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Abstract—Traffic Classification (TC) systems allow inferring
the application that is generating the traffic being analyzed.
State-of-the-art TC algorithms are based on Deep Learning
(DL) and have outperformed traditional methods in complex
and modern scenarios, even if traffic is encrypted. Most of
the works on TC assume the traffic flows on a wired network
under the same network management domain. This assumption
limits the capabilities of TC systems in wireless networks since
users’ traffic on one network domain can be negatively impacted
by undetected users’ traffic from other network domains or
detected ones but with no traffic context in a shared spectrum.
To solve this problem, we introduce a novel framework to achieve
TC at any layer on the radio network stack. We propose a
spectrum-based procedure that uses a DL-based classifier to
realize this framework. We design two DL-based classifiers, a
novel Convolutional Neural Network (CNN) spectrum-based TC
and a Recurrent Neural Networks (RNN) as baseline architecture,
and benchmark their performance on three TC tasks at different
radio stack layers. The datasets were generated by combining
packet traces from real transmissions with an 802.11 standard-
compliant waveform generator. Performance evaluations show
that the best model can achieve an accuracy above 92% in the
most demanding TC task, a drop of only 4.37% in accuracy
compared to a byte-based DL approach, with micro-second per-
packet prediction time, which is very promising for delivering
real-time spectrum-based traffic analyzers.

Index Terms—Deep Learning, Intelligent Radios, Radio Spec-
trum, Traffic Classification, Wireless Networks

I. INTRODUCTION

Nowadays, wireless technologies are omnipresent and pro-
vide access to millions of users and machines to the Internet.
This access is mostly offered by complementary technolo-
gies, e.g., 4G/5G Mobile Networks and Wireless Local Area
Networks (WLANs), with an increased network capacity to
support the ever-increasing number of devices and applica-
tions. As a result, managing and optimizing the wireless
network capacity to provide Quality of Service (QoS) becomes
even more challenging [1], [2]. Traditionally, the Network
Monitoring Service (NMS) performs a set of tasks to analyze
the behavior of the networks and services throughout their
traffic. The information provided by this system can be used to
determine which applications affect network the most in terms
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of total bandwidth usage or identify the most critical links so
decision-making engines for network management can ensure
fast troubleshooting and securing high QoS to the users.

More recently, this service has been enhanced with Ma-
chine Learning (ML) techniques to perform automatic network
traffic analysis such as network state predictions, anomaly
detection, malware detection, and Traffic Classification (TC)
[3]. Focusing on TC, this network management task allows
inferring the application that is generating the traffic [2], [3].
Knowing the traffic class provides a mechanism to enforce
specific security and QoS policies on the analyzed traffic.
Over the years, several approaches have been designed and
developed to follow the evolution of the technologies driving
the development of user’s application and communication
protocols. More recently, DL-based traffic classifiers have out-
performed traditional methods such as port-based classifiers,
Deep Packet Inspection (DPI), and flow-based traffic analysis
using statistical ML in complex and modern scenarios even
where the traffic is encrypted [4]–[6].

In general, the TC task is assumed to be performed on
traffic that belongs to the same network domain and over a
byte/protocol representation of the packet at the Link Layer
(L2) (or above). These assumptions limit the capabilities of
TC systems in wireless networks using shared spectrum, e.g.,
in unlicensed bands. The users’ traffic from one wireless
network domain can be negatively impacted by users’ traffic
transmissions from other wireless networks without being
noticed by the TC system as demonstrated in [7]. Contrary
to a wired network, co-located wireless transmissions in the
same spectrum band can generate Physical Layer (L1) packets
that are not be detected by a receiver performing the TC
task. Examples of these cases are when the transmitter is
using a wireless technology that cannot be demodulated and
decoded by the receiver (i.e., different technology) or when
the transmission can be demodulated and decoded (i.e., same
technology) but the decoded traffic is already encrypted in L2
(e.g., wireless devices belong to a different wireless network
domain and its network is secured).

To overcome this limitation, we need to move from TC
systems that work at a byte representation of the packet to TC
systems at spectrum level. In this way, the traffic generated
by any other wireless device sharing the same spectrum can
be monitored, detected, assembled and classified, even if it
is encrypted, belongs to a different network domain or uses
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Acronym Description
AE AutoEncoder
AI Artificial Intelligence
AP Access Point
ATSSS 3GPP Access Traffic Steering Switching and Splitting
BPSK Binary Phase Shift Keying
CCK Complementary Code Keying
CIR Collaborative Intelligent Radio
CIRN Collaborative Intelligent Radio Networks
CNN Convolutional Neural Network
Conv Convolutional
CR Cognitive Radio
CU Centralized Unit
CWT Continuous Wavelet Transform
DCI Downlink Control Information
DL Deep Learning
DNN Deep Neural Network
DPI Deep Packet Inspection
DSSS Direct-Sequence Spread Spectrum
DT Decision Tree
DU Distributed Unit
FFT Fast Fourier Transform
GB Gradient Boost
GL Gossip Learning
GP Gaussian Processes
GRU Gated Recurrent Units
GW Gateway
HDLC High-level Data Link Control
ICDE Intelligent Control and Decision Engine
ImRAT Intelligent multi-RAT
IQ In-phase and Quadrature components
K-NN k-Nearest Neighbours
L1 Physical Layer
L2 Link Layer
L7 Application Layer
LR Logistic Regressor
LSTM Long Short-Term Memory
LTE Long-Term Evolution
LTE-PDCCH LTE Physical Downlink Control CHannel
MCS Modulation and Coding Scheme
ML Machine Learning
MLP Multi-Layer Perceptron
MTL Multi-Task Learning
NB Naı̈ve Bayes
NMS Network Monitoring Service
NN Neural Network
OFDM Orthogonal Frequency Division Multiplexing
PHY Physical-layer
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase Shift Keying
RAN Radio Access Network
RAT Radio Access Technologies
ReLU Rectified Linear Unit
RF Random Forest
RIC RAN Intelligent Controller
RNN Recurrent Neural Networks
RRU Remote Radio Unit
SC2 Spectrum Collaboration Challenge
SDAE Stacked Denoising AutoEncoder
SDR Software Defined Radios
SNR Signal-To-Noise-Ratio
STFT Short-Time Fourier Transform
SVM Supported Vector Machine
TC Traffic Classification
TR Technology Recognition
UT User’s Terminal
VAE Variational AutoEncoder
WLAN Wireless Local Area Network
WNIC Wireless Network Interface Card
WPA Wi-Fi Protected Access

TABLE I: List of acronyms used in this paper

various wireless technologies. However, designing and deploy-
ing TC algorithms that work on a spectrum representation of
the packets (or flow of packets) adds new challenges that are
not present when using the byte/protocol representation of it:
spectrum-based packets are modulated, coded, and some times
encrypted before being transmitted. As a result, transmitting
the same user’s L2 packet may result in a very different
spectrum view of the packet using either the same wireless
technology, e.g., due to different Modulation and Coding
Schemes (MCSs), or a different one, e.g., due to different
digital multi-carrier transmission schemes.

To this extend, we introduce a novel framework to achieve
TC at any layer on the radio network stack. Building on top
of it, a procedure based on DL to perform TC on spectrum
samples is proposed. This procedure enables the management
algorithms running at the Gateway (GW) nodes (or beyond) to
perform better by having a broader view of the traffic flowing
in the shared spectrum. The main contributions of this paper
are summarized as follows:

• We present a general framework that enables the develop-
ment of TC algorithms optimized for wireless networks.
Up to the best of our knowledge, this is the first frame-
work that allows developing Radio Access Technologies
(RAT)-agnostic spectrum-based TC algorithms.

• We propose a spectrum-based TC procedure that exploits
the proposed framework’s functional blocks and works on
L1 packets. Compared to similar works like [8], the pro-
posed procedure includes not only the traffic classifier de-
signing but also the complete chain to achieve spectrum-
based TC. Moreover, the proposed approach removes
the need for specialized algorithms to separate/aggregate
users’ traffic flows (e.g., a radio identification procedure
[9]), as the one required on recent approaches like [10],
as it uses as classification object single L1 packets (as a
sequence of raw IQ samples).

• We design and evaluate a DL architecture based on
CNNs to solve the task of classifying packets directly on
spectrum data. Up to the best of the authors knowledge,
this is the first work that uses this type of Deep Neural
Network (DNN) to solve such task. Moreover, we demon-
strate that the proposed architecture outperforms a RNN
architecture, also used in [8] and that is traditionally used
to solve classification problems with time series data.

• We present the first detailed analysis on the performance
achieved by different spectrum-based classifiers using
DL architectures in terms of classification accuracy on
different classification tasks at different radio stack layers
(L2 and L7), including a comparison against encrypted
L2 byte-based packet classifiers, and execution time in
training and inference using 802.11 standard-compliant
L1 packets and with input sequences of more than 3K
spectrum samples. Moreover, these results provide initial
insights about the feasibility of this approach for real-time
classification. These evaluations complement and extend
previous results where the performance of DL approaches
solving the TC problem has been evaluated and compared
using byte [11] and spectrum representation of the pack-
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ets [8], [10].
• We create and provide an open source dataset that

contains 802.11 standard-compliant L1 waveforms. The
waveforms are generated by different 802.11 technologies
(b, g, n), which results in different transmission schemes
such as Direct-Sequence Spread Spectrum (DSSS) in
802.11b and Orthogonal Frequency Division Multiplex-
ing (OFDM) in 802.11g/n, different types of L2 frames
(management, control and data), and multiple MCS (mod-
ulations such as Binary Phase Shift Keying (BPSK) and
Complementary Code Keying (CCK) for 802.11b and
BPSK and Quadrature Phase Shift Keying (QPSK), 16-
Quadrature Amplitude Modulation (QAM), 64-QAM for
802.11g/n with coding rates of 1/2, 3/4, and 5/6 according
to the standard and modulation selected). Moreover, the
payload carried by this L1 packets (information at L2 and
above) were generated using real traces of L7 application
running on a mobile device and connected to a secured
802.11 Access Point (AP) with Wi-Fi Protected Access
(WPA)-2. This is the first open and available dataset
for testing traffic classification at spectrum level and we
believe this dataset would foster reproducibility and allow
further advances on this topic. The dataset and the code
associated to this paper can be obtained in Zenodo1 and
Github2, respectively.

The remainder of this paper is structured as follows. We
present the related work in Section II. The general framework
for TC is introduced in Section III, and the proposed spectrum-
based TC algorithm using DL is presented in Section IV.
Finally, we show the DL models’ performance evaluation
results on both coarse-grained and fine-grained traffic clas-
sification tasks in Section VI and conclusions and future work
in Section VII. For convenience of readers, Table I lists the
acronyms used in this paper.

II. RELATED WORK

This section presents some of the most relevant work on
TC using DL approaches for encrypted traffic. For a more
exhaustive literature review on the general applications of DL
in wireless networks and on ML/DL approaches for TC, we
refer the reader to [5] and [4], [12], respectively.

A. TC using L2 (and above) classification objects

Over the years, the applications have evolved, and so the
algorithms and techniques used to classify the traffic generated
by them [2]–[4], [13], [14]. The initial approach was using
port numbers. Later, traffic classifiers using DPI techniques
were designed to find patterns in the data packets’ payload.
While port-based classifiers are more accessible and faster than
DPI methods, DPI outperformed them at the cost of higher
computational requirements. Unfortunately, both approaches
are limited to non-encrypted traffic that typically belongs to the
same network domain. To avoid this problem, ML approaches
were proposed to classify the traffic using packet flows, where

1https://doi.org/10.5281/zenodo.5208200
2https://github.com/miguelhdo/tc spectrum

flow-measurements are used as features. However, it has been
shown that its accuracy can be affected by variations of the
user’s behavior, device OS-specific patterns, network-specific
conditions, among others [14].

More recently, TC algorithms based on DL approaches have
outperformed ML ones based on traditional algorithms [3],
[4], [12]. One example of these algorithms is shown in [15]
and [16], where authors proposed an end-to-end TC algorithm
based on CNNs that converts raw traffic into images. In [15],
the authors took the first several packets of the traffic flows and
its time-series features and were able to identify the application
or protocol type that generates them. The Seq2Img model was
compared against four popular classifiers such as Supported
Vector Machine (SVM), Multi-Layer Perceptron (MLP), Naı̈ve
Bayes (NB), and Decision Tree (DT). Results showed that all
approaches perform equally well when classifying protocols,
but Seq2Img is almost 12% more accurate than other models
when classifying applications.

To overcome the problem of data labeling, authors in [17]
proposed a semi-supervised approach that pre-trains a 1D-
CNN model on an unlabeled dataset to infer traffic patterns
and afterward re-train the model on a labeled dataset to
confirm those patterns. In this way, the amount of labeled
data needed in the second step is considerably reduced. The
datasets are based on time-series features of a fixed number
of sampled packets from traffic flows. Results showed that
the pre-training step increases the model’s accuracy by up to
10% compared to a model without pre-training. A Stacked
Denoising AutoEncoder (SDAE), a CNN, and a Long Short-
Term Memory (LSTM) were proposed as classifiers in [18],
where Netlog was developed to simplify the data labeling
process. Comparison against a Random Forest (RF), which
requires statistical features, and an MLP showed that all
DL models performed over 20% better than RF in terms of
accuracy, showing that much more insightful features can be
learned from raw data than from the statistical features used
by the RF.

A combination of two CNN layers followed by one LSTM
layer with two fully connected layers at the end was proposed
in [19]. The time-series features are taken from the headers
of the first 20 packets exchanged during the flow lifetime
and did not include any information that could identify users
(MAC/IP addresses) to ensure data confidentiality. Results
showed that the combination obtained the best results in terms
of accuracy and F1-score. AutoEncoders (AEs) are also a
predominant option as models. For instance, in [20], a network
traffic flow is also transformed into an image that is later
processed by a semi-supervised model based on a Variational
AutoEncoder (VAE). The authors took data from the HTTP
sessions (requests and responses) and converted them to a
28x36 image. The proposed VAE uses an MLP encoder and
decoder that analyses images in an unsupervised manner as
feature extractor. Then, the extracted features are mapped to an
app in a supervised manner. Results show that, even with two
features, the network traffic can be effectively discriminated
in the unsupervised step achieving an accurate classification
at the supervised step.

As pointed out by the authors in [21], most of the literature
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TABLE II: Comparison of our work and other contributions focusing on TC using DL

Contributions Traffic
Representation

Classification
at any layer

Classification object
as input data

End-to-End
framework

Proposed
Model

Comparison against
other models

Comparison against
other traffic

representation

Multi-task
learning

Dataset and
availability

[15] L2 Packet flow No Flow statistics
as images Yes 2D-CNN SVM, MLP, NB, DT No No Private

[16] L2 Packet flow No Session and Flow
statistics Yes 1D-CNN 2D-CNN No No Public

[17] L2 Packet flow No 24 statistical features
of a packet Yes 1D-CNN 1D-CNN

trained in supervised mode No No QUIC, Public

[18] L3/L4 packet No Raw bytes Yes SDAE, CNN,
LSTM-RNN RF, MLP No No Restricted

[19] L2 Packet flow No Sequence of packet
statistics Yes CNN+LSTM-RNN CNN, LSTM-RNN No No RedIRIS, Public

[20] L7 packet No Raw bytes as images Yes VAE No No No IMT17, Public

[21] Raw DCI No Transport Block
Size Yes AE + softmax

+dense layer.
LSTM-RNN+softmax,

LSTM-RNN+dense layer No Yes Private

[23] Raw DCI No Transport Block
Size Yes LSTM-RNN,

1D-CNN, MLP SVM, LR, K-NN, RF, GP No No Private

[8] L1 packet Yes Raw IQ samples No LSTM-RNN No No No Private

[10,24] L1 packet flow Yes Raw IQ samples
as images No 2D-CNN 2D-CNN on raw L2 packets Yes, raw

L2 packet No Private

This work L1 packet Yes Raw IQ samples Yes 2D-CNN GRU-RNN, GB
Yes, raw L2
packet and

packet length
No IDLAB-TC-SPECT,

Public

in the field of NMS are focused on single-task learning, e.g.,
each model is designed and trained to solve one specific learn-
ing task such as TC, traffic prediction, or anomaly detection.
As a solution, Multi-Task Learning (MTL) approaches have
been proposed in [21] and [22], where TC is used as one of
the learning tasks, to leverage useful information contained
in multiple related tasks aiming to improve the generalization
capabilities of all them while learning. The authors in [21]
used a MTL approach to jointly solve the TC and traffic
prediction task using traffic traces containing the Downlink
Control Information (DCI) messages carried within the LTE
Physical Downlink Control CHannel (LTE-PDCCH) with a
time granularity of 1ms. Their proposal is a two step proce-
dure where they first use an AE to extract common feature
representations among tasks and then use the encoder part of
it to train a traffic classifier (softmax layer with a softmax
activation function) and a traffic predictor (a dense layer
with the Rectified Linear Unit (ReLU) activation function)
simultaneously. Compared to conventional single-task learning
approaches, which do not use AE and tackle classification and
prediction tasks separately, the MTL approach always provided
the highest performance.

More recently, the authors in [23] proposed a CNN architec-
ture to perform TC without having to decode and/or decrypt
any of the transmitted flows. To achieve this, the input to
the model are raw physical control channel messages of a
mobile network. The input data is obtained by decoding the
DCI messages carried within the LTE-PDCCH. Among the
information carried by the DCI messages, the authors used
the number of allotted resource blocks, the MCS, and the
transport block size. The authors claimed that this information
should provide sufficient information for learning algorithms
to reliably classify the application and the service that the user
is running. The results confirmed such claim and the proposed
CNN achieved an accuracy above 98%, outperforming other
DL models such as RNN and traditional ML approaches
such as SVM and RF, Logistic Regressor (LR), k-Nearest
Neighbours (K-NN), and Gaussian Processes (GP).

B. TC using L1 classification objects

All the previous works are byte-based approaches, which
limits their application on wireless networks (see Section
III-A). As a solution, a few spectrum-based traffic classifiers
have been proposed in recent years to perform TC on raw
spectrum data. Authors in [10] present a DL-based algorithm
that classifies traffic patterns of different types of applications
directly from the radio spectrum with accuracy ≥ 96% and
outperforms state-of-the-art methods based on IP-packets with
DL. They use images representing the spectrum in time
and time-frequency as input data for their CNN-based DL
architecture. An extension of this work was presented in
[24], where a validation with real-life data showed that a
model trained with synthetic data can discriminate between
different traffic patterns but with a decreasing performance
in terms of accuracy. One advantage of this approach was the
automatic extraction of the time-dependent features to perform
the TC task. However, in contrast to byte-based methods using
statistical data from traffic flows, this approach assumes that
the spectrum patterns to be classified belong to a single-user
and single-flow, which is not the case in real environments.

An alternative to overcome the limitations of [10] is to use
L1 packets and perform the TC directly on them. Based on a
RNN architecture, the authors in [8] showed that TC on raw
spectrum data could be performed on short time-series (a few
hundred samples) with an accuracy ≤ 85%. This accuracy can
be considered low compared to byte-based TC systems if we
also consider that the L1 packets were single-modulated with
no coding, non-encrypted, and transmitted with a low data rate.
One of the reasons for this performance is the use of RNN
architectures, such as LSTMs [25], [26], which suffer from
inefficient training and low accuracy with large data sequences
[27]–[29].

Given the limitations found in the previous spectrum-based
proposals, in this paper we introduce a general framework
to achieve TC at any layer in the radio stack. On top of
this framework, we propose an end-to-end spectrum-based TC
procedure that is also RAT agnostic. At the heart of the pro-
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cedure, we design, train and evaluate a CNN-based classifier
that outperforms an optimized RNN architecture, similar to the
one used in [8], by achieving higher accuracy, even on large
data sequences, and lower complexity in terms of prediction
time. Moreover, the proposed approach removes the need for
specialized algorithms for traffic flow separation/aggregation
on spectrum data like the one required in [10] as it uses as
classification objects the IQ-samples associated to one single
L1 packet, which can be realized with simpler algorithms. This
framework will allow decision-making engines to enhance the
view of the traffic that is passing through the gateway nodes,
not only traffic from the same network domain (of which
we can obtain a byte representation), but also traffic that is
generated by any nearby wireless device and captured directly
on the shared spectrum. Table II provides a comparison of the
contributions of this paper and the analyzed related works that
perform TC using DL.

III. A GENERAL FRAMEWORK FOR TC

This section introduces the main limitations of the byte-
based approaches for TC in wireless networks using a shared
spectrum and presents a general framework to perform TC at
any layer of radio network stack using a spectrum representa-
tion of a packet. This framework provides the building blocks
to design a DL-based traffic classifier for wireless networks.
In the rest of the paper, the terms spectrum-based packet
representation and L1 packet are used as synonymous, similar
to byte- or protocol-based representation and L2 (or above)
packet.

A. Limitation of the byte-based frameworks for TC

Deploying wireless networks that can handle the increasing
demands on network capacity of new applications and services
while guaranteeing their QoS requirements will depend on
the radios’ capabilities to be aware of their spectrum environ-
ment, sharing and re-using it optimally. Therefore, including
capabilities to sense and understand the environment state is
fundamental to dynamically adapt the radio parameters, so the
users’ requirements are fulfilled while optimizing the shared
spectrum usage [30], [31].

Large deployments of daily use technologies such as Wi-Fi
and 4G/5G are based on simple devices at the users’ side and a
full management stack at the RAT GW node or beyond. One of
the management system’s key components is the NMS, which
provides various information related to the traffic generated by
the users accessing the operator’s core network. These services
have recently been enhanced with ML techniques to perform
automatic network traffic analysis with high accuracy [3]–[5].
One of these traffic analysis tasks is TC, which allows inferring
the user’s application generating the traffic to enforce specific
security and QoS policies on it.

To picture the use of TC on wireless networks, let us
consider a co-existence scenario in a shared spectrum between
two wireless networks, one using Wi-Fi and the other using
a private 4G/5G deployment, as shown in Fig. 1. In this
scenario, the management system running on the private
4G/5G deployment wants to prioritize the traffic of user 1

over user 2 dynamically, so it can enforce a given QoS while
maximizing the use of its network resources. The GW nodes
can perform TC to detect and identify the type of application
being executed at any moment by its users. On the other
hand, user 3, which belongs to the Wi-Fi network, generates
a large traffic volume using a non-priority application. For
simplicity, let us assume that a central entity manages both
GWs. However, this can easily be extended to independent
management domains where information exchange is allowed
to enforce collaboration or/and cooperation among them as we
demonstrated in our previous work [7].

Traditionally, byte-based TC systems will be located at (or
behind) the RAT GW and will classify the traffic sent by the
users’ devices in the wireless domain of the RAT GW. In
the example scenario, GW 1 can classify traffic from users
1 and 2 and use this information to enforce traffic policies,
e.g., GW 1 can determine to reduce the bandwidth assigned
to user 2 to guarantee QoS on the protected user 1. However,
independently of the traffic policies applied at GW 1 to protect
user 1, the performance of user 1 can be negatively impacted
by the non-priority traffic generated by user 3. This is expected
as the GW 1 can not see the traffic generated by user 3
as it will never pass through it. Even with a byte-based TC
system working on all the users’ traffic, it would be difficult
to infer that the traffic generated by user 3 is being negatively
impacting user 1 without knowing the users’ location.

B. A TC framework at any layer

One possible solution to the problem described above is that
the GW 1 recognizes the radio technology that interferes and
adapts its behavior accordingly [7], [32], [33]. However, this
approach is not enough to increase spectrum efficiency as

(i) the interfering/interfered technology may not include a
mechanism to adapt or coexist, e.g., to change its fre-
quency band to avoid the interference, and

(ii) traffic prioritization can be only based on technology and
not on application. Therefore, specific traffic policies such
as priority vs. non-priority traffic cannot be applied.

For instance, if the GW 2 can recognize that some external
device is transmitting a high-priority/protected traffic, it can
enforce a policy over its user 3 to reduce the impact on that
external device even if it is not under the same management
domain as the other wireless device. Moreover, the TC task

Core Network

TC

5G LTE Wi-Fi
User 1 User 2 User 3

SHARED SPECTRUM

RAT GW1
TC

RAT GW2

Fig. 1: Use case scenario where the traffic analysis will be
incomplete if a byte-based TC system is used.
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(4)

Traffic  
Analyzer 

(5)

Intelligent 
Control  and 

Decision 
Engine  

(6)

Spectrum-based TC system

ImRAT GW m

Traffic Label 
Technology Label

...

Fig. 2: Functional diagram of a general framework for traffic classification at any layer

cannot be performed at L2 or beyond at the central entity, as
it requires specialized hardware to demodulate and decode the
information of a given technology. Therefore, being able to
perform TC to its own users’ traffic and any other traffic in
the same spectrum is crucial for future deployment of complex
and advanced wireless networks in those scenarios.

In general, wired and central-managed wireless networks,
using (possibly) multiple technologies, can implement TC at
L2 with minor effort as all the users’ traffic can be obtained
at the access points/gateways of the networks and should be
the logical choice for implementing a TC system. However,
this task is more complex in decentralized multi-technology
wireless environments as the traffic from multiple wireless
devices flows through the same shared medium (the spectrum).
In the case of multiple wireless technologies, it is required to
have specialized hardware to demodulate, decode, and decrypt
the messages sensed by the receiver to obtain the L2 packet
for TC. In the case of the same technology, each wireless
device may belong to different wireless domains, which are
usually secured, so packets demodulated and decoded can be
encrypted but at the cost of requiring more complex classifiers.
As a result, a general framework to classify traffic directly at
L1 is key to address these wireless network limitations.

To this end, Fig. 2 introduces a general framework that
allows the classification of different types of traffic using
spectrum representation of the data packet. The proposed
framework comprises two main blocks: the traffic generators
and the Intelligent multi-RAT (ImRAT) GW. Let us describe
more in detail each one of these blocks.

Traffic Generators: In general terms, traffic generators
are a combination between a user’s wireless terminal and
the applications that run on it to generate traffic and are
transmitted over the spectrum to the ImRAT GW.

1) User’s Terminal (UT): This is a wireless device that
runs the applications generating the traffic and transmits
it to the ImRAT GW. Although these devices may be
very complex and use advanced RATs, e.g., Cognitive
Radios (CRs) [30] or Collaborative Intelligent Radios
(CIRs) [31], [34], so they can create fully autonomous
and distributed networks, in this framework we assume
they are simpler devices that are connected to a (multi)
RAT GW node that performs the management tasks.

2) Applications: This is any software that runs over the

UT and generates traffic. One important characteristic
of these applications is that the generated traffic follows
a pattern at any radio stack level. This requirement
is fundamental as any Artificial Intelligence (AI)-based
algorithm learning to discriminate among different classes
needs to find patterns on the data used to learn. For
example, a pattern can be learned from the application’s
protocol generating users’ data traffic.

ImRAT GW: This is a wireless device that acts as a
gateway to one or multiple RATs and uses AI-based algorithms
to perform wireless management tasks such as the NMS.
This device can also be integrated into more advance Radio
Access Network (RAN) architectures like OpenRAN [35] or
open5G [36]. For deploying spectrum-based TC algorithms,
the following internal blocks are required.

1) Spectrum Sensing: This sub-module, typically found in
CR, obtains samples of the spectrum. The type of data
will depend on the input data required by the spectrum-
based TC. Some formats of these samples are the In-
phase and Quadrature components (IQ) (time domain),
Fast Fourier Transform (FFT) (frequency domain), Short-
Time Fourier Transform (STFT) (time-frequency do-
main), Continuous Wavelet Transform (CWT) (time-
frequency domain). Note that although traditional radio
transceivers do not provide access to the received spec-
trum data, radio platforms running on Software Defined
Radios (SDR) [34], [37] or software tools like Nexmon
[38] can already provide access to it.

2) Technology Recognition (TR): This sub-module uses spec-
trum data to recognize the radio signatures of different
RATs and idle (noise) separately [37]. As input, it con-
sumes the continuous stream of spectrum data collected
by the spectrum sensing sub-module and outputs if a
given technology is present in some part of the spectrum.

3) Multi-RAT L1 packet assembler: This sub-module puts
together different spectrum samples that belong to the
same RAT and creates L1 packets. For this, the labels
created by TR are used to find a packet pattern. Note
that the spectrum sensing, TR, and this sub-module can
be removed if we use the L1 packets already captured
by the Wireless Network Interface Card (WNIC) of the
multi-RAT before they are demodulated and decoded.
However, this implies having one WNIC per technology.
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One advantage of the spectrum sensing + TR + Multi-
RAT L1 packet assembler is that they are technology
agnostic and can be easily extended to support new
technologies without requiring adding new WNICs to
perform the monitoring task.

4) Spectral-based TC: This sub-module uses L1 packets to
classify the application that generated it. Compared to
the byte-based TC, this approach is more complex and
needs to be more robust. The features used to discriminate
different traffic classes at different radio stack layers must
be extracted from the raw spectrum. As an example, a
user-level application generating traffic will, in general,
have a very similar IP packet carrying the application
payload. However, the same packet at the L1 will be
different depending on properties like the RAT (5G vs.
WLAN), its version (Wi-Fi 5 vs. Wi-Fi 6), the MCS
(BPSK 1/2 vs. QPSK 1/2), etc.

5) Traffic Analyzer: This sub-module takes the output from
the TCs and automatically generates an analysis of the
traffic flowing in the physical medium. The resulting
analysis is used to enhance the decision-making engines’
view controlling the radio parameters aiming to optimize
a(n) (multi-)objective function.

6) Intelligent Control and Decision Engine (ICDE): This
sub-module combines the output of different radio sys-
tems, e.g., the output of the NMS and the QoS re-
quirements of a given application/user, and intelligently
and dynamically adapts the radio parameters at different
layers to improve performance and increase spectrum
efficiency. An example of this module is being presented
in [31], [39].

Notice that although we did not follow any WLAN or
4G/5G standard to realize the ImRAT, their functional blocks
can be positioned inside 5G-RAN architectures like the one
proposed by the O-RAN Alliance [35] and coexist/coordinate
with WLAN APs in the same network domain as established
by the 3GPP release 16 with the introduction of the 3GPP
Access Traffic Steering Switching and Splitting (ATSSS) [40].
As an example, the Spectrum Sensing, TR, and the L1
packet assembler blocks can be implemented in the Remote
Radio Unit (RRU) for fast signal processing and spectrum-
based TC empowered by ML models can be deployed in
the RAN Intelligent Controller (RIC) co-allocated Distributed
Unit (DU)/Centralized Unit (CU) to reduce the amount of data
required to move L1 packets to the classifier. In decentralized
environments, where multiple networks may run under their
own management domains, new approaches must be inves-
tigated and explored to define mechanisms to incentive the
collaboration among networks and enforce policies that aim
the optimization of global objectives shared by the networks
in a fully automated fashion. Examples of such collaborative
approaches are the Collaborative Intelligent Radio Networks
(CIRN), which were developed during the DARPA Spectrum
Collaboration Challenge (SC2) [41]. Some of our recent works
have demonstrated the capabilities of such networks at the
architectural level [34], [39] and validated its performance via
experimental results [31]. Moreover, theoretical and practical

developments of collaborative protocols to support such archi-
tecture can be found in [42] and [43], respectively.

This framework allows the deployment of TC systems that
work on the spectral representation of transmitted data and
realizes a general approach for TC for wireless networks at any
layer from L1 to the Application Layer (L7). This framework
is general as the first two blocks (TR and L1 packet assembler)
provide a mechanism to be wireless technology agnostic,
since using an L1 packet as classification object allows a
classification at any layer as this object contains the whole
information carried by the transmitted packet. For end-to-end
designing, training, and deployment of the ML/DL algorithms
behind the sub-modules like TC and TR, this framework can
be enhanced by the ideas presented in [3] (byte-based TC) and
[37], respectively.

IV. SPECTRUM-BASED TC SYSTEM BASED ON DL

TC at spectrum level using an L1 view of the packets
enhances the traffic statistics provided by an NMS by including
information from any traffic flowing in a shared medium such
as a wireless link. However, L1 packets carrying the same
payload can be completely different due to several factors like:

• Different RATs may use various schemes to transmit
(e.g., OFDM vs. DSSS) and modulate/code the data
(BPSK vs. QAM).

• Different MCSs produce different packet length carrying
the same data.

• Same RATs may have different L1 versions, and therefore
each version may have its specification (802.11n vs.
802.11ac).

• The L1 layer may encrypt the data before transmitting.
This heterogeneity makes the TC at the spectrum level

an arduous task. In fact, it is almost impossible to use ML
algorithms that rely on any feature engineering. Here is where
DL plays a fundamental role: this ML technique allows the
automatic feature extraction on hyper-dimensional data [44].
These capabilities have also been used in the networking
domain to perform classification tasks on high dimensional
data like spectrum samples for modulation classification [45]
and technology recognition [37], [46], or raw bytes and images
representing packets or packet flows at L1 or above for TC
[6], [10], [47].

As we have shown in Section II, L1 packets (or packet
flows) can be treated as 2D time-series or images representing
time-series. Concerning time-series data, there are DL archi-
tectures based on RNN, such as LSTMs [25], [26] and Gated
Recurrent Units (GRU) [48], [49], that are designed to exploit
the structure of sequential data. However, they are difficult to
train and suffer from low accuracy with large data sequences
[27]–[29].

One way to address the limitations of RNN architectures on
large data sequences is to use CNNs for performing the auto-
matic feature extraction while shortening the input sequence
length before it is fed into the RNN architecture [19]. However,
empirical evaluations have shown that even the recurrent layers
are no longer needed for capturing the time-series patterns with
CNNs [29]. Assuming a generic approach for the selected
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Fig. 3: TC system using spectrum data. 4 steps compose the system: a) data collection, b) L1 packets filtering/assembly, c)
zero padding or data truncation of the time series, d) Fine- or coarse-grained traffic classification

DL architecture for TC at spectrum level, Fig. 3 shows a
spectrum-based TC procedure built on top of several of the
functionalities presented in the general-purpose framework for
TC described in Section III. The procedure comprises four
main steps: data collection, L1 packet filtering/assembling,
zero-padding/truncation, and classification.

• Data collection: In this step, the algorithm continuously
captures spectrum samples and pre-processes them before
being fed to the DL model. The first process to run in this
step is the spectrum sensing to capture the samples in a
given format, such as IQ or FFT samples. These samples
are then normalized and grouped, for example, by using
a fixed-sized moving window. The fixed-size samples are
then labeled according to the RAT used to transmit them,
the absence of them, i.e., noise, and a mix of them,
i.e., interference. This step can be implemented by the
spectrum sensing and TR sub-modules of the proposed
framework as in [31].

• L1 packet assembly/filtering: One crucial aspect of the
proposed algorithm is that it assumes that an L1 packet
is a self-contained time-series structure where it can find
and learn the upper layer protocol’s pattern. A combina-
tion of IQ samples and labels from the first step provides
a mechanism to assembly the L1 packets. More precisely,
the IQ samples labeled with a given technology (step 1)
are used as a filter to generate different IQ sample flows
per technology. Then, the IQ samples labeled as noise
are used as a delimiter to assemble them into L1 packets.
Cross-correlation with sync words per technology or end-
to-end ML approaches for packet detection such as [50]–
[52] can be added to increase this step’s robustness.

• Time series Padding/Truncation: Once an L1 packet has
been assembled, or a group/batch of them, we perform
the zero-padding, for short sequences, and truncation,
for long sequences, to normalize the length of all L1
packets to a given fix value. This step is important as
the training and inference speed of DL algorithms can be
improved by using sequences of the same length [53] at
the cost of increasing the memory footprint. The optimal
L1 packet length for padding/truncation is determined
while designing and training the TC’s DL models. This
value will depend on the DL architecture, the technology
that generates the L1 packet, and the layer on which the
features have to be extracted to perform the TC.

• Fine- or coarse-grained classification: In this step, the
trained DL model consumes the padded/truncated L1
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Fig. 4: Hardware deployment and data flow from capturing
traffic and dataset creation to model training and validation

packets processed in the previous step and classify them.
This step can be performed by a unique model or a
cascade of simpler models for multi-step classification.
Let us use TC on WLAN as an example. An L1 packet
can be first classified by a model discriminating between
the management, control, and data frames at L2 (coarse-
grained classification). Then, the L1 packets classified
as data frames can be passed through a second model
that classifies them between two types of L7 traffic, e.g.,
music vs. video (coarse-grained classification). Finally,
the samples labeled as music can be further classified
according to the mobile application that generates it, e.g.,
Spotify vs. GPodcast (fine-grained classification).

The automatic execution of these four steps provides a
complete spectrum-based TC system that is also technology
agnostic. Of course, several decision choices will depend on
the RATs sharing the spectrum and their hardware capabilities
to run this algorithm, the channel bandwidth and sampling rate
of the sensing module, the traffic classes to be discriminated
and at which layer their features can be extracted, and the
architecture that is used to build the model(s). However,
the proposed framework in Section III and the procedure
proposed in this section provide enough flexibility to cover
a large number of 5G and beyond use case scenarios using
complementary RATs like WLANs and 4G/5G.

V. DATASET GENERATION AND DL MODEL DESIGN

To validate the feasibility of a spectrum-based TC system,
we design, implement, and benchmark a DL model based
on CNNs. In addition, we also design and implement a
baseline model that uses a RNN architecture, similar to the one
designed in [8], which is optimized for the provided dataset.
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The rest of this section will describe how the classification
tasks are defined, how we create the dataset to train the models
in the specified tasks, and the DL architecture design. This
section focuses on the classifier as this is the core of the
procedure proposed in Section IV.

It is important to notice that the first two stages of the
proposed procedure (data collection and packet assembly) are
implemented in an off-line fashion for model training and
validation via the dataset creation (see Section V-A). This
decision was made since 1) some of our previous works have
already shown prototypes that demonstrate is realization [31],
[32], 2) the offline data generation provides a more flexible
approach to evaluate the feasibility of performing TC directly
on L1 packets, and 3) the proposed classifiers (see Section
V-C) have as input a single L1 packet, so time-related features
that can be extracted by processing spectral data streams are
not required while the data storage requirements are minimized
in comparison to [10]. The impact of the third stage (time-
series padding/truncation) will be evaluated in Section VI.

A. L1 packets Dataset generation

Generating a dataset for spectrum-based classification is a
difficult task. However, we follow an approach that uses real
L2 packets to generate L1 packets in the form of IQ samples,
an approach similar to the one proposed in [10]. Without loss
of generality, we selected the 802.11 wireless technology for
generating the L1 packets. However, the approach described
below can also be used to generate L1 packets from other
technologies such as Long-Term Evolution (LTE) with the
same emulation platform3.

Our decision on using a mixed approach (real packet traces
+ emulation platform to generate the spectrum samples) is
motivated on the recent efforts of standardization bodies like
the ITU [54], where multi-level ML pipelines are expected
to be connected to emulation/simulation sandboxes to gen-
erate data for training and performing preliminary model
testing [55]. This approach is important to support use cases
like the one presented in this paper as generating real spectrum
data for training the ML models would require the setup and
deployment of infrastructure that is hard to obtain in real
life (e.g., isolated environments, management and control on
radio transmitter/receiver at different layers, mechanism to
change the channel conditions, etc.). These sandboxes will
provide the required flexibility to generate synthetic data to
train and validate ML models while a complete realization
of an integrated wireless and ML architecture with closed
loops between the ML deployment platform, the sandbox,
and the real network will minimize the inaccuracies of the
models inside the sandbox and increase the degree of similarity
between the sandbox and the real network.

As shown in Fig. 4, we first perform a data collection step.
In this step, we deployed an AP with wired connectivity to
the Internet. It was placed in a closed space (living room of
a home) where it shares the same channel with other APs
deployed in neighboring houses. Our AP was configured to
use 802.11n standard, with legacy compatibility, on channel

3https://www.mathworks.com/products/lte.html

1 (2.4GHz) with 20 Mhz of available bandwidth. Connected
to this AP, a mobile device was used to run several L7
applications to generate traffic. Other wireless devices were
also connected to the same AP, but they were not managed
and might be generating traffic.

This setup provides an easy-to-deploy mechanism to obtain
real traffic that is both affected by traffic generated by other
wireless devices on the same channel and a large number of
variations of the 802.11n protocol stack such as MCS adapta-
tion, L1 diversity (b, g, and/or n due to legacy compatibility
of the AP), and L2 packet diversity. Then, a sniffer node
(laptop) was used to capture packets over the air without
being associated to any WLAN. The captured packets were
encrypted as our test network and networks around it were
secured (mainly using WPA-2). The collected data were stored
in pcap files4. Each of these files is named such that we
can later on retrieve the name of the program/application
generating the traffic. The packets in these files create an
intermediate dataset.

The resulting pcaps were then passed to the pre-processing
step. In this step, the L2 packets were filtered to remove non-
802.11 packets or packets that could not be accessed by the
library used to read the pcap files. On the filtered packets,
each packet is decomposed into the Radiotap header5 and the
L2 frame. The Radiotap header, which the host machine adds,
is used to obtain the physical layer parameters used by radios
to transmit/receive the packet. We extracted some information
from the L2 packet to generate the labels associated with the
L2 type of packet (Management, Control, and Data flags), and
then it was converted to raw bytes. All the captured packets
are labeled according to the application/protocol that generated
them. As our objective is to show the potential of using a TC
system that works on L1 packets, we create labels at L2 and
L7. We describe the classification tasks that were defined based
on the generated labels in the next subsection.

The L1 dataset was then created by combining the raw
L2 packets with the information of the Physical-layer (PHY)
associated with the L2 packet. For this purpose, we use
the Matlab WLAN (2020b) toolbox6 to generate standard-
compliant waveforms of the L1 packets. To simulate the effects
of an environment like a room in a house or a small office over
the transmitted signal, the generated waveform was passed
through an 802.11n (TGn) multipath fading channel with a
delay profile model-B [56] with Gaussian noise.

The resulting L1 packets have a measured Signal-To-Noise-
Ratio (SNR) between 20 and 30dB. The modifications applied
to noise-free raw IQ samples, such as adding fading channel
effects and Gaussian noise, can be seen as data augmentation
techniques. With this approach, it is also possible to generate
additional L1 packets with other 802.11 PHY but carrying the
same L2 Data Frame and use additional channel conditions.
This removes the limitations of creating a dataset with such
properties on real environments as it will require a highly
isolated environment with programmable radios to set the

4https://gitlab.com/wireshark/wireshark/-/wikis/FileFormatReference
5https://www.radiotap.org/
6https://www.mathworks.com/products/wlan.html
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TABLE III: Description of the proposed classification tasks to evaluate the spectrum-based traffic recognition approach.

Task ID Traffic Classification
Task

Traffic Classification
type Input representation Layer on which the

task has meaning Number of Classes Classes

1 L2 packet type Coarse-grained IQ samples (Layer 1) L2 3 Management, Control, Data
2 L7 Application type Coarse-grained IQ samples (Layer 1) L7 3 Audio, Video, No application type

3 L7 Application Fine-grained IQ samples (Layer 1) L7 7 Netflix, Youtube, Twitch, Spotify,
Gpodcast, TuneIn, No application

TABLE IV: Sample distribution per task label and per tech-
nology within the task labels (task 1)

Total Samples Samples per
Task Label

Technology
802.11b 802.11g 802.11n

466348

Mgmt:
75156 74662 494 0

Ctrl:
250967 5340 245627 0

Data: 72264 5030 337 134858

TABLE V: L1 and L2 packet length stats per label (task 1)

L1
(Values in IQ pairs)

L2
(Values in bytes)

Mgmt Ctrl Data Mgmt Ctrl Data
Mean 25139.37 676.54 4681.98 263.09 21.81 1066.93
Std 3683.24 434.35 3511.11 37.36 7.36 653.55
Min 1600 560 640 30 14 28
Max 37048 4928 131824 397 32 1546

desirable parameters at different radio stack layers and with
controllable devices that generate different environment states
where the label of generated packet is known.

To the best of our knowledge, this is the first public dataset
that contains 802.11 standard-compliant L1 waveforms for
testing traffic classification at spectrum level. The waveforms
are generated by different 802.11 technologies (b, g, n),
which result in different transmission schemes such as DSSS
in 802.11b and OFDM in 802.11g/n, different types of L2
frames (management, control and data), and multiple MCS
(modulations such as BPSK and CCK for 802.11b and BPSK,
QPSK, 16-QAM, and 64-QAM for 802.11g/n with coding
rates of 1/2, 3/4, and 5/6 according to the standard and
modulation selected). Moreover, the payload carried by these
L1 packets (information at L2 and above) were generated using
real traces of L7 application running on a mobile device and
connected to a secured 802.11 AP with WPA-2. As a result,
the provided dataset is more realistic and complex than the
one used in [8], which is limited to High-level Data Link
Control (HDLC), a simpler L2 protocol whose unencrypted
waveforms are modulated only with QPSK at a unique data
rate of 1Mbps. Finally, it is worth to mention that the resulting
dataset contains a single L1 packet per sample, which is
equivalent to the expected output of steps 1 and 2 of the
proposed framework, where each packet is a sequence of IQ
samples. This approach reduces the storage requirements for
the dataset as any IQ sample that is not part of a L1 packet,
e.g., noise, is discarded.

B. Traffic Classification tasks

One of the properties to benchmark our approach is the
capability to use L1 packets to classify traffic at different layers
and different granularity even if the packets are encrypted.
For this purpose, the three classification tasks that define the

TABLE VI: Sample distribution per task label and per tech-
nology within the task labels (task 2 and 3)

Total
Samples

Samples per
Class Task 3

Samples per
Class Task 2

Frames
Mgmt Ctrl Data

140665

Spotify:
13822 Audio:

39053 0 0 39053Tunein:
10229

Gpodcast:
15002

Youtube:
16671 Video:

56253 0 0 56253Netflix:
18268

Twitch:
21314

No-App:
45359

No-App-Type:
45359 14805 30554 0

TABLE VII: L1 and L2 packet length stats per label (task 2)
L1

(Values in IQ pairs)
L2

(Values in bytes)
Audio Video No-App-Type Audio Video No-App-Type

Mean 5.77K 10.7K 9.5K 1.2K 1.24K 101.92
Std 5.03K 14.2K 11K 565.77 553.12 123.29
Min 640 640 560 28 28 14
Max 38.9K 138.2K 43.4K 1.5K 1546 579

selected labels are described below. Table III shows a summary
of the proposed traffic classification tasks based on L1 packets.

1) Task 1 - L2 frame characterization: In this coarse-
grained task, the TC algorithm uses L1 packets to determine
if the transmitted packet is a Management, Control, or Data
L2 frame in 802.11.

2) Task 2 - Application characterization: In this coarse-
grained task, the TC algorithm uses L1 packets to determine
the type of application inside the transmitted packet (e.g.,
audio or video). As only L2 Data frames carry L7 application
data, then the algorithm should also discriminate packets that
do not carry data.

3) Task 3 - Application identification: In this fine-grained
task, the TC algorithm discriminates between the actual appli-
cations generating the L7 traffic.

Table IV shows the number of samples and their distribution
in terms of frame type and the physical layer technology used
to transmit the packets in the generated dataset for task 1. The
total number of samples is 466K, where 16% are Management,
54% are Control, and 30% are Data frames. One interesting
characteristic of this dataset is that each type of frame was
mostly generated with a different 802.11 physical layer. For
example, most of the Management frames were transmitted
with 802.11b, which is expected as the APs in 2.4GHz work
in compatibility mode and use the oldest technology (802.11b)
and lowest MCS to transmit their Beacon frames aiming to
increase its visibility and resilience. Table V shows that the
length distribution is highly associated with the type of frame
in terms of packet length (byte and number of IQ samples
generated). While most of the Management frames have a
mean of 25K IQ samples, Data frames have a mean of 4.6K,
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TABLE VIII: L1 and L2 packet length stats per class (task 3)

L1
(Values in IQ pairs)

L2
(Values in bytes)

Spotify Tunein Gpodcast Youtube Netflix Twitch No-App Spotify Tunein Gpodcast Youtube Netflix Twitch No-App
Mean 5.4K 2.9K 8K 7.3K 10.8K 13.2K 9.5K 1.4K 709.14 1.5K 1.1K 1.3K 1.3K 101.92
Std 2.0K 2K 6.9K 7.1K 12K 18.8K 11K 460.12 675.67 263.5 544.84 545.87 550.61 123.29
Min 640 640 960 640 640 640 560 28 28 78 28 28 28 14
Max 38.9K 38.9K 38.9K 65K 138.2K 138.2K 43K 1.5K 1.5K 1.5K 1.5K 1.5K 1.5K 579

and Control only 0.6K. Compared to the packet length at
L2, which is the typical representation used by byte-based
TC systems, they differ in several orders of magnitude. In
this dataset, the largest L2 packet did not exceed a length of
1.5Kbytes, which is only 1.1% of the largest L1 packet length
found in this dataset (131K IQ pairs).

The dataset for task 2 and 3 is composed of 140K samples,
where 67,8% of the packets are L2 Data type, while the rest
are Management (10.5%) and Control (21.7%) (see Table VI).
As a result of the 802.11n encryption, no payload of the
Data frames can extract information from higher layers, so
traditional approaches like port mapping and DPI will not
work. Although tasks 2 and 3 are focused on TC at L7, the
proposed TC system uses L1 packets as input. Therefore the
class formed by Management and Control packets provides
a way to filter L1 packets that do not carry L7 information.
Analyzing Table VI, we can see that 27.8% of L1 packets
were labeled as Audio while and 40% were labeled as Video
during the dataset generation in terms of coarse-grained labels.
Similarly, in terms of fine-grained labels, 10% of the L1
packets in this dataset are generated by the Spotify application,
7.2% by TuneIn, 10.6% by Gpodcast, 11.9% by YouTube, 13%
by Netflix, and 15.1% by Twitch.

Focusing on task 2, Table VII shows that, on average, L1
packets carrying Audio data are smaller than those carrying
Video data. However, this is not the case in L2 representation,
where both kinds of packets shared similar statistical proper-
ties. Similarly, Table VIII shows that L1 representation has
more variation on the packet length distribution than L2 ones.
The variations on L1 packet lengths are mainly due to the
changes on MCS. For example, 75% of the Data frames in
the TuneIn application were using MCS 7, while this number
dropped to 20% in Twitch L1 packets. In fact, 70% of the
Twitch L1 packets are using MCS values between 3 and 7.
This provides an interesting set of dynamic parameters that
make this representation of the data challenging to extract
features.

Once the dataset is created, the last steps of the processing
are executed: model creation, training with validation, and
testing, which will be described in the next sub-section.

C. DL models design and training

As presented in Section II, the literature is quite limited
on TC using raw IQ samples [8], [10]. Thus, to realize
the proposed framework to perform TC at any radio stack,
we designed and implemented a DL model based on CNNs
to overcome the limitations of previous works that either
use a RNN architecture [8], or require specific procedures
to separate different traffic from different users at spectrum
level [10]. As proposed in Section III and realized by the

approach presented in Section IV, the object classification for
TC models are the IQ values associated to single L1 packet.
To the best knowledge of the authors, this is the first time that
a CNN is used to solve TC at spectrum level. As baseline, we
implemented, fine-tuned and optimized the RNN architecture
proposed in [8] to the dataset used in this work. Fig. 5 shows
the architecture of the two Neural Networks (NNs) designed
for validating our approach.

One of the DL models’ advantage is their capability to per-
form automatic feature extraction on raw data to discriminate
among multiple classes. In fact, it is that property that allows
our approach to perform TC at any layer of the radio stack,
e.g., L2 packet type or L7 application type, while using the
same input representation. Otherwise, it will be required to use
expert knowledge to determine the raw signal features that are
useful to discriminate among traffic classes.

The design of the CNN architecture was based on some
of our previous experiences solving classification tasks using
raw spectrum data such as in [7], [10], [33], [34], [37], [39].
More precisely, we started with a 2D-CNN architecture that
worked well in the task of TR with raw IQ samples (see Fig.
4 on [37]), and then we performed a fine-tuning step where
the number of Convolutional (Conv) and Dense layers, the
number of filters, the filter kernel size of the Conv layers, the
maximum (max) pooling windows size, the dropout rate, and
the learning rate were varied.

To find the optimal number of Conv and Dense layers, we
varied their number between 2 and 4. The lower limit is based
on the fact that we need at least 2 layers to learn non-linear
functions, and the upper limit is set to 4 as more than that
decreased the model’s performance on all the experiments.
For the number of filters, we tried values in the range
between 8 and 128 (in steps of 8). Values above that limit
increase the complexity of the CNN to the point that makes
it very impractical. To reduce the search space of the optimal
configuration, we started by setting the same number of filters
on all the layers, and when we found a value that yielded a
good performance, we tried to vary this number among the
layers. However, keeping the same number of filters on all the
layers provided the best results in our case.

With respect to the filter kernel size, we first tried with
values in the set {2, 3, 5, 7}. These values worked well for TR
[37] and flow-level traffic recognition using images as input
[10]. However, as it will be shown in Section VI, this range
did not work well for classifying L7 applications (tasks 2 and
3). Therefore, we increased the range of the filter kernel size
and explored values between 8 and 64 (in steps of 8). The
results indicated that for solving task 1, the CNN architecture
only required an small kernel filter size as it was similar to
a TR task. This can be explained as the frame type (task 1)
is related to the 802.11 standard used to transmit them as
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TABLE IX: Summary of the parameters of the CNN and GRU-NN architectures that were used to perform the different
classification task using IQ samples as input data.

Classification Task
Task-dependent parameters Shared training parameters

CNN GRU NN optimizer learning
rate

Maximum
number of epochs

Batch
size

Loss
function

Early Stopping
monitored function

Model parameters
(N=5000)

Kernel Size
(F)

Model parameters
(N=5000)

GRU units
(R)

adam 0.001 200 64 Categorical
cross-entropy

Validation
lossFrame characterization 106K 2 276K 128

Application characterization 3.72M 32 1.03M 256
Application identification 3.72M 32 1.03M 256

indicated in Table IV. In contrast, tasks 2 and 3 require a
larger kernel size to learn helpful information at L7 directly
from the spectrum. It is important to recall that increasing
the kernel size helps to augment the reception field, which is
important in classification tasks with large sequences [57].

The number of dense layers was also selected in the range
between 2 and 4, with decreasing number of neurons from
the inner layer towards the output layer with a maximum
value of 512 and a minimum value of 16 in the layer before
the output. As it can be noticed, we follow the traditional
approach of narrowing the network to force it to remove
useless information while keeping only the relevant infor-
mation to reduce computational cost. The resulting CNN
architecture is composed of four Conv layers, followed by four
dense connected layers. All the layers have ReLU activation
functions, except the last one with a soft-max function for
classification, and are followed by a dropout layer to improve
generalization (reduce overfitting) and a batch normalization
layer to accelerate training. Conv layers are also followed by
max-pooling layers to down-sample the input. Fig. 5a shows
the resulting CNN-based architecture proposed in this paper.

It is important to notice that during the design and fine-
tuning phase, we also tried other architectures that have been
used to solve classification tasks with time-series data such
as CNN+RNN [29] and WaveNet [57], which increases the
learning capabilities on long sequences by increasing the
reception field without increasing the filter kernel size as it
is required in tradition Conv layers. However, they did not
provide better performance than the CNN model for this paper.

The RNN architecture, designed as baseline, is inspired on
[8] with a fine-tuning and optimization steps based on the
dataset provided in this paper. Following a similar approach
as with the CNN, we varied the number of recurrent layers
and the type and number of recurrent units to find the model
that performs the best. The number of recurrent layers varied
from 1 to 4, achieving the best performance with 3 recurrent
layers, result that is aligned with [8]. We also varied the type
of recurrent units between GRU and LSTM and we found that
GRU had similar or outperformed the LSTM in both execution
time and accuracy in all the experiments we run. This result
is also aligned with previous findings in other comparative
studies such as in [49]. In terms of number of recurrent units,
we searched the best value in the range between 64 to 384, in
steps of 64 units. The upper limit was set in 384 since larger
values generate executions times that are prohibited for real-
time classification. Again, the best performance was achieved
with values in the set {128, 256}.

With respect to the dense layers, they have the same con-
figuration as the CNN architecture. This decision was made to
provide similar learning capacities in the classification layers
between the two models and allow a more fair comparison. We
also tried other configurations for the dense layers in the RNN,
but the one used in the CNN always provided the same or
better accuracy. As indicated above, the three Recurrent layers
have GRU units with recurrent activation function sigmoid and
activation tanh. This combination of functions allows using a
fast implementation to improve performance7. The Recurrent

7https://keras.io/api/layers/recurrent layers/gru/
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Fig. 6: Training time per epoch (left) and accuracy on the test dataset (right) with respect to the input size N in the task 1

layers also are followed by dropout layers to improve gen-
eralization. Fig. 5b shows the resulting RNN model, which
we call GRU-NN, with the same hyper-parameters for the 3
tasks. Similar to the CNN models, the only hyper-parameter
that changes among tasks is the number of GRU units (R),
where it increases from 128 in task 1 to 256 in tasks 2 and 3.

During the fine-tuning of both models, the hyper-parameters
were selected using a multi-round approach of hyper-
parameter search over hundreds of executions. The first round
was using a reduced version of the task 3 dataset. Then, the
resulting CNN and GRU-NN architectures were used as a
baseline for another round of hyper-parameter search but using
a reduced version of the dataset of tasks 1 and 2. Similarly,
it was determined that the best results were obtained using
Adam optimizer [58] with a learning rate of 0.001 and a batch
size of 64. We use categorical cross-entropy as a loss function
and early stopping as a second method for regularization.
For each task, a CNN and a RNN were created. Given the
size of the generated dataset and the number of samples
per label (≥ 10K), we used hold-out cross-validation (i.e.,
validation with independent test set) to partition the dataset.
While the size of the dataset allows maintaining a large number
of samples in the training set, we can still guarantee that
knowledge about the test set is not leaked into the model so
we can also ensure generalization performance. As a result,
the dataset was partitioned such that the models were trained
with 70% of the samples, while 15% was used for validation
and 15% was used for testing. The models were implemented
in python, Tensorflow 2.18 was used to create, train, and
evaluate the resulting models, and the hyper-parameter search
was performed using hyperas9. The training was accelerated
by using Tesla V100 GPUs in our GPULab facility10.

VI. RESULTS AND DISCUSSION

In this section, we present the performance evaluations of
the two models proposed in Section V. For the L2 Frame
type TC (task 1), we balanced the first dataset by performing
under-sampling. As a result, the evaluation dataset contains
75k samples per class, which is driven by the class with a
lower number of samples (see Table V). Performing the same
operation on the second dataset to generate the samples used

8https://www.tensorflow.org/
9https://github.com/maxpumperla/hyperas
10https://doc.ilabt.imec.be/ilabt/gpulab/index.html

TABLE X: Summary of the metrics used to evaluate the
quality of the models’ predictions with the largest input lengths

Task Input length
(IQ samples) Model Quality of prediction metrics (%)

Accuracy Precision Recall F1-score

1
3000 CNN 99.86 99.86 99.86 99.86

GRU-NN 98.07 98.18 98.07 98.09

5000 CNN 99.86 99.86 99.86 99.86
GRU-NN 99.28 99.30 99.29 99.29

2
3000 CNN 97.78 97.84 97.82 97.82

GRU-NN 76.03 75.96 76.40 75.68

5000 CNN 97.63 97.67 97.67 97.67
GRU-NN 78.10 78.33 78.45 78.21

3
3000 CNN 90.44 91.16 90.45 90.60

GRU-NN 52.36 53.09 52.58 50.44

5000 CNN 89.28 90.30 89.25 89.44
GRU-NN 54.48 56.05 54.77 52.82

for the L7 Application type TC (task 2) and L7 application TC
(task 3), the resulting datasets contains 39K samples per class
in task 2 and 10.2K samples per class in task 3 (see Tables V
and V, respectively).

We run five evaluations on each task, where both models
were trained, validated, and tested over different lengths of
the input L1 packet in number of IQ sample pairs (100, 300,
500, 800, 1K, 3K, 5K). Notice that when the length of the
L1 packet was shorter than the required input length, we
apply a zero-padding operation at the end to adjust it (post
padding). Otherwise, we truncate it to the required length
(post truncation). For each task, we select the results from the
best evaluations per model and input size. In the following
sub-sections, we will analyze the models’ performance in
terms of quality of prediction (accuracy and macro-averaged11

precision, recall, and F1-score) over the test dataset, training
time per epoch, and prediction time per sample. These three
metrics are good indicators of how good the model is when
classifying unseen data, how costly/hard it is to fine-tune
and train the model, and the expected execution time when
predictions have to be done over a group of samples.

A. L2 Frame characterization task (Task 1)

In this coarse-grained TC task, the models must identify if
a given L1 packet carries an L2 frame of type Management,
Control, or Data. This was the most straightforward task
among the three proposed in this paper. One indicator is the
small filter kernel size, set to 2, or a reduced number of GRU
units, only 128, that were required to achieve high accuracy.
Fig. 6 (right) shows that even with short sequences, e.g., 500

11The metrics are calculated for each label, and find their unweighted mean.
We used the unweighted mean as all the datasets are already balanced.



ACCEPTED FOR PUBLICATION IN THE IEEE TNSM SI ON EMBRACING AI FOR NETWORK AND SERVICE MANAGEMENT 14

Mgm
t

Ctrl
Data

Predicted label
accuracy=0.87; misclass=0.13

Mgmt

Ctrl

Data

Tr
ue

 la
be

l
0.9933 0.0001 0.0066

0.0201 0.8187 0.1611

0.0338 0.1593 0.8069

Confusion matrix

1000

2000

3000

4000

5000

6000

7000

(a) N = 100

Mgm
t

Ctrl
Data

Predicted label
accuracy=0.98; misclass=0.02

Mgmt

Ctrl

Data

Tr
ue

 la
be

l

1.0000 0.0000 0.0000

0.0201 0.9793 0.0005

0.0338 0.0004 0.9658

Confusion matrix

0

1000

2000

3000

4000

5000

6000

7000

(b) N = 500

Mgm
t

Ctrl
Data

Predicted label
accuracy=1.00; misclass=0.00

Mgmt

Ctrl

Data

Tr
ue

 la
be

l

0.9991 0.0000 0.0009

0.0004 0.9996 0.0000

0.0026 0.0001 0.9972

Confusion matrix

0

1000

2000

3000

4000

5000

6000

7000

(c) N = 3000

Fig. 7: Test dataset normalized confusion matrices with different input sizes N (number of IQ samples) in task 1

IQ samples per packet, the models already achieve around
98% accuracy. When the sequence had a length of 3K and
5K IQ samples, the CNN model can outperform the GRU-NN
model and achieved an accuracy above 99.86%, as shown in
Table X. Finally, we notice that with an input length of 3K and
5K, the CNN model achieved the same value in the prediction
quality metrics (with up to 2 decimal points), in average. This
result can be expected when a large and well-balanced dataset
is used to test a classifier that can correctly discriminate each
class with almost zero miss-classifications.

Fig. 7 shows the resulting confusion matrices of different
input lengths in the CNN. Interestingly, even with an input
length of 100 IQ samples, the models can discriminate with
high accuracy the L1 packets carrying Management frames
from the other type of frames. At the same time, it still has
trouble classifying the Control and Data frames. However,
this can be explained as Management frames were mainly
transmitted using 802.11b (see Table IV, in which waveform
is generated using the DSSS modulation technique, while the
Control and Data frames are modulated using OFDM.

Moving to the performance in terms of the training time,
we can see in Fig. 6 (left) that the GRU-NN has a training
time per epoch that increases linearly to the input length (from
66s with input length 100 to 1646s with input length 5K).
Contrary, the CNN training time per epoch increases sub-linear
(from 21s with length 100 to 30s with length 5K). This result
implies that GRU-NNs are hard to fine-tune and make them
unfeasible solutions when the problem requires long sequences
to improve accuracy. Although this was an expected result,
since RNN-based architectures process their input sequentially
while CNN can exploit parallel processing, it is interesting
to experimentally validate that CNNs outperform RNNs in
sequence-to-label classification tasks using radio spectrum
data as it has been found in other research fields like speech
recognition and voice generation [57].

The final metric to evaluate is how long (on average) takes
the model to perform a prediction over a single L1 packet.
Table XI shows that the CNN can classify an L1 packet

TABLE XI: Prediction time per single L1 packet task 1

Input length
(IQ samples) Model Average prediction time

(ms)

3000 CNN 0.092
GRU-NN 4.71

containing 3K IQ samples in 92µs, 51 times faster than the
GRU-NN. The pcap that generates this dataset includes 466K
packets captured in 1193s. It gives us 390 packets per second
on average. Using the CNN model, those 390 packets would be
classified in less than 35ms. This prediction time is auspicious
for its deployment in real-time traffic analyzers. Some recent
works have shown that similar pre-processing steps on 0.5s
of spectrum data, i.e., get spectrum data, framing/packetizing
it, and formatting it before sending it to the classifier, can be
executed in less than 200ms [31].

B. L7 Application characterization task (Task 2)

This coarse-grained TC task challenges the trained models
to classify L1 packets according to the type of application
being carried at L7. The three classes to discriminate are
Video, Audio, and packets that do not carry L7 application data
(No App-Type). When we defined this task, we hypothesized
that it should be more challenging than task 1. Our reasoning
comes from two facts: first, all L1 packets carrying Data
frames were transmitted using 802.11n similar to the task
1 dataset, and 2) the high standard deviation on both Audio
and Video L1 packet lengths (see Table VII) would not allow
using this feature for discriminating between them. One way
to validate our hypothesis is by analyzing the model size, the
achieved accuracy, and the impact of the input size on it.

Let us start by analyzing the model size (see Table IX). Note
that while task 1 only requires a kernel size of 2, tasks 2 and
3 require a kernel size of 32. The increasing filter kernel size
is translated in a larger model, from 106K to 3.7M trainable
parameters, and a larger reception field to extract the raw
signal features. Here the reception field can be understood
as the number of consecutive IQ samples used to represent
the learned features. Similarly, the GRU-NN also increases its
learning capabilities by setting the number of GRU to 256,
so double the number compared to task 1, and moving from
276K to 1.03M trainable parameters.

In terms of prediction quality, the CNN model outperforms
the GRU-NN model by far in all the metrics, but, in both
cases, the achieved values are lower than the ones achieved
in task 1, even with a larger input size. More in detail, Fig. 8
(right) shows that while the CNN model was able to achieve
97.8% accuracy on the test dataset with an input length of
3K IQ samples, the GRU could only achieve 78.1% with an
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Fig. 8: Training time per epoch (left) and accuracy on the test dataset (right) with respect to the input size N in the task 2
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Fig. 9: Test dataset normalized confusion matrices with different input sizes N (number of IQ samples) in task 2

input length of 5K IQ samples. In fact, the GRU-NN dropped
its accuracy with an input length larger than 500 IQ samples,
which was recovered with an input length of 3K, and it was
improved at 5K by only 2%. This behavior has also been found
in previous works in this area (see Fig. 7 in [8]). It may be
possible that the GRU-NN can improve their accuracy with
larger sequences, but as we will analyze below, its training
cost makes it unfeasible (around 21min per training epoch).
Notice that the CNN model achieved 97.6% with an input
length of 5K IQ samples, indicating that increasing the input
length does not help discriminate among the classes, at least
from 3K to 5K. Of course, as the GRU-NN showed it, longer
sequences may improve it. Similar to task 1, the CNN model
achieved the similar prediction quality metrics, in average.

Focused on the CNN, which provides the best performance,
Fig. 9 shows that with an input length of 500 IQ samples, the
discrimination between L1 packets with Management/Control
frames (no application type) is perfect against Data frames
(Audio+Video), which is expected based on the results on
task 1. However, the CNN model has difficulties separating
L1 packets carrying audio and video. With an input length
of 1K IQ samples, the CNN model achieved 92.1% accuracy
(above 88% if we count only audio and video). With an input
length of 3K, this model achieved an accuracy of 97.8% (above
96.7% considering only audio and video classes). This is quite
impressive because the input data are L1 packets carrying
L2-L7 payloads that were encrypted using the WPA-2 secure
method, transmitted with different MCS values, and include
simulated channel effects and noise.

Similar to task 1, Fig. 8 (left) shows the linear dependency
of the GRU-NN training time per epoch concerning the input

TABLE XII: Prediction time per single L1 packet in task 2

Input length
(IQ samples) Model Average prediction time

(ms)

3000 CNN 0.15
GRU-NN 5.13

length, while this relation is sub-linear with the CNN (from
17s with 100 IQ samples to 127s with 5K). However, the
slope in the CNN line is higher compared to the results in task
1. This is mainly due to the model’s larger size. This result
implies that the CNN model is faster to train and fine-tune than
the GRU-NN, similar to the results in task 1, but it also shows
that the CNN model performs much better than the RNN
architecture when using longer sequences of data. The better
performance of the CNN is also reflected in the prediction
time. Table XII shows that the CNN takes 150µs to classify
an L1 packet containing 3K IQ, 34 times faster than the GRU-
NN. If we analyze the pcap of the twitch video app, which
is the application with the largest mean packet length (see
Table VIII), it contains 21.7K packets, which were captured
in 159s. It gives us 136 packets per second on average. Using
the CNN model, those 136 packets would be classified in less
than 20ms. Again, encouraging results for TC on L1 packets
in real-time.

C. L7 Application identification TC task (Task 3)

Task 2 is a coarse-grain version of this task, where the
models must classify each L1 packet according to the actual
application generating it. In addition to the class that identifies
the packets that do not carry L7 application data (No App),
there are six other classes: 3 classes of applications that
generate video-type traffic (Youtube, Netflix, Twitch) and 3
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Fig. 10: Test dataset normalized confusion matrices with different input sizes N (number of IQ samples) in task 3
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Fig. 11: Accuracy on the test dataset with respect to the input
size N in the task 3

classes of applications that generate audio-type traffic (Spotify,
TuneIn, GPodcast). Section V-B2 and V-B3 provide more
detailed information about the dataset used for this task.

This task is useful to determine how much more challenging
or easier is the TC if the traffic classes are fine-grained. We
hypothesized that this task should be more problematic than
its coarse-grained version as the fine-grained applications may
have similar statistical properties, and the L7 protocols may
also be similar. This is, of course, exploited by the coarse-
grained classification, but it can cause troubles to the fine-
grained one. This idea comes from analyzing Table VIII,
where we can see that while Netflix and Twitch L1 packets
have similar statistical length values, they are far from the
length statistics of audio applications. On the other hand, audio
applications have statistical length values similar to each other,
which may increase the difficulty of discriminating among
them. Notice that this intuition is entirely contrary to the
results found in [6], where the traffic characterization task
results are better than the application classification.

Fig. 11 indicates that this task is more challenging than
the two previous ones. Although the results are very similar
to the ones in Fig. 8 (right), there is a drop in accuracy of
7.4% in the CNN (90.4% vs. 97.8% with 3K input length) and
23% in the GRU-NN (54.4% vs. 78.1% with 5K input length)
compared to task 2. Focusing on the CNN model results,
Fig. 10 shows clearly that the sources of misclassification are
located in Netflix vs. Twitch (adding around 19% misclassifi-
cations) and Spotify vs. TuneIn ∩ Gpodcast (adding about 17%
misclassifications). Finally, Table X shows that the precision
of the CNN model is higher than its recall for this task, in

average. In other words, the CNN model tends to have less
false positives (mostly concentrated in Spotify, Netflix, and
Twitch) than false negatives (mostly concentrated in TuneIn ,
Gpodcast, and Netflix). We omit the results in terms of training
time per epoch and prediction time per L1 packet as they are
congruent to the results in the previous task as they used the
same dataset but with the fine-grained labels.

D. Comparison against DL and statistical ML on bytes

To compare the quality of the spectrum-based TC algorithm
trained and evaluated in the previous sub-sections, Table XIII
compares its accuracy against two state-of-the-art DL models
that receive a byte representation of the packet at L2, and two
ML classifiers, trained with the Gradient Boost (GB) ensemble
method. For the statistical ML-based models, we use as unique
input feature the packet’s input representation length. Note that
we can only use this feature for all three tasks as the 802.11n
L2 packet’s payload was encrypted.

The two DL models for the byte/protocol representation
use the same architectures and hyper-parameter configuration
as the spectrum-based models presented in Section IV and
use a fixed-size input of 1546 bytes, the largest L2 packet
captured in the datasets (see Table VII), with post zero-
padding/truncation. The GB models were also fine-tuned via
hyper-parameter search, and the best results were achieved
using a learning rate of 0.1, maximum depth of the individual
regression estimators set to 5, 500 number of boosting stages,
and 95% of the samples are used for fitting the individual base
learners for both models.

As expected, the DL models working on the byte repre-
sentation of the packet at L2 provide the highest accuracy on
all the three evaluated tasks. This can be explained by the
well-defined framing at L2 and the shorter length of the input
data compared to the dynamic nature of the L1 representation
of the input data, where the L1 header has a well-defined
structure, but the number of IQ samples representing the
payload depends on the channel conditions and the MCS
values used while transmitting. This is also reflected in the
high and similar accuracy obtained by both the CNN and GRU
architectures used in the byte-based approach.

This is the first work that also performs TC on raw bytes
from encrypted 802.11n L2 packets to the best knowledge
of the authors. Although no pre-processing was done on the
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TABLE XIII: Comparison of the 3 different approaches for TC on the three evaluated tasks: DL models using raw spectrum
and byte representation and Gradient Boosting using the input length as feature

Packet
representation

Machine Learning
Method Algorithm Features Input Length

(Number of Features)
Accuracy

L2 Frame
characterization

L7 App
characterization

L7 App
Identification

Spectrum NN CNN Raw IQ samples
with zero-padding

3000 99.86% 97.78% 90.44%
GRU 5000 99.28% 78.10% 54.48%

Ensemble Gradient Boosting Number of IQ samples
(L1 packet length) 1 99.06% 80.83% 59.66%

Bytes NN CNN Raw Bytes
with zero-padding 1546 99.99% 99.16% 94.81%

GRU 99.99% 99.12% 94.46%

Ensemble Gradient Boosting Number of bytes
(L2 packet length) 1 99.86% 76.35% 54.84%

raw packets except padding/truncation, the obtained results
are aligned with other approaches using DL on raw bytes
with more pre-processing steps given the protocol structure’s
visibility on higher layers [6]. However, the spectrum based
approach still provides a very competitive accuracy with a
similar performance on task 1, a drop of 1.38% in task
2, and 4.37% in task 3, which is outstanding given the
added complexity of using spectral data as input, i.e., multi-
dimensional, longer sequences, in comparison to an input
using raw bytes. In the case of specialized hardware that can
demodulate and decode the L1 packets of a given technology,
it is clear that the packet-based approach, even on encrypted
packets, will be the natural choice to guarantee performance
in both accuracy and execution time. However, a realization
of the proposed framework removes the need for specialized
hardware as L1 packets of any technology can be captured and
classified without the need of demodulating and decoding them
with a limited negative impact on performance. Of course, the
proposed framework opens new challenges on reducing the
complexity and improving the performance not only in the
classifier but also along the whole chain.

Finally, the GB models show the worst performance, but
their results indicate that the input data’s length was enough
to solve task 1. This result was expected given the high
correlation between L2 frame type and the packet length in
the dataset (see Table IV). However, this feature is not enough
to differentiate the L7 application in tasks 2 and 3. On the
contrary, the DL models can automatically extract hidden
features from the raw data, probably higher-level protocol
structures relevant to solving the other two TC tasks with
minimal pre-processing.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a general framework to achieve TC
at any layer in the radio stack. With this framework, a
ImRAT GW would be able perform TC on any packet that
is being transmitted over the air in the surroundings of the
GW, independent of the technology and the wireless domain
which packets belong. We also proposed a novel procedure to
perform TC on raw spectrum data on top of this framework.
This procedure first combines spectrum sensing with a state-
of-the-art approach for recognizing radio technologies to build
a PHY representation of the packets. Then, a DL architecture
is used to perform TC on the L1 packet. As a result, a unique
representation of a single L1 packet is needed to perform
the TC at any layer as it already carries all the information
describing the different protocols at L2 and above without

the added complexity to perform demodulation, decoding, and
decryption.

To realize the proposed procedure, we focused on build-
ing and evaluating two DL architectures to classify the L1
packets. For this, we created and performed a statistical
analysis on two different datasets that were used to solve
three TC tasks: one coarse-grained at L2 (task 1: frame
identification in 802.11b/g/n), one coarse-grained at L7 (task2:
Audio/Video/No-App type), and one fine-grained at L7 (task3:
3 Audio apps, 3 Video apps, No-App). The datasets were
generated by combining packet traces from real transmissions
with a standard-compliant waveform generator for 802.11
radio technologies.

Performance evaluations showed that the DL model based
on CNN could achieve the best performance on the three
proposed tasks, achieving above 99.9% in task accuracy
discriminating among classes in task 1, 97.8% in task 2,
and 92% in task 3. These results are very promising if we
compared them to byte-based DL models, where spectrum-
based achieved similar accuracy on task 1, a drop of 1.38%
in task 2, and 4.37% in task 3. Finally, the proposed DL
architecture could perform the prediction of a given class in
the order of microseconds, prediction times that are compelling
for integrating into spectrum-based real-time traffic analyzers.

As future work, there are several challenges to be addressed
with the proposed framework and the spectrum-based pro-
cedure for TC. First, it is required to evaluate the proposed
DL models on L1 packets affected by real channel conditions
as a decreasing of performance is expected as demonstrated
in [24]. Depending on the results, several mechanisms can
be used to minimize the negative impact on accuracy. For
example, the mechanism we used to create the dataset, i.e.,
generating synthetic standard-compliant L1 packets that carry
real L2 frames, can perform data augmentation to improve
generalization. Second, the evaluations were only carried on
the proposed DL models proposed to solve the TC tasks.
Although the prediction time was very promising, we only
focused on the classification tasks with L1 packets, where the
models run on high-end hardware, and we did not benchmark
the pre-processing step nor compared the models against state-
of-the-art TC systems on L2. Therefore, it is essential to
benchmark the complete procedure in several implementation
platforms. This includes SDR-only, SDR+host machine, and
RAT on-chip for pre-processing and CPU, low-end GPUs,
high-end GPUs, and their respective comparison against byte-
based approaches. Those evaluations will provide an initial
base on further improvement on the proposed models such that
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they can run on constrained-resource devices and find a good
trade-off between model size and accuracy while providing
competitive results compared to TC systems on L2 packets.

A third open challenge is to reduce the complexity of the
proposed approach so that it can be deployed at the network
edge and solve the three proposed tasks simultaneously. In
this paper, we created three different TC models to solve
three different but related tasks. This approach does not scale
well at the network edge as it involves a parallel execution
of the various models (for training and inference) with the
inevitable increment of computational and storage require-
ments. To overcome this problem, MTL should be explored
to reduce the computing/storage requirements, achieve higher
performance, and simplify the training procedure. As recently
investigated and demonstrated in [21], and combined with
distributed learning approaches, such as Gossip Learning (GL)
used in [23], MTL might speed up the learning process
and increase the system scalability. A related problem is the
possible bias and damage on the model performance caused
by using fixed-length input as required by CNNs in the
presence of significant variations in the input data’s length. An
alternative to address this problem is to explore RNNs again
in the context of MTL (e.g., RNN-based AEs) to reduce the
final complexity of the resulting model. However, a careful
performance analysis should be carried out to determine if
the reduction in computation complexity obtained using MTL
compensates the inevitable increase of complexity of using
RNNs to support input of variable lengths instead of CNNs.

Finally, transmitting L1 packets over the air will result
in receiving packets with a large variety of SNR values
compared to the values used in the generated dataset (20 to
30dB). Changes in the SNR values will modify the original
signal and, in the case of low SNR values, it will negatively
impact the performance of the DL classifier as shown in
previous work [37], [45]. For this, we plan to augment the
provided dataset with packets generated with a larger set
of SNR values (e.g., in the range between -20 to 20 dB)
so a SNR sensitivity analysis can be performed. With the
resulting dataset, researchers would be able to investigate
mechanisms to mitigate the negative impact on the classifier’
performance when packets are received with low SNR. For
instance, the use of denoising AEs as feature extractors may
improve the performance in the presence of high levels of
noise. Additionally, the augmented dataset could foster the
development and implementation of novel algorithms, closing
the performance gap when a classifier is trained with synthetic,
but standard compliant dataset, deployed in a real environment.
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