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Theorem : If p  is a real number ≥ 1 and ( )k
ia ∈R+ with i ∈{1,2,...,n}  and 

k ∈{1,2,..., m} , then: 
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Demonstration by recurrence on m∈N*. 
First of all one shows that: 
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, which is obvious, and proves that the inequality  

is true for m = 1 . 
(The case m = 2  precisely constitutes the inequality of Minkowski, which is naturally 
true!). 

Let us suppose that the inequality is true for all the values less or equal to  m
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and this last sum  is  ai
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therefore the inequality is true for the level m + 1 . 
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