
Requirements and Specifications for the
Orchestration of Network Intelligence in 6G

Miguel Camelo, Luca Cominardi, Marco Gramaglia, Marco Fiore, Andres Garcia-Saavedra
Lidia Fuentes, Danny De Vleeschauwer, Paola Soto-Arenas, Nina Slamnik-Krijestorac, Joaquı́n Ballesteros,

Chia-Yu Chang, Gabriele Baldoni, Johann M. Marquez-Barja, Peter Hellinckx, and Steven Latré

Abstract—Next-generation mobile networks are expected to
flaunt highly (if not fully) automated management. Network Intel-
ligence (NI) will be the key enabler for such a vision, empowering
myriad of orchestrators and controllers across network domains.
In this paper, we elaborate on the DAEMON architectural
model, which proposes introducing a NI Orchestration layer for
the effective end-to-end coordination of NI instances deployed
across the whole mobile network infrastructure. Specifically, we
first outline requirements and specifications for NI design that
stem from data management, control timescales, and network
technology characteristics. Then, we build on such analysis to
derive initial principles for the design of the NI Orchestration
layer, focusing on (i) proposals for the interaction loop between
NI instances and the NI Orchestrator, and (ii) a unified rep-
resentation of NI algorithms based on an extended MAPE-K
model. Our work contributes to the definition of the interfaces
and operation of a NI Orchestration layer that foster a native
integration of NI in mobile network architectures.

Index Terms—Network Intelligence, Mobile Networks, Orches-
tration, 6G

I. INTRODUCTION

Throughout and beyond their fifth generation (B5G), mobile
networks are being redesigned to support the extreme require-
ments set by future services that will assume performance
indicators like virtually infinite capacity or perceived zero
latency. Current efforts in standardization reflect this trend
by fostering the end-to-end softwarization and cloudification
of the network, which will ensure unprecedented capacities
to control system-wide operations [1]–[3]. At the same time,
the classical access-core architecture is being atomized to
create network micro-domains that substantially increase the
management granularity of physical infrastructures. To that
end, Edge computing is quickly becoming pivotal to enable
such fine-grain management as well as to support latency-
sensitive (e.g., vehicular communications) and high-bandwidth
(e.g., virtual reality) use cases. As a result, a wide spectrum
of controllers and orchestrators are expected to operate and
interact in the Core, Transport, Edge, and Far Edge micro-
domains of the mobile network architecture.

Network Intelligence and standardization. Future mobile
networks abiding by the architectural model above will require

M. Camelo, P. Soto, N. Slamnik-Krijestorac, J. Marquez-Barja, P.
Hellinckx, and S. Latré are with University of Antwerp - imec, IDLab. L.
Cominardi and G.Baldoni are with ADLINK Technology. M. Gramaglia is
with University Carlos III of Madrid. M. Fiore is with IMDEA Networks
Institute. A. Garcia-Saavedra is with NEC Laboratories Europe. L. Fuentes
and J.Ballesteros are with Universidad de Málaga. D. De Vleeschauwer and
C. Chang are with Nokia Bell Labs

that advanced algorithms are run by many heterogeneous
controllers and orchestrators. Such algorithms shall be capable
of automatically managing the composite mosaic of network
functions and associated resources consumed by a large num-
ber of network services (e.g., network slices) owned and
exploited by various tenants. Here, Network Intelligence (NI)
will play a fundamental role. A NI instance is a pipeline
of effective algorithms that swiftly detect or anticipate new
requests or fluctuations in the network activities, and then react
to those by instantiating, relocating, or re-configuring virtual
network functions in a fully automated manner. Throughout
the network, each controller and orchestrator shall run mul-
tiple NI instances to adhere to number of Key Performance
Indicator (KPI) targets; these include Quality of Service (QoS)
or Quality of Experience (QoE) guarantees, maximization of
infrastructure and resource reuse across multiple tenants or
network services, and full network automation to achieve
zero-touch network and service management. These aspects
are all highly critical, to the point that the success and
viability of B5G systems will largely depend on the quality
and appropriate integration of NI solutions in the network
infrastructure. There is therefore a need for revisiting the
architectural design of mobile networks so that it can best
accommodate the operation of NI across all micro-domains.

Present efforts promoted by major standardization bodies
towards the integration of NI in next-generation network
architectures pivot on the notion of closed-loop Artificial
Intelligence (AI) [2]. According to this paradigm, the NI
instances deployed at centralized orchestrators and controllers
work in closed control loops. Abiding by the learning prin-
ciples of modern AI, such NI instances record the context of
management decisions, collect observations about the quality
of such decisions via continuing monitoring, and then use the
feedback to improve future choices. A closed-loop model lets
NI apprehend what is important for an operator in a certain
situation and learn over time to automate optimal decision
making towards the expected KPI targets listed before.

Towards NI-native mobile networks. The DAEMON ar-
chitecture is a NI-native B5G architectural model that goes
several steps beyond the current standardization trends, and
posits a new approach for a more systematic integration of
NI in the B5G infrastructure, while staying fully aligned with
emerging designs in standardization [4]. The concept under-
pinning the DAEMON model is illustrated in Figure 1. As
outlined in the figure, this novel architecture allows for a much



Fig. 1: Concept of the DAEMON NI-native architecture. Pervasive NI is deployed not only across all mobile network micro-
domains (including a new Beyond Edge that includes, e.g., Reconfigurable Intelligent Surfaces) but also within Network
Functions (NFs) and possibly directly in the user plane. NI instances thus operate at very diverse timescales (on top of the
figure), and are coordinated by an overarching NI Orchestration layer that ensures efficient end-to-end decisions.

deeper embedding of intelligence in B5G systems and creates a
considerably wider ecosystem of NI instances that populate the
network infrastructure both in the control and user planes. This
architecture allows breaking the centralized closed loop model,
by enabling hybrid models where user-plane components make
their own decisions for time critical operations, which is not
possible in strongly centralized closed-loop models.

While the DAEMON approach allows for very fast and
localized decision-making, the range of NI instances foreseen
by the model need to interact seamlessly to perform at their
best, and exchange data and information so as to mutually
improve both their learning and decision-making processes.
In order to provide a network architecture that fully supports
the complex, pervasive and distributed NI environment, the
DAEMON model also introduces a NI Orchestration layer as
per Figure 1. This novel layer is responsible for supervising
intelligence in the network architecture as a whole, ensuring
the ideal functioning of each closed-loop NI instance, and
overseeing interactions across closed loops that run NI at
different timescales. The two main NI management tasks for
the NI Orchestration layer can be summarized as follows:

• Selecting the best NI algorithm within each NI instance
from a predefined set of algorithms. The variants of
NI algorithms will be designed by employing different
modelling strategies and adaptive learning techniques.
Decisions on the most appropriate algorithm will be based
on contextual information (e.g., the reliability level of the
traffic demand predictions), available system resources
(e.g., the computational capacity that can be dedicated
to the NI instance), performance requirements (e.g., the
target precision of the algorithm), and amount of data
to be processed (e.g., the look-back for a forecasting
algorithm), concurrently across timescale levels.

• Coordinating all NI instances in the system to ensure

grateful operation of all live mechanisms operating at
different timescales and in different micro-domains. To
this end, the NI Orchestrator will support the exchange
of information via dedicated interfaces with the NI in-
stances, and centrally solve trade-offs that may emerge
from conflicting objectives in the control and data planes,
e.g., in establishing policies (at slow timescales) versus
enforcing such policies (at fast timescales).

Designing NI orchestration. In this paper, we present a set
of requirements, specifications, and the workflow for a closed-
loop control that are required to realize the NI Orchestration
layer envisioned in [4]. To this end, we first present the set
of requirements imposed by data management and control
timescales for NI, in Section II. We then outline the initial
specifications for the NI Orchestrator that stem from infras-
tructure aspects of mobile networks, in Section III. Jointly
considering these two sets of requirements and specifications
is key to design a NI Orchestrator that can help NI algorithms
overcome the intrinsic limitations of their local view (e.g., NI
running in the data plane) and close in on the optimal point of
operation without sacrificing reactivity. Based on these consid-
erations, we present a workflow that supports designing and
deploying NI instances in an end-to-end closed-loop control
settings, in Section IV, which is needed to ensure system-wide
stability without human intervention. Conclusions and future
work are finally discussed in Section V.

II. DATA AND CONTROL REQUIREMENTS FOR NI

A key step towards the design of a B5G network man-
agement model lies in analyzing the challenges and require-
ment imposed to applications and network functions by the
distributed edge-to-cloud environment, especially when a fine-
grain control loop is required with no human intervention. To
that end, items of particular concern are: (1) the distribution



and management of data in such a scattered infrastructure; and,
(2) the impact of operating at different timescales for control
systems. We analyze these two aspects in detail next.

A. Data distribution and management for NI

Edge infrastructures typically encompass a heterogeneous
mix of resources that can be extremely diverse in terms
of capabilities and operating conditions. In contrast, cloud
infrastructures are stationary and highly homogeneous. Nev-
ertheless, it would be naive to consider the cloud and edge as
two discrete locations. Rather, they are the two extremities of
a continuum inside which compute, storage, and networking
resources can be deployed at any point and in any topology [5].
This seamless configuration leads to resources that are highly
heterogeneous in terms of: (i) computing power (consider,
e.g., a datacenter server compared to a end-user device or an
embedded sensor); (ii) energy requirements (e.g., in presence
of devices that are battery-powered); (iii) mobility patterns
(e.g., for on-board units embedded in cars or trains); (iv) traffic
patterns (e.g., sensors producing large amount of push-up data
towards the network versus servers providing push-down data
or video streams); (v) activity patterns (e.g., always on versus
long sleep mode devices).

Despite their diversity, resources are expected to collab-
orate at a certain degree to compose a unified infrastruc-
ture where network functions and end-user applications can
be deployed on. This leads to the scenario where multiple
application/system components (e.g., microservices) can run
at very different locations within the network infrastructure,
from the far edge all the way up to the cloud. In this case,
one fundamental problem is how to effectively enable end-
to-end data semantics in the whole application/system while
easing the development, deployment, and management of the
target application or network function, which can be either
infrastructure-oriented or user-oriented. This is a fundamental
requirement to truly enable an application or network function
(a) to run and (b) being migrated everywhere in the network
without incurring in heavy reconfiguration. From that point
of view, we can summarize the main data patterns that an
application or network function may experience:

• Data are pushed or pulled: This kind of pattern is very
common in reactive systems like cyber-physical applica-
tions (e.g., robotics) or event-driven software paradigm
(e.g., cloud-based telemetry). According to this pattern,
an application/network function (i.e., the publisher) de-
cides when to push data into the system which is then
delivered to other applications/network functions (i.e., the
subscribers).

• Data are computed on demand: In this case, fresh
data can be requested to applications/network functions
whenever it is deemed necessary.

• Data are stored: Some data that has been published in
the system requires to be stored temporarily or perma-
nently to be processed later.

• Data have different representations: The format data
are stored may be different from the format they were

originally produced. In other terms, the format used when
producing data may be different from the format used
when consuming them.

As of today, a complex error-prone patchwork design is
required to achieve an end-to-end data semantics integrating
the above patterns across the whole infrastructure, from the
tiny sensors up to the powerful data centers. Various network
protocols must be stitched together to provide the necessary
support, with the inherent great burden on application com-
plexity, system management and troubleshooting. Assuming
that an operator/application developer is willing to embrace the
complexity above to achieve an end-to-end semantics, there is
a risk that the attempt will hinder the overall dynamic system
optimization: indeed, the approach imposes hard limits at the
boundaries of each network tier.

To better frame the above in a NI-native architectural
model such as that proposed by DAEMON, we can start
from the observation that data produced in the network can
be used for different purposes: examples include on-the-wire
transmission optimization, local traffic and capacity forecast,
anomaly detection, proactive replicas for redundancy, appli-
cation migration to meet traffic demands, among others. In
all these cases, NI models are interested in processing some
data (on-line or off-line) and produce some action as result.
These models are seldom interested in how to retrieve and
maintain the data (e.g., where data are stored) or in what data
format is used when producing them. Their only interest is in
consuming and processing such data, without having to deal
with the whole network complexity laying underneath.

The NI-native architecture should hence provide a decentral-
ized and unified data management approach to facilitate the
development, operation and management of any NI model. To
that end, the envisaged requirements are:

• Unification of various data patterns in a single and
harmonized platform supporting data in motion (i.e.,
publish/subscribe), data in use (i.e., caching), data at rest
(i.e., storage), and on-demand computation (i.e., remote
procedure calls).

• Decentralization by design to support the very dis-
tributed nature of the edge and fog computing where re-
sources and applications are expected to be more mobile,
and volatile compared to traditional cloud computing.

• Heterogeneity by design to account for the great diversity
of devices, resources, applications, and traffic/mobility
patterns that are expected to coexist in the edge and fog
infrastructure.

• Consistency to be more resilient to failures in the net-
work and to guarantee that the overall system is not
brought to a halt in case of temporary inconsistencies
(e.g., due to network partitioning).

• Wire efficiency to reduce the overhead in the network,
hence the overall energy consumption of the system.

• Data pipeline to support the staged processing of some
data where multiple NI models may be chained together.

An example of a framework that can delivery a decentralized



and unified data management platform is Zenoh1, which is
a novel data-centric protocol that allows sharing data in a
location-transparent manner while supporting the data patterns
above. In DAEMON, Zenoh is being consider as a candidate
for the Multi-timescale Closed-loop NI Framework to support
end-to-end data semantics for the NI models [6].

The data are the main input/output for the development,
operation, and management of any NI model. A single NI
instance may comprise several components that run at different
locations in the network to accomplish an overarching goal.
In case of a general NI algorithm, we can identify two
main modes of operation: NI control and NI training. The
former relates to the capability of running a trained model
into the network, so as to control it at different timescales
according to its intended purpose (e.g., resource scheduling,
link optimization, capacity forecasting, etc.). The latter relates
to the capability of consuming data and produces a model as
output to be later deployed in the network for control reasons.
As in this work we are interested in network management
rather than algorithm training, our focus is on NI control,
which is discussed next.

B. Control of NI at different operation timescales

In B5G, the automation of the orchestration and control of
resources of access and edge infrastructure will play a crucial
role. Decisions are being made on multiple layers.

1) The end-to-end orchestrator needs to make decisions
(e.g., where to place or migrate virtual network func-
tions) related to the end-to-end performance without
having a detailed view on the status from individual
domains.

2) The domain controllers that take local decisions for the
domain they control (e.g., setting network schedulers, al-
locating compute resource for processes, routing traffic),
both taking the interaction with adaptive applications
into account.

Closing the control loops may lead to instability, if the
control loops are not designed adequately. Currently, decisions
are taken prudently (and often manually) to avoid instability
issues. Moreover, the control loops should be stable under
changing conditions (e.g., the introduction of a new software
release). Our goal is not necessary to improve the performance
of algorithms, but rather the level of automation. A reasonably
good enough algorithm that is likely to be more stable in
changing circumstances is preferred over an algorithm that
is over-engineered to cope with only few specific situations.

The timescale of decisions taken by the end-to-end orches-
trator is between typical inter-arrival times of network services
(i.e., days, hours) and the typical duration of periods of
elevated traffic load that users of the network service produce
(which fluctuations might impact the orchestrator decision).
The timescale at which the domain controllers need to make
decisions is much shorter (seconds to sub-seconds). As ex-
plained above, the orchestrator will only have a limited view

1Zenoh project. Online: https://zenoh.io. [Accessed 08 November 2021]

on the details in the domain. Similarly, all desired data upon
which the controller needs to make decisions will possibly not
be available timely. Therefore, also the domain controllers will
have to take decisions based on partial observations. One of
the research questions to be tackled is to investigate how the
status of the domains can be summarized concisely, so that
the orchestrator still can make beneficial use of it to make
sensible decisions without requiring huge information flows,
and to isolate the right data in the domain that allows the
domain controller to make timely decisions.

Also, it is worth mentioning that such different timescales
between orchestrators and local controllers will limit the
design space of NI algorithms. For instance, the real-time
controller can make their local decisions over their working
time interval (e.g., milliseconds, seconds) only based on the
resource provisioned by the orchestrator; in contrast, the
orchestrator monitors the performance statistics of individual
controller and make the scaling and resource provisioning
decision on a larger time interval (e.g., hours, days). Such
hierarchical decision-making mechanism is beneficial to craft
independent decision-making algorithms; nevertheless, it may
pose significant limits on the optimization goals, once such
hierarchy under-utilize or over-utilize the information from the
others. Therefore, another research question is how to craft
such multi-layer control loop in a reasonable hierarchy with
few extra constraints and small performance bound, compared
with the non-hierarchy one.

Orthogonal but heavily intertwined to intra-network service
control and orchestration is the dynamic scheduling of (typ-
ically scarce) shared physical resources among them (inter-
network services). Based on priority policies or relative weight
policies, resources need to be assigned to different network
services with different objectives. . A control and orches-
tration architecture should support a composition of multi-
layer hierarchic intra- and inter-network service control and
orchestration, each level driven by high-level intent objectives.

Last but not least, the aforementioned high-level per-
network service intent itself shall be capable of being com-
pared with each other to facilitate the decision making by
the controller/orchestrator, under the provisioned comparison
rules. These rules can be view as the inter-network service
intent, which can be stateless or stateful. To be more specific,
the stateless rules do the intent comparison without consider-
ing the per-network service current status (e.g., execution time,
statistics, active end-users), whereas the stateful take the net-
work service status into consideration and make the compar-
ison correspondingly. To sum up, different intent comparison
mechanisms shall be considered within the architecture.

For what concerns NI control, in the following we focus on
the timescale at which data are produced, stored and consumed
by considering the following classes.

• Very short timescale (us-ms): this may refer to the case
where a constant stream of data is produced and con-
sumed locally for taking localized optimization decisions.
At this rate, it’s not feasible to store the data produced for
a long period of time (e.g., minutes or hours) given the



large amount of space required. However, storing data
in a small cache could be used to optimize the local
system according to the recent history. The system is
mainly characterized by high-throughput data producers
and consumers. Data producer, consumer and storage
need to be colocalized for performance reasons. The task
to be accomplished is very specialized leading to a very
well-defined dataset and optimization procedures. The NI
models target exclusively on-line optimization. A data
pipeline may be used to run multiple and independent
NI models in parallel for redundant decisions.

• Short timescale (ms-s): this case is like the previous
one with the exception that data producer, consumer
and storage may be distributed across neighboring nodes.
The dataset and type of optimization procedures are still
very specialized. However, at this timescale they can
take the flavor of a local collaborative optimization with
interaction between near components and systems. The
NI models target exclusively on-line optimization. A data
pipeline may be used to chain NI models running on
different nodes for collaborative decisions.

• Medium timescale (s-min): more generic optimizations
could be run in a limited portion of the overall system.
Datasets are more heterogeneous where multiple states
of the local system can be considered together (e.g.,
network load, traffic pattern, UE mobility) to perform a
reactive/proactive optimization of the mobile network. In
this case, a balanced mix of data producers, consumers,
and storages are considered to both quickly reacting to
events in the network and operating in response to the
recent history of the system. Multiple NI models could
be started to be chained together in a decentralized data
pipeline where data are processed locally but decisions
are taken at localized system level. The NI models
target both on-line and (limited) off-line optimization. A
data pipeline may integrate fresh and historic data for
optimization.

• Long timescale (min-h): optimizations at complete sys-
tem level start to be feasible. Datasets are heterogeneous
and composed of aggregated data. In this case, the
data storages are the main source of data whereas data
producers serve the purpose of updating those storages
with aggregated data. A decentralized data pipeline could
serve the purpose of aggregating data first and processing
them next. NI models for intelligently aggregating data
will need to work in an on-line fashion while NI models
performing system-level optimization are expected to
work in an off-line fashion. A data pipeline may be used
to perform a multi-stage optimization.

• Very long timescale (h-days): at this timescale only
system level optimization is performed. Data storages are
the only source of data. Dataset and type of optimization
procedures are extremely heterogeneous. Optimization is
performed purely off-line. A data pipeline may include a
human-in-the-loop.

Table I presents a summary of the different time scales char-
acteristics. An additional important aspect related to control
timescales is the capability of the control system to operate in
a timely fashion, guaranteeing a response within a specified
timing constraint. From a system-level point of view, we can
say that the control system needs to operate in real-time
according to the corresponding timescale(s). It is important to
remark that in here we refer to real-time not as a synonym of
low latency but rather to express the capability of the control
system to meet a given deadline at any timescale of interest.

TABLE I: Summary of NI control timescale characteristics.

NI Control
Timescale Time units Optimization level On-line/off-line

Very short Microseconds-Milliseconds Local On-line
Short Milliseconds-seconds Local/Collaborative On-line

Medium Seconds-minutes Local On-line and off-line
Long Minutes-hours System level Off-line

Very long Hours-days System level Off-line

III. NETWORK-DRIVEN SPECIFICATIONS FOR NI

Network-driven specifications of NI design are especially
linked to the time dimension: aspects such as data collection
or data processing depend on the underlying infrastructure
and its capability to complete the actions, or directly on the
time needed to execute the NI algorithms, yielding to an
overall higher or lower time required to control the network.
In Figure 2, we present a schematic view of the different
scenarios that may emerge when dealing with NI in production
mobile networks.

The infrastructure monitoring data consists of all the
input data collected and provided by the many and varied
measurement probes deployed in the infrastructure, at any level
(e.g., core, transport, edge, far-edge). This could be monitoring
data coming from the network functions themselves, from the
infrastructure hosting them, or the transport network inter-
connecting them. More specifically, the monitoring dimension
could be further split into three sub-dimensions, which offer
different trade-offs, as follows.

• Data sampling rate: the frequency at which data is
gathered. Higher sampling rate force the infrastructure
to have more capacity to support his.

• Dataset richness: the number of details associated to
the data. For instance, a base station can report averaged
values for the Signal to Noise ratio or directly, per User
Equipment (UE) values. This includes the data granularity
and the dimension of each item.

• Data locality: monitoring data can be sampled from spe-
cific location of the network or from the entire network.
A similar concept can be applied to the same groups
of functions: e.g., collect KPI throughput from both the
radio and the core together or just from the core.

The infrastructure decision enforcement includes all the
parameters that can be changed, reconfigured and orchestrated,
typically in a programmatic way through Application Pro-
gramming Interfaces (APIs). Analogously to the monitoring
data, the enforcement may happen at any level in the network.



Fig. 2: Network Intelligence degrees of freedom, input-output relationship, and real-time constraints subject to infrastructure
observability and controllability.

Again, this dimension can be split into three sub-dimensions,
according to their trade-offs:

• Delay: the time it takes to generate the output of the
algorithm and inject it through the API into the specific
asset (Network Function or Infrastructure). This time is
consumed by the budget available for the action.

• Availability: actions may be enforced at every single
opportunity or may be resilient to some missed oppor-
tunity. For instance, scheduling patterns may be enforced
at every Transmission Time Interval (TTI) or may be
performed at coarser time granularity.

• Granularity: the granularity of the application of the
given action. For instance, the maximum Modulation and
Coding Scheme that could be applied at a single base
station level or specified for every single UE.

Given the time constraint and the underlying infrastructure
capabilities, there is a finite set of feasible combinations that
match all the requirements specified before. For instance, an
algorithm may gather data at UE level but cannot enforce
it again at UE level, if not on a subset of the gNBs. Or, if
the algorithm requires a 1ms sampling granularity and 1ms-
bounded action enforcement, then the gathered metrics and the
configurations that can be applied to the network infrastructure
could only be very fine if applied very locally to the same
network function.

Once the timing constraint is in place, according to the
specific network problem that has to be solved, then a class
of NI is selected and implemented. However, there is a further
degree of variability that has to be taken into account, which
is intrinsic to the selected model/algorithm for decision-
making. Once more, this can be articulated into three sub-
dimensions:

• Robustness: this value indicates the resiliency of the
NI to missed inputs. For instance, a suitably trained
Neural Network may be capable of extrapolating the
output from past inputs, with a likely higher degree
of uncertainty, but still providing a reliable outcome.

Instead, an optimization algorithm without any memory
may be very unreliable or directly not applicable when
inputs are missing due to, e.g., delays in the monitoring
infrastructure.

• Optimality: the robustness and the precision that data
driven solutions such as the one based on Neural Net-
works may achieve come at a price of a higher resource
utilization (complex models are fast mostly when used
on a GPU), and a certain degree of obscurity in their
decision. Hence, for some tasks, a trade-off between the
optimality of the decision and the time needed to take it
(e.g., with a simpler model or directly with a traditional
optimization algorithm) shall be considered.

• Control Timescale: This dimension is similar to the
infrastructure availability, which poses an upper bound
to this value. NI algorithm can then decide to exploit all
configuration opportunities or not.

Similar to the previous scenarios, these dimensions pose a
trade-off surface that needs to be addressed, especially by the
NI Orchestration layer proposed by DAEMON. A fundamental
factor here is the dichotomy between AI and ML models and
the ones based on traditional optimization, that stay at the
different ends of the spectrum: resilient and slow the former,
precise but potentially more fragile and certainly faster the
latter.

IV. DESIGN PRINCIPLES OF NI ORCHESTRATION

Based on the requirements and specifications drafted in
Sections II and III, we finally propose some initial guide-
lines for the design of an end-to-end closed control-loop of
NI instances via a NI Orchestration layer, such as the one
proposed by the DAEMON architectural model in Figure 1.
Specifically, we first envision two strategies to implement
the control loops between individual NI instances and the
NI Orchestrator, in Section IV-A. Then, we discuss how to
represent the operation of individual NI instances in a unified
way, in Section IV-B, which paves the road to the definition



NI Orchestration

VNF

Models 

& 

Algorithms

Network KPIs 

& 

Context

NI Catalog

NI Orchestration

VNF

Models 

& 

Algorithms

&

Diagnostic

Network KPIs 

& 

Context

&

NI Info

NI Catalog

Diagnostic
Diagnostic Info

Re-configuration triggers

Fig. 3: Two different strategies for control loops between the
NI instances and the NI Orchestration layer.

of a NI-agnostic interface between the NI instances and the
NI Orchestrator.

A. Looping NI instances and Orchestrator

NI models are trained with data gathered from the network,
and they possibly keep learning online, during the network op-
eration, through reinforcement learning techniques. However,
due to the very fast reaction times, model training and updates
at the network edge cannot be performed at wire speed, for
a number of reasons, including the possibly long training
times and the lack of availability of specialized hardware
such as GPUs. Thus, the environment shall include modules
and interfaces that allow the NI Orchestration, as discussed
previously, to continuously monitor and possibly update the NI
modules running at the edge. So far, we identified two possible
workflow strategies for this task, as depicted in Figure 3.

The first one, depicted on the left part of Figure 3, envisions
a loops between the NI Orchestration (i.e., the element that
manages the NI in the network, deployed at different domains).
The interaction has two directions:

• From NI Orchestration to the Network Function: the NI
Orchestration picks the best NI model and algorithms to
perform a specific tasks, such as the one described in this
document

• From the Network Function to the NI Orchestration, re-
porting on the achieved KPI (which are usually optimized
by the NI) and some information about the context (i.e.,
the network conditions observed at the moment). This
information allows the NI Orchestration to monitor the
KPIs and understand whether the context associated to
the NI is still the one originally used for the training.

However, this could be limiting for some use case, that
require a tighter interaction between the “drift” control and its
actual implementation. Thus, in a second approach (depicted
in the right hand side of Figure 3) the NI orchestrator is
sending an additional diagnostic module that can perform such
computations on the drift very close to the network functions,
trying to maximize the performance of the system at any point
in time.

B. Unified representation of NI algorithms

In order to fully integrate the algorithms into the overall
architecture, it is fundamental to understand what are the
needed interfaces that algorithms use to interact with their

Analyze

Monitor

Sensor Effector

Execute

Plan

Knowledge

Network

Training

Loss

Analyze

Monitor

Sensor Effector

Execute

Plan

Knowledge

Network

State/

Action

Reward

Digital Twin

Fig. 4: Extended MAPE-K abstractions for NI algorithms
based on supervised (left) and reinforcement (right) learning.

environment. For this purpose, we adopted a methodology
already used by the MAPE-K (Monitor-Analyze-Plan-Execute
over a shared Knowledge) feedback loop, one of the most
influential reference control model for autonomic and self-
adaptive systems [9].

In a nutshell, the MAPE-K specifies how the different
modules have to interact with the system, as follows:

• The Sensors specify all the probes that are needed to
gather the input data and the kind of input data we have
to gather. In principle, the APIs are specified at this level.

• The Analyze block includes any pre-processing, sum-
mary, or preparation of the data such as averages, auto-
encoders, clustering algorithms.

• The Plan includes the specific NI algorithm that is
implemented, for instance a Neural Network fulfilling a
categorization tasks.

• The Execute part specifies how the algorithm is going to
interact with the system and possibly change configura-
tion parameters.

• Finally, the Effector include the specific configuration
parameters we are updated in the Network Function,
again specifying the API.

The algorithms that run at NI instances can be classified
in a unified manner, according to how they interact with the
other elements of the network.

However, it is worth noting that the original MAPE-K
framework has limitations in the target context of mobile
network functionalities supported by NI. Therefore, we pro-
pose changes to the legacy MAPE-K to take into account
the specificities of our environment, as depicted in Figure 4.
Specifically, two modules shall be added to the plain MAPE-K
depending on whether the NI algorithm is based on supervised
or reinforcement learning. For the former, depicted in the left
part of Figure 4, the knowledge module shall be integrated
with a Training definition, which specifies aspects such as the
input data shape, batches, and most importantly, the used loss
function (which could be dynamically adjusted). This module
is replaced with State/Action representation and the reward
table for reinforcement learning NI algorithms, as illustrated
in the right part of Figure 4. Additionally, the effector and the
sensors can be also redirected to a Digital twin element, if
needed by the specific NI instance.

In Table II, we provide the extended MAPE-K definition
for the vrAIn [7] and ATARI [8] algorithms as examples of



TABLE II: The MAPE-K definition for the vrAIn [7] and ATARI [8] algorithms.

Analytics Description
vrAIn ATARI

Sensors + Monitor Channel Conditions, SNR measurements,
traffic demands (as Buffer State reports from the terminals).

Link state (SINR, RSSI), AP’s available channel configurations,
distance and associations among users and APs, users’ traffic demands

Analyze Inputs are passed through an autoencoders to reduce their dimensions,
forming an encoding that is used in the execution algorithm.

Inputs are converted in a graph-like structure to capture
all the topological properties of the WLAN deployent.

Plan
An actor-critic deep learning algorithm, that takes the encodings as
input and generates two outputs: the amount of CPU required and
the maximum MCS.

A GNN to predict the throughput at each client and AP.

Execution + Effector Two APIs exposed by the virtualization environment (for the
CPU quota) and the base station (for the maximum MCS).

The predictor can be part of a digital twin and be used by a WLAN
controller to solve the WLAN channel bonding optimization problem.

Knowledge A model of the CPU behaviour for the different decoding tasks. Monitored data, current setup, best performance prediction, possible
channel configurations, learned channel configuration selection policy.

Training/Loss
State/Actions/Rewards.

states: Latent representation of the input data, actions: compute and
radio control, rewards: maximum latency. Model: GNN, Loss Function: ot Mean-Squared Error as loss function.

NI. vrAIn is a reinforcement learning algorithm that tailors
the available computing capacity on a vRAN platform to the
expected load introduced by the different PHY layer tasks
such as frame decoding. Thus, by gathering information from
the network operation (such as the link conditions and the
load introduced by the different terminals) it can compute a
suitable policy for the amount of computing resources assigned
and a cap on the maximum modulation and coding scheme
(which limits the stress on the computing platform). ATARI
is a Graph Neural Network (GNN) model that exploits the
information carried in the deployment of WLANs to predict
its performance with high accuracy. The idea behind this
predictor is to provide an approach that combines the best
of the two more common techniques for this task: faster than
state-of-the-art and high-accurate simulators and minimal drop
in accuracy compared to simpler analytical models or other
data-driven state-of-the-art ML approaches (e.g., CNN). This
model is very suitable as a digital twin for WLAN controllers
that want to evaluate the impact of different configurations
of spectrum channels among APs and select the one that
maximizes the performance of the deployment (i.e., solving
the ChannelBonding problem)..

Ultimately, using the proposed approach allows specifying
different kinds of input data, different ways of training a
neural network (supervised learning or reinforcement learning)
and a re-configuration trigger for the network function. By
summarizing the algorithms in this way, it will be possible to
devise the kind of interfaces that will be needed for the Native
NI Architecture.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we elaborated on the DAEMON architectural
model [4], which proposes introducing a NI Orchestration
layer for the effective end-to-end coordination of NI instances
deployed across the whole mobile network infrastructure,
and we have outlined requirements and specifications for NI
design that stem from data management, control timescales,
or network technology characteristics. Based on the analysis
of such requirements and specifications, we have derived
initial principles for the design of the NI Orchestration layer,
focusing on (i) proposals for the interaction loop between NI
instances and the NI Orchestrator, and (ii) a unified represen-
tation of NI algorithms based on an extended MAPE-K model.

With this approach, we provided a mechanism to define the
NI Orchestration layer’s interfaces and operations that foster
a native integration of NI in mobile network architectures. As
future work, we will continue evolving the NI Orchestration
layer and applying the extended MAPE-K model to other NI
instances.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no.101017109 “DAEMON”.

REFERENCES

[1] D. Bega, M. Gramaglia, R. Perez, M. Fiore, A. Banchs, and X. Costa-
Pérez, “Ai-based autonomous control, management, and orchestration in
5g: From standards to algorithms,” IEEE Network, vol. 34, no. 6, pp.
14–20, 2020.

[2] Y. Wang, R. Forbes, C. Cavigioli, H. Wang, A. Gamelas, A. Wade,
J. Strassner, S. Cai, and S. Liu, “Network management and orchestration
using artificial intelligence: Overview of etsi eni,” IEEE Communications
Standards Magazine, vol. 2, no. 4, pp. 58–65, 2018.

[3] A. Garcia-Saavedra and X. Costa-Perez, “O-ran: Disrupting the virtu-
alized ran ecosystem,” IEEE Communications Standards Magazine, pp.
1–8, 2021.

[4] A. Banchs, M. Fiore, A. Garcia-Saavedra, and M. Gramaglia, “Network
intelligence in 6g: Challenges and opportunities,” in Proceedings
of the 16th ACM Workshop on Mobility in the Evolving Internet
Architecture, ser. MobiArch ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 7–12. [Online]. Available:
https://doi.org/10.1145/3477091.3482761

[5] E. Foundation. (2021) From devops to edgeops: A vision for edge
computing, white paper. [Online]. Available: ttps://outreach.eclipse.
foundation/edge-computing-edgeops-white-paper

[6] G. Baldoni, J. Loudet, L. Cominardi, A. Corsaro, and Y. He, “Facilitating
distributed data-flow programming with eclipse zenoh: The erdos case,”
in Proceedings of the 1st Workshop on Serverless Mobile Networking
for 6G Communications, ser. MobileServerless’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 13–18. [Online].
Available: https://doi.org/10.1145/3469263.3469858

[7] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. J. Alcaraz, “vrain: Deep learning based orchestration for
computing and radio resources in vrans,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[8] P. Soto, M. Camelo, K. Mets, F. Wilhelmi, D. Góez, L. A. Fletscher,
N. Gaviria, P. Hellinckx, J. F. Botero, and S. Latré, “Atari: A graph
convolutional neural network approach for performance prediction in
next-generation wlans,” Sensors, vol. 21, no. 13, 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/13/4321

[9] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41–50, 2003.


