selecting the AudioSet tag as the maximum
of YAMNet logits, we sample tags from the output distribution at
each iteration. The empirical motivation of this design is to increase
the robustness of the model to YAMNet prediction errors, by ran-
domly introducing incorrect yet plausible tags to the conditioning
input. AudioSet tags are then utilized in their textual form (eg.
Chirp, tweet). After application of the BART tokenizer, each tag
typically results in a sub-sequence of one to six tokens. Condi-
tioning sequences are produced by concatenating all sub-sequences
with separator tokens. In our experiments, the choice of token (resp.

VGGish
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Figure 2: Conditioning input construction from pre-trained audio
embeddings and textual tags. Blue and orange shading indicate
frozen and learned modules respectively. Audio, textual, and po-
sitional embeddings (resp. ai, yi,k, and et) are added to produce
the input Et.

”.”, ”and”, ”then”, ”<mask>”) did not have significant impact on
the initial loss, convergence rate, or final captioning performance.
Thus, all discussed models are trained with ’. ’ as the separator
token. The pre-trained BART embedding layer then encodes tokens
into real-valued vectors yi,k of dimension 1024, where k denotes
the token position within the ith tag sub-sequence. Lastly, posi-
tional embeddings et are further added to yi,k to disambiguate the
sequential order of inputs in the model, where t is the token position
in the model input sequence independently from the audio frame i.

2.3. Audio conditioning

Although conditioning the generation on text only is a very close
setting to the pre-training objective of BART, YAMNet predictions
may be erroneous for part of the audio extract. In order to help
the model select correct semantic content from given tags, audio
embeddings are added to the encoder input. Embeddings from the
YAMNet model likely contain the information as the conditioning
tags. Thus, we explore deep embeddings from the penultimate layer
of two other tagging models: VGGish [8] and PANNs [15], specifi-
cally the Wavegram-Logmel-CNN variant.

VGGish is able to provide 128-dimensional embedding vectors
ai for 1 s audio frames. This matches the granularity of YAMNet
predictions, and allows for the alignment of textual and audio se-
quences to condition the caption generation. Figure 2 illustrates the
corresponding conditioning process. VGGish embeddings are repli-
cated over all tokens of the corresponding YAMNet tag. Following
Huang et al. [16], the embeddings are directly added to their text
and positional equivalents (resp. yi,k and et). As the audio em-
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bedding size is different from the internal dimension of BART, we
introduce a trainable dense layer to perform the adaptation.

Alternatively, the PANNs model infers a single embedding vec-
tor of dimension 2048 for 10 s of audio. Compared to VGGish,
the lower temporal detail in PANNs embeddings is compensated by
greater semantic content, which translates to higher performance on
AudioSet tagging. Conditioning on PANNs is also straightforward:
embeddings are replicated over encoder input timesteps correspond-
ing to 10 consecutive tags, mapped to 1024-dimensional vectors by
a dense layer, then added to text and positional embeddings.

3. EXPERIMENTAL SETUP

3.1. Dataset

All the experiments are conducted on the AudioCaps dataset [17].
AudioCaps comprises training, validation, and evaluation splits of
about 49000, 485 and 955 audio extracts. The dataset is a subset of
AudioSet [12], thus most audio examples have a duration of 10 s.
Training examples are associated with a single annotated caption,
whereas validation and test splits contain 5 captions per audio file.

3.2. Evaluation metrics

We evaluate the quality of the generated captions on standard
captioning metrics. We report BLEU-1 to BLEU-4, METEOR,
ROUGE-L, and CIDEr [18], which are all based on n-gram match-
ing. In addition, SPICE [19] is computed as an evaluation of the se-
mantic quality of the generated captions. The overall performance
is given by SPIDEr [20], the average of CIDEr and SPICE, which
is the main metric of the DCASE challenge task 6 on captioning.

3.3. Baselines

We compare our approach against two baselines in the litera-
ture. First, the TopDown-AlignedAtt model in the Audio-
Caps dataset paper [17] achieves the best reported performance
according to the SPIDEr metric. Secondly, the system presented
by Koizumi et al. [7] is, to our knowledge, the first to include a
pre-trained language model (frozen GPT-2) in an audio captioning
framework. Lastly, the current state-of-the-art system on Audio-
Caps is described in [6].

3.4. Training procedure

Model parameters are trained to minimize the categorical cross-
entropy loss over the 50265 classes in the BART tokenizer. Op-
timization is performed using the AdamW [21] optimizer with pa-
rameters �1 = 0.9 and �2 = 0.999, and with a learning rate of
10�5. In our experiments, we observed stable convergence with-
out major overfitting. All models are trained for 4 epochs, or about
24000 iterations with a batch size of 8 examples. Validation is car-
ried out after every 1000 iterations, and we retain the model check-
point with the lowest validation loss.

3.5. Caption generation procedure

In order to preserve deterministic inference at evaluation, condition-
ing tags are selected as the maximum value over YAMNet logits as
opposed to the sampling scheme applied during training. Captions
are generated autoregressively via beam search, with a beam size of
4 and no constraint or penalization on the total caption length.

4. EXPERIMENTS

4.1. Conditioning evaluation

We investigate combinations of audio and textual encoder inputs,
including text-only and audio-only captioning guidance. The model
for each conditioning setting is trained 3 times with different ran-
dom seeds. Table 1 details the main experimental results, with
means and standard deviations of metrics reported over the 3 in-
stances. The proposed approach is compared to baselines as well
as human performance, which refers to the cross-validation of ref-
erence captions in the evaluation set [17]. This anchor reflects dis-
crepancies in content and syntax among ground truth captions, and
constitutes a reasonable upper bound on caption quality.

First, the model conditioned on PANNs embeddings, which
only contain one vector for AudioCaps examples, fails to gener-
ate well-structured captions. VGGish embeddings perform signifi-
cantly better, hinting that providing the model with information on
the sequence of sound events is critical in audio-only conditioning
designs. However, the variance in performance between training
instances is very high compared to other settings.

Conditioning solely on YAMNet tags further improves both the
fluency and faithfulness of captions. Tags directly provide vocabu-
lary guidance to the model, whereas relevant terms must be inferred
from audio embeddings. In addition, the model only operates on
language in this case, thus the task setting is close to that of the
BART pre-training scheme.

The relative increase in performance for settings combining text
and audio conditioning suggests that the information in both inputs
is complementary. Contrary to audio-only experiments, PANNs
performs better than VGGish when paired with YAMNet tags. Be-
cause sequential detail is already contained in the input tokens, the
temporal granularity of audio embeddings is less important than
their semantic content. Empirical analysis reveals a higher - al-
though weak - correlation between YAMNet tagging accuracy and
SPICE scores in the text-only model compared to that combining
tags and PANNs embeddings. This behavior may indicate that au-
dio embeddings mitigate the appearance rate of incorrectly identi-
fied sound objects in produced captions.

4.2. System performance

The proposed approach achieves similar results to Eren et al. [6]
on reported metrics, and outperforms other baselines. It is on par
or better than human performance according to BLEU-1, BLEU-
2, BLEU-3, and ROUGE-L. However, these metrics only evaluate
matching n-grams, and do not correlate well with human evalua-
tions of quality [22, 23]. On more advanced metrics for syntactic
fluency and semantic correctness, respectively CIDEr and SPICE,
the best model is below human performance by a large margin. Still,
the low remaining gap in terms of SPICE score confirms that the
high accuracy of YAMNet source recognition is well conveyed to
output captions.

In the following subsections, we present complementary exper-
iments on the properties of BART pre-training for audio captioning.
All experiments retain the best conditioning setting of YAMNet tags
combined with PANNs embeddings.

4.3. Interest of language pre-training

Because of the multi-modal nature of inputs in the captioning task,
it is relevant to assess whether the system performance can be linked
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Table 1: Evaluation of the proposed approach on AudioCaps. The displayed scores are means and standard deviations over three instances.
The highest value for each metric is shown in bold.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE SPIDEr
TopDown-AlignedAtt [17] 61.4 44.6 31.7 21.9 20.3 45.0 59.3 14.4 36.9

Koizumi et al. [7] 63.8 45.8 31.8 20.4 19.9 43.4 50.3 13.9 32.1
Eren et al. [6] 71.1 49.3 37.6 23.2 28.7 58.7 75.0 - -

BART + PANNs 47.2 (1.4) 27.9 (0.6) 15.6 (0.9) 7.8 (0.9) 11.2 (0.6) 32.2 (0.8) 6.5 (2.5) 6.1 (0.9) 6.3 (1.7)
BART + VGGish 57.6 (2.9) 39.3 (3.2) 26.2 (2.9) 17.0 (2.6) 17.6 (1.8) 39.8 (1.9) 37.6 (8.0) 11.9 (1.3) 24.7 (4.6)
BART + YAMNet 61.1 (0.6) 43.3 (0.5) 30.5 (0.5) 20.8 (0.3) 19.8 (0.2) 43.6 (0.2) 54.7 (0.6) 14.1 (0.2) 34.4 (0.4)

BART + YAMNet + VGGish 65.8 (0.5) 48.7 (0.4) 35.4 (0.4) 25.3 (0.5) 21.9 (0.1) 46.5 (0.1) 63.9 (1.0) 15.9 (0.3) 39.9 (0.7)
BART + YAMNet + PANNs 69.9 (0.5) 52.3 (0.7) 38.0 (0.8) 26.6 (0.9) 24.1 (0.3) 49.3 (0.4) 75.3 (0.9) 17.6 (0.3) 46.5 (0.6)

Human 65.4 48.9 37.3 29.1 28.8 49.6 91.3 21.6 56.5

Table 2: Performance metrics for complementary experiments.
Variant CIDEr SPICE SPIDEr

Reference 75.3 17.6 46.5
No BART pre-training 71.0 16.7 43.8
Frozen decoder param. 68.5 16.6 42.5

BART-XSum 71.8 17.3 44.5
BART-CNN 72.2 17.7 44.2

BART-CNN, frozen decoder param. 70.4 15.6 43.0
BART-base 73.1 16.8 45.0

to BART pre-training as opposed to its high-capacity architecture.
We do so by evaluating a model without BART pre-training, i.e.
randomly initialized. Discrepancies with the reference setting in
Table 2 demonstrate that while catastrophic forgetting, i.e. BART
overfitting to the target task and forgetting its pre-trained generic
information about language, may occur due to multi-modal in-
puts, some information is retained from the denoising pre-training.
Nonetheless, the large-scale transformer architecture is for a large
part responsible for improvements over systems in the literature.

In a subsequent experiment, we freeze parameters of self-
attention and MLP blocks in BART decoder layers. These parame-
ters are expected to hold most of the knowledge on language mod-
eling. Encoder parameters, as well as decoder cross-attention and
layer normalization weights, remain freely fine-tuned. The number
of trainable parameters is about 250 million, reduced from 408 mil-
lion in the full model. This variant achieves higher SPIDEr than
both baselines, which suggests that BART language modeling pa-
rameters can already produce high quality captions.

4.4. Pre-training task

Within the proposed conditioning setting, the captioning task solved
by BART is related to summarization: the model is given about 10
often recurring AudioSet tags, whereas most captions in the dataset
describe one to three sequential events. The authors of BART
demonstrated the potential of its pre-training scheme when applied
to the CNN/DM [24] and XSum [25] summarization datasets, with
model parameters made available to the community.

We investigate the effect of summarization fine-tuning on our
captioning method, by replacing regular BART parameters in the
proposed model with BART-CNN and BART-XSum checkpoints at
initialization. These setups result in slightly lower performance than
the reference method in Table 2. However, we observed a significant
decrease in the initial training loss in both cases. In addition, freez-
ing decoder parameters (see Section 4.3) in the BART-CNN model
produces better syntax compared to the equivalent setting with stan-

dard BART initialization, according to CIDEr. This indicates that
the language modeling learned for summarization is better suited to
captioning than that of denoising. Thus, using the BART-CNN de-
coder as the starting point may be preferable on smaller captioning
datasets, if overfitting prevents training the full BART architecture.

4.5. Model capacity

We investigate the impact of model capacity on the quality of the
generated captions. To do so, we replace the standard BART archi-
tecture with the BART-base variant provided by the authors. BART-
base undergoes the same pre-training scheme with half as many en-
coder and decoder layers (6 instead of 12) as well as a internal di-
mension of 768 (from 1024). These modifications reduce the num-
ber of trainable parameters from 408 million to about 140 million.

Interestingly, the large reduction in model capacity does not
translate to similarly important decrease in performance (see Ta-
ble 2). We hypothesize that, even though the language modeling ca-
pabilities of BART-base are inferior to those of the standard BART,
the highly formatted nature of captions requires less knowledge to
model than general text in other tasks. This conjecture is in part sup-
ported by the fair syntactic quality of captions produced by smaller
architectures in the literature. As a byproduct, it is also unlikely that
further increasing model capacity from that of the standard BART
architecture would yield appreciably higher performances.

5. CONCLUSION

In this paper, we presented an audio captioning scheme by fine-
tuning BART with combined audio and textual conditioning. Our
results demonstrate that transfer learning can be applied to scale
captioning architectures to the size of state of the art NLP models,
in spite of the limited data availability. Using pre-trained architec-
tures to retrieve both audio and language guidance material removes
the need for dedicated modules, and enables semantic conditioning
with high accuracy and controlled generalization properties. We
find that the proposed model can be scaled down or partly frozen
with limited decreases in performance, hence diminishing the trade-
off between high quality caption production and model capacity.

This study highlights interesting avenues for future research. In
particular, upcoming work will explore methods to better utilize the
knowledge of encoders with text pre-training in multi-modal down-
stream tasks. Determining the optimal granularity of temporal detail
to reduce information redundancy in guidance inputs, or developing
adaptive audio segmentation matching separate sound events, will
also be investigated in future work.
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ABSTRACT

micarraylib is a python library to load, standardize, and aggre-
gate datasets collected with different microphone array hardware.
The goal is to create larger datasets by aggregating existing and
mostly incompatible microphone array data and encoding it into
standard B-format ambisonics. These larger datasets can be used
to develop novel sound event localization and detection (SELD) al-
gorithms. micarraylib streamlines the download, load, resam-
pling, aggregation, and signal processing of datasets collected with
commonly-used and custom microphone array hardware. We pro-
vide an API to standardize the 3D coordinates of each microphone
array capsule, visualize the placement of microphone arrays in spe-
cific spatial configurations, and encode time-series data collected
with different microphone arrays into B-format ambisonics. Finally,
we also show that the data aggregates can be used to reconstruct a
microphone capsule’s time-series data using the information from
other capsules in the data aggregate. micarraylib will allow for
the easy addition of more datasets and microphone array hardware
as they become available in the future. All original software written
for this paper is released with an open-source license.

Index Terms— sound event detection and localization, micro-
phone arrays, spherical harmonics, ambisonics encoder, multichan-
nel signal processing

1. INTRODUCTION

In the past few years, the field of machine listening has seen ma-
jor advances in sound event detection (SED) algorithms [1, 2, 3].
These advances have been made possible by the introduction of
large datasets with annotated sound events. In particular, the mil-
lions of annotated soundclips in AudioSet [4], totaling around 100
hours of data, have been critical for these developments.

In contrast, the development of sound event localization and de-
tection (SELD) algorithms has been slower. This is not surprising,
given that SELD datasets are much smaller than AudioSet, usually
with only a few thousand sound events with annotations for both
category and spatial localization (example datasets include those
introduced by the DCASE SELD challenges in 2019 [5], 2020 [6],
and 2021 [7], as well as the LOCATA challenge [8]).

To develop SELD algorithms that are as robust as existing
SED ones, machine listening researchers will need access to large
amounts of data collected with microphone arrays. A number of
publicly available microphone array datasets exist (see Table 1), but
these datasets have heterogeneous hardware parameters, thus com-
plicating their aggregation.

⇤roman@nyu.edu

Table 1: Some publicly available microphone array datasets. The
number of microphone arrays, total microphone capsules, length in
hours, and presence of SELD annotations are tabulated.

dataset no. arr capsules length SELD
DCASE(3) 2019 [5] 1 4 8 Hr Yes
DCASE(3) 2020 [6] 1 4 13 Hr Yes
DCASE(3) 2021 [7] 1 4 13 Hr Yes
LOCATA [8] 4 63 0.5 Hr Yes
3D-MARCo [9] 7 71 0.2 Hr No
EigenScape [10] 1 32 11 Hr No

Two notorious differences between microphone array datasets
include 1) the use of different microphone hardware and 2) conven-
tions for SELD annotation (or complete lack of), including event
start time, duration, and position in space. To standardize micro-
phone array recordings across different hardware, some researchers
encode them into the ambisonics B-format [11, 12], which uses the
individual microphone capsule coordinates to compute a matrix of
spherical harmonic coefficients. In its simplest form, the B-format
is obtained by multiplying the pseudo-inverse of this matrix by the
corresponding raw capsule recordings (also known as A-format)
[13]. The ambisonics B-format captures specific spatial features
(i.e. the first channel is equivalent to an omnidiectional microphone,
the next three channels are fig-8 microphones aligned on the x, y,
and z Cartesian coordinates, etc. see [14] for details on the spher-
ical harmonics theory that results in B-format encoding). On the
other hand, standardizing SELD annotations is possible if certain
parameters (i.e. event start time, end time, and a position in space)
are parsed to be consistent across datasets. Additionally, since not
all microphone array datasets have SELD annotations, the use of
unsupervised and self-supervised learning strategies to learn spatial
representations will be necessary to use all available datasets.

Here we introduce micarraylib, a python library to down-
load, standardize, and aggregate existing microphone array record-
ings. Using micarraylib, one can encode raw microphone ar-
ray recordings across different datasets to be in the common am-
bisonics B-format. micarraylib also standardizes annotations
to be in a common convention. Additionally, micarraylib orga-
nizes metadata (i.e. microphone capsule coordinates and hardware
name) to be readily accessible. micarraylib is freely available
at https://github.com/micarraylib/micarraylib.

In the next sections we describe micarraylib’s functional
principles and show example applications, which include the aggre-
gation of different SELD datasets, visualization of aggregated mi-
crophone coordinates, and data augmentation via interpolation of a
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virtual capsule recording using data from neighboring capsules.

2. LIBRARY FUNCTION

We standardize three elements present in most microphone array
datasets: 1) metadata, 2) SELD labels (if any), and 3) audio format.

2.1. Metadata processing

The most important piece of metadata accompanying any micro-
phone array dataset is its microphone capsule coordinates. Micro-
phone array datasets often use different microphone hardware. De-
signers publish the relative distance between microphone capsules
and a reference point. These can be converted to 3D coordinates
(Cartesian or polar). In some datasets the reference point is the mi-
crophone array’s center, or a specific location in a physical space.
micarraylib standardizes these distances and locations to be a
common coordinate format (3D vectors, either Cartesian or polar).
These coordinates can be used to visualize microphone arrays, to
compute spherical harmonics, and more generally to develop al-
gorithms that incorporate spatial information at the level of micro-
phone capsule location.

Other pieces of metadata that micarraylib processes (if
available) and makes available to the user include sound scene cat-
egory, musical artist, and geographic location of the recording.

2.2. SELD label standardization

Because of their unique ability to capture spatial information, mi-
crophone arrays are a common hardware choice to collect SELD
data. While several labeling conventions exist among datasets, an-
notations for sound events include at least a start time, but may also
have an end time, and a position in space. micarraylib stan-
dardizes sound event labels across datasets to have the following
format: start and end time (python tuple), object category (a unique
integer or string), location coordinates (3D vector that may change
over a fixed time-step if the event moves), and active time-steps (list
of booleans if the event is transiently on or off). When one of these
parameters does not exist for an event, micarraylib will indi-
cate it with a None. By using micarraylib, researchers will
access microphone array datasets with a standard format for spatial
sound event labels.

2.3. Audio standardization

The ambisonics B-format allows for the standardization of micro-
phone array recordings [11, 12]. A simple ambisonics encoder uses
the individual microphone capsule coordinates to compute a ma-
trix of spherical harmonics. The pseudo-inverse of this matrix then
multiplies the raw capsule recordings to encode them into B-format
channels.

While more complicated encoders are usually proprietary and
include multiple effects that aid perceptual parameters [15], com-
puting the spherical harmonics using microphone array coordinates
is a straightforward operation if the microphone capsule coordinates
are known. The N th-order spherical harmonic matrix can be com-
puted using equation 1.

Yn,l(✓,�) = Xn,|l|Pn,|l| cos(✓)

8
><

>:

p
2 sin(|l|�) if l < 0

1 if l = 0p
2 cos(l�) if l > 0

(1)

This is the conventional equation used in the field of acous-
tics to compute the Laplace spherical harmonics [16]. n indexes
the spherical harmonic order (i.e. 0th, 1st, 2nd, . . . , N th) and m
indexes the degree (i.e. each order n has degrees m 2 [�n, n]
degrees). ✓ 2 [0,⇡] is the vertical angle advancing from top to bot-
tom, � 2 [0, 2⇡] is the azimuth angle starting at the front of the
microphone array and advancing counter-clockwise. Xn,|m| is a
normalization factor that ensures that spherical harmonics have unit
magnitude [16] and Pn,|m| is the Legendre function (without the
Condon-Shortley phase) [17].

micarraylib converts raw capsule recordings into the com-
mon ambisonics B-format. This results in audio signals that have
shared spatial characteristics across channels, independent of which
microphone hardware was used to collect them.

3. LIBRARY ORGANIZATION AND COPYRIGHT

micarraylib is written in python and all its contents are open-
source. The following subsections describe the organization of its
file structure as seen from its root directory.

3.1. Micarrays

Directory that contains the array shapes raw.py and
array directions raw.py files, which list the raw (as
released by the manufacturer) shape (i.e. coordinates) and capsule
directionality of each microphone array supported. The names
that the manufacturer gave to each capsule in the microphone
array are also included in these files. The micarray.py file
in this directory defines a micarray object with attributes that
summarize all the information provided by the manufacturer.

This directory also has files with functions that pro-
cess the data from the array shapes raw.py and
array directions raw.py files and standardize it to be
in 3D Cartesian and/or polar coordinates.

3.2. Util

Directory that contains a utils.py file with basic functionalities
for dataset standardization, such as functions to convert between
polar and Cartesian coordinates, normalize units of length to meters
and radians, and normalize time units to seconds (in SELD labels,
for example). It also contains a plotting.py file with functions
that tailor matplotlib’s plotting for microphone arrays.

3.3. Encoder

File defining the encoder object with its main attribute being a
set of capsule coordinates (used to calculate the matrix of spherical
harmonics). It also has an encode method that takes a numpy
array with raw recordings and returns a simple encoding of these
recordings in ambisonics B-format.

3.4. Dataset

File that defines the dataset object using the soundata API
[18]. soundata is a new python library with tools to download
and load common audio datasets with corresponding annotations
and metadata. In addition to soundata attributes, the dataset
object includes a list of microphone capsule coordinates used. The
soundata API includes all methods to download and load the
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original data. micarraylib standardizes the SELD annotations
when they are not standardized by soundata.

3.5. Aggregator

File that defines the aggregate datasets object, whose at-
tributes include a list of dataset objects. Its default method stan-
dardizes all recordings across datasets to be the same number of
channels in ambisonics B-format, and pairs individual recordings
with their corresponding SELD labels.

It also defines the micarray aggregate object, which ag-
gregates coordinates and recordings across microphone arrays (use-
ful when multiple pieces of microphone array hardware are used
together in a single dataset, such as the 3D-MARCo or LOCATA
datasets).

3.6. Augmentation

File that defines a data augmentation object, which uses a
neural network model to virtually add capsule recording data to a
microphone array dataset at a coordinate defined by the user. Sec-
tion 5 below describes the current functionality of this model (which
is limited to reconstruction of channels within the EigenMike [19]
hardware at the time of this writing, but we are working to expand
its possibilities).

3.7. Copyright

micarraylib is released with a Creative Commons License. We
also do not alter any dataset’s license, as micarraylib only
accesses data already hosted online (via soundata; as a result,
datasets are not redistributed by micarraylib).

4. AGGREGATING DATASETS

micarraylib streamlines the aggregation of existing micro-
phone array datasets. Figure 1 shows the code needed to standardize
and aggregate the six different datasets in Table 1.

One at a time, micarraylib separately encodes each record-
ing into a first-order ambisonics B-format (4 channels total; the
first-order ambisonics limit is determined by the dataset with the
lowest number of raw capsule recordings: 4 channels in the
DCASE SELD datasets). After the simple encoding step, we have
a total of 46 hours of audio data in a common ambisonics B-
format. micarraylib also standardizes the SELD labels from
the DCASE SELD and LOCATA datasets to have a start and end
time, object category, spatial coordinates, and active time-steps.
The 3D-MARCo and EigenScape datasets do not have SELD la-
bels, and the resulting aggregate indicates this with None entries in
the label attribute for those specific recordings. In the end, 34 hour
of data in this dataset aggregate have labeled sound events.

4.1. Hardware considerations and next steps

Aggregating different datasets can result in SELD methods that con-
found elements that are different between datasets (i.e. hardware,
events, and/or ambient). While our library encodes all datasets into
the standard ambisonics B-format, it is important to keep in mind
that the hardware differences between datasets could remain in the
B-format. For this reason, we plan to continue fine-tuning our en-
coder to quantify and reduce differences between hardware. To
better quantify these effects, datasets with scenes and events that

1 import micarraylib as mc
2

3 datadir = ’˜/datasets’
4

5 datasets = [
6 mc.datasets.dcase19(datadir),
7 mc.datasets.dcase20(datadir),
8 mc.datasets.dcase21(datadir),
9 mc.datasets.locata(datadir),

10 mc.datasets.marco(datadir),
11 mc.datasets.eigenscape(datadir)
12 ]
13

14 for dataset in datasets:
15 dataset.load() # using the soundata API [18]
16

17 aggregate = mc.aggregators.aggregate_datasets(
18 datasets,
19 sr=24000,
20 )

Figure 1: Downloading, loading, and aggregating the six datasets in
Table 1 using micarraylib.
.

are simultaneously collected with different hardware (i.e. the 3D-
MARCo and LOCATA datasets) will be particularly useful.

5. DATA AUGMENTATION

An idealized spatial recording of a sound scene would record infor-
mation at all locations in the space continuum. Since such idealized
scenario is not possible with existing hardware, researchers must
sample specific locations using microphone arrays with capsules at
specific coordinates. micarraylib includes a model can be used
to virtually add microphones to a dataset via interpolation from ex-
isting microphone capsule data.

5.1. Technical motivation

Aggregating microphone arrays can lead to denser spatial sampling
of a sound scene. The resulting dense samplings of a sound scene
are redundant [20]. Therefore, given a set of microphone capsules
recording a common scene or source, it should be possible to inter-
polate, with some error, one of the capsule’s time-series using the
recordings collected with all other capsules. If this is possible, it
should also be possible to virtually generate the recording of a mi-
crophone capsule outside but near the microphone array topology.

While a detailed empirical study of virtual microphone cap-
sule time-series generation deserves a separate scientific report,
micarraylib already includes some of this functionality. Here
we describe a series of experiments that we carried out to design a
model able to virtually add the recording of a missing microphone
capsule using the recordings from other capsules in the Eigen-
Mike microphone array. These experiments also show the utility
of micarraylib to aggregate datasets that can then be used for
machine listening research.

In all experiments we ask the question: can the recording of
a microphone capsule be reconstructed given the preceding 5 mil-
liseconds of recordings with neighboring capsules? We hypothesize
that such reconstruction is possible using both the recordings from
neighboring capsules and their 3D spatial coordinates.
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Table 2: Model performance for capsule interpolation experiments

Model MSE (eval)
before training 0.9
exp 1 0.000039
exp 2 0.00013
exp 3 0.0016

5.2. Data

We used micarraylib to aggregate the EigenMike data from the
EigenScape, 3D-MARCo, and LOCATA datasets. We skip the en-
coding step and keep the recordings in the raw format (A-format).
We split each recording into development (the first 80% frames) and
testing (the last 10% frames) subsets (the frames between the %80
and 90% of each recording length were left out to minimize the ef-
fects of temporal correlation between the development and testing
data).

5.3. Methodology

The input features to train our model are an intermediate step be-
tween A-format and B-format that is computed as follows. We cal-
culate the fourth order spherical harmonic matrix using the 3D co-
ordinates for each EigenMike capsule and equation (1). The result
is a matrix W that has (N+1)2 rows (N = 4) and 32 columns, one
corresponding to each EigenMike capsule. We multiply the sample
recorded by a given capsule with the spherical harmonic coefficients
in the corresponding column of matrix W . We stack 20 of these ma-
trices into a tensor that corresponds to 5 consecutive milliseconds
of samples in a recording. We refer to these concatenated matrices
as tensor X .

In the experiments described below we remove some audio in-
formation from tensor X and we train a simple LeNet CNN [21] to
use X to reconstruct the recording of a single capsule (whose audio
information is missing from X) with a MSE loss function.

5.4. Experiments and results

We carried out three experiments: 1) Tensor X is only missing the
audio information of the single capsule that we want to reconstruct.
2) The samples of five neighboring capsules are also removed from
X . 3) X only has the audio information of the three capsules that
would result in a tetrahedral geometry (4 capsules total) with respect
to the capsule whose recording we want to reconstruct.

We trained a LeNet CNN model from scratch using the ADAM
optimizer with a patience criterion of 1000 epochs. For each of
these three experiments, the model’s task was to reconstruct the
missing samples of a single microphone capsule in the EigenMike
using X as input. The average MSE across datapoints in the evalu-
ation set was computed after training and is shown in Table 2.

As shown in Table 2, the evaluation MSE before training was
close to 1. Experiment 1 reduced this MSE by 5 orders of magni-
tude, showing that a single capsule’s samples can be reconstructed
(with some error) using all other 31 capsule recordings in the Eigen-
Mike. Experiment 2 also reduced the MSE but only by 4 orders
of magnitude, showing that reconstruction of the same capsule’s
recording is affected by the fact that audio information from neigh-
boring capsules was missing. Experiment 3 only reduced the MSE
by 3 orders of magnitude due to there only being information from

Figure 2: Interactive visualization with micarraylib of the
location and directionality of microphone arrays used to collect
the LOCATA dataset, one of which is the EigenMike. Using
matplotlib’s 3D plotting, micarraylib includes methods to
plot capsules in microphone array hardware.

3 other microphone capsules to reconstruct the capsule’s recording.
These results show that reconstructing a capsule’s samples using
other capsule’s recordings is possible, but the interpolation is sen-
sitive to the density and proximity of recordings available to carry
out this reconstruction.

5.5. Next steps

Given that reconstructing a microphone’s signal seems possible
within EigenMike capsules, we will train a model able to use Eigen-
Mike data to recover the signal captured by a capsule or array out-
side the EigenMike geometry. For this purpose, we will use the
microphone array aggregates from the 3D-MARCo and LOCATA
datasets, which include data recorded by microphone capsules out-
side the EigenMike structure but very near to it (see Fig 2). Our goal
is for micarraylib to ultimately allow for the virtual simulation
of microphone capsules in arbitrary coordinates.

The idea of virtual microphone capsule generation has al-
ready been explored with supervised learning using neural net-
work techniques like CNNs [22, 23] or autoencoders [24],
via statistical interpolation with �-divergence [25] or with
pure signal processing [26]. The full potential of the mi-
crophone array data augmentation that we propose will be
achieved by using micarraylib in combination with audio
augmentation libraries like MUDA [27] and Audiomentations
(https://github.com/iver56/audiomentations).

6. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented micarraylib, a library to aggregate micro-
phone array datasets by standardizing microphone array coordi-
nates, SELD labels, and recordings using a simple ambisonics B-
format encoder. Our presentation of the library also included prac-
tical demonstrations that show both the utility of micarraylib
and the need for it in the field of machine listening. Researchers
will be able to use micarraylib to create large aggregates of
standardized microphone array datasets.
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We are also looking forward to seeing what other functionali-
ties the machine listening research community believes should be
added to micarraylib. We will continue adding new datasets
to micarraylib in years to come, and we will also add sup-
port for more complex signal processing procedures that include
completely custom array shapes, microphone polarity, methods for
perceptually-plausible ambisonics encoding and decoding, as well
as processing of motion-capture data for moving sound events and
microphone arrays.
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[8] H. W. Löllmann, C. Evers, A. Schmidt, H. Mellmann, H. Bar-
fuss, P. A. Naylor, and W. Kellermann, “The LOCATA chal-
lenge data corpus for acoustic source localization and track-
ing,” in 2018 IEEE 10th Sensor Array and Multichannel Sig-
nal Processing Workshop (SAM). IEEE, 2018, pp. 410–414.

[9] H. Lee and D. Johnson, “An open-access database of 3D
microphone array recordings,” in Audio Engineering Society
Convention 147. Audio Engineering Society, 2019.

[10] M. C. Green and D. Murphy, “EigenScape: A database of
spatial acoustic scene recordings,” Applied Sciences, vol. 7,
no. 11, p. 1204, 2017.

[11] J. Bamford and J. Vanderkooy, “Ambisonic sound for us (an
analysis of imaging in ambisonics, stereo and dolby surround
systems),” in 99th AES Convention, 1995, pp. 6–9.

[12] F. Zotter, H. Pomberger, and M. Frank, “An alternative am-
bisonics formulation: Modal source strength matching and the
effect of spatial aliasing,” in Audio Engineering Society Con-
vention 126. Audio Engineering Society, 2009.

[13] L. McCormack, S. Delikaris-Manias, A. Farina, D. Pinardi,
and V. Pulkki, “Real-time conversion of sensor array signals
into spherical harmonic signals with applications to spatially
localized sub-band sound-field analysis,” in Audio Engineer-
ing Society Convention 144. Audio Engineering Society,
2018.

[14] K. Atkinson and W. Han, Spherical harmonics and approxi-
mations on the unit sphere: an introduction. Springer Science
& Business Media, 2012, vol. 2044.

[15] M. Frank, F. Zotter, and A. Sontacchi, “Producing 3D audio in
ambisonics,” in Audio Engineering Society Conference: 57th
International Conference: The Future of Audio Entertainment
Technology–Cinema, Television and the Internet. Audio En-
gineering Society, 2015.

[16] E. G. Williams, Fourier acoustics: sound radiation and
nearfield acoustical holography. Academic press, 1999.

[17] M. Abramowitz and I. A. Stegun, Handbook of mathemati-
cal functions with formulas, graphs, and mathematical tables.
US Government printing office, 1948, vol. 55.

[18] M. Fuentes, J. Salamon, P. Zinemanas, M. Rocamora,
G. Plaja, I. R. Román, R. Bittner, M. Miron, X. Serra, and
J. P. Bello, “Soundata: A Python library for reproducible use
of audio datasets,” http://arxiv.org/abs/2109.12690, 2021.

[19] M. Acoustics, “EM32 Eigenmike microphone array release
notes (v17. 0),” 25 Summit Ave, Summit, NJ 07901, USA,
2013.

[20] Y. Huang, T. Z. Shabestary, A. Gruenstein, and L. Wan,
“Multi-microphone adaptive noise cancellation for robust hot-
word detection,” 2019.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[22] T. Ochiai, M. Delcroix, T. Nakatani, R. Ikeshita, K. Kinoshita,
and S. Araki, “Neural network-based virtual microphone es-
timator,” in ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 6114–6118.

[23] K. Yamaoka, L. Li, N. Ono, S. Makino, and T. Yamada,
“CNN-based virtual microphone signal estimation for MPDR
beamforming in underdetermined situations,” in 2019 27th
European Signal Processing Conference (EUSIPCO). IEEE,
2019, pp. 1–5.

[24] R. Takahashi, L. Li, S. Makino, and T. Yamada, “VMInNet:
Interpolation of virtual microphones in optimal latent space
explored by autoencoder.”

179



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

[25] H. Katahira, N. Ono, S. Miyabe, T. Yamada, and S. Makino,
“Generalized amplitude interpolation by �-divergence for vir-
tual microphone array,” in 2014 14th International Workshop
on Acoustic Signal Enhancement (IWAENC). IEEE, 2014,
pp. 149–153.

[26] H. Katahira, N. Ono, S. Miyabe, T. Yamada, and S. Makino,
“Virtually increasing microphone array elements by interpola-
tion in complex-logarithmic domain,” in 21st European Signal
Processing Conference (EUSIPCO 2013). IEEE, 2013, pp.
1–5.

[27] B. McFee, E. J. Humphrey, and J. P. Bello, “A software frame-
work for musical data augmentation.” in ISMIR, vol. 2015,
2015, pp. 248–254.

180



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

IMPROVED STUDENT MODEL TRAINING FOR ACOUSTIC EVENT DETECTION MODELS

Anthea Cheung, Qingming Tang, Chieh-chi Kao, Ming Sun, Chao Wang

Amazon Alexa
101 Main St, Cambridge, MA 02142, USA

{antheach, qmtang, chiehchi, mingsun, wngcha}@amazon.com

ABSTRACT
We introduce several novel knowledge distillation techniques for
training a single shallow model of three recurrent layers for acoustic
event detection (AED). These techniques allow us to train a generic
shallow student model without many convolutional layers, ensem-
bling, or custom modules. Gradual incorporation of pseudolabeled
data, using strong and weak pseudolabels to train our student model,
event masking in the loss function, and a custom SpecAugment pro-
cedure with event-dependent time masking all contribute to a strong
event-based F1-score of 42.7%, which matches the top submission
score, compared to 34.7% when training with a generic knowledge
distillation method. For comparison to state-of-the-art performance,
we use the ensemble model of the top submission in the challenge
as a fixed teacher model.

Index Terms— Acoustic event detection, knowledge distilla-
tion, pseudolabeling, SpecAugment

1. INTRODUCTION

Acoustic event detection (AED) is the task of predicting sound
events and their time boundaries. It is an emerging area of research
as the ability to correctly detect the start and end times of sound
events has many useful practical applications in media indexing and
retrieval [1], surveillance [2], enhancing smart home devices’ abil-
ity to interpret the acoustic environment of the home [3]. Compared
to audio tagging tasks, acoustic event detection remains a challeng-
ing area of research due to the difficulty of obtaining high-quality
annotated clips which contain labels of onset and offset times.

We focused on task four of the 2019 edition of DCASE as it is
solely focused on AED and provides a test dataset that can be com-
pared with the top performances in the challenge [4]. In this task,
the top-performing submissions are ensembles of models [5, 6] or
comprised of multiple layers of convolutional layers [7, 6] and mod-
ules with custom architecture [5], which often consume significant
memory and are less practical to use in resource-constrained mobile
devices. Our focus is on using knowledge distillation techniques
to achieve a single shallow model of three recurrent layers with a
small degradation in accuracy. We used the ensemble model of the
top submission in the challenge as a fixed teacher model.

Recent results on noisy student training explored promising
techniques for an automatic speech recognition (ASR) task [8].
Firstly, they tried gradually introducing harder samples to the train-
ing of the student model by applying a score on each utterance-
transcript pair and lowering the cutoff score for each generation of
training. Curriculum learning applies a similar concept in slowly
expanding the training set for the student model. Secondly, they
performed SpecAugment [9] and increased the time masking length
to produce harder samples for the student model. To our knowledge,

neither techniques have been explored for AED before. We apply
gradual incorporation of pseudolabeled data, strong and weak pseu-
dolabels to train our student model, and a custom SpecAugment
procedure with event-dependent time masking to achieve a strong
event-based F1-score of 42.7%.

2. RELATED WORK

Recently, the use of deep learning models with convolutional neu-
ral network (CNN) [5, 10] and convolutional recurrent network net-
work (CRNN) [4] architectures have yielded the best performance
in AED tasks. More recently, custom solutions such as disentan-
gled features [11] and independent component [12] modules have
been added on top of CNN or CRNN architectures to further re-
fine performance. As strongly-labeled AED datasets are relatively
small, semi-supervised methods are used to take advantage of un-
labeled and weakly-labeled sets, either by only using weak predic-
tions [5, 13] or both strong and weak predictions [14, 4]. Knowl-
edge distillation [15] has been studied for AED using only weak la-
bels [16] or using weak and strong labels in two stages [17]. Mean-
teacher models [18] use a similar concept in applying a consistency
loss to student and teacher models with the same architecture.

The importance of different time scales of the present events
are evident in the post-processing steps of several systems for AED
[7, 19]. These improvements inspired us to mask the input fea-
tures and predictions based on the labeled classes. Masking of time
and frequency bands is used in SpecAugment [9], but most AED
systems only use time and frequency masking not time warping
[20, 21]. Partially masking the model outputs during gradient de-
scent have been used for AED [22] and for localization tasks [23].
Curriculum learning [24] is a strategy of gradually adding more dif-
ficult samples during training, and has been used to train ASR [8],
emotion recognition [25], and translation models [26]. Tonami et
al [27] studied curriculum for AED but ranked samples’ difficulty
based on the presence of labeled classes.

3. METHODOLOGY

The DCASE 2019 task 4 dataset consists of 10 different sound
events from domestic environments. The training dataset contains
synthetic clips strongly-labeled with onset and offset times, weakly-
labeled real recordings that contain event labels but no onset and
offset times, and a large unlabeled dataset of real recordings. The
validation and public test sets are both strongly-labeled datasets
with real recordings.
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3.1. Our model

Our student model S was designed to be a simple recurrent neural
network (RNN) model, achieving close to state-of-the-art perfor-
mance solely relying on data augmentation and knowledge distilla-
tion techniques without requiring hand-crafted features or custom
architectures. We provided as input X 2 Rd⇥T log-mel features
with dimension d = 20 and time steps T = 500. Our model uses a
three-layer uni-directional LSTM architecture with h = 256 nodes
in each layer to produce an embedding g(X) = H 2 Rh⇥T . To
generate the onset and offset times of each predicted event c in the
clip, we obtained a frame-level prediction f 2 RC⇥T by passing
H through a fully-connected layer W with C output classes and a
sigmoid activation function.

We then used an attention-pooling mechanism to generate the
audio tagging predictions. For each class c, the attention weights
zc 2 RT are obtained by:

zc =
exp(acH + bc)PC

k=1 exp(akH + bk)
, (1)

where ak, bk 2 Rh are the class weights and bias vectors for class
k. The clip level audio tagging outputs are obtained by normalizing
the frame outputs fc with the attention weights z. All frame pre-
dictions for events with a clip level prediction below the threshold
of 0.5 were set to zero so that only clips above the threshold also
had positive frame predictions.

3.2. Use of pseudolabels

We aim to understand the relative benefits of using pseudolabels,
and whether or not progressively incorporating easier or harder
samples yield better results. To that end, we used the teacher model
T from the top-performing submission in the DCASE 2019 task 4
challenge [5], which is an ensemble of six CNNs with an attention
pooling layer. The audio tagging and detection results from teacher
are generated for the unlabeled set without applying post-processing
steps, and used as targets for training the student model. After
the end of an epoch, the pseudolabeled samples can be evaluated
by the student model. At each generation of training, we deemed
samples whose student model predictions more closely match the
teacher model’s soft targets as easier samples. We used the fol-
lowing heuristic to score the difficulty of each sample X using the
weak predictions t, s 2 RC of the teacher and student models, re-
spectively:

µ(t, s) = maxc(|tc � sc|), (2)

which is the maximum difference in the teacher and student scores
across all C classes. The maximum difference rather than mean is
chosen to ensure that the score discrepancies across all events are
below µ(t, s).

3.3. Customized SpecAug procedure

Although the standard SpecAug [9] procedure applies a fixed length
of time masking to each clip, the average duration of different sound
events vary greatly. For example, the duration of dishes clanging is
much shorter than that of vacuuming, so a model for vacuum sound
should be robust to longer time masks compared to a model for
dishes. Applying this principle, we devised a customized procedure
that varies the length of the time mask. For clips from the unlabeled
dataset, we used the weak soft targets generated by the teacher as
labels; otherwise we use the original labels. We added random noise

"c ⇠ N(0, 1e� 6) for each event category to get noisy labels fYc =

Yc + ". For the top K events in fYc, we apply a time mask to X

with the length given by � · lc, where lc is the median frame length
of event c. We also masked frequency bands F times with fixed
length Lf in the same way as the standard SpecAug procedure. Our
tunable hyperparameters are F and Lf for frequency masking and
K and � for time masking.

4. TRAINING

We applied the same procedure as that of the original teacher model
submission to produce 64-dimensional log-mel filterbank features.
A window length of 40 ms, hop length of 20 ms, and 2048 number
of fft components were used to produce 500 frames for each audio
clip. For the student model, we used 20-dimensional log-mel fil-
terbank features with the same window and hop lengths to produce
500 frames for each clip.

4.1. Loss function

Our dataset consists of: 1) a strongly-labeled synthetic dataset LS ;
2) a weakly-labeled dataset LW ; and 3) an unlabeled dataset U . For
each training sample X of the strongly-labeled synthetic dataset,
we have strong audio detection labels Y s, and inferred weak labels
Y

w, where each class has Y
w
c = maxt(Y

s
c,t), while the weakly-

labeled dataset only has weak labels Y
w. For each sample in the

unlabeled dataset, we denote the teacher strong and weak predic-
tions by t

s and t
w, respectively, and the student strong and weak

predictions by s
s and s

w. During training, the loss function is com-
posed of the weak loss, strong loss, and unlabeled loss with hyper-
parameters �1 and �2 which are weights for the clip and frame level
losses:

J = Jw + Js(�1,�2,M) + Ju(�1,�2,M) (3)

where the weak loss Jw is the binary cross-entropy loss

Jw =
1

|Lw|
X

X2Lw

(Y w log(Ŷ w)+(1�Y
w) log(1� Ŷ w)) (4)

and the strong loss is

Js =
�1

|Ls|
X

X2Ls

(Y w log(Ŷ w) + (1� Y
w) log(1� Ŷ w))

+
�2

|Ls|
X

X2Ls

(Y s log(M� Ŷ s)+1�Y
s) log(1�M� Ŷ s))

(5)

The loss Js for strongly-labeled samples is a weighted sum of the
clip-level and framewise binary cross-entropy losses. Since the la-
bels in the dataset are sparse, the average framewise loss can be
quite inefficient as the composition of the loss may be dominated
by the cross-entropy loss of negative frames. Thus, we compared
the results of three different types of masking: 1) no masking; 2)
event masking; and 3) segment masking.

In the case of no masking, M 2 RC⇥T is simply a matrix
of ones. For event masking, we take the Hadamard product of the
predictions Ŷ s and the mask

Mij =

(
1, Yi = 1

0, Yi = 0
, (6)
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Experiment Curriculum Pseudolabels Masking SpecAug Best val F1 Best test F1 Mean±sd Mean±sd
val F1 test F1

Lin ICT 3 - - - - 45.3 42.7 - -
Lin ICT 2 - - - - 44.0 40.9 - -

EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
SW+EM+CS All Strong+weak Event Custom 41.3 42.5 40.3 ± 0.7 41.0 ± 1.1

HF+SW+EM+CS Harder Strong+weak Event Custom 40.7 42.2 40.3 ± 0.8 40.3± 1.2
SW+NM+NS All Strong+weak None None 34.1 34.7 33.1±0.7 33.5±0.9

Table 1: Comparison of pseudolabel scheduling (easier first, harder first, or adding all at once).

Experiment Curriculum Pseudolabels Masking SpecAug Best val F1 Best test F1 Mean±sd Mean±sd
val F1 test F1

EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
EF+SW+EM+SS Easier Strong+weak Event Standard 40.7 41.6 40.0± 0.4 40.9± 0.6
EF+SW+EM+NS Easier Strong+weak Event None 40.2 41.2 39.5 ± 0.4 39.9 ± 0.7
EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
EF+SW+SM+CS Easier Strong+weak Segment Custom 39.9 40.0 39.2± 0.4 39.1 ± 0.5
EF+SW+NM+CS Easier Strong+weak None Custom 35.7 34.5 33.9 ± 0.8 32.9 ± 0.8

Table 2: Comparison of data augmentation methods (custom SpecAug, standard SpecAug, and no augmentation) and different masking
schemes.

so that only frames of present events contribute to the framewise
loss. In the case of segment masking, we use the mask

Mij =

(
1, Yi+12 = 1 or Yi�12 = 1 or Yi = 1

0, otherwise
, (7)

that consists of 1’s for corresponding onset and offset frames of
each event with a 12-frame buffer before and after each segment
(0.24 seconds before and after the onset and offset, respectively).

4.2. Post-processing

After obtaining the framewise outputs for the detection task, we ap-
plied the same post-processing step as the procedure in the teacher
model. A median filter is applied to each event type, with a window
size 1/3 the median number of frames for each event type in the
synthetic labeled set.

5. RESULTS

We trained the following types of experiments:
1. Adding in all samples compared to adding easier or harder

samples of the pseudolabeled dataset first;
2. Applying no data augmentation compared to using standard

SpecAug and our custom SpecAug procedure;
3. Applying no masking, event masking, or segment masking

to the loss function;
4. Using only weak or weak and strong pseudolabels on the

unlabeled dataset.
Each experiment is trained with batch size 16 and learning rate

0.001 on an Adam optimizer with weights �1 = 0.9 and �2 = 0.99.
The macro event-based F1-score on the validation set is computed
at the end of each epoch, and the weights of the best epoch is saved.
As the number of training steps for the epochs of the experiments
for may differ, in experiment 1, we trained each trial for 48,790
training steps and verified that the validation metric has converged
for each experiment type.

5.1. Effect of adding pseudolabels in different stages

We compared the effect of adding all pseudolabels at once and
adding easier or harder samples of the pseudolabeled dataset first.
For all experiments, we trained in generations of five epochs each.
In the first generation, only the labeled dataset was added. For our
control group experiment, we addded all the pseudolabels; other-
wise, we evaluated the difficulty of each pseudolabel by generating
the scores as described in section 3.2. All the samples were ranked
in order of their scores, where higher scores mean that the sam-
ples are harder for the student model as the student predictions are
farther away from the teacher predictions. For the next two genera-
tions, the bottom 20% and bottom 40% scoring pseudolabel samples
were added to the training set when incorporating easier samples
first. We reversed this when incorporating harder samples first, i.e.
the top 20% and top 40% scoring pseudolabel samples are added
in generations two and three, respectively. Starting from the fourth
generation, all pseudolabels were added.

For hyperparamter tuning, we tested each experiment type
with multiple hyperparameter values for the loss weights �1 2
{0.5, 0.75, 1, 1.5, 2} and �2 2 {0.5, 0.75, 1, 1.5, 2}. After find-
ing the best hyperparameters for each experiment type, we repeated
the training process with different random initializations to obtain a
total of 10 different runs for each configuration.

The results are summarized in Table 1. We compared our re-
sults to the top submission in the challenge (Lin ICT 3) and the
top single model by the same team (Lin ICT 2). Four models are
compared: SW indicates that both strong and weak pseudolabels
were used, EM indicates event masking, and CS indicates custom
SpecAug procedure. The last experiment (SW+NM+NS) is a base-
line knowledge distillation result that does not add masking or aug-
mentation. All pseudolabels are added at once in SW+EM+CS,
whereas easier samples are added first in EF+SW+EM+CS, and
harder samples are added first in HF+SW+EM+CS. The results
show that the best performance is attained by adding easier sam-
ples first, with a best event-based macro F1 score of 42.7%, on par
with the best performing challenge submission. There is a mod-
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Experiment Curriculum Pseudolabels Masking SpecAug Best val F1 Best test F1 Mean±sd Mean±sd
val F1 test F1

EF+SW+EM+CS Easier Strong+weak Event Custom 41.6 42.7 40.7 ± 0.6 41.3 ± 0.9
EF+W+EM+CS Easier Weak only Event Custom 28.4 28.6 26.0±1.0 25.6 ± 1.8

EM+CS N/A None Event Custom 23.4 24.7 21.0 ± 1.6 21.2± 2.0

Table 3: Validation and test F1 scores for using weak, strong, and no pseudolabels.

Comparison t-statistic Statistically significant at
↵ = 0.2 ↵ = 0.05 ↵ = 0.01

Easier first vs all 1.413 Y N N
Harder first vs all 0.143 N N N

Easier vs harder first 1.483 Y N N
Cust. SpecAug vs std. 2.802 Y Y N

Cust. SpecAug vs none 7.055 Y Y Y
Std. SpecAug vs none 2.989 Y Y Y
Event mask vs segment 6.800 Y Y Y
Segment mask vs none 19.875 Y Y Y

Event mask vs none 23.021 Y Y Y
Weak pseduolabels vs none 8.361 Y Y Y

Strong + weak vs weak 41.954 Y Y Y
Stong + weak vs none 36.011 Y Y Y

Table 4: Validation and test F1 scores for different pseudolabels.

est positive effect in adding easier samples first, but incorporating
harder samples first does not have much benefit.

5.2. Effect of custom SpecAug procedure

Our best performing model is achieved by applying a custom time-
masking SpecAug procedure randomly during training. We tried
different values for the hyperparameter governing the length of the
time masking � 2 0.25, 0.5, 1.0. A final value of � = 0.25 was
fixed as the best time masking length. In the standard SpecAug
experiment time masking was applied with fixed length of 16 time
frames. For both procedures, we fixed the probability of applying
SpecAug at p = 0.5 and apply 1 frequency mask of mask length 4
and 2 time masks. No time warping was applied in either procedure.

The effect of the SpecAug experiments are summarized in Ta-
ble 2. We compared the performance of the overall top performing
configuration (EF+SW+EM+CS, adding easier pseudolabels first)
with applying standard SpecAug (EF+SW+EM+SS) and no data
augmentation (EF+SW+EM+NS). CS, SS, and NS denote custom
SpecAug, standard SpecAug, and no SpecAug, respectively. All
other hyperparameters were kept fixed in the experiments, and each
experiment is repeated to get ten trials with random initialization.

5.3. Effect of masking on the loss function

Additionally, we compared the effect of adding a segment and event
masking matrix when computing the loss on strongly-labeled sam-
ples, as detailed in Eq 5. A comparison of ten trials for each mask-
ing type is shown in Table 2. The best results were achieved using
event masking (EM), where only positive events were included in
the calculation of the strong loss. Segment masking (SM) is notice-
ably worse than event masking but still performs much better than
no masking (NM), suggesting that masking helps the student model
learn which events are most important in the detection output, but
focusing only on positive segments is too aggressive compared to
simple event masking.

5.4. Effect of adding weak and strong pseudolabels

In our strongest model, both strong and weak predictions were used
as pseudolabels on the unlabeled samples. The results are sum-
marized in Table 3, where SW denotes adding both strong and
weak pseudolabels and W denotes only adding weak pseudola-
bels. While adding weak pseudolabels does significantly boost
the performance of the student model (EM+CS), the effect is
the largest when comparing adding both strong and weak pseu-
dolabels (EF+SW+EM+CS) with adding only weak pseudolabels
(EF+W+EM+CS).

6. CONCLUSION

We have demonstrated that several techniques can be used to train a
three-layer LSTM model on AED by using soft targets generated by
a strong teacher model. In particular, progressively applying pseu-
dolabeled samples, using variable-length time masking in SpecAug
augmentation, and applying event masking to the loss function all
contribute to a single model with a 42.7% macro event-based F1-
score on the test set, matching state of the art performance of 42.7%.
For each of the techniques, we perform a t-test on the means of the
validation F1 score of two independent samples to test the statisti-
cal significance, summarized in Table 4. We find that adding easier
samples first in the pseudolabeled dataset is statistically significant
at the ↵ = 0.2 level, while the other techniques are significant at
the ↵ = 0.05 level.

These techniques can be applied to AED models outside the
teacher-student training context and can be further studied in more
detail. Adding pseudolabeled data in different generations can help
models learn more difficult samples over time. Further research
can fine-tune these techniques in making the task harder in later
generations. For example, adjusting time-masking techniques for
data augmentation can be helpful for tasks with events of different
average time-scales.
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ABSTRACT

We present the task description and discussion on the results of
the DCASE 2021 Challenge Task 2. In 2020, we organized an
unsupervised anomalous sound detection (ASD) task, identifying
whether a given sound was normal or anomalous without anoma-
lous training data. In 2021, we organized an advanced unsuper-
vised ASD task under domain-shift conditions, which focuses on
the inevitable problem of the practical use of ASD systems. The
main challenge of this task is to detect unknown anomalous sounds
where the acoustic characteristics of the training and testing sam-
ples are different, i.e., domain-shifted. This problem frequently
occurs due to changes in seasons, manufactured products, and/or
environmental noise. We received 75 submissions from 26 teams,
and several novel approaches have been developed in this challenge.
On the basis of the analysis of the evaluation results, we found that
there are two types of remarkable approaches that TOP-5 winning
teams adopted: 1) ensemble approaches of “outlier exposure” (OE)-
based detectors and “inlier modeling” (IM)-based detectors and 2)
approaches based on IM-based detection for features learned in a
machine-identification task.

Index Terms— anomaly detection, dataset, acoustic condition
monitoring, domain shift, DCASE Challenge

1. INTRODUCTION

Anomalous sound detection (ASD) [1–7] is the task of identifying
whether the sound emitted from a machine is normal or anomalous.
Automatic detection of mechanical failure is an essential technol-
ogy in the fourth industrial revolution, which includes artificial in-
telligence (AI)–based factory automation, and also prompt detec-
tion of machine anomalies by observing its sounds may be useful
for machine condition monitoring.

We organized “unsupervised ASD” as Task 2 of the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2020 Challenge [8] for to connect academic tasks and real-world
problems. The main challenge of this task was to detect unknown
anomalous sounds under the condition that only normal sound sam-
ples have been provided as training data [1–7]. In real-world fac-
tories, actual anomalous sounds rarely occur but are highly diverse.
Therefore, exhaustive patterns of anomalous sounds are impossible
to collect. This means that we must detect unknown anomalous
sounds that were not in the given training data. This unique and

real-world oriented task attracted the interest of many participants,
and resulted in 117 entries from 40 teams, which included several
new approaches [9–12].

For the DCASE 2021 Challenge, we organized a follow-up un-
supervised ASD task under domain-shift conditions, which simu-
lates a more challenging issue in real-world applications. The main
challenge of this task is that the acoustic characteristics of the train-
ing and testing phase are different due to changes in the normal
condition such as motor speed and signal-to-noise ratio (SNR). A
frequent real-world example of this problem is that the motor speed
in a conveyor for transporting products varies in response to prod-
uct demand; for a product whose demand changes with the seasons,
training data recorded in the summer was 300–400 rotations per
minute (RPM) (i.e. source domain), but the demand drops in the
winter resulting in the motor speed decreasing to 100–200 RPM
(i.e, target domain). Because a normal motor sound at 100 RPM is
an unknown sound for the ASD system, it could incorrectly be de-
tected as an anomalous sound. Therefore, methods to deal with such
drift in normal conditions are required to accelerate the real-world
application of ASD.

As the first benchmark task for domain-shift problems in ASD,
we designed the DCASE Challenge 2021 Task 2 “Unsupervised
Detection of Anomalous Sounds for Machine Condition Monitor-
ing under Domain-Shifted Conditions.” The scope includes differ-
ences in operating speed, machine load, environmental noise, and
so on. After briefly introducing this task, we discuss remarkable
approaches and their potential problems on the basis of the analysis
of all 75 submissions from 26 teams.

2. UNSUPERVISED ANOMALOUS SOUND DETECTION
UNDER DOMAIN-SHIFTED CONDITIONS

Let the L-sample time-domain observation x 2 RL be an audio
clip that includes a sound emitted from a machine. ASD is the de-
termination of whether a machine is in a normal or anomalous state
from x. To determine the state of the machine, an anomaly score
is calculated; it takes a large value when the machine is anomalous,
and vice versa. To calculate the anomaly score, we have to prepare
an anomaly score calculator A with parameter ✓. The input of A
is the audio clip x and additional information given by its file path,
and one anomaly score A✓(x) is output. Then, the machine is de-
termined to be anomalous when the anomaly score A✓(x) exceeds
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a pre-defined threshold value � as

Decision =

⇢
Anomaly (A✓(x) > �)
Normal (otherwise). (1)

The primal difficulty in this task is to train A so that A✓(x) becomes
a large value when the machine is anomalous, even though only
normal sounds are available as training data.

In addition to the regular unsupervised ASD, we have to solve
the domain-shift problem in real-world cases. As mentioned in
Section 1, domain shifts refer to the difference in conditions be-
tween training and testing phases. The conditions differ in operating
speed, machine load, viscosity, heating temperature, environmental
noise, SNR, etc. The difference in conditions causes a gap in the
sound characteristics, i.e., the distribution of the observation in the
feature space changes. Here, two conditions are defined: source do-
main and target domain. The source domain refers to the original
condition with a sufficient number of training clips, and the target
domain refers to another state that has changed from the source do-
main. Let DS , DT , and DTA be the distributions of x under the
normal condition in the source domain, the normal condition in the
target domain, and the anomalous condition in the target domain,
respectively. The regular unsupervised ASD task is to determine
whether x was generated from DT or DTA under the condition
that clips from DT (= DS) are available as training data, but clips
from DTA are not. On the other hand, in the domain shift scenario,
detection must be performed under the condition that clips from
DT ( 6= DS) are available as training data, but clips from DTA are
not. Note that only a few clips from DT are provided as training
data in 2021’s task setting.

3. TASK SETUP

3.1. Dataset

The data used for this task comprises parts of the ToyADMOS2 [13]
and MIMII DUE [14] datasets consisting of the normal/anomalous
operating sounds of seven types of toy/real machines. We intention-
ally damaged machines to collect the anomalous sounds in these
datasets. We provide the following types of machines: ToyCar
and ToyTrain from ToyADMOS2, and fan, gearbox, pump, slide
rail, and valve from MIMII DUE. To simplify the task, we use
only the first channel of multichannel recordings; all recordings
can be regarded as the single-channel recordings of a fixed micro-
phone. Each recording is 10-sec-long audio that includes both the
machine’s operating sound and environmental noise. The sampling
rate of all signals is 16 kHz. We mixed machine sounds with en-
vironmental noise, and only noisy recordings are available as train-
ing/test data. The environmental noise samples were recorded in
several real factory environments. For the details of the record-
ing procedure, please refer to the papers on ToyADMOS2 [13] and
MIMII DUE [14].

In this task, we define two important terms: machine type and
section.

Machine type refers to the type of machine, which can be one of
seven in this task: fan, gearbox, pump, slide rail, ToyCar, ToyTrain,
and valve.

Section is defined as a subset of the data within one machine type
and consists of data from the source and target domains. A section
is a unit for calculating performance metrics and is almost identi-
cal to “machine ID” in the 2020 version. In the 2020 version, there

was a one-to-one correspondence between machine IDs and prod-
ucts, but in the 2021 version, machines of the same product appear
in different sections (Sections 00–02 of the gearbox are the same
product, and sections 03–04 of the gearbox are the same product.),
and multiple products appear in the same section (Section 01 of the
fan contains two products [14]).

We provide three datasets: development dataset, additional
training dataset, and evaluation dataset.
Development dataset consists of three sections for each machine
type (Sections 00, 01, and 02), and each section is a complete set
of training and test data. For each section, this dataset provides (i)
around 1,000 clips of normal sounds in a source domain for training,
(ii) only three clips of normal sounds in a target domain for training,
(iii) around 100 clips of both normal and anomalous sounds in the
source domain for the test, and (iv) around 100 clips each of normal
and anomalous sounds in the target domain for the test.
Additional training dataset provides the other three sections for
each machine type (Sections 03, 04, and 05). Each section consists
of (i) around 1,000 clips of normal sounds in a source domain for
training and (ii) only three clips of normal sounds in a target domain
for training.
Evaluation dataset provides test clips for the three sections (Sec-
tions 03, 04, and 05) identical to those in the additional training
dataset. Each section consists of (i) test clips in the source domain
and (ii) test clips in the target domain, none of which have a con-
dition label (i.e., normal or anomaly). Note that the sections of the
evaluation dataset (Sections 03, 04, and 05) are different from the
development dataset (Sections 00, 01, and 02).

3.2. Evaluation metrics

The area under the curve (AUC) and partial-AUC (pAUC) for re-
ceiver operating characteristic (ROC) curves are used for evaluation
as well as the 2020 edition [8]. The pAUC is an AUC calculated
from a portion of the ROC curve over the pre-specified range of in-
terest. In our metric, the pAUC is calculated as the AUC over a low
false-positive-rate (FPR) range [0, p]. The AUC and pAUC for each
machine type, section, and domain are defined as

AUCm,n,d =
1

N�N+

N�X

i=1

N+X

j=1

H(B✓,j,i), (2)

pAUCm,n,d =
1

bpN�cN+

bpN�cX

i=1

N+X

j=1

H(B✓,j,i), (3)

where B✓,j,i = A✓(x
+
j ) � A✓(x

�
i ), m represents the index

of a machine type, n represents the index of a section, d =
{source, target} represents a domain, b·c is the flooring function,
and H(x) returns 1 when x > 0 and 0 otherwise. {x�

i }
N�
i=1 and

{x+
j }

N+
j=1 are normal and anomalous test clips in domain d in sec-

tion n in machine type m, respectively, and they have been sorted
so that their anomaly scores are in descending order. N� and N+

are the number of normal and anomalous test clips in domain d in
section n in machine type m, respectively. The additional use of
the pAUC is based on practical requirements. If an ASD system
frequently gives false alarms, we cannot trust it. Therefore, it is im-
portant to increase the true-positive rate under low FPR conditions.
In this task, we will use p = 0.1. The official score ⌦ for each sub-
mitted system is given by the harmonic mean of the AUC and pAUC
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scores over all machine types, all sections, and both domains. As
the aforementioned equations show, a threshold value does not need
to be determined to calculate AUC, pAUC, or the official score be-
cause the threshold value is set to the anomaly score of a normal
test clip.

3.3. Baseline systems and results

The task organizers provided two baseline systems.

Autoencoder-based baseline: The first baseline is an autoencoder
(AE)-based anomaly score calculator and the same as the DCASE
2020 task 2. Details are described in the 2020 task description [8].
The anomaly score A✓ is calculated as the mean square error of
reconstruction for the observed sound. To obtain small anomaly
scores for normal sounds, the AE is trained to minimize the recon-
struction error of the normal training data. This method is based on
the assumption that the AE cannot reconstruct sounds that are not
used in training, that is, unknown anomalous sounds. If and only if
A✓ for each test clip is greater than a threshold, the clip is judged to
be anomalous.

“Outlier exposure”-based baseline using MobileNetV2: The sec-
ond baseline is an anomaly score calculator obtained by using
an approach called “outlier exposure” (OE) [15] for the machine-
identification task. In DCASE 2020, 10 of the 40 teams used this
approach [9, 11, 12, 16–22], and with four of them [9, 16, 19, 20]
using the model of MobileNetV2 [23]. The models of this base-
line are trained to identify from which section the observed sig-
nal was generated; it outputs the softmax value that is the pre-
dicted probability for each section. The anomaly score is calcu-
lated as the averaged negative logit of the predicted probabilities
for the correct section. We first calculate the log-mel-spectrogram
of the input X = {Xt}

T
t=1, where Xt 2 RF , and F and T

are the number of mel-filters and time-frames, respectively. Then,
the acoustic feature (two-dimensional image) at t is obtained by
concatenating consecutive frames of the log-mel-spectrogram as
 t = (Xt, · · · , Xt+P�1) 2 RP⇥F . By shifting the context win-
dow by L frames, B(= b

T�P
L c) images are extracted. The frame

size of the short-time Fourier transform (STFT) is 64 ms, and the
hop size is 50 %. In addition, F = 128, P = 64, and L = 8. The
Adam optimizer is used, and we fix the learning rate to 0.00001. We
stop the training process after 20 epochs, and the batch size is 32.
We train models independently for each machine type using nor-
mal clips from all sections of that machine type. The sections are
used as classes to train the individual models. The anomaly score is
calculated as:

A✓(X) =
1
B

BX

b=1

log

✓
1� p✓( t(b))

p✓( t(b))

◆
, (4)

where t(b) is the beginning frame index of the b-th image and p✓ is
the softmax output by MobileNetV2 for the correct section.

Tables 1 and 2 show the AUC and pAUC scores for the two
baselines, respectively. Because the results produced with a GPU
are generally non-deterministic, the average and standard deviations
from these five independent trials (training and testing) are shown.

Table 1: Results of the AE-based baseline

Section AUC [%] pAUC [%]
Source Target Source Target

ToyCar
00 67.63 ± 1.21 54.50 ± 0.89 51.87 ± 0.50 50.52 ± 0.20
01 61.97 ± 1.50 64.12 ± 1.07 51.82 ± 0.87 52.14 ± 0.80
02 74.36 ± 0.82 56.57 ± 1.53 55.56 ± 0.83 52.61 ± 1.20

ToyTrain
00 72.67 ± 1.19 56.07 ± 0.80 69.38 ± 1.06 50.62 ± 0.68
01 72.65 ± 0.32 51.13 ± 0.53 62.52 ± 0.88 48.60 ± 0.13
02 69.91 ± 0.33 55.57 ± 1.07 47.48 ± 0.02 50.79 ± 0.93

Fan
00 66.69 ± 0.81 69.70 ± 0.32 57.08 ± 0.15 55.13 ± 0.34
01 67.43 ± 1.12 49.99 ± 0.48 50.72 ± 0.42 48.49 ± 0.38
02 64.21 ± 1.27 66.19 ± 1.23 53.12 ± 0.78 56.93 ± 1.37

Gearbox
00 56.03 ± 0.53 74.29 ± 0.51 51.59 ± 0.16 55.67 ± 0.97
01 72.77 ± 0.72 72.12 ± 1.06 52.30 ± 0.18 51.78 ± 0.15
02 58.96 ± 0.53 66.41 ± 0.72 51.82 ± 0.29 53.66 ± 0.57

Pump
00 67.48 ± 0.58 58.01 ± 0.57 61.83 ± 0.41 51.53 ± 0.27
01 82.38 ± 0.27 47.35 ± 0.53 58.29 ± 0.77 49.65 ± 1.46
02 63.93 ± 0.45 62.78 ± 0.70 55.44 ± 0.52 51.67 ± 0.35

Slide rail
00 74.09 ± 0.48 67.22 ± 0.45 52.45 ± 0.63 57.32 ± 0.52
01 82.16 ± 0.35 66.94 ± 0.39 60.29 ± 0.30 53.08 ± 0.39
02 78.34 ± 0.16 46.20 ± 0.77 65.16 ± 0.55 50.10 ± 0.31

Valve
00 50.34 ± 0.27 47.12 ± 0.18 50.82 ± 0.16 48.68 ± 0.09
01 53.52 ± 0.33 56.39 ± 1.42 49.33 ± 0.10 53.88 ± 0.61
02 59.91 ± 0.34 55.16 ± 0.22 51.96 ± 0.52 48.97 ± 0.04

Table 2: Results of the MobileNetV2-based baseline

Section AUC [%] pAUC [%]
Source Target Source Target

ToyCar
00 66.56 ± 2.68 61.32 ± 5.94 66.47 ± 5.67 52.61 ± 2.41
01 71.58 ± 5.54 72.48 ± 3.68 66.44 ± 2.84 63.99 ± 2.60
02 40.37 ± 7.19 45.17 ± 3.36 47.48 ± 0.23 48.85 ± 0.94

ToyTrain
00 69.84 ± 4.39 46.28 ± 3.85 54.43 ± 1.65 51.27 ± 0.73
01 64.79 ± 3.65 53.38 ± 2.47 54.09 ± 1.15 49.60 ± 0.88
02 69.28 ± 6.73 51.42 ± 2.64 47.66 ± 0.40 53.40 ± 1.12

Fan
00 43.62 ± 2.35 53.34 ± 2.03 50.45 ± 1.15 56.01 ± 1.38
01 78.33 ± 1.52 78.12 ± 4.25 78.37 ± 2.26 66.41 ± 7.16
02 74.21 ± 3.85 60.35 ± 3.79 76.80 ± 0.78 60.97 ± 6.55

Gearbox
00 81.35 ± 1.59 75.02 ± 2.92 70.46 ± 3.67 64.77 ± 2.52
01 60.74 ± 5.11 56.27 ± 8.27 53.88 ± 2.82 53.30 ± 2.97
02 71.58 ± 7.16 64.45 ± 9.67 62.23 ± 6.67 55.58 ± 7.90

Pump
00 64.09 ± 4.34 59.09 ± 3.08 62.40 ± 1.90 53.96 ± 0.93
01 86.27 ± 3.18 71.86 ± 5.97 66.66 ± 5.23 62.69 ± 2.33
02 53.70 ± 4.99 50.16 ± 3.78 50.98 ± 1.23 51.69 ± 1.03

Slide rail
00 61.51 ± 4.92 51.96 ± 3.17 53.97 ± 2.03 51.96 ± 2.96
01 79.97 ± 3.70 46.83 ± 10.65 55.62 ± 1.57 52.02 ± 4.17
02 79.86 ± 1.41 55.61 ± 5.48 71.88 ± 4.64 55.71 ± 2.84

Valve
00 58.34 ± 4.01 52.19 ± 3.33 54.97 ± 4.43 51.54 ± 1.88
01 53.57 ± 2.26 68.59 ± 2.84 50.09 ± 0.45 57.83 ± 2.49
02 56.13 ± 1.96 53.58 ± 0.55 51.69 ± 0.32 50.86 ± 0.84

4. CHALLENGE RESULTS AND DISCUSSION

4.1. Results for evaluation dataset

We received 75 submissions from 26 teams, and 20 teams achieved
better performance than the baseline systems. The harmonic means
of the AUC scores of the top 10 teams [24–33] are shown in Fig.
1 for the source and target domains. As shown in the figure, the
performance for which machine type is high or low varies greatly
from team to team. However, the score on the target domain roughly
correlates to the official ranking.

We find that there are two remarkable approaches in high-rank
solutions: the first is an ensemble of OE-based detection and “in-
lier modeling” (IM)-based detection [24, 27, 28]. Here, IM refers
to out-of-distribution (OOD) detection methods based on modeling
a distribution of inlier samples, for example, AE, k-nearest neigh-
bors (kNN), local outlier factor (LOF), Gaussian mixture models
(GMM), normalizing flows (NF), interpolation deep neural network
(IDNN) [6], and their conditional versions. The second approach is
IM-based detection for features learned in a machine-identification
task [25, 26]. We describe the details in the following sections.
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Figure 1: Evaluation results of top 10 teams in team ranking. AUC for source domains (top) and AUC for target domains (bottom). Label “A”
and “M” on the x-axis means AE-based and MobileNetV2-based baselines, respectively.

4.2. Parallel-type hybrid approach: ensemble of OE-based and
IM-based detectors

The first, fourth, and fifth-place teams [24, 27, 28] utilized this type
of approach. OE-based detectors have a weakness in that their per-
formance is severely degraded when the distributions of different
sections (roughly, machine products) are too similar or too differ-
ent [8, 34]; ensembles of OE and IM can reduce this OE weakness
by leveraging the robustness of IM. The 2020 first-place team [9]
used an ensemble of OE-based and IM-based detectors, using Mo-
bileNetV2 for OE and IDNN for IM. The 2021 first-place team [24]
also used this type of approach, using multiple types of OE models
and a conditional NF. Surprisingly, the technical report shows that
this team did not perform any domain adaptation, but the perfor-
mance of the target domain is outstanding. Taking into account the
low performance of the individual subsystems of this team, we can
guess that the ensemble gave them high generalization performance
in both domains.

The fourth and fifth-place teams [27, 28] also took ensembles
of OE and IM. However, unlike the first-place team, they prepared
a model for each domain and performed domain adaptation, result-
ing in comparable AUC scores to the second and third-place teams
in both domains. For example, the fifth-ranked team [28] is the
only team to achieve AUC scores over 55% on all machine types
in both domains. Although this ensemble-type approach tends to
increase its model complexity, surprisingly, the model of the fifth-
place team [28] is small. Further improving the performance of
domain adaptation while maintaining the compactness of the model
will continue to be a research problem.

4.3. Serial-type hybrid approach: IM-based detection for fea-
tures learned in a machine-identification task

The second and third-place teams [25, 26] utilized this type of
approach. They extracted features for the machine-identification
task and performed IM-based detection on the extracted fea-
tures. In training, the feature extraction model was first trained in
the machine-identification task like OE-based methods, and then

the IM-based detection model was trained. The aforementioned
ensemble-type approach can be thought of as a parallel-type hy-
brid, whereas this approach can be thought of as a serial-type hybrid
of OE and IM. This approach uses the powerful feature extraction
of OE, but overcomes its aforementioned instability by taking ad-
vantage of the robustness of IM. In addition, this approach has the
advantage of preventing the model complexity associated with en-
sembles.

Domain adaptation was performed only on IM-based detec-
tors and not on feature extractors by the second and third-place
teams [25, 26]. Such a domain adaptation method is less prone to
overfitting because it fine-tunes only a limited range, and is con-
sidered effective when the number of training samples in the target
domain is small. However, there is no guarantee that the features
that are effective for machine identification will remain effective af-
ter the domain shift. In the future, it is desirable to verify how wide
the effective range of this approach is and how far its performance
for domain adaptation can be improved.

5. CONCLUSION

We presented an overview of the task and analysis of the solutions
submitted to the DCASE 2021 Challenge Task 2. The main chal-
lenge of this task was to detect unknown anomalous sounds where
the acoustic characteristics of the training and testing samples were
different. We analyzed all evaluation results and submissions, and
found that there are two types of remarkable approaches that TOP-5
winning teams adopted, i.e., 1) the parallel-type hybrid: ensemble
approaches of OE-based and IM-based detectors and 2) the serial-
type hybrid: approaches based on IM-based detection for features
learned in the machine-identification task. Both two approaches are
promising, but there is some room for performance improvement
for domain adaptation. For the parallel-type hybrid, future work
is to improve the performance of domain adaptation while main-
taining the compactness of the model. Future work is needed for
the serial-type hybrid to verify how wide this approach’s effective
range is and improve the domain adaptation performance.
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ABSTRACT

Music plays an important role in human cultures and constitutes an
integral part of urban soundscapes. In order to make sense of these
soundscapes, machine listening models should be able to detect and
classify street music. Yet, the lack of well-curated resources for
training and evaluating these models currently hinders their develop-
ment. We present MONYC, an open dataset of 1.5k music clips as
recorded by the sensors of the Sounds of New York City (SONYC)
project. MONYC contains audio data and spatiotemporal metadata,
i.e., coarse sensor location and timestamps. In addition, we provide
multilabel genre tags from four annotators as well as four binary
tags: whether the music is live or recorded; loud or quiet; single-
instrument or multi-instrument; and whether non-musical sources
are also present. The originality of MONYC is that it reveals how
music manifests itself in a real-world setting among social interac-
tions in an urban context. We perform a detailed qualitative analysis
of MONYC, show its spatiotemporal trends, and discuss the scope
of research questions that it can answer in the future.

Index Terms— Audio databases, environmental music, sound
event detection, spatiotemporal context, street music, urban sound

1. INTRODUCTION

Although music is a fundamental component of urban life, our under-
standing of the musical soundscape of cities remains limited. Few
prior sources address the detection of music in noisy environments
[1, 2, 3], and even fewer the retrieval of music information. It is cur-
rently impossible to automate the indexation of street music, whether
recorded by sensor networks or by smartphones. Such a limitation re-
sults from the lack of resources for training and evaluating dedicated
machine listening models.

UrbanSound8k [2], now regarded as a standard benchmark for
audio classifiers, was first in introducing a street music class as part of
its taxonomy with the aim of detecting the presence of music. More
recently, the SONYC-UST dataset [1] included music as one of the
categories of its taxonomy. Yet, the musical samples in both of these
datasets do not have detailed annotations; did not preserve the spa-
tiotemporal distribution of street music; and were not representative
in terms of acoustic content. In recent years, the field of audio event
recognition has shifted its benchmarks to larger datasets, notably
AudioSet [4] (derivative of YouTube) and FSD50k [5] (derivative
of FreeSound). Although these datasets contain millions of audio
clips, neither of them accommodates a street music category or pro-
vides any details about urban musical content. As a consequence,
AudioSet-based classifiers such as YAMNet1 cannot reliably identify

1https://www.tensorflow.org/hub/tutorials/yamnet

urban music samples from YouTube or FreeSound, let alone from an
acoustic sensor network. To the best of our knowledge, there is no
open-source dataset for environmental music analysis that allows for
developing models for understanding noisy music urban recordings.

The SONYC project [6] has recorded more than 700k hours of
audio data from the streets of New York City. This data tells us a lot
about the city’s dynamics. The sounds of the city reflect its rhythm,
and the major events that happened in the last years. A big part of
the soundscape of the city is the music people listen to. People use
music to manifest ideas or promote activities. Nightlife, festivals,
social demonstrations, street celebrations, restaurants, bars and shops
usually play music. Even music played loudly from the speakers
of a car are manifestations of people’s behaviour. Understanding
music in an urban context gives us a deeper perspective on human
behaviour, which is harder to obtain from other environmental sound
events. From an acoustic viewpoint, the music recordings present in
SONYC’s archive are recorded in open spaces, in day-to-day condi-
tions, and differ tremendously from commercial studio-recordings
or artistic, close-field street recordings such as non-professional
music videos. Recordings have low Signal-to-Noise Ratio (SNR),
are picked up by the sensors at far-field distances (ranging from
approximately ten to fifty feet), and they present big differences in
their acoustic characteristics due to the different locations of the
sensors: some are located in parks, some in commercial districts;
some sensors have buildings close by, and others face towards open
spaces. Additionally, the recordings have variant levels of noise from
other sources present in the streets such as cars or people talking.

We present MONYC, a manually-annotated dataset of 10-second
music clips recorded from the sensors of the SONYC project in the
streets of New York City. MONYC was created using a combina-
tion of urban sound tagging; self-supervised learning; point process
modeling; and human labeling. It conveys very rich metadata in-
cluding timestamps and spatial location of clips, along with binary
scene descriptors to assess models in different conditions (e.g. high
interference of non-musical sources). By framing the detection
and classification of musical events in the context of environmental
acoustics, our goal is not to advance the state of the art in music
technology; but rather, to discover relational, spatiotemporal, and
behavioral trends in urban sounds at large.

2. DATA COLLECTION AND CURATION

As shown in Table 1, MONYC proceeds from SONYC by several
stages of data filtering: from 250M audio clips acquired by SONYC
sensors to 1.5k after agreement by multiple annotators. This section
summarizes the process of data curation which led to MONYC.

Audio acquisition with SONYC sensors: SONYC sensors are
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stage SONYC 2017 subsampled 15 sensors music uniform DPP annotation agreement
# clips 250M 30M 10M 5.8M 94k 30k 3k 1.7k 1.5k

Table 1: Number of clips at different stages of curation of MONYC.

placed on second-storey window ledges, at a typical height of seven
meters [7]. They record street sounds under the form of 10-second
audio clips at a sample rate of 48 kHz. For privacy reasons, the
acquisition schedule of audio clips is randomized, with three clips
per minute on average. Since May 2016, SONYC has acquired over
250M audio clips, making it one of the largest datasets of urban
sounds worldwide.

Spatiotemporal filtering: We restrict our study to the year 2017
since it is the first year of the SONYC archive with complete data for
the entire period, yielding 30M clips from 26 sensors. We subsample
these 30M clips in time down to one clip per minute, yielding 10M
clips. Then, we manually select 15 of the 26 sensors in diverse
locations: e.g., on a small road, on a main avenue, in different
corners of a park, next to a concert venue. Most of these sensors
are located in Lower Manhattan, nearby Washington Square Park
(WSP) and 5th Avenue; with a few other near Central Park and in
downtown Brooklyn. Note that WSP is a well-known spot for street
musicians while downtown Brooklyn hosts weekly outdoor concerts
in the summer. Reducing the number of sensors from 26 to 15 yields
5.8M clips.

Urban sound tagging: We now proceed to retrieve street music
within these 5.8M unlabeled clips. To this end, we run a deep
learning model for urban sound tagging (UST) named SONYC-UST.
SONYC-UST was trained on an open dataset of 19k SONYC clips
from years 2016–2019 [1]. This dataset set was annotated by citizen
scientists2 and part of it was verified by experts. Among the 23
classes of the SONYC-UST taxonomy, three of them form the coarse
category music. The SONYC-UST model has served as the baseline
system for Task 5 of the DCASE 2020 challenge3. SONYC-UST
does not take raw audio as input but relies on a pretrained feature
extractor: Open-L3 [8]. Open-L3 is a deep convolutional network
which was trained in a self-supervised way on unlabeled YouTube
videos [8]. It is based on a mel-frequency spectrogram representation
and produces 128-dimensional embeddings at a rate of 1Hz, i.e. 10
embeddings per clip. SONYC-UST consists of two convolutional
layers with a receptive field of 1 and ReLU nonlinearities, followed
by AutoPool [9] to aggregate the 10 frame-level predictions.

We keep all clips where the model’s output likelihood of music
was above a threshold that corresponds to the validation set of [1].
This threshold is relatively low since at this stage we prioritized
not discarding music clips that might be interesting but the model
might not be confident with. At this point, we are down to 94k clips
potentially containing street music.

Uniform spatiotemporal sampling: We compute the distribu-
tion of number of clips through the whole year for each sensor as a
reference of the seasonal patterns spotted in that sensor. We keep
this distribution as we downsize the number of clips for annotation
in the following stage. Meanwhile, we select 2k samples per year
per sensor at random (respecting the monthly distribution of music
recordings), hence a total of 30k clips.

Diverse sampling with determinantal point processes: For
our final sample we want not only to keep this seasonal distribution

2https://www.zooniverse.org/projects/anaelisa24/
sounds-of-new-york-city-sonyc

3https://github.com/sonyc-project/dcase2020task5-uststc-baseline

but to have as much diversity of acoustic conditions (e.g. instrumen-
tation, genre, recording conditions) as we can within each sensor.
For this, we use a determinantal point process (DPP).

Formerly known as fermionic processes, determinantal point
processes (DPPs) are probabilistic models which initially arose in
quantum physics to represent repulsive interactions between particles
[10]. DPPs has gained attention in machine learning research [11]
over the past decade, with the overarching goal of modeling the
relative diversity of all possible subsets of a dataset. Since then, it
has found many applications, e.g., text summarization [12], video
recommendation [13], and news threading [14].

To curate the MONYC dataset, we consider a modified form
of DPP known as K-DPP [15]. The key idea behind K-DPPs is to
select a subset of K items from a larger collection ⌦ while striking a
tradeoff between relevance and diversity. We use the DPP implemen-
tation from the DPPy package [16]. We use OpenL3 embeddings as
the representation and the music likelihood output of the SONYC-
UST model as relevance. We down-sampled each month of data per
sensor following the yearly distribution explained below, for a total
of 200 samples per sensor, and 3k samples for all sensors.

Annotations: Once we had the 3k music clips from the data-
driven sampling, we performed the the manual annotation in four
stages: 1) pre-selection of musical recordings by one annotator, 2)
confirmation by three other annotators, 3) detailed annotation by the
four annotators, and 4) annotation agreement and conflict solving.
Annotating urban sound recording is a particularly hard endeavor,
and street music clips are no exception. Many clips present low
signal-to-noise ratio and sometimes music is faint. Other times it
is distant and the interference of other sources makes it difficult
to disambiguate if there is music or what instruments are present.
Besides, the clips’ duration of 10s is another challenging aspect,
particularly for music annotations since the music can be captured
at the least identifiable moment (e.g., an intro) making it hard to
determine what music genre is being played. The four annotators
are one student and three experienced machine listening researchers,
all with musical training.

In a first stage, the student annotator curated all of the 3k clips.
This annotator filtered out clips with no music or music too faint,
leaving around 1.7k clips. Then each of the remaining annotators
annotated one third of this data, with no overlap with each other.
These annotators were asked again to confirm if there was music in
the clip. Only clips where both annotators said there was music and
no sensor faults were included in MONYC, for a total of 1587 clips.

Each annotator was then asked to provide for each clip multi-
label free-form genre tags, and a set of binary indicators: whether
the music is live or recorded, whether it is loud or quiet, whether the
clip has a single instrument, and whether there is high interference
from non-musical sources. To consider the uncertainty of annotating
hard clips, the annotators used the label unclear for particularly hard
examples. This free-form tagging was chosen to allow the discovery
of music genres in urban music, and the process lead to a total of
114 tags, where the different annotators provided different level of
granularity of sub-genres depending on their music preferences and
knowledge. The annotators went then through a stage of agreement
on a set of “sibling genres” that collapsed some of the annotated sub-
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genres in a new set of agreed annotations. For instance, tags such as
“ragtime”, “bebop”, “cool jazz”, or “free jazz” were collapsed into
“jazz”. As many as 82 genres were collapsed to bigger categories,
for a total of 41 genres in the agreed annotations taxonomy. After
the agreement on this set of genres, recordings with conflicting
annotations, either because annotators did not overlapped in any tag
or they disagreed in the binary flags, were audited by at least two
annotators to provide the final set of annotations for MONYC. One
of the machine listening experts participated in all conflict solving to
ensure consistency in the final annotations set. When there was no
agreement among the two annotators, a third annotator was consulted.
A total of 924 recordings were audited for agreement (58% of the
total). Two sets of annotations are released: a set of agreed, audited
annotations intended for developing machine listening models, and
a set of pre-agreement annotations with more variance, to illustrate
the difficulty and subjective nature of the data.

3. DATASET OVERVIEW

MONYC is an open source dataset of environmental music from
the streets of New York City. The dataset taxonomy, all annotations
and data are available online4. It consists of 1587 clips with manual
annotations of multi-label free-form genre tags from four annotators,
binary descriptors and non-exhaustive instrument annotations, as
well as spatiotemporal metadata.

Figure 1: Distribution of 20 top genre labels.

Music genres in MONYC: The genre distribution of MONYC,
as depicted in Figure 1, has several particularities. Firstly, unlike
datasets such as AllMusic, Discorgs, Lastfm or Tagtraum (all part of
AcousticBrainz [18]), where the genres with more appearances are
rock or pop, the top genre in MONYC is hip hop, pop being the third
one and rock just making it to the top ten. Looking at the binary
indicator of whether the performance is live or playback, we can look
at the relation between genre and live music in the context of street
music. We see that most genres are playbacked, sometimes from
cars passing, sometimes from shops, or speakers outside homes. The
exception are two genres: jazz and drumming, which are both mostly
live. Genres such as rock or country are more evenly spread between
the two categories, being good candidates to asses the performance
of models to identify live vs. playback music.

Spatiotemporal information: One of the unique features of
MONYC is that each clip contains contextual information of where
and when this clip was collected by the sensor network. To maintain
privacy and following [1], we quantize the spatial information to
the block level and the temporal information to the hour level. For
the spatial information we provide borough and block identifiers,

4See https://magdalenafuentes.github.io/monyc/ and Soundata [17].

Figure 2: Temporal distribution of music clips at the month (top),
weekday (middle) and hour (bottom) level.

as used in NYC’s parcel number system known as Borough, Block,
Lot (BBL) [19]. This is a common identifier used in NYC datasets,
which facilitates the contrast of the sensor data to other open city data
[20]. Figure 2 shows the temporal distribution of music clips at the
month, day, and hour level broken down by the three top genres in
each temporal scale. A first observation is that the amount of music
clips increases towards the Summer months (June, July) an decreases
considerably in Winter (November, December and January). This
makes sense considering that the sensors are capturing environmental
music, and in summer there are more concerts, more cars passing
playing music with their windows open and more people in the
street in general. The percentage of live music oscillates from less
than 10% during Winter up to 35-40% in Summer, when it is at
its highest. Music genres also change with seasons. As we saw
previously, given its live nature, jazz has more presence in the streets
in warmer months, with its peak being the summer. Hip hop and
pop are season-less, being part of the City’s music scene all year
round. The appearance of other genres in the monthly top 3 is usually
correlated with events that happened in those months. For example,
the high presence of celtic music in March is highly explained by St.
Patrick’s day celebrations and parade on March 17th.

The weekday and hourly distributions also show interesting
patterns. The first observation is that there is less street music at
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Figure 3: Spatial distribution of hip hop (blue), jazz (black) and pop
(green). Circle sizes indicate number of recordings.

the beginning of the week, and an increase towards the weekend,
with the exception of Thursdays which show a lot of music activity.
When looking at this closer we noticed this is due to two sensors
in Downtown Brooklyn which are facing towards a park, which
in summer has live concerts every week on Thursdays5, between
noon and 2PM (which also explains the increase of music recordings
around that time in the hourly distribution, with concerts having a big
component of jazz as can be seen on the genre breakdown). Except
for those two sensors, the rest follow a distribution that has more
clips during weekends and late-afternoon/evenings. We included
these two sensors in the dataset as they are a good example of how
the location affect the observations in environmental music.

There are some genres that are constant through the week: pop,
jazz and hip hop are present every day, but at different amounts
per weekday. For instance, we observe that jazz has more presence
on Thursdays, which can be related to the live concerts mentioned
before. Hip hop is stable through the week with an increase towards
the weekend. Rnb explains the increase of music clips on Fridays.
More can be spotted by looking at e.g. the top five genres at different
scales, we discussed the top three for better visualization.

An additional aspect of having the spatiotemporal data is that we
can explore the spatial distribution of the different genres, i.e. where
do we see more instances of one genre or another. An example of
that is shown in Figure 3, which shows the spatial distribution of
hip hop (blue), jazz (black) and pop (green). The map is zoomed in
around Washington Square Park, where the density of sensors is the
biggest for the SONYC network. Ten of the 15 sensors of MONYC
are around the area of Greenwich Village. In the map we see the
music events appearing in the same locations, which correspond to
sensor deployments. The first observation is that hip hop and pop
are more spread out across roads while jazz is more concentrated
around the park. This makes sense considering that jazz is mostly
live as in Figure 1, and it is being played in settings suitable for
live performances such as a park. Hip hop and pop music are often
played by passing cars or in gatherings outside homes, which agrees
with the observations in the maps.

Music tagging in MONYC: We consider MONYC to be a chal-
lenging and interesting scenario to test tagging models, especially
when focused on characterizing the music being played. This type

5https://www.bam.org/media/9456156/Metrotech-2017\ final.pdf

of problem is not simply solved by using standard music taggers that
where trained in high SNR recordings with no interfering sources,
but requires models dedicated to environmental music. We include
as a first example an experiment using the off-the-shelf music genre
tagger musicnn [21], which is a convolutional neural network for
out-of-the-box audio music tagging. We use the model trained with
the Million Song Dataset (MSD) [22] since it is the one with bigger
overlapping with MONYC’s taxonomy out of the available models.
We evaluate the model by computing the area under receiver oper-
ating characteristic curve (ROC-AUC) using the scikit-learn [23]
implementation. We selected the subset of MONYC’s clips that had
genre annotations overlapping with the models’ vocabulary, that is
the 85% of the data. Twelve genres overlapped in MONYC’s and
MSD’s taxonomies: rock, pop, alternative, indie, dance, jazz, soul,
electronica, folk, 90s, blues, hip hop, country, funk, and rnb. The
overall performance of the model in MONYC is considerably lower
than in other datasets [24] (in the range of 90%), with a median
ROC-AUC score of 50%. Figure 4 shows that the performance
varies widely depending on the genre. Popular street genres such as
hip hop, which are usually underrepresented when training music
taggers, have very low performance. Looking at recordings from
the three most common genres in the data (hip hop, jazz, pop), we
noticed that the model performed 8-12% worse in average in those
recordings labeled with high interference of sources. We hypothesize
that this type of systematic error and the low overall performance
could be corrected by re-training or fine tuning such models on
MONYC data, which is out of the scope of this paper. This result
presents a compelling first look at the type of errors such systems
make in environmental music, and the steps we can now take towards
making them more robust.

Figure 4: Median ROC tagging results of off-the-shelf music tagger
breakdown per genre in MONYC.

4. CONCLUSIONS AND FUTURE WORK

We presented MONYC, the first-of-its-kind open dataset of music
in urban settings. The dataset was created from the SONYC sensor
network archive, delivering data-driven and self-supervised methods
for sampling and curating a diverse set of music clips. It consists of
a total of four hours of street music audio data along with highly rich
annotations: multi-label genre tags from four annotators; spatiotem-
poral data consisting of location and timestamps of clips; and binary
scene descriptors such as whether the music is live or recorded.

We hope this dataset provides the foundations for the develop-
ment of machine listening models for environmental music, and we
plan to expand the dataset with more recordings from the SONYC
archive in the future by exploiting the current annotations, as well as
similar data-driven methods.
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ABSTRACT

Automated Audio captioning (AAC) is a cross-modal translation
task that aims to use natural language to describe the content of
an audio clip. As shown in the submissions received for Task 6 of
the DCASE 2021 Challenges, this problem has received increasing
interest in the community. The existing AAC systems are usually
based on an encoder-decoder architecture, where the audio signal
is encoded into a latent representation, and aligned with its corre-
sponding text descriptions, then a decoder is used to generate the
captions. However, training of an AAC system often encounters
the problem of data scarcity, which may lead to inaccurate repre-
sentation and audio-text alignment. To address this problem, we
propose a novel encoder-decoder framework called Contrastive Loss
for Audio Captioning (CL4AC). In CL4AC, the self-supervision
signals derived from the original audio-text paired data are used to
exploit the correspondences between audio and texts by contrasting
samples, which can improve the quality of latent representation and
the alignment between audio and texts, while trained with limited
data. Experiments are performed on the Clotho dataset to show the
effectiveness of our proposed approach.

Index Terms— Audio captioning, cross-modal translation, con-
trastive loss, deep learning

1. INTRODUCTION

Automated Audio captioning (AAC) is a cross-modal translation task
of generating a natural language description for an audio clip. It has
various potential applications. For example, AAC can be used for
generating subtitles for the audio content in a television program, or
for generating text descriptions of audio to help the hearing impaired
in accessing audio content. It can also be used by sound search
engines to achieve more accurate retrieval and recommendation,
or by a surveillance system to facilitate the detection of acoustic
anomalies. The AAC problem has attracted increasing interest from
the acoustic signal processing and machine learning communities in
recent years.

Existing AAC systems are usually based on an encoder-decoder
architecture [1, 2, 3, 4, 5]. The audio data is encoded into a latent
representation and aligned with its corresponding text description.
Then a decoder is used to generate the captions. Training of an
AAC system often encounters the problem of data scarcity, which
may lead to inaccurate representation and audio-text alignment. For
example, Clotho [6] is a popular AAC dataset and was used for the
DCASE challenge. However, it only contains 6974 audio samples,

⇤The first two authors contributed equally to this work.

and each audio sample has five captions. To address this problem,
information from keywords has been exploited for AAC [3, 7, 8]. The
keywords of the caption are tagged firstly and then used to assist the
generation of captions. However, due to the diversity of keywords,
the tagging results of unseen audio clips may not be accurate in the
inference stage. On the other hand, transfer learning techniques [9,
10] have been widely used in task 6 of the DCASE 2021 challenge,
offering substantially improved performance. However, transfer
learning relies heavily on large-scale external data [11] and pre-
trained models [12].

Contrastive learning [13, 14] is a self-supervised paradigm that
helps the model obtain high-quality representation. Inspired by
the recent success of contrastive learning in computer vision (CV)
[15] and natural language processing (NLP) [16, 17], we propose a
novel encoder-decoder framework called Contrastive Loss for Audio
Captioning (CL4AC). In CL4AC, the self-supervision signals de-
rived from the original audio-text paired data are used to exploit the
correspondences between audio and texts by contrasting samples.
More precisely, we construct mismatched audio-text pairs as nega-
tive samples. Then, a contrastive learning objective is designed to
maximize the difference between the representation of the matched
audio-caption pair derived from the negative pairs. In this way, the
quality of latent representation and the alignment between audio and
texts can be improved without introducing large-scale external data,
when they are trained with limited amount of data. To the best of
our knowledge, contrastive learning approach has not been used for
AAC in the literature.

The remainder of this paper are organised as follows. We intro-
duce our proposed CL4AC in Section 2. Experiments are described
in Section 3. Results are shown in Section 4. Finally, we conclude
our work and discuss the future work in Section 5. The code of this
work is made available on GitHub1.

2. CONTRASTIVE LOSS FOR AUDIO CAPTIONING

In this section, we present our proposed contrastive learning frame-
work for audio captioning (CL4AC). We first introduce the encoder-
decoder architecture of CL4AC in Section 2.1. Then, we present the
contrastive learning framework in Section 2.2.

2.1. Encoder-Decoder architecture

We first define the notations used in this section. The training data for
AAC consists of paired audio and texts data. We denote a training set
of N audio-text pairs by D = {(an, Cn)}Nn=1, where a 2 RH⇥W

1https://github.com/liuxubo717/cl4ac
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is the log mel-spectrogram of an audio clip with H and W being
its height and width, respectively, C = {wm}Mm=1 is the token
sequence of a caption where wm is the m-th token in the caption C

having M tokens, an is the log mel-spectrogram of the n-th audio
clip in the dataset, and Cn is the token sequence of the n-th caption
in the dataset.

The sequence-to-sequence architecture with Convolutional Neu-
ral Network (CNN) encoder and Transformer decoder are used as the
basis of our proposed framework, as shown in Figure 1. This archi-
tecture was shown to offer the state-of-the-art performance [9, 10]
in Task 6 of the DCASE 2021 challenge.

Figure 1: Sequence-to-sequence architecture with CNN encoder and
Transformer decoder for audio captioning. The components in the
dashed box indicate the Transformer decoder.

2.1.1. CNN encoder

Pre-trained audio neural networks (PANNs) [12] have demonstrated
a powerful ability in extracting latent representation of audio signals
for different downstream audio recognition tasks. To benefit from its
high-quality audio representation, we choose PANNs as the encoder,
which will be described in Section 3.3 in details. The PANNs encoder
takes the log mel-spectrogram a of an audio clip as the input and
extracts its latent representation z 2 RH

0⇥W
0
. Formally:

z = Encoder(a). (1)

2.1.2. Transformer decoder

The Transformer model has shown the state-of-the-art performance
on language-related cross-modal task [18, 19], and is used as the
decoder in our work. There are two main components in the decoder.
Firstly, each token wm in the input token sequence C is converted
into a word embedding em 2 R1⇥E , where E is the dimension of
the word embedding, by the word2vec algorithm using Continuous
Bag of Words Model (CBOW) [20] and Skip-Gram [21] model
trained purely on the caption corpus. Then the word embedding of
tokens are fed into the first self-attention layer to obtain their hidden

states. The latent representation z of an audio clip extracted by the
encoder is aligned and calculated with the hidden states of tokens,
then the audio-text representation is obtained by the transformer
decoder, denoted as R 2 RM⇥T , which consists of M vectors
{rm}Mm=1, where the number of vectors is equal to the length of
the input token sequence C and the dimension of each vector is
T . The vector rm of the audio-text representation R is calculated
based on the word embeddings {e1, ..., em�1} and the audio latent
representation. Hence, each rm corresponds to the token wm in the
input token sequence C one-to-one, which can be used to predict
the probability of the word over the vocabulary after it is passed
through the final linear layer with softmax function. The transformer
decoder predicts the m-th word wm based on the previous tokens
{w1, ..., wm�1} and the audio latent representation z, as follows,

p(wm|z, w1, ..., wm�1) = Decoder(z, w1, ..., wm�1). (2)

The training objective is to optimize the cross entropy (CE) loss
defined in terms of the predicted words as:

LossCE = �E(a,C)⇠D log p(wm|z, w1, ..., wm�1). (3)

2.2. Contrastive learning framework

To obtain accurate audio-text representation R while the model is
trained with limited data, we use the self-supervised signal derived
from the audio-text training data by contrasting samples. First, we
construct mismatched audio-text pairs as negative samples. Then,
a contrasting auxiliary task is designed to maximize the difference
between the representation R of the matched audio-text pair derived
from negative pairs. The representations of the audio-text paired data
are pulled together in the latent space while simultaneously pushing
apart clusters of unpaired negative data by contrastive learning, as
shown in Figure 2. In this way, the quality of audio-text represen-
tation and the alignment between audio and texts can be improved.

Contrastive Learning

representation of paired audio-
text data

representation of
unpaired audio-text data 

(negative sample)Latent spaceLatent space

Figure 2: The representations of the audio-text paired data are pulled
together in the latent space while simultaneously pushing apart clus-
ters of unpaired negative data by Contrastive Learning (CL).

More specifically, for each anchor audio-text paired training
data x = (a,C), we replace the caption C by Cnegative which is
a randomly selected caption unpaired with a in the training set D.
Then, the mismatched audio-text pair as the negative training sample
is constructed, denoted as xnegative = (a,Cnegative). Table 1
shows the examples of x and xnegative in the Clotho dataset. Since
the last vector in the audio-text representation R is able to attend the
context of all input tokens and the audio feature, the value of last
vector of R is fed into a binary classifier f(.) to predict whether the
input audio and text data are paired (y = 0) or not (y = 1). The
contrastive learning (CL) loss for this auxiliary task is defined as
follows:

LossCL = �Ex0⇠D0 log p(y|f(x0
)), (4)
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e1 e2 ... ... ... ... ... ... ... ... ... eM

r1 r2 ... ... ... ... ... ... ... ... ... rM

[SOS] A loud and booming horn cries out cross the area [EOS]

PANNs
Encoder

Log Mel-Spectrogram

CE Loss CL Loss

Audio-Text Representation

Network

Word Embeddings

Token Sequence

Transformer Decoder

ClassifierLinear Layer + Softmax

Figure 3: Contrastive loss for audio captioning (CL4AC) framework. The dashed lines indicate that the vector rm of the audio-text representation
R is calculated based on the word embeddings {e1, ..., em�1} and the audio latent representation obtained from PANNs. The last audio-text
representation vector rM is fed to the classifier f(.) whose output is used to calculate the Contrastive Learning (CL) loss.

Example paired caption C unpaired caption Cnegative

Something goes round that is playing its song The Air is blowing some what fast outside
At the fair, music is playing near a carousel through the speaker A hand held sander was used as various speeds

audio a Chiming of bells, whistles and horns at a performance A hard gravel ground is walked on by someone
Fair kind music is being played at the circus grounds A person using a hard object to tap and scrape glasses

Polka or fair kind of music is being played The wind is blowing and the waves are flowing

Table 1: Examples of paired audio-text training data x = (a,C) and negative training sample xnegative = (a,Cnegative). Examples are
selected from the Clotho dataset, where each audio data has five corresponding captions.

.

where D
0 is the extended training set by merging the negative sam-

ples into the original training set D and x
0 is the audio-text pair

drawn from D
0. The full training objective of CL4AC is:

LossTraining = (1� y) LossCE +LossCL . (5)

When the input is a negative audio-text pair, the gradient provided
by the CE loss is meaningless, for this case, only CL loss is used for
updating the model. The framework of CL4AC is shown in Figure 3.

3. EXPERIMENTS

3.1. Dataset

Clotho [6] is an AAC dataset whose sound clips are from the
Freesound platform and annotated by Amazon Mechanical Turk.
Clotho v2 was released for Task 6 of the DCASE 2021 Challenge,
which contains 3839, 1045 and 1045 audio clips for the develop-
ment, validation and evaluation split respectively. The sampling
rate of all audio clips in Clotho dataset is 44 100Hz. Each audio
clip has five captions. Audio clips are of 15 to 30s duration and
captions are eight to 20 words long. We merge the development and
validation split, forming a new training set with 4884 audio clips.
The performance of AAC system is evaluated on the evaluation split.

3.2. Data pre-processing

We use the original sampling rate to load audio data, and an 64-
dimensional log mel-spectrogram is calculated using the short-time
Fourier transform (STFT) with a frame size of 1024 samples, a hop
size of 512 samples, and a Hanning window. SpecAugment [22] is
used for data augmentation.

We transform all captions in the Clotho dataset to lower case with
punctuation removed. Two special tokens “<sos>” and “<eos>”
are added on the start and end of each caption. The vocabulary of
the Clotho dataset contains 4367 words.

3.3. Model implementation

CNN-10 of PANNs [12] is used as the encoder to prevent over-fitting
while trained with limited data. Specifically, the CNN-10 consists of
four convolutional blocks where each has two convolutional layers
with a kernel size of 3⇥ 3. Batch normalization and ReLU are used
after each convolutional layer. The channels number of each block
are 64, 128, 256 and 512, respectively. An average pooling layer
with kernel size 2⇥ 2 is applied between them for down-sampling.
Global average pooling is applied along the frequency axis after
the last convolutional block followed by two fully connected layers
to align the dimension of the output with the decoder input. Two
transformer blocks with four heads and 128 hidden units are used as
the decoder. The implementation for the encoder and decoder is the
same as that in our DCASE 2021 Challenge system2, which is the
highest-scoring system without using model ensembles.

We trained the proposed model using Adam [23] optimizer with
a batch size of 16. Warm-up is used in the first 5 epochs to increase
the learning rate to the initial learning rate linearly. The learning
rate is then decreased to 1/10 of itself every 10 epochs. Dropout
with a rate of 0.2 is applied in the proposed model to mitigate the
over-fitting problem. We train the model for 30 epochs with an initial
learning rate of 5⇥ 10

�4 on the training set of the Clotho dataset.

2https://github.com/XinhaoMei/DCASE2021_task6_v2
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Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METERO CIDEr SPICE SPIDEr
Baseline 0.550 0.345 0.222 0.139 0.372 0.169 0.356 0.115 0.235
CL4AC 0.553 0.349 0.226 0.143 0.374 0.168 0.368 0.115 0.242

Table 2: Performance of models is evaluated on the Clotho v2 evaluation set. Baseline: baseline system described in Section 3.4, which is
similar to our DCASE submitted system but without transfer learning and reinforcement learning techniques. CL4AC: Proposed framework
Contrastive Loss for Audio Captioning (CL4AC). During the inference stage, captions are generated using greedy search.

3.4. Baseline system

The baseline system is similar to our DCASE 2021 system which
uses transfer learning (TL) from external dataset and reinforce-
ment learning (RL) [9]. Our motivation is to mitigate the data
scarcity problem for AAC without introducing external datasets,
so we train the baseline without using the TL technique. Previous
studies [24, 25] proved that although RL techniques can optimize
neural networks towards non-differentiable metrics, they may gen-
erate syntactically incorrect and incomplete captions. Thus, RL is
also removed in the baseline system. The hyper-parameters used for
training the baseline system are similar to the proposed model (as
described in Section 3.3), except that the training batch size is 32
and the initial learning rate is 1⇥ 10

�3.

3.5. Evaluation

During the inference stage, the mel-spectrogram of an audio clip
along with the special token “<sos>” are fed into the encoder
and decoder separately to generate the first token. Afterwards, the
following tokens are predicted in terms of the previously generated
tokens until the token “<eos>” or the maximum length (35 words
in our experiments) is reached. The greedy search strategy is used to
generate captions.

We evaluate the performance of the proposed framework using
the same metrics adopted in Task 6 of the DCASE 2021 Challenge,
including machine translation metrics: BLEUn [26], METEOR
[27], ROUGEl [28] and captioning metrics: CIDEr [29], SPICE
[30], SPIDEr [31]. BLEUn measures the quality of the generated
text by calculating the precision of n-gram inside the text, which
is an inexpensive metric to measure the correspondence between
generated text and the ground truth. Generally, the higher BLEUn

usually implies better precision and fluent text. The SPIDEr, a
combination of SPICE and CIDEr, is designed for image captioning
task measurement, which considers scene graph inside the generated
caption and the term frequency-inverse document frequency (TF-
IDF) of the n-gram. By considering the scene graph and the TF-IDF
of n-gram, the metric will focus on the relationships among objects
and the text’s property, which ensures the semantic fidelity to the
audio and the syntactical fluency of the language.

4. RESULTS

Table 2 shows the performance of our proposed method on the Clotho
v2 evaluation set. By adopting the contrastive loss technique dur-
ing the training process, all the metrics except METERO increased
on the evaluation set. For BLEU1, BLEU2, BLEU3, BLEU4, the
relative improvement percentages for contrastive loss are 0.55%,
1.16%, 1.80%, and 2.88%, respectively. The n in BLEUn means the
n-grams matching between the predicted results and ground truths.
The ascending increases of the relative improvement from BLEU1

to BLEU4 show that our proposed method generates more matching
n-grams, demonstrating a more fluent and better quality captioning

result. Besides, CIDEr and SPIDEr, the captioning metrics, obtained
3.37% and 2.98% relative improvement correspondingly. The bet-
ter CIDEr and SPIDEr ensure the captions are better semantically
faithful to the audio clip with the better language fluency. Numeri-
cal improvement of the machine translation and captioning metrics
shows the effectiveness of CL4AC while trained with limited data.

5. CONCLUSIONS

This paper demonstrated the problem of data scarcity for AAC,
which may lead to the inaccurate representation and audio-text align-
ment. To alleviate this issue, a novel encoder-decoder framework
called Contrastive Loss for Audio Captioning (CL4AC) was pro-
posed to learn a better cross-modal representation. In CL4AC, the
self-supervision signals derived from the original audio-text data
are used to exploit the correspondences between audio and text by
contrasting samples in a limited dataset setting. Experiment results
on BELUn, CIDEr, and SPIDEr showed the effectiveness of the
proposed approach with a relative improvement of up to 3.37%,
compared to the baseline system. In future work, we will explore
more contrastive learning approaches for AAC, such as Momentum
Contrast (MoCo) [32] and SimCLR [15].
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ABSTRACT

The availability of audio data on sound sharing platforms such as
Freesound gives users access to large amounts of annotated audio.
Utilising such data for training is becoming increasingly popular,
but the problem of label noise that is often prevalent in such datasets
requires further investigation. This paper introduces ARCA23K,
an Automatically Retrieved and Curated Audio dataset comprised
of over 23 000 labelled Freesound clips. Unlike past datasets such
as FSDKaggle2018 and FSDnoisy18K, ARCA23K facilitates the
study of label noise in a more controlled manner. We describe the
entire process of creating the dataset such that it is fully reproducible,
meaning researchers can extend our work with little effort. We show
that the majority of labelling errors in ARCA23K are due to out-of-
vocabulary audio clips, and we refer to this type of label noise as
open-set label noise. Experiments are carried out in which we study
the impact of label noise in terms of classification performance and
representation learning.

Index Terms— Audio dataset, audio classification, label noise,
machine learning, deep learning, neural networks

1. INTRODUCTION

Labelled audio data is a relatively scarce resource, yet it is vital for
training audio classifiers in a supervised fashion. With the emergence
of online sharing platforms such as Freesound [1] and YouTube [2],
users now have access to massive amounts of annotated audio, and
it is becoming increasingly popular to utilise this data for training.
For classifying general sound events, early examples of web-sourced
datasets include ESC-50 [3] and UrbanSound8K [4]. However, these
datasets are relatively small, which is largely due to the high cost
of manually verifying the data to ensure the sounds are relevant
and the labels are correct. At the time of writing, the largest sound
event dataset with thoroughly verified labels is FSD50K [5], which
contains approximately 50 000 sounds and is the result of several
years of crowdsourced labelling [1].

Given the cost of label verification, there has been interest in
reducing or eliminating this aspect of dataset curation. AudioSet [2],
for example, is a large-scale audio dataset comprised of over two
million sounds across hundreds of classes. AudioSet classes belong
to an ontology in which the classes share parent-child relationships.
Although AudioSet clips have been manually verified by listeners,
the process was not thorough, and many labelling errors remain [6].
The labels of other datasets, such as VGGSound [7], have not been
verified at all. In the case of FSDKaggle2018 [8], FSDKaggle2019
[9], and FSDnoisy18k [10], only a small subset of the dataset has
been manually verified. Nevertheless, these datasets are attractive
because they are relatively large. The challenge is that the presence
of labelling errors, or label noise, can significantly impact learning
[10]. Hence, studying the effects of label noise is important.

Due to label noise, rather than the training examples being drawn
from the true distribution, P , examples are drawn from a corrupted
distribution, Q. In the literature, the noise process responsible for
this corruption is typically assumed to be reversible, such that any
incorrectly-labelled instance can be relabelled [11, 12]. This is not a
realistic assumption when retrieving and labelling web data, as the
sounds that are retrieved can be out-of-vocabulary (OOV) [10]. OOV
sounds are sounds that do not belong to any of the classes of interest.
We refer to this type of label noise as open-set label noise. There is
currently a disconnect where much of the analysis and tools are for
closed-set label noise, while open-set label noise has received little
attention in this respect. While there are works that address datasets
with open-set label noise [13, 14, 6, 9, 10], the analysis is limited by
the lack of empirical insight.

In this paper, we introduce ARCA23K
1 (Automatically Retrieved

and Curated Audio 23K), which is a dataset containing more than
51 hours of audio data across 23 727 Freesound clips and 70 classes
taken from the AudioSet ontology. The clips comprising the training
set have been retrieved and curated using an entirely automated
process, while the validation set and test set are subsets of FSD50K.
Given the absence of human verification, labelling errors are to be
expected in the training set. In particular, many of the audio clips
are out-of-vocabulary.

Our aim in creating ARCA23K is to facilitate the study of real-
world, open-set label noise, including its effects on learning and how
these effects can be mitigated. Unlike datasets such as FSDnoisy18k,
ARCA23K allows studying label noise in a more controlled manner.
Instead of manually verifying a subset of the dataset, we introduce
another dataset called ARCA23K-FSD, which is a subset of FSD50K.
ARCA23K-FSD is essentially a ‘clean’ counterpart of ARCA23K.
Under certain assumptions, this setup allows controlling the amount
of label noise by substituting clips from one dataset with clips from
the other. A similar idea was proposed in the image domain [15].

The contributions of this paper are four-fold. First, we provide
a detailed description of how the ARCA23K datasets were created
and release the associated source code2. Our intention is to provide
a method of dataset creation that is realistic while also being easily
reproducible3, such that anyone can adopt or improve our method for
their own needs. Our second contribution is the release of ARCA23K
itself (along with ARCA23K-FSD). As all the clips are available
under a Creative Commons license, we are able to distribute the clips
freely. Third, we characterise the label noise present in ARCA23K by
running listening tests. Finally, we conduct experiments to examine
the impact of open-set label noise on training audio classifiers, which
includes comparisons to synthetic label noise and an evaluation of
the representations that are learned.

1https://zenodo.org/record/5117901
2https://github.com/tqbl/arca23k-dataset
3Some clips on Freesound may be deleted, which we cannot control.
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2. ARCA23K-FSD

In order to investigate open-set label noise, we propose two datasets:
a clean dataset with training examples drawn from P and a noisy
dataset with training examples from Q. The number of examples
per class is set to be equal across the two datasets. By satisfying this
requirement, we are able to emulate the noise process that corrupts
P to give Q. More specifically, a training example drawn from the
clean dataset is corrupted by substituting it with a training example
of the same class drawn from the noisy dataset. The amount of label
noise can then be controlled by substituting a proportionate number
of training examples.

The clean dataset, ARCA23K-FSD, is a subset of FSD50K [5],
which is currently the largest clean dataset of sound events available.
FSD50K is comprised of more than 40 k training examples and 200

classes taken from the AudioSet ontology. In general, multiple labels
are associated with each audio clip.

For simplicity, we reduced FSD50K to a single-label dataset.
First, clips containing more than one type of sound were discarded.
Next, to prevent class overlap, classes that were ancestors of other
classes (according to the AudioSet ontology) were dropped, e.g.
clips labelled as Guitar would be dropped because Acoustic guitar
and Electric guitar are child classes. Finally, any sound class with
an insufficient number of audio clips was removed from the dataset.
The thresholds are 50 instances in the training set, 10 instances in
the validation set, and 20 instances in the test set. A total of 77
classes were retained after this pruning process. Let L denote the set
of AudioSet labels that remained.

3. ARCA23K

In this section, we describe how the clips in the ARCA23K dataset
were retrieved and curated. This dataset only includes a training set,
since the validation set and test set of the ARCA23K-FSD dataset
are used for validation and testing, respectively. We use a keyword-
based algorithm to retrieve relevant clips and label them accordingly.
We will assume that we have access to the metadata of every clip
in the Freesound database and that we can download the clips. The
metadata includes a description of the clip and a set of tags that are
intended to be search terms. As with FSD50K, we limit our search
to clips that are between 0.3 and 30 seconds [5]. After curation, all
clips are converted to 16-bit mono WAV files sampled at 44.1 kHz.

3.1. Retrieval Algorithm

The general framework for the retrieval algorithm is as follows.
For every candidate Freesound clip, the tags and description are
tokenised and preprocessed to give two word sequences, dtags and
ddesc, which we refer to as documents. For each label, l 2 L, a query,
ql is constructed, which also involves tokenisation and preprocessing.
Given ql, dtags, and ddesc, a relevance score, r(ql, dtags, ddesc) 2
[0, 1], is computed, such that a higher score indicates a better match
between the query and the two documents. By computing scores for
each label, the most relevant label can be assigned to the clip:

l⇤ := argmax
l

r(ql, dtags, ddesc). (1)

If r(ql⇤ , dtags, ddesc) is a low score, it indicates that none of the
labels are a good match according to the algorithm. For this reason,
clips for which r(ql⇤ , dtags, ddesc) < ⌧ are discarded, where ⌧ is a
predefined threshold.

3.1.1. Tokenisation and Preprocessing

Tags, descriptions, and labels are tokenised and preprocessed using
standard practices in information retrieval [16]. Tokenisation refers
to converting a sequence of characters into a sequence of words.
During this process, non-words such as punctuation and numbers
are discarded. Tags are already assumed to be a sequence of words,
hence tokenisation is not necessary for tags.

Preprocessing is carried out by first converting the words to
lower-case so that retrieval can be case-insensitive. Following this,
lemmatisation is applied to canonicalise words to their lemma form,
e.g. ‘guitars’ would be reduced to ‘guitar’. In cases where the lemma
depends on which word class the word belongs to (e.g. verb, noun),
the shortest lemma is chosen. For instance, ‘clapping’ would be
reduced to ‘clap’ because, even though ‘clapping’ is the lemma for
the noun, ‘clap’ is the lemma for the verb and is the shortest. After
lemmatisation, stop words such as conjunctions and prepositions are
removed. Finally, any duplicate words are also removed.

3.1.2. Query Construction

Given a label l, a query, ql, is constructed as follows. The label is
first tokenised and preprocessed as per Section 3.1.1. We will refer
to the resulting output as a root query and denote it as q̄l. Next, a root
query is constructed for every descendant label of l. For example,
the label Bowed string instrument has several descendants, such
as Cello and Double bass. After constructing the root queries, the
final query ql is constructed by concatenating all of them.

3.1.3. Computing Relevance Scores

In this section, we describe how relevance scores are computed.
After creating a query for each label l 2 L, the vocabulary, V , can
be defined as the concatenation of all the queries (after removing
any duplicates). After constructing V , one can map any sequence of
words, w, into a vector, v(w) 2 {0, 1}|V |, such that

v(w)i :=

⇢
1 wi = Vi

0 otherwise
(2)

The relevance score is then defined as

r(q, dtags, ddesc) := v̄(q) · [v̄(dtags) + v̄(ddesc)], (3)

where v̄(w) := v(w)/kv(w)k. In other words, r(q, dtags, ddesc) is
the cosine similarity between v(q) and [v(dtags) + v(ddesc)].

3.1.4. Evaluation

The Freesound clips that are labelled by our retrieval algorithm
include all Freesound clips that are between 0.3 and 30 seconds in
duration. This means the clips that constitute the ARCA23K-FSD
dataset are labelled by our algorithm too. It is therefore possible to
compare the labels assigned by our algorithm to the ground truth
labels of ARCA23K-FSD.

We used a threshold of ⌧ = 0.5, as it resulted in a reasonable
compromise between precision and recall. Our algorithm retrieved
84.1% of the ARCA23K-FSD clips and achieved an accuracy of
90.3%. The accuracy was greater than 90% for 51 out of 77 classes,
and the average accuracy for these classes was found to be 96.4%.
For the other 26 classes, the average accuracy was found to be 67%.

It should be noted that the ARCA23K-FSD clips are not an
unbiased sample of the retrieved clips. The aim of the evaluation is
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Table 1: Estimates of the proportion of ARCA23K clips that are
PP/PNP/NP. The percentage of clips marked ‘Unsure’ is 1%.

PP PNP NP

IV (52.7±5.8)% (2.3±1.3)% (8.7±3.5)%
OOV N/A (1.3±0.7)% (33.3±5.6)%

not to determine label accuracy in general but to demonstrate that it
is comparable to approaches used for existing datasets. In Section
3.3, we evaluate the accuracy of the labels by manually verifying a
subset of the ARCA23K dataset.

3.2. Curation

After labelling the candidate Freesound clips using the retrieval
algorithm, we used a threshold of ⌧ = 0.5 to discard clips with a low
relevance score. All clips belonging to the FSD50K dataset were also
discarded to prevent any overlap. The number of retrieved clips at
this point totalled almost 170 k. Next, the number of clips per class
was reduced to match ARCA23K-FSD, since our aim is to create
a dataset that mirrors ARCA23K-FSD. This was done by selecting
a random sample of the correct size from each class. For seven
of the classes, there was an insufficient number of clips to match
the ARCA23K-FSD dataset, so the clips belonging to these classes
were dropped altogether. The same was done for ARCA23K-FSD,
resulting in 70 classes in total for both datasets.

3.3. Noise Rate Estimation

In this section, we describe how noise rates were estimated for
the ARCA23K dataset and present the results. The noise rate is
defined as the percentage of incorrectly labelled audio clips in the
dataset. Similar to Fonseca et al. [5], we categorise clips as either
‘Present and predominant’ (PP), ‘Present but not predominant’ (PNP),
‘Not present‘ (NP), and ‘Unsure’ (U). The reader is referred to the
original work for detailed definitions [5]. PNP and NP are further
split based on whether the other sounds are in-vocabulary (IV) or
out-of-vocabulary (OOV). For example, NP/OOV means that at least
one OOV sound can be identified in the clip.

The noise rate of the dataset was estimated by selecting a random
subset of the dataset and performing listening tests. We selected
100 clips for the sample and repeated the experiment three times
with replacement. Each sample was processed by a different listener,
i.e. three listeners participated. The first three authors of this paper
carried out the tests. They were trained by familiarising themselves
with the classes, which involved reading the class descriptions and
listening to example clips. They were also able to listen to example
clips during the test and confer with each other4.

The results are presented in Table 1. The noise rate can be
calculated by excluding the sounds categorised as U. When PNP
sounds are considered as incorrect, the noise rate was found to be
(46.4±4.8)% (95% confidence interval). When PNP sounds are
considered as correct, the noise rate was found to be (42.4±4.1)%.
Based on the results in Table 1, 75.9% of incorrectly labelled clips
are OOV. For many of the NP clips, we were able to identify them as
NP from the tags and description alone5, meaning that the labelling
errors were the fault of the retrieval algorithm; some were simple

4In practice, listeners only conferred when they were unsure.
5All clips were listened to in their entirety nonetheless.

mistakes, while others required understanding the context, which a
keyword-based retrieval algorithm cannot infer. In other cases, the
uploaders’ annotations were misleading or incorrect. This was more
prevalent with classes such as Whoosh, swoosh, swish, which
are more open to interpretation without an agreed-upon definition.
Finally, we observed that many of the OOV sounds were quite similar
in sound to the IV classes. For example, 462351.wav, labelled as
Acoustic guitar, contains sounds of a guitar string being strummed,
but it is too distorted to belong to any of the guitar classes.

4. EXPERIMENTS

In this section, we describe the experiments that were carried out and
present the results. Systems are evaluated using the accuracy and the
mean average precision (mAP). The mAP is approximately equal
to the area under the precision-recall curve; a higher value indicates
better performance. We ran each experiment five times and provide
95% confidence intervals for the scores.

4.1. System

The machine learning model used in our experiments is an 11-layer
convolutional neural network based on the VGG13 architecture [17].
Our model differs from VGG13 in that it uses batch normalisation
[18] and only one fully-connected layer instead of three, as we found
multiple fully-connected layers to be unhelpful.

The model was trained with mel-spectrogram inputs. Prior to
computing the mel-spectrograms, the audio was downsampled from
44.1 kHz to 32 kHz, which reduced the audio’s data rate without
significantly affecting the results. The mel-spectrograms were then
computed using a 32ms frame length, a 16ms hop length, and 64

mel bins per frame. Finally, the amplitudes of the mel-spectrograms
were scaled logarithmically.

Since the audio clips in both datasets vary in duration, we padded
the clips with silence. Instead of padding to a single fixed length, we
used three different lengths: 5 seconds, 15 seconds, and 30 seconds.
The least amount of padding was applied to each clip, e.g. a clip less
than 5 seconds would be padded to 5 seconds. When selecting clips
for a mini-batch, only clips of the same length were allowed. Without
this multi-length approach, each clip would have to be padded to the
maximum length, which would greatly increase training times.

The model was trained for 50 epochs using the cross-entropy
loss function and the AdamW optimiser [19] with a learning rate of
0.0005, which was decayed by 10% every two epochs. We used
a batch size of 64, 32, and 16 for 5-, 15-, and 30-second clips,
respectively. By using different batch sizes, and given the memory
constraints, we were able to significantly improve training times and
even the classification accuracy. During inference, we averaged the
predictions of the top three epochs in order to reduce volatility.

4.2. Adding Noise

In addition to training with the ARCA23K datasets, we also added
synthetic label noise to the ARCA23K-FSD dataset, which allows us
to compare synthetic label noise to the real-world label noise present
in ARCA23K. The synthetic label noise is closed-set rather than
open-set. Let k 2 {1, . . . ,K} represent the class associated with an
instance, where K = 70 is the number of classes. To add synthetic
noise, we selected a proportion, ⇢, of training examples and changed
the class k of each selected example to

(k + i) mod K, (4)
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Table 2: Model performance when using different training sets.
Dataset Accuracy mAP

ARCA23K (50.08±0.78)% (52.32±0.77)%
ARCA23K-FSD (61.16±0.41)% (66.28±0.59)%
Uniform Noise (38.12±1.83)% (35.76±2.10)%
Conditional Noise (38.35±0.56)% (36.82±0.62)%

where i is a random integer drawn from a suitable distribution. Two
types of label noise were considered: uniform and class-conditional.
In the case of uniform noise, i followed the uniform distribution,
U(1,K � 1). In the case of class-conditional noise, the geometric
distribution was used with p = 0.5. This distribution is concentrated
over a small number of outcomes, which is realistic because only a
small set of classes tend to be incorrectly attributed to a sound.

Finally, we ran experiments in which we replaced a proportion,
⇢, of the ARCA23K-FSD training examples with ARCA23K training
examples. Recall from Section 2 that this is equivalent to controlling
the noise rate of ARCA23K. For each example that was replaced,
the replacement example was restricted to be identically labelled.
The noise rate of the resulting mixed dataset is a fraction of the noise
rate estimated in Section 3.3. For example, ⇢ = 0 corresponds to
a noise rate of 0, ⇢ = 1 corresponds to a noise rate of 46.4%, and
⇢ = 0.5 corresponds to a noise rate of 23.2%.

4.3. Representation Learning

As a final set of experiments, we examined how label noise affects
the representations that are learned. To do this, we trained a linear
classifier on embeddings derived from the output of the VGG model’s
penultimate layer and evaluated its performance. The VGG model
was first trained as normal using a noisy dataset (either ARCA23K or
ARCA23K-FSD with synthetic label noise). Next, using the output
of the penultimate layer as input data, a linear classifier was trained
on the (clean) ARCA23K-FSD dataset. In addition to training with
the whole of ARCA23K-FSD, we trained the linear classifier with
10%, 20%, and 50% of the dataset.

4.4. Results

The first group of results are presented in Table 2. In this table,
we compare the performance of the system when trained using:
(1) ARCA23K, (2) ARCA23K-FSD, (3) ARCA23K-FSD but with
uniform label noise, and (4) ARCA23K-FSD but with conditional
label noise. We set ⇢ = 0.45 for both (3) and (4). The results show
that training with ARCA23K-FSD gives an mAP score of 66.28%,
which is 14% higher than when training with ARCA23K, which
suggests that the presence of open-set label noise has a considerable
effect on training. However, it can be seen that the effect of synthetic
label noise is much more severe, as the mAP drops below 40%.

We hypothesise that there are at least two reasons why real-
world, open-set label noise has a milder effect on training. First, we
believe that OOV clips are inherently less likely to harm performance
compared to mislabelled IV clips, especially if the OOV clips sound
very different to the IV clips. Recall that most of the incorrectly
labelled clips in ARCA23K are OOV. Second, as observed in Section
3.3, a considerable number of OOV clips were found to be similar
in sound to the IV clips. If these clips are labelled accordingly (e.g.
462351.wav labelled as Acoustic guitar), they can be considered as
surrogates of the IV clips. Rather than being detrimental to learning,

Figure 1: The mAP scores as ⇢ is varied from 0 to 0.45.

Table 3: mAP scores for the linear classifier. Columns indicate the
percentage of ARCA23K-FSD clips used for training.

Dataset 10% 20% 50% 100%

ARCA23K 55.27% 58.94% 58.91% 59.82%
Uniform Noise 30.86% 37.11% 42.29% 45.52%
Conditional Noise 41.15% 46.06% 48.11% 50.09%
Random Weights 7.93% 10.11% 13.12% 16.23%

these surrogates are likely to be beneficial. Both of these hypotheses
were verified to some extent in previous work [13].

In Figure 1, we present the mAP scores as ⇢ (refer to Section 4.2)
is varied from 0 to 0.45 at increments of 0.045. For all three types of
noise, the performance generally decreases as ⇢ increases. However,
while the plots appear linear for synthetic label noise, the plot for real-
world, open-set label noise is non-linear. The performance decreases
exponentially as the noise rate increases, albeit it is roughly the same
until the noise rate exceeds 20%.

The results for the experiments described in Section 4.3 are
presented in Table 3. We have also reported the performance when
using a randomly-initialised VGG model to compute the embeddings.
Similar to the results in Table 2, the performance is considerably
worse when using synthetic label noise. When using ARCA23K to
learn the representation, the performance of the linear classifier is
relatively high even when training with 10% of ARCA23K-FSD.
On the other hand, the scores are still significantly lower than the
score of 66.28% in Table 2. These results show that label noise has
a substantial effect on the quality of the learned representations.

5. CONCLUSION

In this paper, we introduced the ARCA23K dataset along with the
companion ARCA23K-FSD dataset, which were created with the
intention of studying open-set label noise. ARCA23K was created
with minimal human labour by retrieving and curating clips from the
Freesound database using an automated process, while ARCA23K-
FSD was derived from FSD50K. We described the dataset creation
process in detail and characterised the type of label noise present in
ARCA23K via listening tests. Using these datasets, we were able to
study the effect of label on learning in a controlled manner. We found
that, while open-set label noise negatively affected performance, the
impact was considerably milder than that of synthetic label noise.
Furthermore, our experiments showed the extent to which label noise
affects the learned representations of a model.

204



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

6. ACKNOWLEDGEMENT

This work was funded by the Engineering and Physical Sciences
Research Council (EPSRC) Doctoral Training Partnership grants
EP/N509772/1 and EP/R513350/1. It was also supported in part by
EPSRC project EP/T019751/1 and by a Newton Institutional Links
Award from the British Council with grant number 623805725.

7. REFERENCES

[1] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets:
A platform for the creation of open audio datasets,” in Proc.

18th Int. Society Music Information Retrieval Conf. (ISMIR),
Suzhou, China, 2017, pp. 486–493.

[2] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Au-
dio Set: An ontology and human-labeled dataset for audio
events,” in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 2017, pp. 776–780.

[3] K. J. Piczak, “ESC: Dataset for environmental sound classifi-
cation,” in Proceedings of the 23rd ACM International Con-

ference on Multimedia, New York, NY, USA, 2015, pp. 1015–
1018.

[4] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy
for urban sound research,” in Proceedings of the 22nd ACM

International Conference on Multimedia, Orlando, FL, USA,
2014, pp. 1041–1044.

[5] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra, “FSD50K:
An open dataset of human-labeled sound events,” arXiv

preprint arXiv:2010.00475, Oct. 2020.

[6] B. Zhu, K. Xu, Q. Kong, H. Wang, and Y. Peng, “Audio tagging
by cross filtering noisy labels,” IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 28, pp. 2073–
2083, Jul. 2020.

[7] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “VGGSound:
A large-scale audio-visual dataset,” in IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 721–725.

[8] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, X. Favory, J. Pons,
and X. Serra, “General-purpose tagging of Freesound audio
with AudioSet labels: Task description, dataset, and baseline,”
in Proceedings of the Detection and Classification of Acoustic

Scenes and Events 2018 Workshop (DCASE2018), Woking,
UK, 2018, pp. 69–73.

[9] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, and X. Serra, “Au-
dio tagging with noisy labels and minimal supervision,” in
Proceedings of the Detection and Classification of Acoustic

Scenes and Events 2019 Workshop (DCASE2019), New York,
NY, USA, 2019, pp. 69–73.

[10] E. Fonseca, M. Plakal, D. P. W. Ellis, F. Font, X. Favory, and
X. Serra, “Learning sound event classifiers from web audio
with noisy labels,” in International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Brighton, UK, 2019,
pp. 21–25.

[11] G. Patrini, A. Rozza, A. Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction
approach,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, pp.
2233–2241.

[12] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus,
“Training convolutional networks with noisy labels,” in Inter-

national Conference on Learning Representations, San Diego,
CA, USA, 2015.

[13] T. Iqbal, Y. Cao, Q. Kong, M. D. Plumbley, and W. Wang,
“Learning with out-of-distribution data for audio classification,”
in ICASSP 2020 - 2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2020, pp.
636–640.

[14] A. Kumar, A. Shah, A. Hauptmann, and B. Raj, “Learning
sound events from webly labeled data,” in Proceedings of the

28th International Joint Conference on Artificial Intelligence

(IJCAI), Macao, China, 2019, pp. 2772–2778.

[15] L. Jiang, D. Huang, M. Liu, and W. Yang, “Beyond synthetic
noise: Deep learning on controlled noisy labels,” in Proceed-

ings of the 37th International Conference on Machine Learning

(ICML), vol. 119, 2020, pp. 4804–4815.

[16] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to

information retrieval. Cambridge University Press, 2008.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in International

Conference on Learning Representations (ICLR), San Diego,
CA, USA, 2015.

[18] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine

Learning (ICML), vol. 37, Lille, France, 2015, pp. 448–456.

[19] I. Loshchilov and F. Hutter, “Decoupled weight decay regular-
ization,” in International Conference on Learning Representa-

tions (ICLR), New Orleans, LA, USA, 2019.

205



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

AN ENCODER-DECODER BASED AUDIO CAPTIONING SYSTEM WITH TRANSFER AND
REINFORCEMENT LEARNING

Xinhao Mei1, Qiushi Huang1, Xubo Liu1, Gengyun Chen2, Jingqian Wu3⇤, Yusong Wu3†,
Jinzheng Zhao1, Shengchen Li3, Tom Ko4, H Lilian Tang1, Xi Shao2, Mark D. Plumbley1, Wenwu Wang1

1 University of Surrey, Guildford, United Kingdom
2 Nanjing University of Posts and Telecommunications, Nanjing, China

3 Xi’an Jiaotong-Liverpool University, Suzhou, China
4 Southern University of Science and Technology, Shenzhen, China

ABSTRACT

Automated audio captioning aims to use natural language to describe
the content of audio data. This paper presents an audio captioning
system with an encoder-decoder architecture, where the decoder
predicts words based on audio features extracted by the encoder. To
improve the proposed system, transfer learning from either an up-
stream audio-related task or a large in-domain dataset is introduced
to mitigate the problem induced by data scarcity. Moreover, eval-
uation metrics are incorporated into the optimization of the model
with reinforcement learning, which helps address the problem of
“exposure bias” induced by “teacher forcing” training strategy and
the mismatch between the evaluation metrics and the loss function.
The resulting system was ranked 3rd in DCASE 2021 Task 6. Abla-
tion studies are carried out to investigate how much each component
in the proposed system can contribute to final performance. The
results show that the proposed techniques significantly improve the
scores of the evaluation metrics, however, reinforcement learning
may impact adversely on the quality of the generated captions.

Index Terms— audio captioning, transfer learning, sequence-
to-sequence model, cross-modal task

1. INTRODUCTION

An automated audio captioning (AAC) system describes an audio
signal using natural language, which is a cross-modal translation
task involving the technologies of audio processing and natural
language processing [1]. Generating a meaningful description of
an audio clip not only requires recognizing what audio events are
presented, but also their properties, activities as well as spatial-
temporal relationships. Audio captioning could be useful in several
applications, such as subtitling for sound in a television program,
assisting the hearing-impaired to understand environmental sounds,
and analysing sounds in smart cities for security surveillance.

Drossos et al. [1] proposed the initial work in audio caption-
ing, where they introduced an encoder-decoder architecture based
on recurrent neural networks (RNNs) on a commercial sound ef-
fects library, ProSound Effects. After that, with the release of two
freely available datasets AudioCaps [2] and Clotho [3], and a new
audio captioning task in DCASE challenges, this field has received
increasing attention. Almost all researchers investigating audio cap-
tioning have utilised an encoder-decoder architecture based on deep

⇤Jingqian Wu is currently with Wake Forest University, USA
†Yusong Wu is currently with University of Montreal, Canada

neural networks (DNNs). For the encoder, recurrent neural net-
works (RNNs) [1, 2, 4], convolutional neural networks (CNNs)
[5, 6], or their combinations, i.e. convolutional recurrent neural
network (CRNN) [7], have been used to model the temporal, or
temporal-spectral relationship between audio features. For the de-
coder, recurrent neural network (RNN) has been widely used to
generate captions by decoding audio features to text descriptions
[1, 2, 4, 7]. To align the cross-modal representation between audio
and language, attention mechanisms with different implementation
methods have been used between the encoder and decoder [2, 8].
With the popularity of Transformer in natural language processing
(NLP) and computer vision (CV), some researchers try to use Trans-
former as the decoder [5, 9, 10]. In addition, keywords and semantic
information predicted from the input audio are introduced to guide
caption generation [4, 9]. The encoder-decoder architecture with
“CNN-Transformer” was shown to offer better performance in the
DCASE 2020 challenge [5], which is chosen as the baseline system
in our work.

As the availability of data in the audio captioning task is limited,
training an end-to-end cross-modal audio captioning system from
scratch becomes even more difficult. Transfer learning has been
widely used to solve this data scarcity problem, where pre-trained
audio models from an upstream audio processing task (i.e. audio
tagging and sound event detection) are utilized as the audio encoder
[5, 11]. As using pre-trained audio models can only transfer knowl-
edge in the audio modality, we also pre-train the whole network on
the AudioCaps dataset [2] in order to transfer knowledge in both
audio and language modalities. Both transfer learning strategies are
adapted and compared in the proposed system.

Another problem is the mismatch between the evaluation metrics
and the loss function used for text generation. The evaluation metrics
are discrete and non-differentiable, thus cannot be optimized directly
by back-propagation. Previous works use reinforcement learning
by incorporating the evaluation metrics into the optimisation of the
learning system [7, 12]. We analyze the effects of reinforcement
learning on audio captioning system. The results show that even
though reinforcement learning can improve the score of evaluation
metrics, it may impact adversely on the quality of the generated
captions, in the sense that some redundant words are introduced in
the captions generated. This finding indicates that existing metrics
used for caption evaluation do not correlate well with human judg-
ment. Our resulting system1 was ranked in the 3rd place in DCASE

1https://github.com/XinhaoMei/DCASE2021_task6_v2.
git
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Figure 1: Architecture of the proposed model.

2021 Task 6 and was the highest scoring system without using an
ensemble technique.

The remaining sections of this paper are organised as follows. In
Section 2, the proposed model and methods are described in detail.
Experimental setup is described in Section 3. Results are shown in
Section 4. Finally, we conclude our work in Section 5.

2. PROPOSED METHOD

The proposed model consists of a CNN encoder and a Transformer
decoder. The encoder takes the log mel-spectrogram X 2 RT⇥D of
an audio clip as input and produces audio feature vector v 2 RT 0⇥D0

.
The decoder predicts the posterior probability of the n-th word wn

based on the feature vector v produced by the encoder and previously
generated words w0 to wn�1. Mathematically,

v = Enc(X) (1)

p(wn|v, w0, ..., wn�1) = Dec(v, w0, ..., wn�1) (2)

The diagram of the proposed system is shown in Fig. 1.

2.1. Model architecture

2.1.1. Encoder

Convolutional neural networks (CNNs) have been used widely in
audio processing related works and have shown powerful ability in
extracting audio features. A relatively simple 10-layer CNN pro-
posed in the pre-trained audio neural networks (PANNs) [13] is used
as the encoder to mitigate the over-fitting problem. The 10-layer
CNN consists of four convolutional blocks where each has two con-
volutional layers with a kernel size of 3⇥3. The number of channels
in each block is 64, 128, 256 and 512 respectively, and an average
pooling layer with a kernel size of 2 ⇥ 2 is applied between them

for down-sampling. After each convolutional layer, batch normal-
ization and ReLU nonlinearity are used. Global average pooling is
applied along the frequency axis after the last convolutional block
and two fully connected layers are followed to further increase the
representation ability and to ensure the dimension of the output is
compatible with that of the decoder.

2.1.2. Decoder

The decoder consists of three parts, i.e., a word embedding layer, a
standard Transformer decoder and a linear layer. Each input word
is firstly encoded to a vector of fixed dimension through the word
embedding layer. The word embedding layer can be regarded as an
embedding look-up matrix of size V ⇥ d, where V is the size of the
vocabulary and d is the dimension of the word vector. This layer is
randomly initialized and kept frozen during the training stage.

Transformer is designed to handle sequential data and shows
state-of-the-art performance in generation tasks in the area of natu-
ral language processing [14]. The Transformer decoder is used as
the multi-modal decoder here. Word embeddings from the word
embedding layer together with the audio features obtained from the
encoder are passed to the transformer decoder and are incorporated
through a multi-head attention mechanism. As the captions in the
datasets are mostly short in length, the decoder used only consists
of two transformer decoder blocks with four heads. The dimension
of the hidden layer is 128. A linear layer is used at last to output a
probability distribution along the vocabulary.

2.2. Transfer learning

Transfer learning aims to transfer knowledge from the source do-
main to the target domain in order to solve the problem caused by
insufficient training data and improve the generalization ability of
the model. Transfer learning is mostly used in tasks involving single
modality. For this cross-modal (i.e. audio to text) translation task,
we introduce two transfer learning methods, where the first is trans-
ferring from an upstream task while the second is from an in-domain
dataset.

The encoder extracts audio features from an audio clip and is a
relatively separate component in the whole model, thus pre-trained
audio models can be adapted as the encoder. Different pre-trained
audio models have recently been published which can extract gener-
alized audio patterns. PANNs [13] are the models pre-trained on the
AudioSet dataset for an audio tagging task which have achieved state-
of-the-art performance in many downstream audio pattern recogni-
tion tasks. One of the PANNs is used to initialize the parameters
in the encoder in order to overcome the data scarcity problem and
extract generalized audio features.

There are many powerful pre-trained language models for text
generation tasks [15]. However, since pre-trained language models
do not have encoder-decoder attention modules, it is not feasible to
directly use a pre-trained language model as the cross-modal decoder
here. In order to transfer knowledge in both modalities, AudioCaps,
the largest audio captioning dataset currently available, is introduced
to pre-train the proposed model, which allows transfer learning to be
applied in both audio and language modalities.

2.3. Reinforcement learning

The training objective of audio captioning systems is usually to
optimize the cross-entropy (CE) loss. That is, the model parameters
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✓ are trained to minimize

LCE(✓) = � 1
T

TX

t=1

log p(yt|y1:t�1, v, ✓) (3)

where yt is the ground-truth word at time step t. The model is trained
with “teacher forcing” strategy, i.e. each word to be predicted is con-
ditioned on previous ground-truth words in the training stage, while
it is conditioned on previous output words in the test stage. This
discrepancy leads to error accumulation during text generation in the
test stage and is known as “exposure bias” [16]. Another problem
is the mismatch between the training objective and the evaluation
metrics. The performance of captioning systems is evaluated by
discrete metrics, which are non-differentiable and cannot be directly
optimized by back-propagation. To address these two problems, re-
inforcement learning with the policy gradient (PG) method is used to
optimize the evaluation metrics considered and to directly improve
the scores in terms of these metrics [7, 16, 12].

Reinforcement learning makes it possible to directly back-
propagate the evaluation metrics in the form of a reward, which
is computed by an evaluation metric. In our work, the model is
trained to minimize the negative expected reward:

LRL(✓) = �Ews⇠p✓ [r(w
s)], (4)

where ws = (ws
1, ..., w

s
T ) and ws

t is the word sampled from the
model at time step t. To compute the gradient of the negative reward,
we choose the self-critical sequence training (SCST) method [16],
which directly optimizes the true, sequence-level evaluation metric,
but avoids learning an estimate of expected future rewards as a
baseline. The expected gradient with a single sample ws ⇠ p✓ can
be approximated as:

r✓LRL(✓) ⇡ �(r(ws)� r(ŵ))r✓ log p✓(w
s), (5)

where r(ŵ) is the reward computed by the current model using a
greedy inference algorithm.

3. EXPERIMENTS

3.1. Datasets

3.1.1. Clotho

Clotho [3] is an audio captioning dataset whose audio clips are all
collected from the Freesound archive. To encourage caption diversity,
each audio clip is provided with five captions annotated by different
annotators. The duration of the audio clips ranges uniformly from
15 to 30 seconds. All the captions contain eight to 20 words.

Clotho v2 contains 3839 audio clips with 19 200 captions in the
development split, and 1045 audio clips with 5225 captions in the
validation and evaluation split, respectively. We merge the training
and validation split together, which gives a new training set with
4884 audio clips.

During training, each audio clip is combined with one of its five
captions as a training sample. During evaluation, all five ground-
truth captions of an audio clip are used as references and compared
with the predicted caption for metric computation.

3.1.2. AudioCaps

AudioCaps [2] is the largest audio captioning dataset currently avail-
able, which contains around 50k audio clips sourced from AudioSet

with a duration of 10 seconds. AudioCaps is divided into three splits
with 49 274 audio clips in the training set, 494 and 957 audio clips
in the validation and test set, respectively. Each audio clip contains
one caption in the training set, while each contains five captions in
the validation and test sets. The length of the captions varies, with
some containing only three words while some having more than 20
words.

3.2. Data pre-processing

The input features we used are 64-dimensional log mel-spectrograms
obtained using a 1024-point Hanning window with a hop size of 512-
points. SpecAugment [17] is used to augment data during training,
which operates on the log mel-spectrogram of an audio clip using
frequency masking and time masking.

All captions in the two datasets are transformed to lower case
with punctuation removed. Two special tokens “<sos>” and
“<eos>” are padded at the beginning and end of each caption. The
vocabulary of the Clotho dataset contains 4367 words. As Clotho
and AudioCaps have distinct vocabularies, for transfer learning from
AudioCaps to Clotho, these two vocabularies are merged together
which give a vocabulary containing 6636 words.

3.3. Experimental setups

The whole model is trained using Adam [19] optimizer with a batch
size of 32. Warm-up is used in the first 5 epochs to linearly increase
the learning rate to the initial learning rate. The learning rate is then
decreased to 1/10 of itself every 10 epochs. Dropout with rate 0.2
is applied in the proposed model to mitigate the over-fitting problem.
To improve the generalization ability of the model and avoid over-
confident prediction, label smoothing [20] with ✏ = 0.1 is used in
all our experiments. During the inference stage, beam search with a
beam size up to 5 is used to improve the decoding performance.

For cross-entropy training, the model is directly trained on the
Clotho dataset for 30 epochs or firstly pre-trained on the AudioCaps
dataset for 30 epochs then fine-tuned on Clotho dataset for 30 epochs
with an initial learning rate of 1⇥ 10�3. The best model in terms
of the SPIDEr score is selected to optimize CIDERr score using
reinforcement learning for 60 epochs with a constant learning rate of
5⇥ 10�5 (in the DCASE challenge, we ran reinforcement learning
for 25 epochs with a constant learning rate of 1⇥ 10�4 [21]).

3.4. Evaluation metrics

In the DCASE 2021 Task 6, audio captioning systems are evaluated
by machine translation metrics (BLEUn, ROUGEl and METEOR)
and captioning metrics (CIDEr , SPICE and SPIDEr). BLEUn [22]
is calculated as a weighted geometric mean of modified precision of
n-grams. ROUGEl [23] calculates F-measures based on the longest
common subsequence. METEOR [24] measures a harmonic mean
of precision and recall based on word level matches between the can-
didate sentence and references. CIDEr [25] applies term frequency
inverse document frequency (TF-IDF) weights to n-grams and cal-
culates the cosine similarity between them. SPICE [26] transforms
captions into scene graphs and calculates F-score based on tuples in
them. SPIDEr [12] is a linear combination of SPICE and CIDEr , the
SPICE score ensures captions are semantically faithful to the audio
clip, while CIDEr score ensures captions are syntactically fluent.
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Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METERO CIDEr SPICE SPIDEr
Baseline 0.525 0.344 0.237 0.163 0.359 0.154 0.352 0.100 0.226

B+PANNs 0.564 0.375 0.255 0.171 0.383 0.172 0.421 0.120 0.270
B+PANNs+AC 0.561 0.374 0.257 0.174 0.379 0.171 0.426 0.124 0.275
B+PANNs+RL 0.639 0.415 0.276 0.174 0.401 0.186 0.452 0.131 0.292

B+PANNs+AC+RL 0.634 0.423 0.288 0.185 0.410 0.187 0.476 0.134 0.305
SJTU [18] 0.643 - - 0.163 0.404 0.178 0.449 0.123 0.286

SJTU ensemble [18] 0.657 - - 0.174 0.408 0.182 0.468 0.123 0.295

Table 1: Scores of our models on the Clotho v2 evaluation set. Baseline (B): the proposed model trained from scratch. RL: the model fine-tuned
using reinforcement learning. PANNs: use PANNs as the audio encoder. AC: the whole model pre-trained on the AudioCaps dataset. Higher
score indicates better system performance.

Examples B+PANNs (w/o RL) B+PANNS+RL (w/ RL)
example 1 a crowd of people are talking and cheering a crowd of people are talking and in the background
example 2 a car is driving down the road with the windows open a car is driving by on and then the engine of a vehicle
example 3 someone is playing a guitar with a stick a guitar is being played on a guitar in the background
example 4 a machine is running at a constant rate a machine is running and a in the background
example 5 a police car with a siren blaring in the background a siren is blaring while sirens are blaring in the background

Table 2: Examples of selected captions generated by the model “B+PANNs” and “B+PANNs+RL”.

Model # audio clips
B+PANNs (w/o RL) 155

B+PANNS+RL (w/ RL) 765
Ground-truth 302

Table 3: The number of audio clips containing “in the background”
in generated and ground-truth captions in the evaluation set.

4. RESULTS

Table 1 presents the performances of the proposed system on the
Clotho v2 evaluation set. The proposed system is compared with
SJTU’s system [18] which won second place in DCASE 2021 Task
6 and shows state-of-the-art performance in audio captioning [11].
SJTU’s system is based on a “CNN+RNN” architecture, transfer
learning and reinforcement learning are also used. In addition, an
ensemble strategy is adopted in their system to enhance the model
performance. As can be seen in Table 1, our best model outperforms
SJTU’s ensemble model in most evaluation metrics (except BLEU1),
which shows the effectiveness of the proposed model.

Ablation studies are carried out to investigate the effects of
each proposed component. From the experimental results, both
transfer learning and reinforcement learning can improve system
performance with respect to all the evaluation metrics. For transfer
learning, the pre-trained audio encoder (PANNs) significantly im-
prove all the metrics as compared to the system trained from scratch,
which indicates that a powerful audio encoder is rather important
in this cross-modal translation task. Pre-training on the AudioCaps
dataset slightly improves most metrics, which confirms that transfer
learning in both audio and language modalities performs better than
that in a single modality only.

Reinforcement learning also improves all the evaluation metrics,
although it is only used to optimize CIDEr score. However, it is
somewhat surprising that reinforcement learning may impact ad-
versely on the quality of the generated captions. First, reinforcement
learning may lead to captions syntactically incorrect, introduces
some repetitive words and generates incomplete captions. As shown

in Table 2, we present five example captions generated by model
“B+PANNs” and “B+PANNs+RL” to demonstrate this observation.
Second, after the optimization with reinforcement learning, most
captions are appended a phrase “in the background” which was
not in their ground truth captions. Table 3 shows the statistics of
the number of audio clips for which the generated captions contain
“in the background” before and after using reinforcement learning.
There are 302 audio clips whose ground-truth captions contain ”in
the background”. After using reinforcement learning, 765 predicted
captions contain “in the background”, five times more than those
without the use of reinforcement learning. These findings suggest
that the existing evaluation metrics may not be able to fully reflect
the effectiveness of an audio captioning system, or neither are they
consistent with human judgement.

5. CONCLUSION

We have presented a “CNN+Transformer” audio captioning system
with transfer and reinforcement learning and carried out ablation
studies on the proposed methods. The results suggest that transfer
and reinforcement learning can both improve the performance in
terms of the evaluation metrics, while reinforcement learning may
impact adversely on the quality of the generated captions. This
finding indicates that the existing evaluation metrics used in the cap-
tioning system may not fully reflect the quality of captions. Further
research should be carried out to find evaluation metrics that match
well with human judgment.
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ABSTRACT
Audio captioning aims to automatically generate a natural language
description of an audio clip. Most captioning models follow an
encoder-decoder architecture, where the decoder predicts words
based on the audio features extracted by the encoder. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) are
often used as the audio encoder. However, CNNs can be limited
in modelling temporal relationships among the time frames in an
audio signal, while RNNs can be limited in modelling the long-range
dependencies among the time frames. In this paper, we propose an
Audio Captioning Transformer (ACT), which is a full Transformer
network based on an encoder-decoder architecture and is totally
convolution-free. The proposed method has a better ability to model
the global information within an audio signal as well as capture
temporal relationships between audio events. We evaluate our model
on AudioCaps, which is the largest audio captioning dataset publicly
available. Our model shows competitive performance compared to
other state-of-the-art approaches.

Index Terms— Audio captioning, Transformer, sequence-to-
sequence model, cross-modal task

1. INTRODUCTION

Automated audio captioning (AAC) is concerned with describing an
audio clip using natural language and is a cross-modal translation
task at the intersection of audio processing and natural language
processing. Generating a meaningful description for an audio clip
not only needs to determine what audio events are presented, but also
needs to capture and express their spatial-temporal relationships. Au-
dio captioning is practically useful in applications such as assisting
the hearing-impaired to understand environmental sounds, retrieving
multimedia content, and analyzing sounds for security surveillance.

Unlike image and video captioning, which have been studied in
computer vision (CV) for a longer time, audio captioning is a task
investigated only recently [1]. With the announcement of the AAC
task in DCASE 2020 and 2021, this topic has attracted increasing
attention, and several methods have been proposed [2, 3, 4]. The
AAC task is usually treated as a sequence-to-sequence problem,
and existing methods are typically based on an encoder-decoder
architecture, where the decoder generates words according to the
audio features extracted by the encoder. Early works often adopted
an “RNN-RNN” architecture with an attention mechanism [1, 3].
However, RNNs can be limited in modeling long-term temporal
dependencies in an audio signal. Recently, CNNs have become a
dominant approach in audio-related tasks (audio tagging and sound
event detection) [5], with many researchers using pre-trained CNNs
as the audio encoder, which significantly improved the performance
in these systems [6]. More recently, inspired by the great success of

the Transformer model in natural language processing [7], the RNN
decoder has been replaced by a Transformer decoder in captioning
models, and the “CNN+Transformer” architecture has been shown
to achieve state-of-the-art performance in this area [8, 9].

Description of an audio signal needs to capture temporal-spatial
relationships between audio objects that may be far apart in time.
However, convolution is a local operator and has limitations in mod-
elling temporal information, especially with a long audio signal.
This can be alleviated by enlarging receptive fields with deeper con-
volutional layers. However, such deep CNNs can be hard to train
and can lead to over-fitting. To address this problem, we propose
an Audio Captioning Transformer (ACT), a convolution-free Trans-
former network based on the self-attention mechanism. We use
log mel-spectrograms as input and split the mel-spectrograms into
smaller non-overlapping patches along the time axis. By adopting
the self-attention mechanism, each patch can attend to all the other
patches at each layer of the encoder, which can model global long-
range dependencies among the small mel-spectrogram patches from
the beginning. Without the need for down-sampling, the features ex-
tracted by Transformer are fine-grained, which can contain detailed
local audio topics.

The Transformer usually requires more training data than CNNs
[10]. However, the amount of data currently available for audio
captioning is relatively small. To address this issue, the ACT encoder
is firstly pre-trained on AudioSet dataset [11] as an audio tagging task
in order to improve its generalization ability. A class token designed
to model the global information of an audio clip is appended at the
beginning of each patch sequence and is used to output audio tagging
results. As a result, when generating words, the decoder can attend
to local and global information of an audio clip simultaneously. The
proposed ACT model is evaluated on the AudioCaps dataset [3] and
shows competitive performance as compared to other state-of-the-art
methods.

The remaining sections of this paper are organised as follows.
In Section 2, we introduce the related work. The proposed model is
described in detail in Section 3. Experimental settings are shown in
Section 4. Results are discussed in Section 5. Finally, we conclude
our work in Section 6.

2. RELATED WORK

Previous work proposed in audio captioning has been based on deep
learning methods with an encoder-decoder architecture. Drossos
et al. [1] proposed the first approach to AAC using an RNN-based
encoder-decoder architecture with an alignment model in between.
To control the information contained in the output text, Ikawa and
Kashino [4] introduced a conditional parameter called “specificity”
to guide the caption generation. With the release of two freely avail-
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able datasets AudioCaps [3] and Clotho [12], AAC has attracted
increasing attention and more approaches have been proposed. Kim
et al. [3] proposed a model with a top-down multi-scale encoder and
aligned semantic attention, which enabled the joint use of multi-level
features and semantic attributes. As CNNs have achieved state-of-
the-art performance in audio tagging and sound event detection tasks
[5], some researchers replaced the RNN encoder with CNNs, which
brings significant performance gains [8, 6]. Recently, Transformer
has been introduced as the language decoder with a powerful abil-
ity in natural language generation tasks [8, 13, 14]. Takeuchi et al.
[15] formulated audio captioning as a multi-task learning problem,
where they proposed keywords estimation and sentence length es-
timation to avoid the indeterminacy of word selection. Koizumi
et al. [16] utilized a pre-trained large-scale language model GPT-2
[17] with audio-based similar caption retrieval to guide the caption
generation. Liu et al. [18] introduced a contrastive loss to get better
alignment between audio and texts in the latent space. Reinforce-
ment learning was used to optimize the audio captioning models
with non-differentiable evaluation metrics [19].

The Transformer was originally proposed for machine transla-
tion and has now become the dominant approach in natural language
processing tasks [7]. Recently, many researchers adopted the Trans-
former for computer vision tasks which was shown to approach or
outperform the state-of-the-art CNNs-based systems in image recog-
nition. Dosovitskiy et al. [10] proposed a Vision Transformer (ViT)
which was based purely on the attention mechanism, i.e. without us-
ing convolution kernels, and applied directly to sequences of image
patches for the image classification task. However, a large amount
of data are required for pre-training the Transformer models, which
limits their adoption. To address this problem, Touvron et al. [20]
introduced Data-efficient image Transformers (DeiT) using a data
efficiency training and distillation strategy. Based on ViT and DeiT,
Liu et al. [21] proposed a CaPtion TransformeR (CPTR) for image
captioning. As the Transformer is designed to deal with sequential
data, we argue that the Transformer can be adapted for audio sig-
nals, and the self-attention mechanism makes it more suitable to
capture temporal relationships between audio features and to model
the global information. Inspired by these ViT-related works, we pro-
pose the Audio Captioning Transformer (ACT) for audio captioning,
which, to our knowledge, has not been done in the literature.

3. PROPOSED METHOD

Fig. 1 shows the proposed Audio Captioning Transformer model,
which is based on the traditional sequence-to-sequence architecture
and is convolution-free. The model takes the log mel-spectrogram
of an audio clip as input and outputs the posterior probabilities of
the predicted words.

3.1. Encoder

Let X 2 RT⇥F denote the log mel-spectrogram of an audio clip,
where T is the number of time frames and F is the number of mel
bins. The log mel-spectrogram is first split into N non-overlapping
small patches XN = {x1, ..., xn} along the time axis with size
of t ⇥ F where N = T/t and t is the number of time frames
of each patch. Then each mel-spectrogam patch is flattened to a
1D embedding and projected to a latent space through a learnable
matrix We 2 R(t⇥F )⇥d, where d is the dimension of the latent
embedding. In line with ViT and DeiT, a global learnable class token
Xcls 2 R1⇥d is appended to the beginning of the patch sequences,

…
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Figure 1: System overview of Audio Captioning Transformer, the
encoder is on the left side while the decoder on the right side.

which contains the global information for the audio clip. As the
self-attention mechanism cannot capture position information [7], a
trainable positional embedding Xpos 2 R(T+1)⇥d is added to each
patch embedding. Mathematically, the final input representation is
given by

Xe = [Xcls +WeX] +Xpos (1)

The ACT encoder consists of Ne stacked identical layers. Each
layer contains two sub-layers, a multi-head self-attention layer and
a position-wise fully-connected feed-forward layer. In the self-
attention sub-layer, the input is first transformed into query Q, key K
and value V through matrix multiplication with three learnable ma-
trices WQ,WK ,WV 2 Rd⇥dk , where dk is the dimension of each
attention head. Then the scaled dot-product attention is computed as

Attn(Q,K, V ) = Softmax(
QKT

p
dk

)V (2)

Each self-attention layer contains h attention heads which extends
the model’s ability to attend to different positions and creates multi-
ple representation subspaces [7]. The outputs of heads are then ag-
gregated through a linear transformation matrix Wo 2 R(h⇥dk)⇥dk ,
which can be formulated as

MultiHead(Q,K, V ) = Concat(head1, ..., headh)Wo (3)

The feed-forward network contains two linear layers with GLEU
activation function and dropout applied between them. Layer normal-
ization is applied before each sub-layer and a residual connection is
employed around each of them, such that the output of each sub-layer
is given by

Xout = Xin + Sub layer(LayerNorm(Xin)) (4)

In order to make use of pre-trained models, the encoder architecture
is the same as ViT and DeiT containing 12 encoder blocks and 12

heads with an embedding dimension of 768.
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Model embedding dim # layers (Nd) # heads
ACT s 512 2 4
ACT m 512 4 8
ACT l 512 6 8

Table 1: Variants of the proposed ACT decoder.

3.2. Decoder

The ACT decoder contains three parts: a word embedding layer, a
Transformer decoder block, and a linear layer. Each input word is
embedded through the word embedding layer into a fixed dimension
word vector and then fed into the Transformer decoder block. The
word vectors are pre-trained by a Word2Vec model on all caption
corpus [22].

The Transformer decoder consists of Nd identical stacked layers.
There are two main differences compared to the ACT encoder block.
First, the first self-attention sub-layer in the decoder is a masked
self-attention because the caption generating process is causal and
auto-regressive. Second, there is a new cross multi-head attention
sub-layer between self-attention sub-layer and feed-forward sub-
layer, which allows every position in the decoder to attend over all
positions in the audio features extracted by the encoder [7]. The
output of the decoder module is fed through a final linear layer with
a softmax activation function to output a probability distribution over
the vocabulary.

The training objective of the model is to minimize the cross-
entropy (CE) loss

LCE(✓) = � 1

T

TX

t=1

log p(yt|y1:t�1, ✓) (5)

where yt is the ground-truth word at time step t and ✓ are the model
parameters. The “Teacher forcing” strategy is used during training,
i.e. each word to be predicted is conditioned on previous ground-
truth words. We experiment with three models, which share the
same encoder architecture described in Section 3.2 but have different
number of layers and heads in the decoder. Table 1 summarizes the
parameters in the decoder of these models.

4. EXPERIMENTS

4.1. Dataset

4.1.1. AudioSet

AudioSet is a large-scale audio dataset with an ontology of 527 sound
classes [11]. AudioSet contains more than 2 million 10-second audio
clips extracted from YouTube videos. As some audio clips are no
longer downloadable, there are 1 934 187 and 18 887 audio clips in
our training and evaluation set, respectively. Each audio clip can
have one or more labels for their presented audio events.

4.1.2. AudioCaps

AudioCaps is the largest audio captioning dataset currently available
with around 50k audio clips sourced from AudioSet [3]. AudioCaps
is divided into three splits. Each audio clip in the training set contains
one human-annotated caption, while each contains five captions in
the validation and test set.

4.2. Data pre-processing

All audio clips in these two datasets are converted to 32k Hz and
padded to 10-second long. Log mel-spectrograms extracted using
a 1024-points Hanning window with 50% overlap and 64 mel bins
are used as the input features. Each log mel-spectrogram is split into
125 non-overlap small patches with the size of 64⇥ 4 along the time
axis. SpecAugment [23] is applied to augment the input features
during training.

Captions are tokenized and transformed to lower case with punc-
tuation removed. To indicate the start and end of each caption, two
special tokens “<sos>” and “<eos>” are padded. The vocabu-
lary of AudioCaps contains 5277 distinct words.

4.3. Audio tagging pre-training

As proved in previous works, Transformer requires more training
data to achieve competitive performance with CNNs [10]. However,
the amount of training data in audio processing area is much less
than that in computer vision. Cross-modal transfer learning from
ImageNet pre-trained models to audio-related tasks proves to be
effective [24]. Thus we make use of pre-trained DeiT models for
image classification to initialize the parameters in ACT encoder
[10, 20]. As images have three channels and spectrograms just have
one channel, we take the average of the weights from the patch
embedding layer in DeiT in order to adapt it for spectrogram.

As pre-trained audio neural networks (PANNs) proved to per-
form well in audio captioning [9], we pre-train ACT encoder on
AudioSet as an audio tagging task in order to solve the data scarcity
problem and learn more generalized audio patterns. Audio tagging
is a multi-classification task of predicting the presence or absence
of sound classes within an audio clip [25]. The class token output
from the encoder is fed through a linear layer with sigmoid activa-
tion function to output the audio events probabilities. The model is
trained to minimize the binary cross-entropy loss between the output
of the model and the true label

LBCE(✓) = �
NX

n=1

(yn · ln f(xn) + (1� yn) · ln(1� f(xn)) (6)

where xn is the n-th audio clip in AudioSet and N is the number
of training samples. f(xn) 2 [0, 1]K is the output of the model
and yn 2 {0, 1}K is the true label where K is the number of sound
classes. The ACT encoder is pre-trained for 20 epochs with batch
size of 128 and learning rate of 1⇥ 10

�4, which achieves a mean
average precision (mAP) of 0.43 on the evaluation set of AudioSet
dataset.

4.4. Experimental setups

We train the proposed model for 30 epochs using Adam optimizer
[26] and a batch size of 32. The learning rate is linearly increased
to 1⇥ 10

�4 in the first five epochs using warm-up, which is then
multiplied by 0.1 every 10 epochs. To mitigate over-fitting prob-
lem, dropout with rate of 0.2 is applied in the whole model. Label
smoothing [27] with a smoothing factor of 0.1 is used to avoid over-
confident prediction. We use beam search with a beam size up to 5

to improve the decoding performance during inference stage.

4.5. Evaluation metrics

In line with previous works, we evaluate our methods using ma-
chine translation and captioning metrics [13]. BLEUn, ROUGEl
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Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METERO CIDEr SPICE SPIDEr
ACT s DeiT AudioSet 0.643 0.483 0.352 0.249 0.469 0.218 0.669 0.160 0.415
ACT m DeiT AudioSet 0.653 0.495 0.363 0.259 0.471 0.222 0.663 0.163 0.413
ACT l DeiT AudioSet 0.647 0.488 0.356 0.252 0.468 0.222 0.679 0.160 0.420

ACT m scratch 0.567 0.411 0.285 0.191 0.417 0.187 0.501 0.127 0.314
ACT m DeiT 0.606 0.445 0.319 0.224 0.445 0.207 0.586 0.147 0.367

RNN+RNN [3] 0.614 0.446 0.317 0.219 0.450 0.203 0.593 0.144 0.369
CNN+RNN [6] 0.655 0.476 0.335 0.231 0.467 0.229 0.660 0.168 0.414

CNN+Transformer [9] 0.641 0.479 0.344 0.236 0.469 0.221 0.693 0.159 0.426
CNN+Transformer scratch [9] 0.610 0.461 0.334 0.234 0.455 0.206 0.629 0.144 0.386

Table 2: Scores of the ACT model on the AudioCaps test set. DeiT: the ACT encoder is initialized with the parameters in DeiT, AudioSet: the
ACT encoder is pre-trained on AudioSet.

and METEOR are machine translation metrics. BLEUn is a modi-
fied precision metric with a sentence-brevity penalty, calculated as a
weighted geometric mean over different length n-grams. ROUGEl

calculates F-measures by counting the longest common subsequence.
METEOR evaluates a caption by computing a harmonic mean of
precision and recall based on explicit word-to-word matches be-
tween the caption and given references. Captioning metrics contain
CIDEr , SPICE and SPIDEr . CIDEr calculates the cosine similar-
ity between term frequency inverse document frequency (TF-IDF)
weighted n-grams. SPICE creates scene graphs for captions and
calculates F-score based on tuples in the scene graphs. SPIDEr is
the average of SPICE and CIDEr and is selected as the official rank-
ing metric in DCASE challenge, the SPICE score ensures captions
are semantically faithful to the audio content, while CIDEr score
ensures captions are syntactically fluent.

5. RESULTS

5.1. Performance comparison

Table 2 presents the results on AudioCaps test set. We compare the
proposed ACT model with three representative audio captioning mod-
els, “RNN+RNN” [3], “CNN+RNN” [6] and “CNN+Transformer”
[9]. In these models, CNNs are all pre-trained on upstream audio-
related tasks. As can be seen in Table 2 that the ACT model outper-
forms “RNN+RNN” model substantially in all evaluation metrics
and achieves slightly higher scores than “CNN+RNN” model in most
metrics. Compared with the state-of-the-art “CNN+Transformer” ap-
proach, ACT model outperforms it in machine translation metrics
but gives slightly lower scores in CIDEr . As machine translation
metrics are mostly based on n-grams, these results show that the
ACT model has better ability in generating words accurately. In
addition, training an ACT model is faster than “CNN+Transformer”
architecture, where the former takes less than five minutes for one
epoch and “CNN+Transformer” needs seven minutes in our experi-
ments. In summary, the ACT model shows competitive performance
as compared to other state-of-the-art approaches, and it is simple as
it is based only on the self-attention mechanism.

5.2. Ablation studies

The ablation studies are carried out to investigate the effectiveness
of the pre-trained encoder and the influence of the hyper-parameters
in the decoder. From the experimental results, we can see that pre-
training the ACT encoder can boost the performance significantly.
Even only using the pre-trained DeiT model, which is originally

trained for image classification task, can bring significant perfor-
mance gains in all the evaluation metrics. Pre-training on AudioSet
as an audio tagging task further improves the system to approach the
state-of-the-art performance. We also compare the ACT model with
the “CNN+Transformer” model both trained from scratch, the results
show that the ACT model performs worse than “CNN+Transformer”
without encoder pre-training. These results suggest that pre-training
the ACT encoder with a large dataset is important, and prove that
Transformer network needs more training data than CNNs to achieve
competitive performance.

We perform experiments on the three models with different
numbers of layers and heads in the decoder. From the observations,
the ACT model is slightly sensitive to the choice of hyper-parameters
in the decoder. These three models achieve similar performance,
among which ACT m with four decoder layers performs better in
machine translation metrics, while ACT l achieves higher CIDEr

and SPIDEr scores. The ACT model only needs shallow Transformer
decoder layers compared to machine translation models in natural
language tasks which typically contain 12 Transformer decoder
layers [7]. There might be two reasons. First, the amount of training
data in audio captioning is far less than data in natural language
processing tasks. Second, the length of the audio captions are usually
shorter than sentences in the natural language tasks.

6. CONCLUSION

We have presented a novel audio captioning model, Audio Caption-
ing Transformer (ACT), which is a full Transformer model based
on the self-attention mechanism. The encoder of the proposed ACT
model can model the global and fine-grained information within an
audio signal simultaneously, and has better ability to capture tem-
poral relationships between audio events than CNNs. Experimental
results show that the ACT model can outperform other state-of-
the-art audio captioning systems in most metrics. Further research
should be carried out to adapt the ACT model for audio clips of
varied lengths.
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ABSTRACT
Acoustic scene classification (ASC) has seen tremendous progress
from the combined use of convolutional neural networks (CNNs)
and signal processing strategies. In this paper, we investigate the
use of two common feature representations within the audio un-
derstanding domain, the raw waveform and Mel-spectrogram, and
measure their degree of complementarity when using both represen-
tations for feature fusion. We introduce a new model paradigm for
acoustic scene classification by fusing features learned from Mel-
spectrograms and the raw waveform from separate feature extrac-
tion branches. Our experimental results show that our proposed
fusion model significantly outperforms the baseline audio-only sub-
network on the DCASE 2021 Challenge Task 1B (increase of 5.7%
in accuracy and a 12.7% reduction in loss). We further show that
the learned features of raw waveforms and Mel-spectrograms are
indeed complementary to each other and that there is a consistent
improvement in classification performance over models trained on
Mel-spectrograms or waveforms alone.

Index Terms— Audio classification, Acoustic scene classifica-
tion, Feature fusion, Multi-modal features.

1. INTRODUCTION

Mel-spectrograms are the de-facto audio feature representation and
have been widely used throughout the history of audio understand-
ing [1]. Mel-spectrograms are created by calculating the short-
time fourier transform (STFT) of an audio signal, then passing the
STFT frequency responses through band-pass filters spaced on the
Mel(logarithmic)-scale and often further passed through a logarith-
mic compression to replicate the human’s non-linear perception of
signal pitch and loudness, respectively.

With the advent of deep neural networks, many methods have
been introduced that perform audio understanding tasks such as
ASC, audio tagging, and sound event detection by using Mel-
spectrogram representations of audio as the input to a convolutional
neural network [2, 3]. Researchers have also explored other fea-
ture representations such as the gammatone and Constant-Q (CQT)
spectrogram, and Mel Frequency Cepstrum Coefficients (MFCC)
[4, 5]. [6] and found that fusing these representations allows for a
network to learn complementary features, creating a stronger model
for ASC.

In parallel, other works have utilized the raw waveform directly
as input into neural networks, bypassing the need for hand crafted
features [7, 8]. Waveform-based networks are trained end-to-end,

while networks that utilize spectrograms need to create these hand
crafted features that may often be sub-optimal for the given task.
Regardless, many state of the art methods in ASC, speaker recogni-
tion, sound event detection, and other tasks still utilize spectrogram
representations [9, 10]. Further, [11] introduced a fully learnable
variation of spectrogram representations, where they are trained
end-to-end to automatically find an optimized representation.

As a result, there is still no clear consensus as to the best feature
representation that can perform strongly across various audio un-
derstanding tasks. Researchers are now looking at hybrid methods
that use both waveform and spectrogram representations in a fusion
setting. [8, 12] perform early feature map fusion of waveform and
spectrogram features that are passed through convolutional layers
for audio tagging and environmental sound classification. [13, 14]
propose a decision-level ensembling of multiple models that uti-
lize raw waveforms and Mel-spectrograms for environmental sound
classification and ASC. Although these works have shown classi-
fication performance improvements using waveforms and spectro-
grams, they do not deeply explore the degree of complementarity
and effects of fusing these features together.

In this paper, we investigate waveform and Mel-spectrogram
feature fusion and propose a new ASC model that learns comple-
mentary features from both modalities using a more effective fusion
method. We evaluate our proposed model using the DCASE 2021
Challenge Task 1B dataset to prove the effectiveness and comple-
mentarity of waveform and Mel-spectrogram feature fusion. Our
work is reproducible and the code is publicly available.1

2. PROPOSED METHOD

To investigate and understand the complementarity between learn-
ing features from Mel-spectrograms and raw waveforms, we de-
signed a fusion model based on two CNN feature extractors, and
a unified classification layer. Figure 1 illustrates the design of our
model. The spectrogram branch, Fs, is comprised of repeating 2D
CNN blocks followed by a max pooling operation. The CNN blocks
contain a convolution layer using a kernel size of 3 ⇥ 3, followed
by a batch normalization and a Leaky ReLU nonlinear activation.

The waveform branch, Fw, is of a similar structure, however
the two-dimensional max pooling and convolutional layers are re-
placed with one-dimensional kernels of size 8 and 7, respectively.
In addition, the first convolutional layer in the waveform branch are
parameterized to Sinc functions, as described in [15].

1https://github.com/denfed/wave-spec-fusion

216



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

Table 1: Detailed overview of proposed model design.
Spectrogram Branch Fs

Input shape [128,188]
Filter responses 32, 64, 128, 256
Global average pooling output ls h1024i
Waveform Branch Fw

Input shape [48000]
Filter responses 32, 64, 128, 256
Global average pooling output lw h1024i
Classification Layers Fc

Input shape (lw + ls) h1024i
Dense layer outputs 512, 256, 10
Output classes 10

As both branches are working with different-sized input data,
the feature responses may vary in size. We utilize global average
pooling layers to condense both waveform and spectrogram features
into a vector of 1024 units, denoted by lw and ls, respectively.

Feature fusion of both feature extraction branches is accom-
plished at the latent representation level, where features for both
the waveform and spectrogram branch are extracted independently
and then fused together into a unified representation. We hypoth-
esize that this style of late fusion allows each feature extractor to
extract more complementary features compared to related methods
that fuse feature maps in early layers. In addition, late fusion may
exploit more feature inter-dependencies of each modality compared
to score fusion and ensembling methods that average independent
model outputs.

Fusion is accomplished using element-wise summation such
that the final latent representation (lw + ls) has the same shape as
its constituents. The classification layers, Fc, take (lw+ ls) as input
and perform the final classification using repeating dense blocks, as
shown in Figure 1. We use dropout layers with p = 0.3, followed
by linear layers, a Leaky ReLU activation, and batch normalization.
The classification ĉ of the set of classes c 2 C of an audio sample
with its waveform xw and Mel-spectrogram xs can be described as:

ĉ(xw,xs) = argmax
c2C

Fc(Fw(xw) + Fs(xs)) (1)

Table 1 describes in detail the configuration of both feature ex-
traction branches and the final classification layers. For our experi-
ments, we utilize three variations of the described model to investi-
gate modality complementarity:

Spectrogram sub-network: The spectrogram branch in Fig-
ure 1 is used independently with the classification layers, without
the waveform branch. In this model, training is conducted only us-
ing Mel-spectrograms, omitting Fw(xw) from (1).

Waveform sub-network: The waveform branch in Figure 1 is
used independently with the classification layers, without the spec-
trogram branch. In this model, training is conducted only using raw
waveforms, omitting Fs(xs) from (1).

Fusion model: Both the spectrogram and waveform branch
are trained end-to-end with their respective inputs. The latent rep-
resentations of each branch are fused together for classification.

3. TRAINING CONFIGURATION

All models are trained using the SGD optimizer paired with the
one-cycle learning rate scheduler described in [16]. The one-cycle

Figure 1: Illustration of the proposed fusion model.

learning rate scheduler anneals an initial learning rate to a maxi-
mum value, then anneals it back to the initial learning rate, over the
entire training procedure. [17] showed that this procedure leads to
faster training times. In addition, using large learning rates for a
portion of the training procedure acts as a form of regularization.
We experimented with various learning rates and found that a max
learning rate of 0.008 for the one-cycle scheduler works best for the
proposed models. Training batch size is set to 128 and the models
are trained for 50 epochs. The models were trained on an RTX 6000
GPU with the most complex model taking 1.5 hours to fully train.
We train our models and conduct our experiments using the pro-
vided training and validation split of the Task 1B challenge dataset.

3.1. Dataset: DCASE 2021 Challenge Task 1B, Audio-Visual
Scene Classification

Task 1B is based on the TAU Audio-Visual Urban Scenes 2021
dataset, a dataset containing synchronized audio and video record-
ings from 12 European cities in 10 different scenes. Audio is
recorded using a Soundman OKM II Klassik/studio A3 microphone
paired with a Zoom F8 audio recorder, sampled at 48kHz at a 24-
bit resolution. Video is recorded using a GoPro Hero5 Session. The
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Table 2: Kernel parameterization performance.
Parameterization Accuracy % Log Loss
Unparameterized (normal) 61.87 1.047
Sinc parameterization [15] 64.79 1.045

Table 3: Model performance compared to challenge baseline.
Model Accuracy % Log Loss # Params
Audio baseline [20] 65.1 1.048 -
Waveform sub-network 64.79 1.045 1.0M
Spectrogram sub-network 66.46 1.072 1.1M
Fusion Model 70.78 0.915 1.4M

dataset contains 12,292 10-second samples of each modality spread
across the 10 scenes. The provided train/validation split consists of
8,646 samples in the training set and 3,645 samples in the validation
set [18]. In this paper, we focus on the audio portion of the dataset
only, excluding using videos for scene classification.

3.2. Data Preprocessing

We input the raw waveform and its generated Mel-spectrogram into
their respective feature extractors. According to the Task 1B rules,
we split the development dataset samples into 1 second audio files to
perform classification at the 1 second level. This brings the training
dataset to 86,460 samples and the validation dataset to 36,450 sam-
ples. Audio files are sampled at 48kHz and therefore have a sample
length of [48000]. In addition, the audio waveforms are scaled to the
range [0, 1]. Mel-spectrograms are generated using 128 frequency
bins, a hop length of 256 samples, and a Hann window size of 2048
samples, creating a final size of [128⇥188]. The Mel-spectrograms
are also passed through a logarithmic compression and then normal-
ized at an instance level using Z-Score normalization such that each
sample has a mean of 0 and unit standard deviation.

3.3. Data Augmentation

For data augmentations, we utilize Mixup [19] and time shifting for
all experiments. During training, Mixup has a 50% probability of
being used for each batch and time shifting is applied to every batch.
For Mixup, we select ↵ = 0.2 and apply it to both the sub-networks
and fusion model. For the fusion model, Mixup is performed evenly
across the waveform and spectrogram such that two audio samples’
waveform and spectrogram are mixed together at the same mixing
ratio. Time shifting shifts the waveform and spectrogram along the
time axis, where overrun samples are shifted to the opposite end of
the input. We time shift randomly from 0% to 50% of the time axis
size for both the waveform and spectrogram. For the fusion model,
time shifting is applied independently to the modalities, such that
both the waveform and spectrogram may be shifted by varying de-
grees. We experimented with various configurations and found that
this configuration achieves the highest classification performance,
however further research should be conducted on the effects of con-
sistent and inconsistent data augmentations between each modality.

4. EXPERIMENTAL RESULTS

4.1. Waveform Kernel Parameterizations

SincNet [15] introduced the use of parameterized Sinc filters for
speech recognition, where the kernels of the first convolutional layer
of a model utilizing waveforms are replaced with kernels parame-
terized to the Sinc function. Works such as [14] have applied these
filters for ASC and found Sinc filters to improve ASC performance.

Table 4: Fusion method comparisons.
Model Accuracy % Log Loss # Params
Wavegram-Logmel-CNN 68.35 1.063 80.2M
Decision fusion 68.65 0.955 2.0M
Decision ensemble 70.47 0.845 2.0M
Proposed late fusion 70.78 0.915 1.4M

Table 2 shows model performance when replacing the first con-
volutional layer of the waveform branch with parameterized Sinc
kernels instead of an unparameterized, fully learnable kernel. As
shown, using sinc kernels outperforms unparameterized kernels.
We hypothesize that the initialization of the sinc filters to mirror the
distribution of the Mel-scale, as described in [15], are a more op-
timal initialization compared to conventional kernel initializations.
In addition, the Sinc kernels are less prone to overfitting as they are
constrained to the Sinc function [11]. Using Sinc filters also allows
us to reduce model complexity, as two frequency cutoff values are
learned per kernel instead of N parameters of a size N kernel.

4.2. Waveform and Spectrogram Feature Fusion

Table 3 shows the classification performance of the provided Task
1B baseline model compared to the three different model variations
proposed. The waveform sub-network is not able to outperform the
baseline while the spectrogram sub-network performs slightly better
than the baseline in accuracy. The fusion model outperforms both
the baseline and models trained on single modalities with a 5.7%
improvement in accuracy and a reduction of .13 in loss over the
baseline. Furthermore, we see that the fusion model outperforms
the spectrogram sub-network by 4.3% in accuracy and a .16 reduc-
tion in loss. This improvement shows that there are features being
learned within the raw waveform that are complementary to fea-
tures being learned from the Mel-spectrogram, resulting in a more
discriminative classification model.

4.3. Feature Fusion Design

We perform a comparison with other fusion paradigms to better un-
derstand its significance in fusing waveform and spectrogram fea-
tures. We compare our method against the Wavegram-Logmel-
CNN, a popular acoustic classification model introduced by [12]
that performs early feature map fusion on the waveform and spec-
trogram. We train the Wavegram-Logmel-CNN using the train-
ing configuration described in [12]. The same data preprocessing
is used as described in section 3.2, however the spectrogram hop
length is changed to 320 samples to fit the structure of the model.
In addition, we compare the proposed late fusion design against a
decision fusion and ensembling method. Instead of latent vector
fusion, we fuse the independent sub-network’s predictions at the
decision level by averaging predictions together. Comparing to (1),
the decision fusion classification resembles:

ĉ(xw,xs) = argmax
c2C

1
2
(Fcw (Fw(xw)) + Fcs(Fs(xs))) (2)

where Fcw and Fcs depict the waveform and spectrogram subnet-
work’s classification layers, respectively. We train this decision fu-
sion model using the same configuration as the proposed late fusion
model. In addition, we compare the fusion methods against an en-
semble of the independently trained sub-networks, using decision
averaging described in (2).

As shown in Table 4, the proposed late fusion model outper-
forms the Wavegram-Logmel-CNN with significantly fewer param-
eters, in addition outperforming the decision fusion and ensemble
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Table 5: Comparison of feature fusion methods.
Fusion Method Accuracy % Log Loss # Params
Element-wise sum 70.78 0.915 1.4M
Concatenation 70.85 0.924 1.9M
MFB [21] 70.13 0.943 7.6M

Table 6: Feature branch removal ablation study.
Model Accuracy % Log Loss
Spectrogram sub-network 66.46 1.072
Fusion spectrogram branch only 51.33 1.720
Waveform sub-network 64.79 1.045
Fusion waveform branch only 31.51 2.500

model. We see that while the ensemble of both sub-networks per-
forms well, the late fusion model is able to extract feature inter-
dependencies of the waveform and spectrogram that still outperform
the ensemble model in terms of accuracy. The late fusion model also
has fewer parameters and is trained end-to-end.

4.4. Latent Representation Fusion Methods

Most approaches to feature fusion utilize linear methods such as
element-wise summation and concatenation of vectors and feature
maps. A more advanced operation, Multimodal Factorized Bilinear
Pooling [21], has been used within visual question answering and
captures more expressive features than linear methods while being
less computationally expensive than conventional bilinear pooling.

We experiment using these fusion methods to see whether we
can fuse features in a more expressive fashion. Table 1 and Figure
1 depict the design for element-wise summation fusion. For con-
catentation, latent vectors lw and ls are combined to a final size of
2048 units. This new vector is passed into the classification layers,
with the dense layers outputting 1024, 512, 10 units, respectively.
For MFB fusion, we set k = 3 and o = 1024, as described in [21].
The MFB fusion model has the same design as Figure 1, but the
element-wise summation operation is replaced with MFB.

Table 5 shows the performance of our fusion model when utiliz-
ing element-wise sum, concatenation, and MFB. All methods per-
form similarly, however element-wise summation produces the low-
est validation loss model. Fusion by concatenating latent vectors
results in the highest accuracy model. We select element-wise sum-
mation fusion as it produced the lowest loss in addition to it being
the least computationally expensive operation.

5. ABLATION STUDIES

Although we see a classification performance improvement when
fusing waveform and spectrogram features, we must validate that
the improvement is from complementary features extracted from
both modalities. It may be the case that the feature extraction
branches are underparameterized, and when adding more param-
eters the model performs better solely due to the increase in param-
eterization and not the second modality. To test this hypothesis, we
expand both sub-networks such that their number of parameters ex-
ceed the fusion model by doubling each of the CNN block filter re-
sponses, classification layer responses, and increasing latent vectors
to 2048 units. As shown in Table 7, both sub-networks were unable
to surpass the performance of the fusion model, showing that the
added performance in the fusion model is from the added modality.

To further understand the differences of each sub-network’s
performance, we compare each sub-network to their equivalent sub-
network trained in the fusion setting. Examining the performance
drop when removing feature extraction branches Fw and Fs in the

Table 7: Parameterization ablation study.
Model Accuracy % Log Loss # Params
Fusion model 70.78 0.915 1.4M
Large spectrogram sub-network 66.48 1.043 4.2M
Large waveform sub-network 63.44 1.041 3.9M

Table 8: Class-Wise losses of the fusion model.
Class-Wise loss Fusion Fusion spec.

branch only
Fusion wave.
branch only

Airport 0.901 1.226 3.441
Shopping Mall 0.944 0.995 1.612
Metro Station 1.053 2.030 1.827
Street Pedestrian 1.104 1.069 2.638
Public Square 1.321 1.384 0.663
Street Traffic 0.424 0.843 3.038
Tram 0.899 2.106 4.182
Bus 0.747 4.905 0.723
Metro 1.145 2.825 4.324
Park 0.535 0.443 2.913

fusion model may give clues into how the branches train alone
versus in the fusion setting. The trained waveform and spectro-
gram sub-networks depicted in Table 3 are compared to the fusion
model’s respective sub-network. As shown in Table 6, the sub-
networks that are trained in the fusion setting have a substantial
performance loss when removing the opposite sub-network, far be-
low the performance of the respective sub-network that is trained
independently. We infer that when trained end-to-end, each of the
sub-networks in the fusion model learn to focus on disparate fea-
tures that when fused together, improve classification performance.

We also investigate class-wise loss when removing each branch
of the fusion model, as shown in Table 8. Most classes have the
lowest loss in the fusion model, however when removing the wave-
form branch, the spectrogram branch has a lower loss for the Street
Pedestrian and Park class. When removing the spectrogram branch,
the waveform branch has a lower loss for the Public Square and
Bus class. We infer that while the fusion model can generally cap-
ture complementary features from each modality, the fusion opera-
tion is not able to exploit the full degree of complementarity of each
branch’s features. A fusion method that can fully exploit the modal-
ity complementarity would further improve ASC performance.

6. CONCLUSION

In this paper, we investigate feature fusion of two common audio
representations, the raw waveform and Mel-spectrogram, and show
that there are complementary features being learned that improve
ASC performance. Further, we explore various fusion methods
and experimentally validate that the proposed late fusion model is
able to outperform other feature fusion designs. Our proposed fu-
sion model utilizes these features to significantly outperform the
DCASE 2021 Challenge Task 1B audio baseline and achieve 2nd

place against the audio-only submissions. In future work, we will
investigate more fusion methods to better exploit waveform and
spectrogram feature complementarity and explore the effects of us-
ing independent data augmentations on the separate modalities.
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ABSTRACT
Automated Audio Captioning (AAC) automatically creates captions
that can explain the given audio sound data using machine learn-
ing techniques. Researchers investigate the solutions for AAC on
DCASE 2021 audio captioning challenge. In the challenge, a model
is required to generate natural language descriptions of a given au-
dio signal. We use pre-trained models trained using AudioSet data,
a large-scale dataset of manually annotated audio events. A large
amount of audio events data would help capturing important au-
dio feature representation. To use the learned feature from Au-
dioSet data, we utilize CNN14 or ResNet54 network pre-trained
on AudioSet, which achieved state-of-the-art audio pattern recogni-
tion performance. Our proposed sequence-to-sequence model con-
sists of a CNN14 or ResNet54 encoder and a Transformer decoder.
Experiments show that the proposed model can achieve a SPIDEr
score of 0.246 and 0.285 on audio captioning performance. We fur-
ther experiment the use of three different voice features, log-mel
spectrogram, constant Q transform spectrogram, and gammatone
filter spectrogram.

Index Terms— Automated audio captioning, Acoustic event
detection, Transfer learning, Transformer

1. INTRODUCTION

Automated Audio Captioning (AAC) automatically creates captions
that can explain the given audio sound data using machine learn-
ing techniques. Many researchers investigated this exciting prob-
lem from DCASE challenges and workshops in 2020 and 2021
[1, 2, 3, 4, 5, 6]. One example of a generated caption on a given
sound could be “people talking in a small and empty room.” The
2021 DCASE AAC uses the Clotho v2.1 dataset [7]. Clotho v2.1
data contains 6,974 (4,981 from version 1 and 1,993 from version
2.1) audio clips in 15-30 seconds each with 5 captions in 8-20 En-
glish words.

In the DCASE 2020 competition on AAC, Drossos et al.
(2017) [1] introduce an encoder-decoder structured baseline for
the AAC task. The encoder-decoder structure is the most widely
used architecture for AAC. The baseline model has an encoder-
decoder scheme with a multi-layered, bi-directional GRU encoder
and multi-layered decoder. Takeuchi et al. (2020) [2] achieve
the top performance utilizing data augmentation, multi-task learn-
ing, and post-processing with an LSTM decoder. Chen et al.

⇤This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Science and ICT
(2020R1C1C1A01013020)

†This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Science and ICT
(2021R1F1A1056516)

(2020) [3] proposes a pre-training stage for the encoder and com-
bines the transformer decoder to achieve the second-best model.
Perez-Castanos et al. (2020) [5] experiment resnet encoder and
LSTM decoder with gammatone feature as an input. Pellegrini
(2020) [4] propose Listen-Attend-Spell(LAS) architecture with lis-
tener encoder and speller decoder. Xu et al. (2020) [6] use a
CRNN encoder and a GRU decoder with fine-tuning by reinforce-
ment learning.

This year, the use of external data is allowed. Researchers
can train the important sound-related feature representation using
a massive amount of data such as AudioSet [8, 9]. Koizumi et al.
(2020) [10] utilize a pre-trained VGGish model with a transformer
decoder. Xu et al. (2021) [11] propose pre-trained CNN10 and
CRNN5 as encoder networks with GRU decoder.

In this paper, we propose transfer learning followed by trans-
former architecture. With the transfer learning, our proposed model
takes two pre-trained networks, 14-layers CNN (CNN14) and 54-
layers ResNet (ResNet54), trained on AudioSet as the encoder part
[12]. Those pre-trained networks achieve state-of-the-art perfor-
mance on audio pattern recognition, and we expect our encoder
network to compress important audio representation very well. Fur-
ther, we train a transformer decoder using the Clotho v2.1 dataset
for natural language generation. Finally, we experimented with
three different audio feature preprocessing methods (log-mel spec-
trogram, CQT spectrogram, and gammatone filter spectrogram) in
the ablation study.

2. PROPOSED METHOD

2.1. System Overview

Figure 1 describes the overview of our proposed system. The pre-
trained CNN14 and ResNet54 are taken as an encoder using transfer
learning [12]. We used a transformer decoder and trained our model
using the Clotho v2.1 dataset. In the training stage, we experiment
with three scenarios, 1) training all parameters from scratch with-
out transfer learning, 2) fine-tuning the last block of the pre-trained
network, and 3) training without fine-tuning the last block of the
pre-trained network. After the training stages, we evaluate the per-
formance of our system using a development set.

2.2. Pre-trained Audio Neural Networks using AudioSet

Kong et al. (2020) [12] propose Pre-trained Audio Neural Net-
works(PANNs) trained on the large-scale AudioSet dataset and
make the 15 pre-trained models available to the public, including
CNN14 and ResNet54. The AudioSet dataset includes over 5,000
hours of audio with 527 sound labels [8]. The audio clips from
AudioSet data are extracted from YouTube videos. The training
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Figure 1: Model Architecture

dataset consists of 2,063,839 audio files, including a “balanced sub-
set” of 22,160 audio files, where there are at least 50 audio files
for each sound class. The evaluation dataset consists of 20,371 au-
dio files. Audio files are padded to 10 seconds with silence if they
are shorter than 10 seconds. The pre-trained models (CNN14 and
REsNet54) are multi-label classification models for the 527 sound
classes achieving state-of-the-art performance. These PANNs can
be transferred to other audio-related tasks. We take CNN14 and
ResNet54 as the encoder part for the AAC model. Table 1 and 2
describe CNN14 and ResNet54 model architecture, respectively.

2.3. Encoder-Decoder

Our proposed model also has the traditional encoder-decoder struc-
ture for AAC. Our model uses CNN14 or ResNet54 as an encoder
and Transformer Decoder for natural language generation. The
CNN14 and ResNet54 models were pre-trained networks (CNN14,
ResNet54) learned from PANNs to AudioSet. We freeze the
weights taken from the pre-trained networks and train the Trans-
former decoder with the Clotho data. Furthermore, we attempted
to fine-tune the encoder network by unfreezing the last convolution
block layers of CNN14 and ResNet54 to find the optimal model.

2.3.1. Encoder

Our model used CNN14 and Resnet54 as an encoder for feature ex-
traction of input log-mel spectrogram [12]. CNN14 and Resnet54
models are pre-trained models from AudioSet, showing the high-
est mean average precision (mAP)1 among the available pre-trained
models. CNN14 and ResNet54 had the state-of-the-art mAP of
0.431 and 0.429, respectively [12]. Tables 1 and 2 show the struc-
ture of the CNN14 and ResNet54 that we used for ACC, respec-
tively. The number after the “@” symbol indicates the number of
feature maps. BottleneckB is an abbreviation for bottleneck block.

In Table 1, the 14-layer CNN consists of four convolution
blocks, each having two 3 × 3 convolution layers with ReLU ac-
tivation function and batch normalization, with an 2 × 2 average
pooling layer between the blocks. The number of channels in the
convolution blocks is 64, 128, 256, 512, 1024,2048, respectively.

1Average precision (AP) is defined as the area under the recall-precision
curve of a specific class. The mean average precision (mAP) is the average
value of AP over all classes.

Table 2 describes the ResNet54 architecture inspired by He et
al. (2016) [13] for Audio tagging. Two convolutional layers and
a downsampling layer are applied on the log-mel spectrogram to
reduce the input log-mel spectrogram size. Additionally, We had
three bottleneck blocks with 64 filters, four bottleneck blocks with
128 filters, 6 bottleneck blocks with 256 filters, and 3 bottleneck
blocks with 512 filters. Finally, two 3 x 3 convolutions are applied.
The BottleneckB in Table 2 is an abbreviation of bottleneck block.

Table 1: CNN14 architecture

CNN14
Log-mel spectrogram 64 mel bins

(3⇥ 3 @64,BN,ReLU)⇥2
Pooling 2⇥ 2

(3⇥ 3 @128,BN,ReLU)⇥2
Pooling 2⇥ 2

(3⇥ 3 @256,BN,ReLU)⇥2
Pooling 2⇥ 2

(3⇥ 3 @512,BN,ReLU)⇥2
Pooling 2⇥ 2

(3⇥ 3 @1024,BN,ReLU)⇥2
Pooling 2⇥ 2

(3⇥ 3 @2048,BN,ReLU)⇤2

Table 2: ResNet54 architecture

ResNet54
Log-mel spectrogram 64 mel bins

(3⇥ 3 @512,BN,ReLU)⇥2
Pooling 2⇥ 2

(bottleneckB@64)⇥3
Pooling 2⇥ 2

(bottleneckB@128)⇥4
Pooling 2⇥ 2

(bottleneckB@256)⇥6
Pooling 2⇥ 2

(bottleneckB@512)⇥3
Pooling 2⇥ 2

(3⇥ 3 @512,BN,ReLU)⇥2

2.3.2. Decoder

Figure 2 describes our transformer decoder architecture. It uses a
standard transformer decoder consisting of multi-head self-attention
as a decoder. The decoder uses a 2-layers transformer with a hidden
dimension of 192 and 4 heads.

The input data of our decoder is the word embedding feature
pre-trained using the word2vec model. The positional encoding is
further applied. Next, it passes to the masked multi-head attention
module and returns a query vector for the following multi-head at-
tention module. The key and value vectors for the multi-head atten-
tion module are taken from the output of the encoder (CNN14 or
ResNet54) network. After following the feed-forward network, we
can get the output of the transformer block. The transformer block
iterates two times, and then the output is fed into a dense layer and
a softmax function to generate output probabilities of the caption
words.
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Table 3: Score for model performance on evaluation data

Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr
Baseline Model 0.378 0.119 0.050 0.017 0.263 0.078 0.075 0.028 0.051

CNN14 + Transformer
(From Scratch) 0.466 0.262 0.156 0.092 0.309 0.137 0.208 0.087 0.148

ResNet54 + Transformer
(From Scratch) 0.459 0.253 0.152 0.084 0.312 0.131 0.182 0.085 0.133

CNN14 + Transformer
(Transfer-learning with fine-tuning) 0.552 0.364 0.244 0.159 0.378 0.168 0.395 0.118 0.257

ResNet54 + Transformer
(Transfer-learning with fine-tuning) 0.546 0.358 0.239 0.156 0.373 0.166 0.379 0.113 0.246

CNN14 + Transformer
(Transfer-learning) 0.564 0.376 0.254 0.163 0.388 0.177 0.441 0.128 0.285

ResNet54 + Transformer
(Transfer-learning) 0.540 0.345 0.230 0.152 0.361 0.161 0.383 0.109 0.246

Figure 2: Transformer decoder

3. EXPERIMENTS

3.1. Dataset and Data Pre-processing

Clotho contains audio clips of CD quality (44.1 kHz sampling rate,
16-bit sample width) and five captions for each audio clip. The time
duration of the audio clips ranges from 15 to 30 seconds, and the
amount of words in each caption ranges from eight to 20 words.
Clotho provides three splits for developing audio captioning meth-
ods, namely development, evaluation, and testing. The development
and evaluation splits are freely available online, while the testing
split is withheld for scientific challenges. In this work, we employ
the development and evaluation splits of Clotho, having 2893 and
1045 audio clips, yielding 14465 and 5225 captions, respectively.
We choose Clotho because it is built to offer audio content diver-
sity, and extra care has been taken for eliminating spelling errors,
named entities, and speech transcription in the captions. Addition-
ally, Clotho is already employed at the DCASE 2020 audio caption-
ing task6 [7].

The log-mel spectrogram feature is used for the input
feature[14]. Audio data has 44.1kHz sampling frequency, and we
apply a Hann window of 1024 size with 50% overlaps. From each

window frame, we extract 64 log mel-band energies. We calculate
the maximum time window number, T , among sample datasets for
the number of time windows. We pad zero to the time dimension to
have a fixed size T for the input feature on our model.

The word embedding is pre-trained using the Word2Vec model
[15] via python package gensim [16]. Each caption sentence in the
training set is used to form a training corpus.

Spec Augment [17] is applied as a data augmentation method
for more robust training. With the Spec Augment, frequency masks
and time masks are randomly applied onto the log-mel spectrogram
before we feed the log-mel spectrogram input to the CNN14 or
ResNet54 encoder.

3.2. Hyper-parameters and Training Procedure

3.2.1. Hyper-parameters

In training, a batch size of 8 is used with a learning rate of 10�4. An
l2 regularization is applied to all trainable parameters with factor �
= 10�6. We use the Adam Optimizer [18] and apply the Stochas-
tic Weight Averaging (SWA) method [19] to boost performance.
Dropout in P = 0.2 is applied to ResNet54 encoder and Transformer
decoder.

3.2.2. Training procedure

The training procedure consists of three parts. 1) Transfer learning
step for encoder network, 2) training transformer decoder network
while freezing the pre-trained encoder network, and 3) fine-tuning
unfreezing last convolutional block parameters from encoder net-
work.

We transfer two pre-trained networks, CNN14 and ResNet54,
as our encoder network in the transfer learning stage. These two
models are trained using log-mel spectrogram features using a large
amount of AudoSet data. We freeze the encoder network for the
following training stage.

In the training transformer decoder stage, we utilize the Clotho
data. Each audio is combined with each one of five caption anno-
tations and used as a sample. Each audio is used as one sample
in the evaluation, and all five captions are used as a reference for
metric computation. We used the 64 mel-band log-mel spectrogram
of the audio as our input feature and then converted the amplitude
into a decibel scale. A beam search with a beam size of 3 is im-
plemented to achieve better decoding performance in the inference
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Table 4: Ablation studies SPIDEr Score

Feature Scratch Transfer learning
Log-mel spectrogram 0.148 0.285

CQT spectrogram 0.15 -
gammatone spectrogram 0.2 -

stage. The Word2Vec model is trained with 1000 epochs, and the
proposed model is trained using 30 epochs.

Finally, in the fine-tuning stage, we unfreeze the last convolu-
tion blocks of pre-trained networks, CNN14 and ResNet54. The
fine-tuning is performed for 30 more epochs.

3.3. Evaluation Metrics

For the assessment of the performance of our method, we employ
The proposed metrics from the audio captioning task at DCASE
2021 challenge. These metrics can be divided into two categories.

Firstly there are machine translation metrics, which are
BLEUn [20], ROUGEL [21],and METEOR [22]. BLEU is a
precision-based metric. It calculates a weighted geometric mean
of a modified precision of n-grams between predicted and ground
truth captions. Due to the calculation of the modified precision that
favors short predicted captions, BLEU uses a penalty in the cal-
culation of the geometric mean. This penalty penalizes predicted
captions that are shorter than the ground truth. Typical lengths for
n-grams are one to four, resulting in BLEUn (n 2 {1, 2, 3, 4}),
respectively [20, 23]. ROUGEL [21] is a Longest Common Subse-
quence (LCS) based metric. It calculates an F-measure using LCS
between the predicted and ground truth caption. The F-measure
is oriented towards recall using a value for the � = 1.2 in the F-
measure calculation [21, 23]. METEOR [22] calculates a harmonic
mean of precision and recall of segments of the captions between
the predicted and ground truth captions. The recall is weighted sig-
nificantly more than precision, and thus METEOR is considered a
recall-based metric [23]. It employs alignment between the words
of the predicted and ground truth captions and matches exact words,
stems of words, synonyms, and paraphrases. The alignment is com-
puted over segments of the captions between the ground truth and
predicted captions while minimizing the number of chunks needed.

Then, the captioning metrics are CIDEr [24], SPICE [25], and
a linear combination of these two metrics called SPIDEr [26].
CIDEr calculates a weighted sum of the cosine similarity between
the predicted and ground truth captions for n-grams of length n
with 2 [1, 4]. The cosine similarity is calculated using Term Fre-
quency Inverse Document Frequency (TF-IDF) weighting for each
n-gram [24, 23]. SPIDEr is the average of CIDEr and SPICE, and
it evaluates both fluency and semantic properties of the predicted
captions.

3.4. Experimental Results

We experiment with three different scenarios, 1) training all pa-
rameters from scratch without transfer learning, 2) fine-tuning the
last block of the pre-trained network, and 3) training without fine-
tuning the last block of the pre-trained network. Table 3 shows
the experimental results from the three different scenarios and the
baseline. All scenarios of CNN14 Encoder+Transformer Decoder
and ResNet54 Encoder+Transformer Decoder models have higher
scores than the baseline model in all evaluation metrics. Also, All

transfer learning scenarios have better performance than the train-
ing from the scratch scenario. This shows that the transferred en-
coders trained with sufficiently large amounts of audio data perform
well on AAC. Between CNN14 and ResNet54 encoders, CNN14
encoder performed better than ResNet54 encoder in all evaluation
metrics. We also experiment with fine-tuning the last convolu-
tion block of encoder networks (CNN14 and ResNet54 models).
For CNN14 Encoder + Transformer Decoder, the transfer-learning
model without fine-tuning works better than with the fine-tuning
scenario in all evaluation metrics. On the other hand, for ResNet54
Encoder + Transformer Decoder, the model with fine-tuning has
better performance with BLEU, ROUGEL, and METEOR metrics
which are machine translation metrics. However, for the caption-
ing metrics such as SPICE, CIDEr, and SPIDEr scores, the re-
sult is inconclusive in that the models with fine-tuning have better
SPICE scores but have worse CIDEr scores and have similar SPI-
DEr scores.

3.5. Ablation Studies

We have tested three feature extraction methods, 1) log-mel spec-
trogram, 2) constant Q transform (CQT) spectrogram, [27] and 3)
Gammatone filter spectrogram. The Constant-Q-Transform (CQT)
is a time-frequency representation where the frequency bins are ge-
ometrically spaced, and the Q-factors (ratios of the center frequen-
cies to bandwidths) of all bins are equal. Gammatone filter spectro-
gram is computed by decomposing the input speech signal into the
time-frequency (T-F) domain using a bank of Gammatone filters,
followed by a down-sampling operation of the filter-bank responses
along the time dimension [28].

We compare these three features without transfer learning be-
cause there are no pre-trained models with CQT and gammatone
features. Table 4 shows the SPIDEr score performance using three
different features. The model using CQT spectrogram (0.148) has
similar SPIDEr performance with the model using log-mel spec-
trogram (0.15). However, the gammatone spectrogram (0.2) model
performs better than the model using the log-mel spectrogram. Pos-
sibly, we may have better performance with the gammatone spec-
trogram feature if the pre-trained model using the gammatone spec-
trogram is available.

4. CONCLUSION

The DCASE community is hosting competitions for better AAC
models in 2020 and 2021. In 2021, the use of external data is
allowed. Thus, we propose transfer learning followed by a trans-
former approach. We adopt CNN14 and ResNet54 pre-trained on
AudioSet data because it achieves state-of-the-art performance on
audio pattern recognition. The pre-trained CNN14 or ResNet54
models are taken as encoder networks for informative audio feature
extraction. With the transferred encoder and a transformer decoder,
our proposed systems outperform the baseline system with all eval-
uation metrics. Further, we experiment with three training scenar-
ios, 1) from scratch, 2) transfer learning, and 3) transfer learning
with fine-tuning. Among them, the transfer learning of CNN14 en-
coder without fine-tuning works the best, achieving a SPIDEr score
of 0.285.
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ABSTRACT

In this paper we present our system for the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) 2021 Challenge
Task 4: Sound Event Detection and Separation in Domestic Envi-
ronments, where it scored the fourth rank. Our presented solution
is an advancement of our system used in the previous edition of
the task.We use a forward-backward convolutional recurrent neu-
ral network (FBCRNN) for tagging and pseudo labeling followed
by tag-conditioned sound event detection (SED) models which are
trained using strong pseudo labels provided by the FBCRNN. Our
advancement over our earlier model is threefold. First, we intro-
duce a strong label loss in the objective of the FBCRNN to take
advantage of the strongly labeled synthetic data during training.
Second, we perform multiple iterations of self-training for both the
FBCRNN and tag-conditioned SED models. Third, while we used
only tag-conditioned CNNs as our SED model in the previous edi-
tion we here explore sophisticated tag-conditioned SED model ar-
chitectures, namely, bidirectional CRNNs and bidirectional convo-
lutional transformer neural networks (CTNNs), and combine them.
With metric and class specific tuning of median filter lengths for
post-processing, our final SED model, consisting of 6 submod-
els (2 of each architecture), achieves on the public evaluation set
poly-phonic sound event detection scores (PSDS) of 0.455 for sce-
nario 1 and 0.684 for scenario 2 as well as a collar-based F1-
score of 0.596 outperforming the baselines and our model from
the previous edition by far. Source code is publicly available at
https://github.com/fgnt/pb sed.

Index Terms— sound event detection, audio tagging, weak la-
bels, self-training

1. INTRODUCTION

Automatic Detection and Classification of Acoustic Scenes and
Events (DCASE) has huge potential for various applications such
as smart homes, multimedia search and environmental monitoring,
to name a few. Due to the high diversity and variability of sounds,
however, it is a challenging problem. Driven by the increasing in-
terest from academia and industry and the success of data-driven
approaches, the state-of-the-art in DCASE has recently progressed
rapidly. The annual DCASE Challenges [1] further push and evalu-
ate the current state-of-the-art in multiple sub-disciplines.

In this contribution we are concerned with the recognition of
individual sound events. Here, sound event detection (SED) is the
task of recognizing and temporally localizing sound events in an
audio clip, whereas audio tagging aims to only recognize their pres-
ence within an audio clip without its temporal localization [2].

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - 282835863. Computational resources were provided
by the Paderborn Center for Parallel Computing.

One particular challenge in SED is that large-scale sound
databases, such as Google’s Audio Set [3], usually only provide
tags a.k.a. weak labels, which only indicate the presence or ab-
sence of sound events within an audio clip without the information
about the temporal location. Several approaches have been pro-
posed for learning to localize sound events from weakly labeled
data [4, 5, 6, 7], most of which use some sort of multiple instance
learning (MIL) pooling function [8]. Another topic of interest, not
only for sound recognition, is semi-supervised learning, which aims
to exploit unlabeled data in addition to labeled data to improve per-
formance. Here, approaches are usually based on representation
learning [9], pre-training [10], teacher-student learning [11, 12] or
self-training [13]. Self-training initially trains models on the avail-
able labeled data followed by iterative pseudo labeling [14] of the
unlabeled data and retraining on labeled and pseudo labeled data.

For several years now, the Task 4 of the DCASE Challenge
[15, 16, 17] tackles both of above challenges. Recently, it also
explores the benefit of strongly labeled synthetic data in addition
to weakly labeled and unlabeled real data. For this, the Domestic
Environment Sound Event Detection (DESED) data set [16] with
10 different target sound events from a domestic environment has
been designed. It is composed of 10-sec audio clips and comprises
1578 weakly labeled and 14412 unlabeled real training clips as well
as isolated sound events and backgrounds for synthetic soundscape
generation. Further, 1168 and 692 strongly labeled real audio clips
are provided for validation and public evaluation, respectively.

In this paper we present our solution for the most recent DCASE
2021 Challenge Task 4: Sound Event Detection and Separation
in Domestic Environments. Here, we built on our previously pro-
posed forward-backward convolutional recurrent neural network
(FBCRNN) and tag-conditioned SED [18], and propose three mea-
sures to improve performance. First, we introduce an explicit strong
label loss in the FBCRNN training to exploit the strong labels
from the synthetic data. Second, we perform more extensive self-
training. Third, we explore more sophisticated CRNNs and convo-
lutional transformer neural networks (CTNNs) for tag-conditioned
SED in addition to the previously used CNN architecture. We show
that all three measures improve performance, allowing us to signif-
icantly outperform the baseline and, to the best of our knowledge,
set a new state-of-the-art in terms of collar-based F1-score on the
public evaluation set.

The rest of the paper is structured as follows. In Sec. 2 we re-
cap the FBCRNN, introduce the strong label loss and outline the
proposed FBCRNN self-training. In Sec. 3 we discuss architectures
and self-training for the tag-conditioned SED. Sec. 4 presents im-
plementation details w.r.t. data preparation, training and post pro-
cessing. Finally, results are presented in Sec. 5 after which we draw
conclusions in Sec. 6.
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Figure 1: FBCRNN

2. FORWARD-BACKWARD CRNN

The FBCRNN [18] is illustrated in Fig. 1. It consists of a
shared CNN front-end and two separate recurrent classifier net-
works (RNN+fully connected neural network (FCN)) with one pro-
cessing the audio in forward direction and the other in backward di-
rection. Note that unlike a bidirectional RNN the two classifiers do
not exchange hidden representations and, therefore, at each frame
one classifier has only seen previous frames and the other only sub-
sequent frames.

To encourage the model to output tag predictions as soon as it
has seen the event in the input when training with clip-level (weak)
labels, we compute, at each frame, the binary cross entropy (BCE)
loss between the point-wise maximum of the predictions of the two
classifiers and the weak label. Fig. 2 shows an example, where the
weak target and prediction signals are shown purple in the first and
fourth subplots, respectively, assuming some decent forward and
backward predictions shown in the third subplot. Note, that the
FBCRNN training scheme can be seen as MIL with two instances.
One instance comprises the current plus all previous frames, which
has been processed by the forward classifier, and the other instance
comprises the current plus all subsequent frames, which has been
processed by the backward classifier. Hence, if an event is labeled
positive in the clip at least one of the classifiers has to be able to
classify the event as positive, given that the event is either present
in previous or in subsequent frames or both.

At test-time a clip-level prediction is obtained by averaging the
final forward and the final backward predictions of all models in
an ensemble. As the proposed training scheme forces the forward
and backward classifiers to output predictions without having pro-
cessed the whole audio, the FBCRNN generalizes to much shorter
segments at test-time. This enables FBCRNN-based SED, where
FBCRNNs are applied to small contexts of, say, a couple of 100ms

around each frame to obtain frame-wise SED scores.

We use the same architecture as in [18], where, however, we
removed the last pooling layer between the Conv2d and Conv1d
blocks.

Figure 2: FBCRNN signals

2.1. Strong Label Loss

As the training data of the challenge contains synthetic data which
comes with strong labels, it is desirable to make use of the strong
labels in the FBCRNN training, which we previously did not do.
If strong labels are given, we now, instead of the weak label loss,
compute a strong label BCE for both classifiers with respect to the
desired outputs, which are illustrated exemplarily in the second sub-
plot of Fig. 2, and average the forward and backward loss terms.

2.2. Self-Training

As a large fraction of the provided data is unlabeled, we now per-
form more extensive self-training with training 8 initial FBCRNNs
on only weakly labeled real and strongly labeled synthetic data
followed by three iterations of pseudo labeling and retraining 4
FBCRNN models in each iteration.

In each iteration we generate weak pseudo labels for the com-
plete unlabeled data, where tagging thresholds are tuned on the val-
idation set to maximize the F1-score. Additionally, we perform a
boundary detection for weakly labeled and unlabeled data by fil-
tering the point-wise minimum of the two classifier signals with⇥
�2/N . . . �2/N 2/N . . . 2/N

⇤
where N is the filter

size. Exemplary point-wise minimum and subsequent boundary de-
tection are depicted in the two last subplots of Fig. 2. The class-
specific filter sizes and thresholds that the output or negative output
has to exceed to detect an onset or offset boundary, respectively, are
tuned on the validation data such that a minimum collar-based pre-
cision of 75% is achieved, when using collars of 500ms. For those
events where onset and offset can be detected, the strong label loss
from Sec. 2.1 is used in the following FBCRNN retraining.

Finally, we use both the FBCRNN ensemble after the second
and third iteration to separately perform strong pseudo labeling of
the real data (weakly labeled and unlabeled) giving us a set of strong
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pseudo labels for each of the ensembles, i.e. two in total. For the
FBCRNN-based SED, class specific context lengths, median filter
lengths and detection thresholds are tuned on the validation set to
maximize the frame-based F1-score. The obtained strong pseudo
labels allow us to train SED systems in a strongly supervised man-
ner as described in the following.

3. TAG-CONDITIONED SED

As in the previous edition, our SED model uses tag-
conditioning [18], which means we also input the predicted
tags from a FBCRNN (ensemble) in addition to the audio input fea-
tures. While in the previous edition we only used a tag-conditioned
CNN, we now also train a tag-conditioned bidirectional CRNN and
tag-conditioned bidirectional CTNN.

Here, we use similar architectures as in the FBCRNN with,
however, only one classifier back-end. For the pure CNN the
CNN1d and RNN Blocks are removed. In the bidirectional CRNN,
a bidirectional RNN is employed instead of unidirectional RNNs
as in the FBCRNN. For the CTNN a Transformer Encoder [19] is
used instead of an RNN, where we use 3 Transformer blocks each
with 10 heads and 32-dimensional embeddings in each head. Also
a positional encoding is added at the Transformer input.

Tag-conditioning is performed by concatenating a 10-
dimensional multi-hot encoding of the tags with the inputs of the
CNN2d, CNN1d, RNN/Tranformer, and FCN Blocks. For the
CNN1d, RNN and FCN the encoding is concatenated along feature
dimension at each frame. For the CNN2d the encoding is concate-
nated along channel dimension at each time-frequency bin.

The models are trained with standard strong label BCE loss. For
each set of the 2 strong pseudo label sets we train each of the model
architectures giving us 3 models for each of the 2 strong pseudo
label sets. For each of the strong pseudo label sets, we perform one
iteration of self-training, i.e., generating new strong pseudo labels
using the 3 models of that particular set followed by retraining the 3
architectures. Finally, we combine all the models from the two sets
of pseudo labels into our final ensemble, i.e., 6 models in total.

4. IMPLEMENTATION DETAILS

4.1. Data Preparation/Augmentation

Initially, waveforms are resampled to 16 kHz and normalized
x(t) = s(t)/max(|s(t)|) to be within the range of -1 and 1. As
our system’s input we then extract a M=128-dimensional log-
mel spectrogram using a short-time Fourier transform (STFT) with
frame-length of 60ms and hop-size of 20ms. Each mel-bin is glob-
ally normalized to zero mean and unit variance.

At training time we perform various on-the-fly data augmenta-
tions, which is similar to what we already used previously [20, 18]
and is described in the following.

Scaling: We randomly scale the waveform with a scale weight
sampled out of a Log Truncated Standard Normal distribution with
truncation at log(3).

Shifted superposition: We randomly superpose two audios as
x0
i(t) = xi(t) + xj(t � ⌧) with a random shift ⌧ sampled uni-

formly such that the superposed signal is not longer than 15 s, i.e.,
if we, e.g., superpose 2 signals each having a length of 10 s, the
shift is uniformly sampled between -5 s and 5 s. Labels are super-
posed accordingly and clipped at 1 to retain binary labels. We ap-
ply superposition with a probability of 2/3. Due to the similarity

to mixup [21], we previously referred to this augmentation also as
mixup. However, as we do not interpolate the signals, calling it
superposition is more accurate.

Frequency warping: We randomly warp the center frequen-
cies of the mel filter bank similar to vocal tract length perturbation
(VTLP) [22]. The boundary frequency is sampled from a Truncated
Exponential distribution with � = M/2 and truncation at 5 · M .
The warping factor is sampled from a Log Truncated Normal dis-
tribution with µ = 0, � = 0.8 and truncation at log(1.3) ⇡ 0.26.
Note that the boundary frequency can fall above M , in which case
the whole spectrogram is stretched or squeezed and filled with ze-
ros.

Frequency-/Time-Masking: As in SpecAugment [23], we ap-
ply one time- and one frequency mask for each input with random
locations and widths. The locations are uniformly sampled along
the time- and frequency axes, respectively. Widths are uniformly
sampled between 0 and min(1.4 s, 0.2T ) for the time mask, where
T is the length of the audio, or between 0 and 20 bins for the fre-
quency mask.

Gaussian Noise: We add Gaussian noise to the final feature
map with its standard deviation being uniformly sampled between
0 and 0.2.

Note, that in contrast to [18], we here neither perform blurring
nor reverberation of events in the synthetic data, since it has proven
to be not effective.

4.2. Training

Training is performed for 40 k update steps with a batch size of
16. To balance the different data sets we repeat certain data sets in
one epoch multiple times. Here, one epoch consists of 20 times the
weakly labeled data, two times pseudo labeled unlabeled data (if
used), one time the provided synthetic data from this edition (syn-
thetic21) and two times the provided synthetic data from previous
edition (synthetic20). This sums up to ⇡ 31 k+28 k+10 k+5 k au-
dio clips in one epoch. We further ensure that each batch includes at
least 6 clips from the weakly labeled data, 2 clips from synthetic21
and 1 clip from synthetic20 as well as at least 1 example of each
event class. We employ Adam [24] for optimization with a learning
rate of 5 · 10�4, with a ramp up during the first 1 k update steps
and a reduction to 10

�4 after 20 k update steps. We perform vali-
dation every 1 k update steps and choose the checkpoint with best
validation performance in terms of (frame-based) F1-score as the
final model.

4.3. Post-Processing

At test-time we use median filtering and a non-linear score transfor-
mation for post-processing.

Median filter sizes are tuned for each event class and for each
evaluation metric separately to give best performance on the valida-
tion set.

The class-specific non-linear score transformation serves the
purpose of getting a smooth poly-phonic sound event detection
scores (PSDS)-ROC [25] with linearly spaced detection thresholds.
It transforms the prediction scores such that in the validation set
prediction scores from positively labeled frames are uniformly dis-
tributed between 0 and 1. Note that the non-linear score transforma-
tion followed by linearly spaced detection thresholds is equivalent
to non-linearly spaced detection thresholds.
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Table 1: Single model FBCRNN performance on eval-public in %.
Bold values indicate best performance in a column. Underlines in-
dicate significant improvements within a block.

Iteration PSDS1 PSDS2 F (collar)
1 F (tag)

1

0 31.6±0.6 67.3±1.7 44.1±1.1 83.8±0.8
w/o sll 29.0±2.1 67.2±3.0 41.2±1.9 83.3±0.6

1 36.4±0.5 68.0±1.0 49.1±1.4 84.6±0.3
w/o psll 33.2±0.7 68.9±1.3 47.4±0.6 85.1±0.7

2 38.2±0.9 68.9±1.3 50.9±1.0 85.1±0.4

3 37.9±1.4 70.2±1.2 50.7±1.2 85.6±0.6

Table 2: Single model tag-conditioned SED performance on eval-
public in %. Bold values indicate best performance in the iteration.

Iteration Model PSDS1 PSDS2 F (collar)
1

0 CNN 38.2±2.7 64.4±0.4 54.4±0.1
CRNN 39.7±0.8 66.7±0.8 54.5±0.1
CTNN 40.9±1.5 66.2±0.6 55.7±0.5

1 CNN 39.6±1.2 64.3±0.6 54.4±0.3
CRNN 39.8±0.6 67.0±1.0 56.6±0.1
CTNN 40.8±1.6 66.3±0.4 56.5±0.6

5. RESULTS

We report results on the public evaluation set (eval-public), also re-
ferred to as Youtube evaluation [16, 26], as well as official challenge
results1 (eval-2021). Performance is measured in terms of

• PSDS1 / PSDS2: PSDSs [25] with two different sets of param-
eters as used in the challenge2

• F (collar)
1 : macro-average collar-based F1-score [27] with a

200ms collar on onsets and a 200ms / 20% of the event length
collar on offsets

• F (tag)
1 : macro-average audio tagging F1-score

For F1-scores, which evaluate a single operating point, class-
specific detection thresholds are tuned to give best performance on
the validation set. Note that PSDS1 and F (collar)

1 have a focus on
accurate temporal localization of sound events, while PSDS2 and
F (tag)
1 focus on the recognition of active classes.

For FBCRNN-based SED evaluation, context lengths are tuned
along with the post-processing hyper parameters for each event
class and for each SED evaluation metric separately to give best per-
formance on the validation set. Table 1 presents the single model
FBCRNN performance on eval-public over the iterations of the pro-
posed self-training. For reference, we further report in iteration 0
the performance without the strong label loss (sll), as described in
Sec. 2.1, and in iteration 1 the performance when not pseudo label-
ing boundaries in the real data, as described in Sec. 2.2, i.e., with-
out a pseudo strong label loss (psll) on some real data. In each line
we report the means and standard deviations over 4 independently
trained models.

It can be observed that all metrics improve with the first two
iterations of self-training. In the third iteration only PSDS2 and
F (tag)
1 improve further, whereas PSDS1 and F (collar)

1 decrease in-
significantly. Further, the proposed strong label loss (sll) and the
pseudo strong label loss (psll), in iterations 0 and 1, respectively,

1http://dcase.community/challenge2021/task-sound-event-detecti
on-and-separation-in-domestic-environments-results

2http://dcase.community/challenge2021/task-sound-event-detecti
on-and-separation-in-domestic-environments

Table 3: Ensemble results on eval-public and eval-2021 in %. Bold
values indicate best performance.

eval-public eval-2021
Model PSDS1 PSDS2 F (collar)

1 PSDS1 PSDS2 F (collar)
1

Baseline [12] 35.9 59.6 40.8 31.5 54.7 37.3
Winner [28] 51.7 77.8 57.4 45.2 74.6 52.3
FBCRNN 40.6 70.7 52.4 - - -
TCSED 45.5 68.4 59.6 41.6 63.7 56.7

allow to significantly improve PSDS1 and F (collar)
1 demonstrating

their benefit for the temporal localization of sounds.
Next, we evaluate the tag-conditioned SED (TCSED) models.

Recap from Sec. 3 that we train each of the tag-conditioned archi-
tectures (CNN,CRNN,CTNN) on each of the strong pseudo label
sets obtained from the FBCRNNs from iterations 2 and 3, followed
by one iteration of self-training within each label set separately. In
Table 2 we report the means and standard deviations of the results
on eval-public over the two label sets.

When comparing performances between iterations 0 and 1, one
can see that only for F (collar)

1 a significant improvement can be
achieved in iteration 1. When comparing results for the different
model architectures, it can be observed that tag-conditioned CRNNs
and CTNNs perform more or less similar and outperform the tag-
conditioned CNNs.

Finally, we report ensemble results in Table 3. Our final
FBCRNN ensemble consists of 8 FBCRNNs from after the sec-
ond and third iterations of the FBCRNN self-training (Table 1).
Our TCSED ensemble, which was submitted to the challenge, con-
sists of the 6 models after the single TCSED self-training iteration
(Table 2). Both ensembles significantly outperform the challenge
baseline w.r.t. all metrics. While the TCSED ensemble signifi-
cantly outperforms the FBCRNN in PSDS1 and F (collar)

1 , which
both measure temporal localization of sound events, the FBCRNN
achieves better results for PSDS2 which primarily measures recog-
nition performance. Here, the FBCRNN-based SED benefits from
the tuning of the context lengths, where large contexts are beneficial
for PSDS2 evaluation. Compared to the winning system, our sys-
tem, is outperformed in terms of PSDS1 and PSDS2. However, our
TCSED ensemble achieves the highest F (collar)

1 of the challenge2

and, to the best of our knowledge, the highest so far published
F (collar)
1 on the eval-public set.

6. CONCLUSIONS

In this paper we presented our system for the DCASE 2021 Chal-
lenge Task 4: Sound Event Detection and Separation in Domes-
tic Environments, where it scored the fourth rank. Starting from
FBCRNNs followed by tag-conditioned SEDs, which we proposed
in the previous challenge edition, we here presented three measures
which significantly improve SED performance. First, we introduced
a strong label loss in the FBCRNN training to leverage strong an-
notations, which is shown to improve temporal sound localization.
Then, we performed extensive self-training in both FBCRNN train-
ing and tag-conditioned SED training, which particularly improves
FBCRNN-based audio tagging and SED performance. Finally, we
explored CRNN and CTNN architectures for tag-conditioned SEDs,
in addition to CNNs used previously, which gives another perfor-
mance gain. The proposed measures allow us to set a new, to the
best of our knowledge, state-of-the-art in terms of collar-based F1-
score on the public evaluation set of the DESED data set.
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ABSTRACT

In this paper we provide two methods that improve the detection
of sound events in domestic environments. First, motivated by the
broad categorization of domestic sounds as foreground or back-
ground events according to their spectro-temporal structure, we pro-
pose to learn a foreground-background classifier jointly with the
sound event classifier in a multi-task fashion to improve the gener-
alization of the latter. Second, while the semi-supervised learning
capability adopted for training sound event detection systems with
synthetic labeled data and unlabeled or partially labeled real data
aims to learn invariant representations for both domains, there is
still a gap in performance when testing such systems on real en-
vironments. To further reduce this data mismatch, we propose a
domain adaptation strategy that aligns the empirical distributions of
the feature representations of active and inactive frames of synthetic
and real recordings via optimal transport. We show that these two
approaches lead to enhanced detection performance in terms of the
event-based macro F1-score on the DESED dataset.

Index Terms— Sound event detection, foreground-background
classification, semi-supervised learning, domain adaptation

1. INTRODUCTION

Over the past five years, the interest in environmental acoustic
scenes has increased considerably among researchers in the field of
audio signal processing, largely driven by the Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) Challenge and
Workshop series [1–3]. As a result, many tasks involving the au-
tomatic analysis of ambient sounds have progressed substantially.
This includes sound event detection (SED), a core task for home
surveillance or assisted living [4–6].

To this end, DCASE Challenge Task 4 encourages the devel-
opment of methods that contribute to the advancement of SED
methods that are trained in a semi-supervised way with a hetero-
geneous dataset [7] including a set of synthetic soundscapes with
annotations indicating the sound events class labels and timestamps
(strong labels), as well as a set of real recordings, mostly unlabeled
and where only a small subset contains at most information about
the active sound classes in the recordings (weak labels). The ob-
jective of the task is to find for a given soundscape the class of

This work was made with the support of the French National Research
Agency, in the framework of the project LEAUDS “Learning to understand
audio scenes” (ANR-18-CE23-0020). Experiments presented in this paper
were carried out using the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER and several Uni-
versities as well as other organizations (https://www.grid5000.fr).

the active sounds as well as their onset and offset time. Many im-
provements to the Task 4 baseline system have been proposed: aug-
mentation schemes to improve generalization [8, 9]; changes in the
acoustic front-end with alternative time-frequency representations
to log-Mel spectrograms [10] or time-frequency resolutions for each
sound event class [11]; modifications to the backbone architecture
with appended multi-task branches and post-processing techniques
to refine the outputs [12–14].

In this work we propose two methods to improve SED in
domestic environments. First, we propose the classification of
sounds by their spectro-temporal content as foreground or back-
ground events as an auxiliary task for SED. This broad catego-
rization of sound events was shown to be useful for deep neural
network-based source separation systems to differentiate rapidly
varying spectro-temporal features of short duration sound events
from slowly varying features of long duration sounds [15, 16]. The
proposed foreground-background classifier is jointly trained with
the SED branch in a multi-task fashion and the combination of both
branches is also investigated. The second improvement is a domain
adaptation strategy to reduce the mismatch between synthetic and
real recordings. Our proposed strategy aligns the empirical distri-
butions of the feature representations of active and inactive frames
of synthetic and real data via optimal transport [17, 18]. Altogether
the proposed methods lead to enhanced performance in terms of the
event-based macro F1-score on the Domestic Environment Sound
Event Detection Dataset (DESED) validation and public evaluation
sets [19, 20].

The remainder of this article is organized as follows. In Section
2 we present the proposed improvements to the SED task. Experi-
mental evaluation is discussed in Section 3 and lastly, we conclude
the paper in Section 4.

2. PROPOSED METHODS

2.1. Foreground-background classification

Let X , Y and Z be the input, output and latent space. For the
SED task we denote the soundscape time-frequency representation
by x 2 X with corresponding annotations y 2 Y . We have access
to a synthetic dataset with strong labels DS = {(xs

i, y
s
i)}ns

i=1 and
two datasets of real recordings: a weakly labeled dataset DW =
{(xw

i , y
w
i )}nw

i=1 and an unlabeled dataset DU = {xu
i}nu

i=1.
The SED model is a Mean Teacher model [21] in which both

the student and the teacher models have the same convolutional-
recurrent neural network (CRNN) architecture. We use the CRNN
from the student model as a representation mapping g : X ! Z ,
where the log-Mel spectrograms are mapped to the latent space. The

231



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

Figure 1: Proposed model with colored data flow for synthetic and real data. For simplicity, the diagram depicts only the student model
and the associated classification costs. The dash-lined path represents the training scheme with the fusion of the sound event detection and
foreground-background classification branches.

SED model is represented by the function f : Z ! Y that maps
the latent representations to the output space.

2.1.1. FB branch

Motivated by the broad categorization of sound events into fore-
ground and background according to their spectro-temporal struc-
ture, we propose a foreground-background (FB) auxiliary classi-
fier fFB : Z ! YFB that maps the latent space to foreground-
background labels. We learn this classifier jointly with the SED
model in a multi-task fashion, hypothesizing that these different yet
related classification tasks will help improve the network’s gener-
alization capability. Analogously, for the teacher model we denote
by g0, f 0 and f 0

FB, the CRNN embedding function, SED and FB
branches, respectively. Figure 1 shows the proposed system depict-
ing the student model.

To train the FB classifier in the multi-task paradigm, we de-
rived foreground-background ground-truth annotations yfb

i from the
strong labels ys

i of the synthetic data by combining the sound event
labels in two categories: foreground: (alarm - bell ringing, speech,

cat, dog, dishes) and background (blender, vacuum cleaner, frying,

electric shaver - toothbrush, running water). The SED model is
optimized by minimizing

LSED = L(ys
i, f(g(x

s
i))) + �Lstrong(f(g(xi)), f

0(g0(xi)))+

L(yw
i , f(g(x

w
i ))) + �Lweak(f(g(xi)), f

0(g0(xi)))+

L(yfb
i , fFB(g(x

s
i))) + �Lstrong(fFB(g(xi)), f

0
FB(g

0(xi))) (1)

where L(·, ·) is a binary cross-entropy classification loss, and
Lstrong(·, ·) and Lweak(·, ·) are mean-square error consistency costs
which are differentiable on their second parameter over strong
(frame-level) and weak (clip-level) scores, respectively. The con-
sistency weight � is tied to all consistency costs.

2.1.2. SEDFB branch

Going beyond the proposed FB classification branch, we explored
its fusion with the SED branch into a detection branch (SEDFB) to
refine outputs. This branch is represented by a function fSEDFB :
Y ⇥ YFB ! Y (f 0

SEDFB for the teacher model). The input for the
SEDFB branch is the outer product of the outputs from the SED

and FB branches wi = f(g(xi)) ⌦ fFB(g(xi)), as this fusion cre-
ates a representation containing information from the joint interac-
tion of the SED and FB classifiers. The following classification-
consistency cost pair is added to the training objective in (1):

LSEDFB =L(ys
i, fSEDFB(w

s
i)) + �Lstrong(fSEDFB(wi), f

0
SEDFB(wi)).

(2)

The overall cost involving the SEDFB branch is given by

L = LSED + LSEDFB. (3)

2.1.3. Output smoothing

We used two methods to post-process the SED frame-level scores.
The first method corresponds to smoothing the binary multi-label
frame-level scores with a median filter of 0.45 s. The second ap-
proach consists of Hidden Markov Model (HMM) decoding. Fol-
lowing the same procedure as in [14], we determined the optimal
transition probabilities for each sound event class using the vali-
dation set. We contrast the contribution of both post-processing
schemes in Section 3.3.

2.2. Domain adaptation for sound event detection

From the unsupervised domain adaptation perspective, we regard
the synthetic dataset with strong labels as the source domain S =
DS , and the combination of real recordings from the weakly and
unlabeled dataset as the target domain T = DW [DU . We denote
as xs and xt the soundscapes from S and T , respectively.

In contrast to adversarial adaptation approaches that introduce
a domain discriminator to reduce the distribution discrepancy be-
tween domains [14, 22, 23], our proposed strategy relies on optimal
transport for its ability to find correspondences between samples
by exploiting the geometry of the underlying space. We adopt the
DeepJDOT framework [18], to correct the mismatch between the
distributions of learned feature representations in the two domains.

2.2.1. Joint distribution optimal transport

Let µs =
Pns

i=1 ai�g(xs
i),y

s
i

and µt =
Pnt

i=1 bi�g(xt
i),y

t
i

be two em-
pirical distributions on the product space Z ⇥ Y , where �g(xi),yi
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is the Dirac function at position (g(xi), yi) 2 Z ⇥ Y , and ai and
bi are uniform probability weights, i.e.

Pns
i=1 ai =

Pnt
i=1 bi = 1.

The associated cost for the i-th source and j-th target element can
be expressed as a weighted combination of costs in the latent and
label spaces

d(g(xs
i), y

s
i; g(x

t
j), y

t
j) = ↵c(g(xs

i), g(x
t
j)) + �L(ys

i, y
t
j) (4)

where c(·, ·) is the squared `2 distance, L(·, ·) is a cross-entropy
loss that enforces regularity between the source and target domain
labels, and ↵ and � are two scalar values. Since no labels yt

j are
available in the target domain they are replaced with pseudo-labels
f(g(xt

j)) obtained from the classifier f : Z ! Y . We seek
for a transportation coupling � 2 Rns⇥nt in the space �(µs, µt)
of joint probability distributions with marginals �1nt = µs and
�T1ns = µt, where 1d is a d-dimensional vector of ones, and a
pair of mapping functions g and f that minimize

min
�2�(µs,µt),g,f

X

i,j

�i,jd(g(x
s
i), y

s
i; g(x

t
j), f(g(x

t
j))). (5)

We follow a two-step procedure to solve this optimization problem.
In the first step, we compute the optimal coupling matrix � with
fixed model parameters f and g,

min
�2�(µs,µt)

X

i,j

�ij(↵||g(xs
i)� g(xt

j)||2 + �L(ys
i, f(g(x

t
j)))). (6)

In the second step, with fixed �, we update the models g and f as

min
g,f

Ls +
X

i,j

�ij(↵||g(xs
i)� g(xt

j)||2 + �L(ys
i, f(g(x

t
j)))) (7)

where Ls correspond to the classification cost on the source domain
to avoid losing performance on synthetic data.

2.2.2. Sampling strategy

For each data batch we sample all active and inactive frames from
the source and target domains as indicated by the strong labels and
the pseudo-labels. For both domains we only keep active frames
where no sound event overlap occurs, so that the optimal transport
takes place between the empirical distributions of the sound classes
of both domains. The number of sampled active frames per class
can vary considerably from batch to batch for synthetic and real
data, which can lead to the absence of certain classes in one type
of data for some batches. To account for this imbalance problem
we only keep active frames from common classes to both domains,
and then balance all classes by resampling them randomly, taking as
many elements as there are in the class with fewer elements. Sim-
ilarly, the number of inactive frames in the source and target do-
mains varies from batch to batch, so we sample randomly each set
by taking as many inactive frames as there are in the set with fewer
elements.

2.2.3. Pseudo-label refinement

To improve the reliability of the pseudo-labels assigned to real data,
we leverage the provided annotations of the weakly labeled set to re-
fine pseudo-labels on this subset. The refinement process consists of
fusing the frame-level outputs of the SED branch f on soundscapes
from DW with their clip-level annotations by an element-wise mul-
tiplication. The target domain pseudo-labels are thus updated for

Figure 2: Proposed adaptation method to correct domain mismatch.

weakly labeled data as ŷt
j = f(g(xw

j )) � yw
j , j = 1, . . . , nw. This

operation constrains the estimated labels to contain at most the same
classes present in the weakly labeled soundscapes. Filtering out all
extra classes helps reduce false positives and allows more reliable
pseudo-labels to be obtained for the proposed sampling strategy and
domain adaptation process.

2.2.4. Training objectives

We denote as ẑs and ẑt the sampled active frames and as z̄s and
z̄t the sampled inactive frames from the source and target domain
latent representations zs and zt, respectively. After an initial pre-
training stage using (3), we construct the following objective func-
tion to account for the mismatch between the empirical distributions
of active and inactive learned feature representations

Ls + Lactive + Linactive (8)

where

Ls =
1
ns

nsX

i=1

L(ys
i, f(g(x

s
i))) +

1
ns

nsX

i=1

L(yfb
i , fFB(g(x

s
i))) (9)

corresponds to the first and third classification cost terms of the
training classification cost in (1). As only the student model un-
dergoes adaptation, no consistency losses are included in the above
objective to train the source domain classifier. The cost function La
corresponds to the distribution alignment loss of active frames

Lactive =
1

|Cactive|

NactiveX

i,j

�active
ij (↵||ẑs

i � ẑt
i||2 + �L(ys

i, ŷ
t
j)) (10)
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where |Cactive| is the cardinality of the subset of labels Cactive 2 C
representing the total number of active classes in the batch. The
second term in (10) enforces consistency between the target do-
main pseudo-labels and source domain labels. The cost function
Linactive accounts for the alignment of the marginal distributions of
the learned representations of inactive frames in both domains:

Linactive =
NinactiveX

i=1

� inactive
ij (↵||z̄s

i � z̄t
i||2). (11)

Figure 2 depicts the proposed frame-level domain adaptation
strategy based on optimal transport for the SED task.

3. EXPERIMENTS AND RESULTS

3.1. Model

The selected model architecture is the same as the baseline system
of DCASE 2020. The CNN part is composed of 7 layers with 16,
32, 64, 128, 28, 128, 128 filters, respectively. A kernel of size 3x3
was used with max-pooling [2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1,
2] and [1, 2], respectively. A gated linear unit activation is applied
to the convolution operations. The RNN part is composed of 2 lay-
ers of 128 bidirectional gated recurrent units. The output of the
CRNN is followed by a dense layer with sigmoid activation to pro-
duce frame-level (strong) class-wise posteriors. Clip-level (weak)
scores are obtained by multiplying the aforementioned linear layer
with a dense layer with softmax activation followed by mean tem-
poral aggregation. The FB branch consists of a dense layer with
sigmoid activation, which acts upon the outputs of the RNN block.
The SEDFB branch is composed of a bidirectional RNN with 128
gated recurrent units and a dense layer with sigmoid activation.

3.2. Dataset and training procedure

We conducted experiments on the Domestic Environment Sound
Event Detection Dataset (DESED) dataset [19, 20], composed of a
training set of 2,584 synthetic audio clips generated by Scaper [24],
1,578 real soundscapes with clip-level annotations and 14,412 un-
labeled real recordings. In the training stage, the model was trained
for 200 epochs with the Adam optimizer, a dropout value of 0.5, and
a gradually increasing learning rate with a max value of 10�3 [25].
The consistency weight � was set to 1. In the adaptation stage, the
student model was adapted for 300 epochs. We used cost weights
↵ = 0.2, � = 5.0, and the contribution of the source domain classi-
fier cost Ls to the total adaptation cost was multiplied by 100. The
learning rate was fixed to 10�4. Experiments with optimal transport
were performed using the Python Optimal Transport package [26].

3.3. Results

In Table 1 we compare results obtained by the proposed methods
on the validation and public evaluation sets of the DESED dataset
in terms of the event-based macro F1 score. The model labeled as
Baseline correspond to the baseline system of DCASE 2020 Chal-
lenge Task 4. Although the baseline system of the 2021 edition
comprises the same architecture as Baseline, it cannot be compared
with our methods as it was trained on a different synthetic dataset
with data augmentation. For each evaluation set we show perfor-
mance with median filtering (+MF) or HMM smoothing (+HMM)
post-processing.

Adding the FB branch is beneficial to the SED task as it im-
proved results on the validation set compared to Baseline by 8.3%.

Table 1: Performance on the validation and public evaluation sets.
Method F1 score F1 score

val val eval eval
+MF +HMMs +MF +HMMs

Baseline 34.8 38.1

+ DA 42.41 43.89 44.8 47.12

+ FB 43.12 45.42 46.06 49.38
+ FB + DA 45.68 47.77 50.79 53.10

+ SEDFB 46.15 46.20 48.40 49.79
+ SEDFB + DA 47.61 47.75 52.12 53.30

DCASE 1 45.13 48.07 50.58 53.35
DCASE 2 45.15 47.08 50.28 52.23

Further enhancement was achieved by refining outputs with HMM
smoothing, as performance increased by 10.6%. Moreover, its fu-
sion with the SED branch into a combined SEDFB branch brought
an additional gain of 3% with median filtering. A similar trend is
observed for the public evaluation set.

Model adaptation with the proposed strategy increased perfor-
mance over Baseline by 7.6% as a standalone method, and by 10.8%
and 12.8% when combined with the FB and SEDFB branches.
These results prove the effectiveness of the system in reducing mis-
match between synthetic and real data. Compared to the validation
set, performance was about 2% larger on the public set, which might
be due to the fact that the empirical distribution of the active and in-
active frames of this set resembles more that of the provided real
training data on which adaptation was carried out.

HMM smoothing as a post-processing method yielded greater
improvement to the scores over median filtering for all proposed
models except for the SEDFB-based methods, in which +MF and
+HMM provided similar scores, implying that the SEDFB branch
plays a similar role as HMM decoding in the modeling of time-
varying spectra of sound events.

DCASE 1 and DCASE 2 are model ensembles comprising
three and two + FB + DA systems from different training runs,
respectively. Ensembling is achieved by simply averaging the
model outputs. These models correspond to the submissions
made to the DCASE 2021 Challenge Task 4 and are labeled as
Olvera INRIA task4 SED 1 and Olvera INRIA task4 SED 2, re-
spectively. Both systems showed competitive performance in terms
of the event-based macro F1-score on the evaluation and public
evaluation sets among 65 systems.

4. CONCLUSION

In this paper we proposed two methods that enhance the detection
of domestic sound events. Motivated by the categorization of the
spectro-temporal characteristics of domestic sounds as foreground
or background, we proposed the use of an auxiliary foreground-
background classifier that is jointly trained with the sound event
classifier to improve generalization. Furthermore, we proposed to
incorporate an adaptation stage based on the joint distribution op-
timal transport of feature embeddings and labels to account for the
acoustic mismatch between the available synthetic and real training
data. We showed that the multi-task training scheme together with
the adaptation stage substantially improved the performance of the
baseline system.
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