
Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal

ISSN: 2566-932X, Vol. 5, Issue 6, September 2021

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com

 This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.
Visit here to cite/refer this article 62

Classifying Fake News Articles Using

Machine Learning Techniques

Doddi Srilatha
Computer Science and Engineering, Sreenidhi

Institute of Science and Technology, Hyderabad,

India

Chukka Nikhil
Computer Science and Engineering, Sreenidhi

Institute of Science and Technology, Hyderabad,

India

Dustakar Prasanth Rao
Computer Science and Engineering, Sreenidhi

Institute of Science and Technology, Hyderabad,

India

Janumpally Sai Teja
Computer Science and Engineering, Sreenidhi

Institute of Science and Technology, Hyderabad,

India

Abstract: News is important in daily life as it informs our

view to the world and in response, we take actions and

make choices in various aspects. Gradually, the tendency

towards online news is increasing as it is more concise

and is available at the finger tips. There has been large

generation of deceptive content worldwide that has an

effect on the formation of opinions, making decisions

and voting trends. Most of the 'fake news' is initially

circulated through social media networks such as

Twitter, Facebook, and then makes the way into

mainstream media outlets such as Radio and TV. The

fake news articles share linguistic features such as heavy

use of quoted material. In this use case, the results of

fake news detection test and the performance of fake

news classifiers is discussed. The aim is to build a new

fake news detector using classifiers like Logistic

Regression, Decision tree classification, Multinomial

Naive Bayes classification.

Keywords: Classifiers; Confusion Matrix; Count

Vectorizers; Machine Learning; Exploratory Data

Analysis

I. INTRODUCTION

Many classification algorithms such as Bayesian

classification, Logistic Regression, Decision tree

classification have been applied for the fake news

detection. The hyper-parameters of the classifiers have

been selected based on accuracy scores. Hyper-parameter

tuning is one of the most promising approaches to improve

the performance the classifiers. The Logistic regression is

same as linear regression with a sigmoid function attached

to its output in order to achieve binary classification. The

tradeoff parameter that determines the strength of logistic

regression is achieved through hyper-parameter tuning. A

variant of Bayes classifier known as Multinomial Naive

Bayes classifier is studied since it handles good when the

data is discretely distributed. The decision tree classifiers

re based on the feature of Information gain and the depth

of the decision tree is adjusted based on hyper-parameter

tuning. Performance of different classifiers is evaluated

against the metrics such as precision, accuracy. It is easy

to differentiate between fake news and genuine news from

online sources, which is very hectic task in previous

studies.

II. DATA PREPROCESSING

Text pre-processing is an important activity in

language processing tasks. It transforms text into a

digestible form to enhance the working of machine

learning algorithms. There are three main components of

text preprocessing.

A. Normalization

Normalization aims to keep the data relatively in

smaller range. In text pre-processing, Normalization

attempts to place all texts on an equal footing. It converts

all characters into either lowercase or uppercase.

B. Noise removal

Noise removal is elimination of extra spaces, special

characters, numbers from text and also removal of rows

with null values.

C. Tokenization

Tokenization is splitting paragraphs into sentences and

splitting sentences into words.

D. Stemming

The method of creating morphological variants of

basic/root word is known as Stemming. The Stemming

algorithm will reduce the words such as “chocolates”,

“chocolatey”, “choco” to the base word, “chocolate” and

“retrieval”, “retrieved”, “retrieves” to the base “retrieve”.

Compared to stemming, lemmatization puts the terms

into the context. It therefore links words to one word of

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 5, Issue 6, September 2021

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com

 This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.
Visit here to cite/refer this article 63

Fig 1. Most Active Authors of Fake News

similar meaning. Lemmatization is generally preferred to

Stemming, since lemmatization analyses words in a

morphological way.

III. EXPLORATORY DATA ANALYSIS (EDA)

Analyzing the data sets to identify and summarize the

important correlated features usually with visual methods

is known as exploratory data analysis. EDA consists of

finding most active authors or publishers, most referenced

domains, most frequent unigrams and bigrams.

 A unigram is one and bigram is a sequence of two

words. A statistical model is a distribution of probability

over word sequences. Unigrams are helpful to differentiate

between related words and phrases. Gappy bigrams are

word pairs which allow gaps.

Fig 2. Top 5 Unigrams of Fake News

IV. HYPER-PARAMETER TUNING

The parameters of the model(classifier) that are to be

adjusted according to the data are known as Hyper-

parameters. GridSearch cross validation technique is one

of the useful techniques in evaluating the hyper-

parameters. The process of adjusting these hyper-

parameters is known as hyper-parameter tuning.

The hyper-parameters differ from model to model. For

example, Ngram range for vectorizer, alpha for Naïve

Bayes, maximum depth for Decision tree classifier.

Fig 3. Top 5 Unigrams of Real News

V. FEATURE EXTRACTION

To delete words/terms is known as tokenization and for

that the text must be parsed. Then the terms are represented

as integer or floating values that are to be fed as input to

the machine learning algorithm. This is known as

Vectorization (or extraction) of functions. Algorithms take

numeral vectors as input only. An easy and efficient model

for doing this function is called the BagofWords model in

machine learning. The classifier/model is not bothered in

the words about the order detail and concentrates on the

occurrences of the words in a text. A unique number is

assigned to each title. Any text with the length of the

vocabulary of the recognized terms can be represented as

a fixed-length vector. Some of them are

A. CountVectorizer

The CountVectorizer helps tokenize a set of text

documents and create recognized word vocabulary. It's

also to use the language to encrypt new documents. You

can use it as follows:

1) Creates a CountVectorizer class instance.

2) To acquire a vocabulary from one or more texts, call

the function fit().

3) To encode each as a vector, call the function

transform() on one or more documents.

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 5, Issue 6, September 2021

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com

 This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.
Visit here to cite/refer this article 64

The encoded vector has the length that of the entire

vocabulary, and the number of times each word occurs in

the text is an integer count. We call it as sparse vector as it

contains lot of zeros.

B. TFIDFVectorizer

One problem with simple counts is common terms such

as "a", "an", "the" etc. Appear several times, and their large

numbers in the encoded vectors will not be very important.

An alternate solution to this is TF-IDF. It is an abbreviation

of “Term Frequency–Inverse Document Frequency”.

Term Frequency: This sums up the presence of a word in

a text.

Frequency of Inverse Document: This downscales the

terms that occur many times across the document.

The TF-IDF Vectorizer will tokenize documents,

studies the vocabulary and reverse the weighting of

document frequencies and allow you to encrypt new

documents. CountVectorizer can also be used with TF-IDF

Transformer to measure the frequencies of the inverse

documents and start encoding documents. This model aims

to highlight more interesting words. The scores are

standardized to values between 0 and 1 and like most

machine-learning algorithms, the encoded text vectors can

be used directly.

VI. CLASSIFIERS

The process of categorizing texts into organized groups

is known as text classification or text tagging. Some of the

classifiers that are used here are

1. Logistic Regression

2. Decision Tree

3. Naïve Bayes

A. Logistic Regression

The Logistic Regression is like the Linear Regression.

In Linear Regression ,the input values(x) are used linearly

to determine the value of the output(y) using the weights

or coefficient values. A main distinction from linear

regression is that the modeled output value is not a

numerical value but a binary value (0 or 1).

𝑦 =
𝑒𝑏0+𝑏1𝑥

1 + 𝑒𝑏0+𝑏1𝑥
 (1)

Here b0 is the bias or intercept term where y is the

desired output and b1 is the coefficient for the input value

(x). – a column in your input data which has a coefficient

b associated with it (a constant real value) calculating from

your training data.

The corresponding coefficients (Beta values b) of the

logistic regression have to be measured from your training

data. It is understood using estimates of maximum

likelihood.

The model is shown as,

𝑃(𝑋) =
𝑒𝑏0+𝑏1𝑥

1 + 𝑒𝑏0+𝑏1𝑥
 (2)

 The threshold for the probability is fitted based on

training data.

Output=0/1

Hypothesis: Z = b0X + b1X (3)

h(x)=sigmoid(Z) (4)

Fig 4. Sigmoid Function

SNO Testcase Name Hyper-parameters Accurac

y

1 CountVectorizer

& Logistic

Regression

ngram_range=(1,1)

stop_words=None

C=0.01

77.24%

2 CountVectorizer

& Logistic

Regression

ngram_range=(1,2)

stop_words=None

C=0.01

78.22%

3 CountVectorizer

& Logistic

Regression

ngram_range=(1,1)

stop_words=english

C=1

85.23%

4 CountVectorizer

& Logistic

Regression

ngram_range=(1,2)

stop_words=english

C=1

85.37%

5 TfidfVectorize&

Logistic

Regression

max_df=0.75

min_df=2
ngram_range=(1,1)

C=0.5

82.89%

6 TfidfVectorize&

Logistic

Regression

max_df=0.75

min_df=2
ngram_range=(1,2)

C=0.5

83.32%

7 TfidfVectorize&

Logistic

Regression

max_df=0.75

min_df=2
ngram_range=(1,1)

C=1

84.39%

8 TfidfVectorize&

Logistic

Regression

max_df=0.75

min_df=2
ngram_range=(1,2)

C=1

84.7%

Table 1. Performance of Logistic Regression with Count

Vectorizer

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 5, Issue 6, September 2021

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com

 This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.
Visit here to cite/refer this article 65

B. Decision Tree Classification

Continuous splitting is known as the grouping of

Decision tree according to certain parameter.

Decision Tree includes:

1. Nodes: Checking condition for a given attribute

value.

2. Edges / branch: Edges match the result of a check and

bind to the following node or leaf.

3. Leaf nodes: These are terminal nodes which forecast

the result (represent class distribution).

Heuristic partitioning is used to construct the Decision

Tree and the process is called recursive partitioning. This

method is also described as dividing and conquering as it

divides the data into sub-sets, that are instead divided

recursively into smaller sub-sets, and so on and so forth

until the cycle halts whenever the algorithm decides that

the data inside the sub-sets is homogeneous enough or that

any other stop requirement has been satisfied.

Algorithm

1. Decision tree algorithm begins with the root of the tree

and breaks the data on the feature resulting in the

greatest Information Gain (IG) (decrease in

uncertainties towards final choice).

2. We can then perform this splitting process at every

child node in an iterative cycle, until the leaves are not

further divisible. It implies that the samples at each

node of the leaf are all of the same class.

3. In implementation, we should set a cap on tree depth to

prevent overfitting. We rely on pureness somewhat

here since the final leaves may still be unclean.

SNO Testcase Name Hyper-

parameters

Accuracy

1 TfidfVectorizer

&DecisionTree

Classifier

max_depth=22

ngram_range=(1,2)
74.36%

2 TfidfVectorizer

&DecisionTree

Classifier

max_depth=22

ngram_range=(1,3)
74.48%

3 TfidfVectorizer

&DecisionTree

Classifier

max_depth=25

ngram_range=(1,2)
74.31%

4 TfidfVectorizer

&DecisionTree

Classifier

max_depth=25

ngram_range=(1,3)
75%

Table 2. Performance of Decision tree classification with

Tfidf Vectorizer

C. Naïve Bayes Classifier

Naive Bayes classifiers are the set of Bayes’ Theorem-

based classification algorithms. It is based on a universal

definition, i.e. a pair of every characteristic to be

categorized is independent of one other.

The basic principle of Naive Bayes is that every feature

contributes equally and independently to the outcome.

Bayes’ Theorem considers the probability of an

occurrence happening given the likelihood of some other

occurrence already taking place. Bayes' theorem is defined

as following, mathematically:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (5)

where A and B are events and P(B) not equal to 0.

Equation (5) explains, given that event B has happened,

we can find the likelihood of event A occurring. Here,

evidence is event B, and inference is event A.

P(A) is the priori of event A (previous probability, i.e.

likelihood of occurrence before evidence is seen). The

evidence is an undefined instance attribute value (here, it

is case B).

P(A|B) is a posteriori probability of event B, i.e.

probability of the event after evidence has been shown.

D. Multinomial Naive Bayes

Multinomial Naive Bayes is used when, in essence,

data is discrete. The features / predictors the classifier uses

are the frequency of the terms that appear in the text.

E.g.: Number of occurrences.

The mean of every word for a given class is determined

to determine our likelihood.

The average listed for word i and class j is:

𝑃(𝑖 | 𝑗) =
𝑤𝑜𝑟𝑑𝑖 𝑗

𝑤𝑜𝑟𝑑𝑗

 (6)

Since there are 0 terms, however, Laplace Smoothing

is done with a low ɑ:

𝑃(𝑖 | 𝑗) =
𝑤𝑜𝑟𝑑𝑖 𝑗 + 𝛼

𝑤𝑜𝑟𝑑𝑗 + |𝑉| + 1
 (7)

where V is the array of all vocabulary terms and α=0.001.

Combination of P probability distribution with

proportion of documents corresponding to each class.

For term/word i, class j at f frequency is:

Pr(𝑗) 𝛼 𝜋𝑗 ∏ Pr(𝑖 | 𝑗)𝑓𝑖

|𝑉|

𝑖=1

 (8)

We'll use the number of logs to avoid underflow:

Pr(𝑗) 𝛼 𝑙𝑜𝑔 (𝜋𝑗 ∏ Pr(𝑖 | 𝑗)𝑓𝑖

|𝑉|

𝑖=1

) (9)

Pr(𝑗) = 𝑙𝑜𝑔𝜋𝑗 + ∑ 𝑓𝑖 log (Pr(𝑖 | 𝑗))

|𝑉|

𝑖=1

 (10)

One concern is that when a word appears again, the risk

of it occurring again increases. To smooth out this, we take

the frequency log:

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 5, Issue 6, September 2021

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com

 This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.
Visit here to cite/refer this article 66

Pr(𝑗) = 𝑙𝑜𝑔𝜋𝑗 + ∑ log (1 + 𝑓𝑖) log (Pr(𝑖 | 𝑗))

|𝑉|

𝑖=1

 (11)

Also, we'll apply an Inverse Document Frequency

(IDF) weight to every word to take stop words into

account:

𝑆𝑢𝑚 = ∑ 𝑑𝑜𝑐𝑛

𝑁

𝑛=1

𝑡𝑖 = log (
𝑆𝑢𝑚

𝑑𝑜𝑐𝑖

)

Pr(𝑗) = 𝑙𝑜𝑔𝜋𝑗 + ∑ 𝑓𝑖 log (𝑡𝑖 Pr(𝑖 | 𝑗))

|𝑉|

𝑖=1

 (12)

SNO Testcase Name Hyper-parameters Accuracy

1 CountVectorizer

&MultinomialNB

ngram_range=(1,2)

alpha=0.36

88.36%

2 CountVectorizer

&MultinomialNB

ngram_range=(1,3)

alpha=0.36

88.68%

3 CountVectorizer

&MultinomialNB

ngram_range=(1,2)

alpha=0.6

88.54%

4 CountVectorizer

&MultinomialNB

ngram_range=(1,3)

alpha=0.6

88.68%

5 TfidfVectorizer&

MultinomialNB

max_df=0.75

min_df=2

ngram_range=(1,2)

alpha=0.1

86.58%

6 TfidfVectorizer&

MultinomialNB

ngram_range=(1,3)

alpha=0.1

86.22%

7 TfidfVectorizer&

MultinomialNB

ngram_range=(1,2)

alpha=1

86.64%

8 TfidfVectorizer&

MultinomialNB

ngram_range=(1,3)

alpha=1

86.3%

Table 3. Performance of Multinomial NB with count

vectorizer

VII. PERFORMANCE EVALUATION

The machine learning model has to evaluated against

certain metrics like Accuracy, Precision, Recall, F-score.

Accuracy depicts how much the classifier is right to the

max. Precision says of all the positive groups which are

predicted; how many were actually positive. Recall also

known as sensitivity indicates right classifier awareness. F-

score helps to compare two models of low recall and high

precision or vice versa. For classification models, a

construction matrix is required for the calculation of

metrics.

A. Confusion Matrix

Confusion Matrix, also known as an error matrix, is a

table that is frequently used to define the performance of a

classification model (or "classifier") on a collection of test

data that knows the exact true values for. It enables the

output of an algorithm to be visualized. It is a description

of the results of prediction on a classification problem. The

number of false and true predictions is articulated and

divided by each class with count values. It also

concentrates on the type of errors made by the classifier.

It is a table of predicted and actual values.

Fig 5. Confusion Matrix

For measuring Recall, Speed, Specificity and

Accuracy, Confusion matrix is extremely useful.

True Positive (TP): Positive expected by the classifier, and

that is true.

True Negative (TN): Negative expected by the classifier,

and that is true.

False Positive (FP): Positive expected by the classifier,

and false.

False Negative (FN): Negative expected by the classifier,

and it is false.

B. Accuracy

How much is the classifier right overall?

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13)

VIII. CONCLUSION

The work presented in this topic suggests that

Multinomial Naive Bayes classifier is better in performing

natural language processing tasks. Naive Bayes also has

other variants but Multinomial is chosen because it

operates better on discrete nature of data for example,

number of occurrences if a term in the text. The work done

in this paper is also encouraging, as it explains a fairly

successful level of machine learning classification with

only one extraction feature for huge fake news materials.

Ultimately, further study and analysis is due to begin to

define and create additional fake news classification

grammars which will produce a more detailed

classification strategy for both fake news and official

statements.

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/

Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal
ISSN: 2566-932X, Vol. 5, Issue 6, September 2021

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com

 This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.
Visit here to cite/refer this article 67

REFERENCES

[1] Classifying Fake News Articles Using Natural Language

Processing to Identify In-Article Attribution as a Supervised

Learning Estimator.

[2] Tolles, Juliana; Meurer, William J (2016). "Logistic Regression

Relating Patient Characteristics to Outcomes".

[3] Quinlan, J. R. (1986). "Induction of decision trees" . Machine

Learning.

[4] Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984).

Classification and regression trees.

[5] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, pp.

41–46, 2001.

[6] How to Encode Text Data for Machine Learning with scikit-learn,

Machine Learning Mastery, [Online]. Available:

https://machinelearningmastery.com/prepare-text-data-machine-

learning-scikit-learn\, Accessed 19th June 2020

[7] What is Text Classification?, Monkey Learn, [Online]. Available:

https://monkeylearn.com/what-is-text-classification/, Accessed

19th June 2020

[8] Naïve Bayes Classifier, Towards Data Science, [Online].

Available: https://towardsdatascience.com/naive-bayes-classifier-

81d512f50a7c, Accessed 19th June 2020

[9] Logistic Regression for Machine Learning, Machine Learning

Mastery, [Online]. Available:
https://machinelearningmastery.com/logistic-regression-for-

machine-learning/, Accessed 19th June 2020

[10] Logistic Regression — Detailed Overview, Towards Data Science,

[Online]. Available: https://towardsdatascience.com/logistic-

regression-detailed-overview-46c4da4303bc, Accessed 19th June

2020

[11] Decision Tree Classification, Towards Data Science, [Online].

Available: https://towardsdatascience.com/decision-tree-

classification-de64fc4d5aac, Accessed 19th June 2020

[12] K-Fold Cross Validation, Data Driven Investor, [Online].
Available: https://medium.com/datadriveninvestor/k-fold-cross-

validation-6b8518070833, Accessed 19th June 2020

[13] Confusion Matrix in Machine Learning, Geeks for Geeks,

[Online]. Available: https://www.geeksforgeeks.org/confusion-

matrix-machine-learning/, Accessed 19th June 2020

[14] Understanding Confusion Matrix, Towards Data Science, [Online].

Available: https://towardsdatascience.com/understanding-

confusion-matrix-a9ad42dcfd62, Accessed 19th June, 2020

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/

