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A METHOD TO SOLVE THE DIOPHANTINE EQUATION 
ax2 − by2 + c = 0

ABSTRACT  
We consider the equation  

(1) ax2 − by2 + c = 0 , with  a,b ∈N*  and  c ∈Z* .
It is a generalization of the Pell’s equation: x2 − Dy2 = 1 . Here, we show that: if 

the equation has an integer solution and a ⋅ b  is not a perfect square, then (1) has an 
infinitude of integer solutions; in this case we find a closed expression for (xn , yn ) , the 
general positive integer solution, by an original method. More, we generalize it for any 
Diophantine equation of second degree and with two unknowns. 

INTRODUCTION 
If ab = k 2  is a perfect square ( k ∈N ) the equation (1) has at most a finite number 

of integer solutions, because (1) become: 
(2) (ax − ky)(ax + ky) = −ac  

 If (a,b)  does not divide c, the Diophantine equation does not have solutions. 

METHOD TO SOLVE. Suppose that (1) has many integer solutions. Let 
(x0 , y0 ),   (x1, y1)  be the smallest positive integer solutions for (1), with 0 ≤ x0 < x1 . We 
construct the recurrent sequences: 

(3) 
xn+1 = α xn + βyn

yn+1 = γ xn + δ yn

⎧
⎨
⎩

making condition (3) verify (1). It results: 
aαβ = bγδ                 (4)

aα 2 − bγ 2 = a           (5)

aβ 2 − bδ 2 = −b         (6)

⎧

⎨
⎪

⎩
⎪

 

having the unknowns α ,  β,  γ ,  δ . 
We pull out aα 2  and aβ 2  from (5), respectively (6), and replace them in (4) at 

the square; we obtain  
aδ 2 − bγ 2 = a   (7). 

We subtract (7) from (5) and find: 
α = ±δ   (8). 

Replacing (8) in (4) we obtain: 

β = ±
b

a
γ   (9). 

Afterwards, replacing (8) in (5), and (9) in (6) we find the same equation:  
aα 2 − bγ 2 = a    (10). 

Because we work with positive solutions only, we take  
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xn+1 = a0xn +
b

a
γ 0yn

yn+1 = γ 0xn + α0yn

⎧
⎨
⎪

⎩⎪

where  (a0 ,γ 0 )  is the smallest, positive integer solution of (10) such that  a0γ 0 ≠ 0 . 

Let  

  

α0     
b

a
γ 0

γ 0         α0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∈M2 (Z) . It is evident that if (x ', y ')  is an integer solution for (1) then 

A
x '

y '

⎛
⎝⎜

⎞
⎠⎟

,  A−1 x '

y '

⎛
⎝⎜

⎞
⎠⎟

 is another one – where A−1  is the inverse matrix of A , i.e. 

A−1 ⋅ A = A ⋅ A−1 = I  (unit matrix). Hence, if (1) has an integer solution it has an infinity. 
(Clearly   A

−1 ∈M2 (Z) ). 
 The general positive integer solution of the equation (1) is:  

( )' '( , ) ,n n n nx y x y=

GS1( ) with
xn

yn

⎛
⎝⎜

⎞
⎠⎟

= An ⋅
x0

y0

⎛
⎝⎜

⎞
⎠⎟

, for all  n ∈Z , 

where by convention A0 = I  and  A− k = A−1...A−1  of  k  times. 
In problems it is better to write GS( ) as: 

xn
'

yn
'

⎛

⎝⎜
⎞

⎠⎟
= An ⋅

x0

y0

⎛
⎝⎜

⎞
⎠⎟

,   n ∈N  

GS2( ) and
xn

"

yn
"

⎛

⎝⎜
⎞

⎠⎟
= An ⋅

x1

y1

⎛
⎝⎜

⎞
⎠⎟

,   n ∈N*

We prove, by reduction at absurdum that GS2( ) is a general positive integer
solution for (1). 
 Let (u,v)  be a positive integer particular solution for (1). If  

∃k0 ∈N : (u,v) = Ak0
x0

y0

⎛
⎝⎜

⎞
⎠⎟

,   or ∃k1 ∈N* : (u,v) = Ak1
x1

y1

⎛
⎝⎜

⎞
⎠⎟

 then (u,v) ∈ GS2( ). Contrary to

this, we calculate (ui+1,vi+1) = A−1 ui

vi

⎛
⎝⎜

⎞
⎠⎟

,  for i = 0,1,2,...  where u0 = u,   v0 = v . Clearly 

ui+1 < ui  for all i . After a certain rank x0 < ui0
< x1  it finds either 0 < ui0

< x0 , but that is 
absurd. 

It is clear that we can put 

GS3( )  
xn

yn

⎛

⎝⎜
⎞

⎠⎟
= An ⋅

x0

εy0

⎛
⎝⎜

⎞
⎠⎟

,   n ∈N ,  where ε = ±1 . 

Now we shall transform the general solution GS3( ) in a closed expression.
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 Let λ  be a real number. Det(A − λ ⋅ I ) = 0  involves the solutions λ1,2  and the 

proper vectors V1,2  (i.e., Avi = λivi , { }1,2i ∈ ). Note 1
2

2

( )
iv

P
v

⎛ ⎞
= ∈⎜ ⎟

⎝ ⎠
\M  

Then P−1AP =
λ1     0

0        λ2

⎛
⎝⎜

⎞
⎠⎟

, whence An = P
λ1

n     0

0        λ
2

n

⎛

⎝
⎜

⎞

⎠
⎟ P−1 , and replacing it in GS3( ) 

and doing the computations we find a closed expression for GS3( ). 
 
 EXAMPLES 
 

1. For the Diophantine equation 2x2 − 3y2 = 5  we obtain 

 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

5    6

4    5

⎛
⎝⎜

⎞
⎠⎟

n

⋅
2 

ε
⎛
⎝⎜

⎞
⎠⎟

,   n ∈N  and λ1,2 = 5 ± 2 6 , v1,2 = ( 6, ±2) , 

whence a closed expression for xn  and yn : 

 

xn =
4 + ε 6

4
(5 + 2 6)n +

4 − ε 6

4
(5 − 2 6)n

yn =
3ε + 2 6

6
(5 + 2 6)n +

3ε − 2 6

6
(5 − 2 6)n

⎧

⎨
⎪⎪

⎩
⎪
⎪

  for all n ∈N  

2. For equation x2 − 3y2 − 4 = 0 the general solution in positive integer is: 

 

xn = (2 + 3)n + (2 − 3)n

yn =
1

3
(2 + 3)n + (2 − 3)n

⎧

⎨
⎪

⎩
⎪

   for all n ∈N ,  

that is (2,0), (4,2), (14,8), (52,30),… 
 

EXERCICES FOR RADERS:  
 

Solve the Diophantine equations: 
3. x2 − 12y2 + 3 = 0  

[Remark: 
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

7    24

2    7

⎛
⎝⎜

⎞
⎠⎟

n

⋅
3 

ε
⎛
⎝⎜

⎞
⎠⎟

= ?,   n ∈N ] 

4. x2 − 6y2 − 10 = 0  

[Remark: 
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

5    12

2    5

⎛
⎝⎜

⎞
⎠⎟

n

⋅
4 

ε
⎛
⎝⎜

⎞
⎠⎟

= ?,   n ∈N ] 

5. x2 − 12y2 − 9 = 0  

[Remark: 
 

xn

yn

⎛

⎝⎜
⎞

⎠⎟
=

7    24

2    7

⎛
⎝⎜

⎞
⎠⎟

n

⋅
3 

ε
⎛
⎝⎜

⎞
⎠⎟

= ?,   n ∈N ] 

6. 14x2 − 3y2 − 18 = 0  
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GENERALIZATIONS 

If f (x, y) = 0  is a Diophantine equation of second degree and with two 
unknowns, by linear transformation it becomes  

(12) ax2 + by2 + c = 0 , with  a,b,c ∈Z . 
If ab ≥ 0 the equation has at most a finite number of integer solutions which can 

be found by attempts. 
It is easier to present an example: 
7. The Diophantine equation

(13)  9x2 + 6xy − 13y2 − 6x − 16y + 20 = 0  becomes
(14) 2u2 − 7v2 + 45 = 0 , where
(15) u = 3x + y − 1  and v = 2y + 1

We solve (14). Thus: 

    (16) 
 

un+1 = 15un + 28vn

vn+1 = 8un + 15vn

⎧
⎨
⎩

,   n ∈N with (u0 ,v0 ) = (3, 3ε )  

First solution: 
By induction we prove that for all  n ∈N we have that vn is odd, and un  as well as 

vn are multiple of 3. Clearly v0 = 3ε,  u0 . For n + 1  we have: 
vn+1 = 8un + 15vn = even + odd = odd , and of course un+1,vn+1  are multiples of 3 because 
un ,vn are multiple of 3 too.  

Hence, there exist xn , yn  in positive integers for all  n ∈N : 

 (17) 
xn = (2un − vn + 3) / 6

yn =       (vn − 1) / 2

⎧
⎨
⎩

(from (15)). Now we’ll find the GS3( ) for (14) as closed expression, and by means of
(17) it results the general integer solution of the equation (13). 

Second solution: 
Another expression of the GS3( ) for (13) will be obtained if we transform (15) as

un = 3xn + yn − 1  and vn = 2yn + 1  for all  n ∈N . Whence, using (16) and doing the 
computation, we find  

(18) 
xn+1 = 11xn + 11xn +

52

3
yn +

11

3
yn+1 = 12xn + 19yn + 3

⎧
⎨
⎪

⎩⎪
     n ∈N , with (x0 , y0 ) = (1,1) or (2,−2)  

(two infinitude of integer solutions). 

Let A =

11  
52

3

11

3
12  19   3

0     0    1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, then 
1
1
11

n
n

n

x
y A

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 or  
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  (19)  
 2
2

 11

n
n

n

x
y A

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, always  n ∈N . 

 From (18) we have always 1 0... 1(mod 3)n ny y y+ ≡ ≡ ≡ ≡ , hence always  xn ∈Z . Of 
course, (19) and (17) are equivalent as general integer solution for (13). 
 [The reader can calculate An  (by the same method liable to the start on this note) 
and find a closed expression for (19).]. 
 
 More generally: 
 This method can be generalized for the Diophantine equations: 

  (20)   ai Xi
2

i=1

n

∑ = b , with all  ai ,b ∈Z . 

 If always aiaj ≥ 0,   1 ≤ i < j ≤ n , the equation (20) has at most a finite number of 
integer solutions. 
 Now, we suppose ∃i0 , j0 ∈ 1,...,n{ } for which ai0

aj0
< 0  (the equation presents at 

least a variation of sign). Analogously, for  n ∈N , we define the recurrent sequences: 

  (21) xh
(n+1) = α ihxi

(n)

i=1

n

∑  , 1 ≤ h ≤ n  

considering  (x1
0 ,..., xn

0 )  the smallest positive integer solution of (20). Replacing (21) in 
(20), it identifies the coefficients and it looks for n2  unknowns α ih ,   1 ≤,i,h ≤ n . (This 
calculation is very intricate, but it can be done by means of a computer.) The method 
goes on similarly, but the calculations become more and more intricate – for example to 
calculate An , one must use a computer. 
 (The reader will be able to try this for the Diophantine equation  
ax2 + by2 − cz2 + d = 0 , with  a,b,c ∈N*  and  d ∈Z ) 
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