

OneGeochemistry

Enabling a coordinated online global network of multiple distributed geochemical repositories and databases

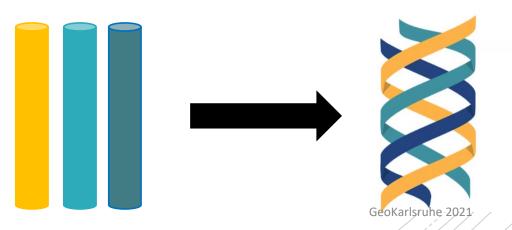
Kerstin Lehnert (Columbia University, USA); Lesley Wyborn (Australian National University), Dominik Hezel (Goethe-Universität Frankfurt); Alexander Prent (Curtin University); Kirsten Elger (GFZ Potsdam), ter Maat, Geertje (Universität Leiden); Klöcking, Marthe (Universität Göttingen); Klump, Jens (CSIRO)

Geochemistry

Scientific & Societal Relevance

- Geochemistry is fundamental to understanding past, present, and future processes in natural systems.
 - Evolution of the Earth system, solar system, and universe.
 - Societally relevant topics: environment, resources (minerals, energy, groundwater), geohealth, ocean, agriculture.
 - Potential role in all 17 Sustainable Development Goals (SDGs) set in 2015 by the UN General Assembly as a universal call to action to end poverty, protect the planet, and ensure that by 2030 all people enjoy peace and prosperity.
 - SDG#6: Clean Water and Sanitation
 - SDG#7: Affordable and Clean Energy
 - SDG#8: Decent Work and Economic Growth
 - SDG#9: Industry, Innovation and Infrastructure
 - SDG#13: Climate Action
 - SDG#15: Life on Land
- Acquisition and analysis of geochemical data is pervasive in the Earth, environmental, and planetary sciences.

Geochemistry


Diverse & Complex

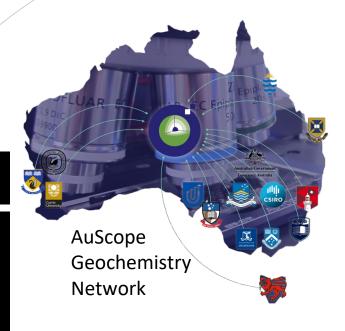
- Geochemistry research is diverse: multiple groups from multiple organizations and multiple funding types vary radically in source, discipline, size, subject, and longevity.
- Geochemistry data is complex: there is an incredible diversity of data types and techniques to measure those data types, and few standards for formats and metadata to describe provenance.

Geochemical Data

Fragmented & Un-FAIR

- The Geochemical data landscape is fragmented.
 - Geochemical data lack common data schemas, formats,
 vocabularies, which makes it hard to find, access, and reuse them.
 - Geochemical databases tend to be built in thematic, institutional, national, or programmatic silos.
 - Geochemical databases are uncoordinated and analyses can be duplicated within them, making global merging of datasets complex and leading to competition.
- We need the silos to seamlessly come together to harness the wealth of geochemical data in support of basic and applied science.

Geochemical Data


Action needed!

- Data volumes are rapidly growing due to advancements in analytical instrumentation.
- Researchers need access to comprehensive, global data stores to solve the 'Grand Challenges' in science and for society.
- In response to Open Access policies and science demands, even more geochemical database systems are emerging at national, programmatic, and subdomain levels.

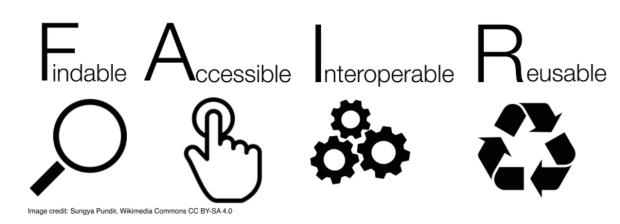
Evolving Networks

National & Regional

Australia

Europe

Germany



United States

We Need a Global Network:

OneGeochemistry

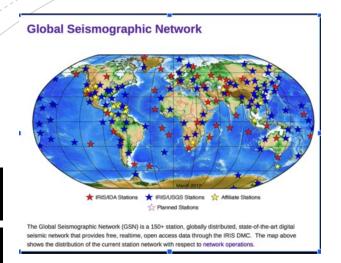
- The international Geochemistry community needs to jointly define the required, globally-agreed standards and best practices that will enable world-wide interoperability, reuse and open sharing of geochemical data.
- We also need to develop governance of the network and the standards and best practices for FAIR geochemical data.

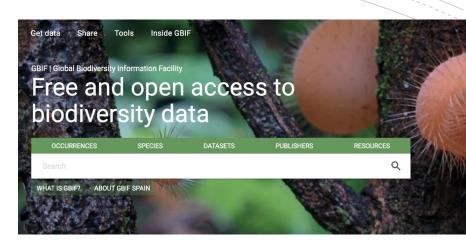
(Wilkinson et al., 2016)

OneGeochemistry

Status

- Started in 2018
- Global participation
- Organizational structure and governance to be developed





OneGeochemistry Vision

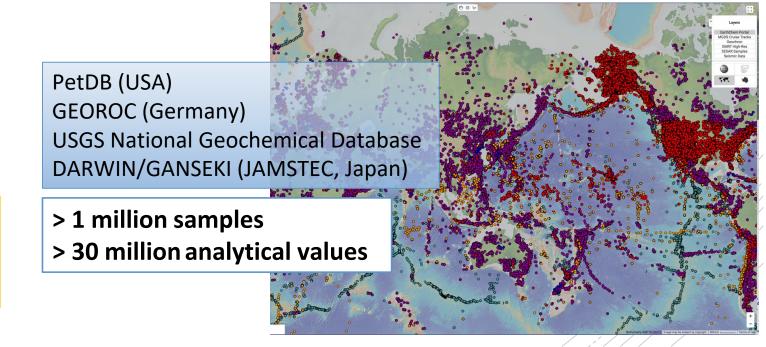
- A distributed architecture, where geochemical data are available globally using standard web services.
- A coordinated data federation that ensures complementarity of data resources to minimize duplication and maximize comprehensiveness.
- A sustainable data infrastructure of that guarantees persistent access to a wealth of FAIR geochemical data.

It won't be easy, but it has been done!!!

Crystallographic Information Framework

The International Union of Crystallography is the sponsor of the **Crystallographic Information Framework**, a standard for information interchange in crystallography.

The acronym CIF is used both for the *Crystallographic Information File*, the data exchange standard file format of Hall, Allen & Brown (1991) (see Documentation), and for the *Crystallographic Information Framework*, a broader system of exchange protocols based on data dictionaries and relational rules expressible in different machine-readable


manifestations, including, but not restricted to, Crystallographic Information File and XML.

Learning from the Past

The EarthChem Portal (ECP) has been an early attempt to deliver an international geochemical data network.

- The ECP demonstrated the benefits and impact of networking and integrating geochemical data resources.
- Its technology does not scale to the growing data volumes and user demands in the era of data science.
- Participating geochemical databases did not have the resources to implement required technology.
- It lacked formal governance to ensure coordination.

OneGeochemistry

Next Steps

- Seek funding for a full-time coordinator to work with participants on gathering requirements and information on existing systems.
- Develop organizational structure and governance.
- Continue engagement events
 - Upcoming workshop sponsored by the Geochemical Society.
 - Upcoming events @ EGU 2022 & Goldschmidt 2022.

An invitation to participate!

Contact any of the current participants to join the initiative!

- Kerstin Lehnert (EarthChem, Astromat, Osiris-Rex) lehnert@ldeo.columbia.edu
- Kirsten Elger (GFZ Potsdam) <u>kelger@gfz-potsdam.de</u>
- Marthe Klöcking (DIGIS/GEOROC) marthe.kloecking@uni-goettingen.de
- Geertje ter Maat (EPOS) g.w.termaat@uu.nl
- Lesley Wyborn (Australian National University) lesley.wyborn@anu.edu.au
- Alexander Prent (Auscope Geochemistry Network) <u>alexander.prent@curtin.edu.au</u>
- Jens Klump (Auscope) jens.klump@csiro.au
- Dominik Hezel (MetBase) <u>dominik.hezel@em.uni-frankfurt.de</u>