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Abstract: News is important in daily life as it informs our 

view to the world and in response, we take actions and 

make choices in various aspects. Gradually, the tendency 

towards online news is increasing as it is more concise 

and is available at the finger tips. There has been large 

generation of deceptive content worldwide that has an 

effect on the formation of opinions, making decisions 

and voting trends. Most of the 'fake news' is initially 

circulated through social media networks such as 

Twitter, Facebook, and then makes the way into 

mainstream media outlets such as Radio and TV. The 

fake news articles share linguistic features such as heavy 

use of quoted material. In this use case, the results of 

fake news detection test and the performance of fake 

news classifiers is discussed. The aim is to build a new 

fake news detector using classifiers like Logistic 

Regression, Decision tree classification, Multinomial 

Naive Bayes classification.  

Keywords: Classifiers; Confusion Matrix; Count 

Vectorizers; Machine Learning; Exploratory Data 

Analysis 

I. INTRODUCTION 

Many classification algorithms such as Bayesian 

classification, Logistic Regression, Decision tree 

classification have been applied for the fake news 

detection. The hyper-parameters of the classifiers have 

been selected based on accuracy scores. Hyper-parameter 

tuning is one of the most promising approaches to improve 

the performance the classifiers. The Logistic regression is 

same as linear regression with a sigmoid function attached 

to its output in order to achieve binary classification. The 

tradeoff parameter that determines the strength of logistic 

regression is achieved through hyper-parameter tuning. A 

variant of Bayes classifier known as Multinomial Naive 

Bayes classifier is studied since it handles good when the 

data is discretely distributed. The decision tree classifiers 

re based on the feature of Information gain and the depth 

of the decision tree is adjusted based on hyper-parameter 

tuning. Performance of different classifiers is evaluated 

against the metrics such as precision, accuracy. It is easy 

to differentiate between fake news and genuine news from 

online sources, which is very hectic task in previous 

studies. 

II. DATA PREPROCESSING 

Text pre-processing is an important activity in 

language processing tasks. It transforms text into a 

digestible form to enhance the working of machine 

learning algorithms. There are three main components of 

text preprocessing. 

A. Normalization 

Normalization aims to keep the data relatively in 

smaller range. In text pre-processing, Normalization 

attempts to place all texts on an equal footing. It converts 

all characters into either lowercase or uppercase. 

B. Noise removal 

Noise removal is elimination of extra spaces, special 

characters, numbers from text and also removal of rows 

with null values. 

C. Tokenization 

Tokenization is splitting paragraphs into sentences and 

splitting sentences into words. 

D. Stemming 

The method of creating morphological variants of 

basic/root word is known as Stemming. The Stemming 

algorithm will reduce the words such as “chocolates”, 

“chocolatey”, “choco” to the base word, “chocolate” and 

“retrieval”, “retrieved”, “retrieves” to the base “retrieve”. 

Compared to stemming, lemmatization puts the terms 

into  the  context.  It  therefore  links  words to one word of  
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Fig 1. Most Active Authors of Fake News

similar meaning. Lemmatization is generally preferred to 

Stemming, since lemmatization analyses words in a 

morphological way. 

III. EXPLORATORY DATA ANALYSIS (EDA) 

Analyzing the data sets to identify and summarize the 

important correlated features usually with visual methods 

is known as exploratory data analysis. EDA consists of 

finding most active authors or publishers, most referenced 

domains, most frequent unigrams and bigrams. 

 A unigram is one and bigram is a sequence of two 

words. A statistical model is a distribution of probability 

over word sequences. Unigrams are helpful to differentiate 

between related words and phrases. Gappy bigrams are 

word pairs which allow gaps. 

 

Fig 2. Top 5 Unigrams of Fake News 

IV. HYPER-PARAMETER TUNING 

The parameters of the model(classifier) that are to be 

adjusted according to the data are known as Hyper-

parameters. GridSearch cross validation technique is one 

of the useful techniques in evaluating the hyper-

parameters. The process of adjusting these hyper-

parameters is known as hyper-parameter tuning. 

The hyper-parameters differ from model to model. For 

example, Ngram range for vectorizer, alpha for Naïve 

Bayes, maximum depth for Decision tree classifier. 

 

Fig 3. Top 5 Unigrams of Real News 

V. FEATURE EXTRACTION 

To delete words/terms is known as tokenization and for 

that the text must be parsed. Then the terms are represented 

as integer or floating values that are to be fed as input to 

the machine learning algorithm. This is known as 

Vectorization (or extraction) of functions. Algorithms take 

numeral vectors as input only. An easy and efficient model 

for doing this function is called the BagofWords model in 

machine learning. The classifier/model is not bothered in 

the words about the order detail and concentrates on the 

occurrences of the words in a text. A unique number is 

assigned to each title. Any text with the length of the 

vocabulary of the recognized terms can be represented as 

a fixed-length vector. Some of them are 

A. CountVectorizer 

The CountVectorizer helps tokenize a set of text 

documents and create recognized word vocabulary. It's 

also to use the language to encrypt new documents. You 

can use it as follows: 

1) Creates a CountVectorizer class instance. 

2) To acquire a vocabulary from one or more texts, call 

the function fit( ). 

3) To encode each as a vector, call the function 

transform( ) on one or more documents. 
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The encoded vector has the length that of the entire 

vocabulary, and the number of times each word occurs in 

the text is an integer count. We call it as sparse vector as it 

contains lot of zeros. 

B. TFIDFVectorizer 

One problem with simple counts is common terms such 

as "a", "an", "the" etc. Appear several times, and their large 

numbers in the encoded vectors will not be very important. 

An alternate solution to this is TF-IDF. It is an abbreviation 

of “Term Frequency–Inverse Document Frequency”. 

Term Frequency: This sums up the presence of a word in 

a text. 

Frequency of Inverse Document: This downscales the 

terms that occur many times across the document. 

The TF-IDF Vectorizer will tokenize documents, 

studies the vocabulary and reverse the weighting of 

document frequencies and allow you to encrypt new 

documents. CountVectorizer can also be used with TF-IDF 

Transformer to measure the frequencies of the inverse 

documents and start encoding documents. This model aims 

to highlight more interesting words. The scores are 

standardized to values between 0 and 1 and like most 

machine-learning algorithms, the encoded text vectors can 

be used directly. 

VI. CLASSIFIERS  

The process of categorizing texts into organized groups 

is known as text classification or text tagging. Some of the 

classifiers that are used here are 

1. Logistic Regression 

2. Decision Tree 

3. Naïve Bayes 

A. Logistic Regression 

The Logistic Regression is like the Linear Regression. 

In Linear Regression ,the input values(x) are used linearly 

to determine the value of the output(y) using the weights 

or coefficient values. A main distinction from linear 

regression is that the modeled output value is not a 

numerical value but a binary value (0 or 1). 

𝑦 =
𝑒𝑏0+𝑏1𝑥

1 + 𝑒𝑏0+𝑏1𝑥
                                   (1) 

Here b0 is the bias or intercept term where y is the 

desired output and b1 is the coefficient for the input value 

(x). – a column in your input data which has a coefficient 

b associated with it (a constant real value) calculating from 

your training data. 

The corresponding coefficients (Beta values b) of the 

logistic regression have to be measured from your training 

data. It is understood using estimates of maximum 

likelihood. 

 

 

The model is shown as, 

𝑃(𝑋) =
𝑒𝑏0+𝑏1𝑥

1 + 𝑒𝑏0+𝑏1𝑥
                             (2) 

 The threshold for the probability is fitted based on 

training data. 

Output=0/1 

Hypothesis:  Z = b0X + b1X    (3) 

h(x)=sigmoid(Z)     (4) 

 

Fig 4. Sigmoid Function 

SNO Testcase Name Hyper-parameters Accurac

y 

1 CountVectorizer

& Logistic 

Regression 

ngram_range=(1,1) 

stop_words=None  

C=0.01 

77.24% 

2 CountVectorizer

& Logistic 

Regression 

ngram_range=(1,2) 

stop_words=None  

C=0.01 

78.22% 

3 CountVectorizer

& Logistic 

Regression 

ngram_range=(1,1) 

stop_words=english 

C=1 

85.23% 

4 CountVectorizer

& Logistic 

Regression 

ngram_range=(1,2) 

stop_words=english 

C=1 

85.37% 

5 TfidfVectorize& 

Logistic 

Regression 

 

max_df=0.75  

min_df=2  
ngram_range=(1,1)  

C=0.5 

82.89% 

6 TfidfVectorize& 

Logistic 

Regression 

 

max_df=0.75  

min_df=2  
ngram_range=(1,2)  

C=0.5 

83.32% 

7 TfidfVectorize& 

Logistic 

Regression 

 

max_df=0.75  

min_df=2  
ngram_range=(1,1)  

C=1 

84.39% 

8 TfidfVectorize& 

Logistic 

Regression 

 

max_df=0.75 

min_df=2  
ngram_range=(1,2)  

C=1 

84.7% 

Table 1. Performance of Logistic Regression with Count 

Vectorizer 
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B. Decision Tree Classification 

Continuous splitting is known as the grouping of 

Decision tree according to certain parameter. 

Decision Tree includes:  

1. Nodes: Checking condition for a given attribute 

value. 

2. Edges / branch: Edges match the result of a check and 

bind to the following node or leaf. 

3. Leaf nodes: These are terminal nodes which forecast 

the result (represent class distribution). 

Heuristic partitioning is used to construct the Decision 

Tree and the process is called recursive partitioning. This 

method is also described as dividing and conquering as it 

divides the data into sub-sets, that are instead divided 

recursively into smaller sub-sets, and so on and so forth 

until the cycle halts whenever the algorithm decides that 

the data inside the sub-sets is homogeneous enough or that 

any other stop requirement has been satisfied. 

Algorithm 

1. Decision tree algorithm begins with the root of the tree 

and breaks the data on the feature resulting in the 

greatest Information Gain (IG) (decrease in 

uncertainties towards final choice). 

2. We can then perform this splitting process at every 

child node in an iterative cycle, until the leaves are not 

further divisible. It implies that the samples at each 

node of the leaf are all of the same class. 

3. In implementation, we should set a cap on tree depth to 

prevent overfitting. We rely on pureness somewhat 

here since the final leaves may still be unclean. 

SNO Testcase Name Hyper-

parameters 

Accuracy 

1 TfidfVectorizer

&DecisionTree 

Classifier  

max_depth=22 

ngram_range=(1,2) 
74.36% 

2 TfidfVectorizer

&DecisionTree 

Classifier  

max_depth=22 

ngram_range=(1,3) 
74.48% 

3 TfidfVectorizer

&DecisionTree 

Classifier  

max_depth=25 

ngram_range=(1,2) 
74.31% 

4 TfidfVectorizer

&DecisionTree 

Classifier  

max_depth=25 

ngram_range=(1,3) 
75% 

Table 2. Performance of Decision tree classification with 

Tfidf Vectorizer 

C. Naïve Bayes Classifier 

Naive Bayes classifiers are the set of Bayes’ Theorem-

based classification algorithms. It is based on a universal 

definition, i.e. a pair of every characteristic to be 

categorized is independent of one other. 

The basic principle of Naive Bayes is that every feature 

contributes equally and independently to the outcome. 

Bayes’ Theorem considers the probability of an 

occurrence happening given the likelihood of some other 

occurrence already taking place. Bayes' theorem is defined 

as following, mathematically: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
                        (5) 

where A and B are events and P(B) not equal to 0. 

Equation (5) explains, given that event B has happened, 

we can find the likelihood of event A occurring. Here, 

evidence is event B, and inference is event A. 

P(A) is the priori of event A (previous probability, i.e. 

likelihood of occurrence before evidence is seen). The 

evidence is an undefined instance attribute value (here, it 

is case B). 

P(A|B) is a posteriori probability of event B, i.e. 

probability of the event after evidence has been shown. 

D. Multinomial Naive Bayes  

Multinomial Naive Bayes is used when, in essence, 

data is discrete. The features / predictors the classifier uses 

are the frequency of the terms that appear in the text. 

E.g.: Number of occurrences. 

The mean of every word for a given class is determined 

to determine our likelihood. 

The average listed for word i and class j is: 

𝑃(𝑖 | 𝑗) =
𝑤𝑜𝑟𝑑𝑖 𝑗

𝑤𝑜𝑟𝑑𝑗

                                (6) 

Since there are 0 terms, however, Laplace Smoothing 

is done with a low ɑ: 

𝑃(𝑖 | 𝑗) =
𝑤𝑜𝑟𝑑𝑖 𝑗 + 𝛼

𝑤𝑜𝑟𝑑𝑗 + |𝑉| + 1
                   (7) 

where V is the array of all vocabulary terms and α=0.001. 

Combination of P probability distribution with 

proportion of documents corresponding to each class. 

For term/word i, class j at f frequency is: 

Pr(𝑗) 𝛼 𝜋𝑗 ∏ Pr(𝑖 | 𝑗)𝑓𝑖

|𝑉|

𝑖=1

                           (8) 

We'll use the number of logs to avoid underflow: 

Pr(𝑗) 𝛼 𝑙𝑜𝑔 (𝜋𝑗 ∏ Pr(𝑖 | 𝑗)𝑓𝑖

|𝑉|

𝑖=1

)                           (9) 

Pr(𝑗) = 𝑙𝑜𝑔𝜋𝑗 + ∑ 𝑓𝑖  log (Pr(𝑖 | 𝑗))

|𝑉|

𝑖=1

             (10) 

One concern is that when a word appears again, the risk 

of it occurring again increases. To smooth out this, we take 

the frequency log: 

http://www.pices-journal.com/
https://creativecommons.org/licenses/by/4.0/
http://pices-journal.com/ojs/index.php/pices/article/view/248
http://creativecommons.org/licenses/by/4.0/


Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) – An International Journal 
ISSN: 2566-932X, Vol. 5, Issue 6, September 2021 

© Doddi Srilatha, Dustakar Prasanth Rao, Chukka Nikhil, Janumpally Sai Teja 

Non-Exclusive Publisher: WorldServe Online 2021. www.pices-journal.com 
 

   This work is licensed to the Publisher under a Creative Commons Attribution 4.0 International License.  
Visit here to cite/refer this article                                                                                                                                                    66 

Pr(𝑗) = 𝑙𝑜𝑔𝜋𝑗 + ∑ log (1 + 𝑓𝑖) log (Pr(𝑖 | 𝑗))

|𝑉|

𝑖=1

        (11) 

Also, we'll apply an Inverse Document Frequency 

(IDF) weight to every word to take stop words into 

account: 

𝑆𝑢𝑚 = ∑ 𝑑𝑜𝑐𝑛

𝑁

𝑛=1

 

𝑡𝑖 = log (
𝑆𝑢𝑚

𝑑𝑜𝑐𝑖

) 

Pr(𝑗) = 𝑙𝑜𝑔𝜋𝑗 + ∑ 𝑓𝑖  log (𝑡𝑖  Pr(𝑖 | 𝑗))

|𝑉|

𝑖=1

        (12) 

 

SNO Testcase Name Hyper-parameters Accuracy 

1 CountVectorizer

&MultinomialNB

   

ngram_range=(1,2) 

alpha=0.36 

88.36% 

2 CountVectorizer

&MultinomialNB

   

ngram_range=(1,3) 

alpha=0.36 

88.68% 

3 CountVectorizer

&MultinomialNB

   

ngram_range=(1,2) 

alpha=0.6 

88.54% 

4 CountVectorizer

&MultinomialNB

   

ngram_range=(1,3) 

alpha=0.6 

88.68% 

5 TfidfVectorizer&

MultinomialNB 

 

max_df=0.75 

min_df=2 

ngram_range=(1,2) 

alpha=0.1 

86.58% 

6 TfidfVectorizer&

MultinomialNB 

 

ngram_range=(1,3) 

alpha=0.1 

86.22% 

7 TfidfVectorizer&

MultinomialNB 

 

ngram_range=(1,2) 

alpha=1 

86.64% 

8 TfidfVectorizer&

MultinomialNB 

 

ngram_range=(1,3) 

alpha=1 

86.3% 

Table 3. Performance of Multinomial NB with count 

vectorizer 

VII. PERFORMANCE EVALUATION 

The machine learning model has to evaluated against 

certain metrics like Accuracy, Precision, Recall, F-score. 

Accuracy depicts how much the classifier is right to the 

max. Precision says of all the positive groups which are 

predicted; how many were actually positive. Recall also 

known as sensitivity indicates right classifier awareness. F-

score helps to compare two models of low recall and high 

precision or vice versa. For classification models, a 

construction matrix is required for the calculation of 

metrics. 

A. Confusion Matrix 

Confusion Matrix, also known as an error matrix, is a 

table that is frequently used to define the performance of a 

classification model (or "classifier") on a collection of test 

data that knows the exact true values for. It enables the 

output of an algorithm to be visualized. It is a description 

of the results of prediction on a classification problem. The 

number of false and true predictions is articulated and 

divided by each class with count values. It also 

concentrates on the type of errors made by the classifier. 

It is a table of predicted and actual values.   

 

Fig 5. Confusion Matrix 

For measuring Recall, Speed, Specificity and 

Accuracy, Confusion matrix is extremely useful. 

True Positive (TP): Positive expected by the classifier, and 

that is true. 

True Negative (TN): Negative expected by the classifier, 

and that is true. 

False Positive (FP): Positive expected by the classifier, 

and false. 

False Negative (FN): Negative expected by the classifier, 

and it is false. 

B. Accuracy 

How much is the classifier right overall? 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
          (13) 

 

VIII. CONCLUSION 

The work presented in this topic suggests that 

Multinomial Naive Bayes classifier is better in performing 

natural language processing tasks. Naive Bayes also has 

other variants but Multinomial is chosen because it 

operates better on discrete nature of data for example, 

number of occurrences if a term in the text. The work done 

in this paper is also encouraging, as it explains a fairly 

successful level of machine learning classification with 

only one extraction feature for huge fake news materials. 

Ultimately, further study and analysis is due to begin to 

define and create additional fake news classification 

grammars which will produce a more detailed 

classification strategy for both fake news and official 

statements. 
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