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Abstract. Node-based shape optimization methods like Vertex Morphing use every node of
the surface mesh as design variables. The method’s key advantages are the minimal effort
for problem setup and the resulting largest possible design space that allows finding new and
innovative shapes. Due to a large number of design variables, the application of gradient-based
optimization methods becomes mandatory, and adjoint sensitivity analysis is the preferred way
for efficient computation of the shape gradients.

For some industrial applications, it is necessary to restrict the large design freedom in
some sense, for example by limiting the geometric design space. In recent work, nodal non-
penetration constraints have been successfully applied in the context of Vertex Morphing, re-
sulting in a potentially large number of active constraints. Aggregation methods are commonly
used to reduce the number of constraints in the optimization problem and are investigated here
to combine nodal geometric constraints in a single global constraint function.
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1 INTRODUCTION

Shape optimization is a powerful tool for speeding up the design process that has been proven
to be useful in many disciplines. There is a vast number of different methods available in the
literature, CAD- or IGA-based methods [1, 2], node-based methods [3, 4, 5, 6, 7] and level-set
methods [8]. Vertex Morphing [9, 10, 11] is a parameterization method for node-based shape
optimization. In node-based shape parametrizations, the surface nodes of the computational
model are directly used as design parameters. No additional parametrization step is required to
set up the optimization problem, and a high number of design parameters leads to the richest
possible design space and provides the highest design potential. In practical applications, the
rich design space can often not be explored freely but is geometrically limited by design re-
quirements e.g. a packaging geometry. Such geometric constraints have to be considered in the
optimization problem to avoid finding infeasible designs.

In the context of node-based shape optimization, geometric constraints for symmetry (im-
plicit) and demolding (explicit) have been shown in [12]. Constraints for the thickness of solid
models have been developed by [13] for level-set optimization, using a single aggregated con-
straint for efficiency reasons. Similarly, thickness constraints to control the minimum member
size in node-based shape optimization have been realized by [14]. Nodal non-penetration con-
straints to satisfy packaging requirements have been introduced by [15] in shape optimization
with the Vertex Morphing parametrization. Aggregation of nodal non-penetration constraints
using a Kreisselmeier-Steinhausser function for FFD-based shape optimization was proposed
by [16]. Another approach of aggregating nodal non-penetration constraints using a second-
order continuous penalty function was proposed by [17] and evaluated for spline-based shape
parameterizations.

This paper is structured as follows: First, the Vertex Morphing parameterization is explained,
followed by the gradient-projection method, which is used as an optimization algorithm in this
work. Then, two geometric constraints, a packaging constraint and a minimum thickness con-
straint for node-based shape optimization are described and two constraint aggregation func-
tions are presented. Finally, the application of the geometric constraints in combination with
the aggregation functions is shown on two numerical examples with the Vertex Morphing pa-
rameterization, and their performance is evaluated in comparison with the node-wise application
of the constraints.

1.1 Vertex Morphing

The basic theory of shape optimization with the Vertex Morphing parametrization is briefly
introduced, the interested reader can refer to [10, 11] for more details.

Vertex Morphing introduces a design control field p that controls the shape z via convolution
with a filter function F'.

Sitr

i—T
Where &; is the surface coordinate of the unknown point and r is the radius of the filter
function. Accordingly, the shape update is controlled by the update of the control field in the
same way.
The shape of the filter function is not as decisive, often linear hat functions are used, the
radius has a major influence on the smoothness of the generated shape and shape update re-
spectively. The filter radius can be seen as an additional design parameter, which controls the
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desired shape modes of the optimal design.
In discrete form, Equation 1 becomes

z = Bp 2)

and the vector of discrete shape coordinates z is generated by multiplying the vector of
control node coordinates p with the morphing matrix (or filter matrix) B. B has a size of
m X n, with the m being the number of shape coordinates z and n the number of control
coordinates p. Usually, the same discretization is used for the shape and the design control
field, but this is not mandatory.

A shape optimization problem with the Vertex Morphing parameterization can therefore be
formulated as follows:

Hgn f(z(p))

st g;(2(p)) <0,

where f(z(p) is the objective function, the control point coordinates of Vertex Morphing p
are the design variables, g; and hy, are the inequality and equality constraints respectively. In
gradient-based shape optimization, also the update of the design variables, as well as the design
control gradient is of interest. It is straight forward to compute the discrete shape update Az
from the design control update Ap by applying Equation 2:

Az = BAp 3)

The discrete design gradient of the objective V, f is determined from the discrete shape
gradient V, f following the chain rule of differentiation by a so-called backward-mapping op-
eration with the transpose of the morphing matrix

V,f =B'V.f “4)

The gradients of the constraints are mapped accordingly.

1.2 Optimization algorithm

In this work, constraints are considered using an adaption of Rosen‘s gradient projection
algorithm [18, 19] with the suggestions of Arora and Haug as described in [20]. The search
direction s is determined by projecting the objective gradient in the subspace tangent to the
active constraints.

s =Y,/ — [N (N"N)"' N| v, )

where IN is the matrix of the active constraint gradients with a size of n x k, with the number
of active constraints k£ and the number of design variables n.

For nonlinear constraints, this projection step can still lead to a violation because the curva-
ture of the constraint is not considered. To avoid a drift-off error throughout the optimization,
this violation has to be corrected. In this work, the correction is not made immediately, but in
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feasible infeasible

design surface

Figure 1: Nodal packaging constraint. Infeasible nodes are highlighted in blue.

the next optimization step, to avoid multiple evaluations of the constraint functions. It is de-
termined by the vector of the active constraint values g, and the matrix of constraint gradients
N:

c=-N(NTN) g, (6)

The update of the control parameters is finally computed by combining the search direction
and the correction.

Ap=as+c (7)

« 1s the step length factor and can be determined by a line-search. For practical applications
and in this work, we limit the shape update in each iteration by applying an upper limit for
|las||”™ and ||e||” individually. [15] has successfully used the same projection algorithm with
a constant step length for imposing the nodal non-penetration constraints, however, without the
correction therm in Equation 6. [21, 22] have developed alternative optimization algorithms
that have proven to work well with the Vertex Morphing parametrization.

2 GEOMETRIC CONSTRAINTS

The path of the design nodes through the design space during the shape optimization with
Vertex Morphing is not known a priori. Therefore it is often not possible to describe the ge-
ometrical limitation of the design space by static variable bounds. Instead, constraints can be
added to the optimization problem. Two types of geometric constraints are presented in this
section.

2.1 Packaging constraint

A packaging constraint geometrically limits the design space by dividing it into a feasible
and infeasible domain. Figure 1 shows a shape optimization problem with the discrete design
surface described by the mesh nodes with coordinates z; and a discrete packaging geometry.
The surface normals of the packaging geometry point to the feasible domain. The boundary of
the infeasible domain can be represented using arbitrary geometries, which leads to maximal
flexibility in the setup of the optimization problem.

The design surface is not allowed to penetrate the packaging geometry, this can be formulated
by node-wise inequality constraints [15]. The value of the packaging constraint at node z; is
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design surface — 3 o
Figure 2: Detection of local thickness with ray-surface intersection on discrete surfaces. The
sketch on the right shows the nodes that affect the local thickness vector at node t;

determined by the distance vector to the closest point ¢p; on the packaging geometry, and the
surface unit normal n,, of this closest point.

g9i = (zi - Cpi)Tncpi S 0 (8)

g; 1s positive if node z; penetrates the design boundary, zero if it lies on the boundary, and
negative if it is in the feasible domain.

In this work, detection of the closest point on the packaging boundary is done using a nearest-
neighbor search. For practical applications, this appears to be accurate enough if the discretiza-
tion of the packaging geometry is fine enough.

The gradient of the response function is computed under the assumption, that the closest
point will not change due to a movement of the point z;. In this case, the nodal gradient is the
normal of the closes point at the position ¢ and 0 elsewhere.

V.gi=1[0... ngp, ... 0]" )

2.2 Minimum thickness constraint

A limitation of the minimum thickness of the geometry is another geometric constraint that
is often required. Figure 2 shows a shape optimization problem with the discrete design surface
described by the mesh nodes z; and the definition of a nodal thickness value that is used in this
work. The nodal thickness is determined by following a ray in negative surface normal direction
—mn; until an intersection ¢p; with the design surface is found. This operation has been realized
in a numerically efficient way with an octree-based ray-element intersection algorithm. With
this approach, only a surface discretization is required and no discretization of the solid is
needed.

The value of the thickness constraint at node z; is determined by the difference of the limit
value for the thickness %,,;, and the norm of the nodal thickness vector ¢;.

9i = tmin — |2i — ipill = tyin — [Its]| <0 (10)

The thickness response value is affected by several nodes as can be seen in Figure 2 on the

right side for the 2-dimensional case. The node z;, the direct neighbors (a, b) of z;, since they

affect the orientation of the surface normal, and the nodes of the element that is intersected by

the ray (c, d). The gradient of the thickness response function is computed under the assumption,

that the ray will not intersect another element than initially detected (cd). The same logic holds
for surfaces in 3 dimensions.
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[13] formulated thickness constraints for level-set optimization based on a medial axis de-
fined by a skeleton model. [14] has also formulated a minimum thickness constraint based on
an approximated medial axis and considered the medial axis to be fixed in the computation of
the gradients.

3 AGGREGATION OF NODAL GEOMETRIC CONSTRAINTS

The node-wise formulation of geometric constraints in the previous section can lead to a high
number of active constraints in the optimization problem that is in the order of the number of
design variables [13]. For shape optimization with Vertex Morphing, the constraint gradients are
consistently mapped to the control space (Equation 4). The contribution of the nodal constraints
to the matrix IV has a sparse pattern, however, the bandwidth is determined by the filter radius
and can be large. For large models with a high number of design variables in combination
with a large filter radius, the solution of the equation system in equations 5, 6 can become
numerically challenging [15]. An alternative to considering each nodal constraint individually
is the aggregation of the individual nodal constraints into a single global constraint function.
This allows satisfying the nodal constraints in an average sense and numerically less expensive
way. [13, 16, 17] have previously applied aggregation formulations for geometric constraints
in shape optimization. Constraint aggregation is also commonly used for stress constraints in
structural optimization see e.g. [23]. In this work, two aggregation functions are evaluated
for nodal geometric constraints in node-based shape optimization with the Vertex Morphing
parameterization.

One possibility to aggregate the nodal constraints is to take the 2-norm of all nodal con-
straints that are infeasible, in other words, have a positive nodal constraint value g;” (Equa-
tion 8).

(11)

92-norm =

Since only infeasible nodes contribute to the aggregated constraint function gs o, only
gradients of the active constraints contribute to the gradient of the aggregated function. It is
not possible to foresee if a node will soon violate the constraint. New nodes can suddenly
become infeasible, potentially leading to a zig-zagging behavior. This makes the correction
step (Equation 6) important.

As an alternative to the aggregation using a 2-norm, a Kreisselmeier-Steinhausser (KS) func-
tion [24] might be used. In contrast to the aggregation of only infeasible values with the 2-norm,
the Kreisselmeier-Steinhausser function takes all nodal values into account.

1 n
JKks = ;mze(pgi/ﬁ) (12)
i=1

The function gks(g;) approximates the non-continuous max-function max(g;). The factor 3
is used to bring the nodal constraint values g; to a common scale, independent of model units. In
this work, we use the maximum allowed shape update for 5. The approximation becomes more
accurate with higher values of p, too high values can lead to numerical overflow, however. All
nodes, except the one with the highest constraint value, contribute very little to the aggregated
gradient, this can lead to a similar problem with nodes suddenly becoming infeasible as for
the 2-norm aggregation. Smaller values for p lead to a more conservative approximation of the
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maximum violation. This results in a smoother behavior of the constraint in the optimization
but eventually does not allow the optimization to converge close to the actual limit of the nodal
constraints. This effect will be demonstrated in the following numerical example.

4 NUMERICAL EXAMPLE

A simple 1D example is used to describe the basic effects of constraint aggregation for
geometric constraints in shape optimization with the Vertex Morphing parametrization. The de-
viation of an initially straight line to a hat-shaped target curve with a height of 1.0 is minimized,
while an obstacle has to be considered.

n

H%n f(z(p)) = Z(Zl(p) - Zzhatf

=1
with the target function 2%

0 €< —10
£41 —10<¢<0
—¢

ﬁ‘i‘l 0<€£<10
0 10<¢

The line is discretized with a mesh size of 0.5 and n=81 nodes. A Vertex Morphing filter
radius r=5.0is used. The obstacle geometry is discretized with the same mesh size and limits the
vertical extension of the design line. The shape optimization is executed for 100 iterations using
the gradient-projection algorithm (subsection 1.2) with an upper limit on the step length and
correction of 0.01. The optimization is executed with the aggregation functions and compared
with a reference solution using nodal constraints.

Zhat<€) — (13)

e 2-norm aggregation: go norm < 0
* Kreisselmeier-Steinhausser: ggs(p = 10) < 0
* Kreisselmeier-Steinhausser: ggs(p = 30) <0

* nodal constraints: ¢g; < 0 for 7 = 1...n nodes

All four examples converge to almost exactly the same final shape - a smooth representation
of the target hat-function respecting the design boundary, as shown in Figure 3.

The objective convergence for all cases is very similar (Figure 4a). Looking at the maximum
nodal violation of the packaging constraint in Figure 4b reveals oscillations for the case with
2-norm aggregation. These oscillations are caused by nodes that jump between the feasible
and infeasible domain over the optimization iterations. This is to be expected for the 2-norm
aggregation since feasible nodes do not contribute at all to the aggregated response gradient.
The oscillations between steps 25 and 60 occur at the center of the line, where the bump in
the packaging geometry is hit first by the design geometry. Here, a maximum nodal violation
in the order of the maximum shape update occurs if the previous design was feasible. This
violation is corrected in the following iterations until the design becomes feasible again and
the process repeats. After iteration 60, the design also hits the other part of the packaging
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Figure 3: Final shape after 100 iterations using the different formulations for the packaging
constraint and close-up near the obstacle
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Figure 4: (a) Convergence graph of the objective function and (b) maximal nodal violation of
the bounding geometry in each iteration.
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geometry at a height of 0.3. From this point, the maximum nodal violation jumps between the
different geometric locations of the contact points with the packaging geometry. The aggregated
constraint stays active all the time, however, individual nodes still oscillate between feasible and
infeasible domains. The overall maximum violation does not vanish even after many iterations,
however, it remains bounded by the step size.

The case with Kreisselmeier-Steinhausser aggregation with p=30 shows no oscillations until
iteration 60, where the shape hits the packaging geometry at tree locations. From this point,
oscillations of the maximum nodal violation are observed, similar to the case with the 2-norm
aggregation. This can be explained by the fact, that high p values result in a good approxi-
mation of the maximum value. The gradient of the aggregated constraint is dominated by the
gradient of the node with the maximum violation, and even if all other nodes still contribute,
they are underrepresented, and the computed shape update might push them to the infeasible do-
main. The smaller value for p=10 in the Kreisselmeier-Steinhausser aggregation leads to a more
conservative approximation of the maximum violation. The contribution of the nodes to the ag-
gregated response value and gradient is more evenly distributed and relaxes the zig-zagging
behavior. This comes with a price, the approximation is too conservative and the design ge-
ometry is constrained with a distance to the packaging geometry. An optimal choice of p is
problem-dependent, since the number of design variables and therefore nodal constraints, and
the number of nodes that come close to the boundary affect the behavior.

The reference solution with the nodal constraints does not show any oscillatory behavior and
the packaging constraint is satisfied exactly.

In general, all four cases satisfy the geometric constraint, with small violations for the ag-
gregation with the 2-norm and the Kreisselmeier-Steinhausser function with p=30. Such small
violations of geometric constraints are often acceptable, especially if Vertex Morphing is used
to find new shapes in early design stages.

S STRUCTURAL OPTIMIZATION EXAMPLE

As a second application example, we present a structural optimization of a solid hook model.
The hook has a height of 237 mm and is modeled with a linear elastic material with a Young’s
modulus £=206.9 GPa and a Poisson’s ratio #=0.29. The mass of to hook should be minimized
while maintaining the initial compliance for two static load cases with a load at the center (LC1:
F=32 kN) and tip (LC2: F=16 kN) respectively. For both load cases, the hook is supported at
the top. In addition to the structural constraints, two geometric constraints from the previous
sections are applied. The design space is limited by a curved packaging geometry with 4505
nodes, and a minimum thickness constraint of ¢,,;,=15.0 mm. The load application area and
the supports are excluded from the shape optimization, this leads to a total number of 7117
surface nodes in the design area. A smooth transition is enforced between design and non-design
regions. The setup of the optimization problem with the initial shape and discretization of hook
and packaging geometry is shown in Figure 5. A filter radius of r=25.0 mm is used for the
Vertex Morphing parameterization, the maximum step length in search direction and correction
is limited to 1.0 mm. The shape optimization, including the adjoint sensitivity analysis of the
structural response functions and the pseudo-elastic mesh motion for the internal nodes, is done
with the ShapeOptimization-, StructuralMechanics-, and MeshMovingApplication of the open-
source software Kratos-Multiphysics [25]. The optimization is stopped after 100 iterations.

Three cases of the optimization problem are solved, comparing the different formulations for
the geometric constraints:
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packaging
geomelry

Figure 5: Optimization setup of the hook with the load-cases, the design surface (blue), the
packaging geometry (yellow) and the simulation meshes.
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Figure 6: Improvement of mass objective and violation of the compliance constraints for the
three cases during the optimization process.

e 2-norm aggregation: go_norm < 0
* Kreisselmeier-Steinhausser: ggs(p = 18) <0
* nodal constraints: g; < 0 fori = 1...n nodes

The shape optimization converges to very similar shapes for all three cases, with a mass
reduction of ~13%. The case with the Kreisselmeier-Steinhausser function leads to a bit less
improvement due to the conservative approximation of the maximum nodal violation for the
geometric constraints (Figure 6 left). Even though the aggregated geometric constraints cause
slight oscillations for the objective and the compliance constraints, the overall trend is compa-
rable to the case with node-wise constraints. The structural constraints are active during the
whole optimization, they are violated by less than 0.005% (Figure 6 right) for all three cases,
which is negligible.

Figure 7 shows the maximum nodal violation of the packaging constraint and the minimum
thickness constraint respectively for the three cases. The 2-norm aggregation again leads to a
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Figure 7: Maximum value of all nodal violations of packaging and thickness constraints for
the three cases during the optimization process. The violations remain much smaller then the

applied step size.
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Figure 8: Final shape of the hook for the three cases, from left to right: 2-norm aggregation,
Kreisselmeier-Steinhausser aggregation, nodal constraints. The nodal violation of the packag-
ing constraint is colored, feasible nodes are colorless.
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Figure 9: Final shape of the hook optimization showing the nodal violation of the thickness
constraint. Feasible nodes are colorless. In the right figure, the initial (black) and geometrically
unconstrained final shape (red) are indicated.

zig-zagging behavior of the nodal violation and finally results in a maximum violation of ~0.2
mm of both geometric constraints. Individual nodes that violate the constraint are pushed to
the feasible domain by the correction step after one iteration. Those nodes do not contribute to
the aggregated constraint gradient anymore and jump to the infeasible domain in the following
iteration. The maximum nodal value g; does not occur at the same node in each iteration. The
Kreisselmeier-Steinhausser formulation is able to satisfy the geometric constraint with slightly
smaller oscillations but is more conservative. The design surface is stopped within a distance of
~0.2 mm to the packaging geometry and ~0.1 mm to the minimum thickness constraint. This
leads to a slightly smaller objective improvement for this case. With another choice of p this
might be improved, however, i.e. p=25 already leads to much larger oscillations. The case with
the nodal formulation is again able to satisfy the packaging and also the minimum thickness
constraints exactly, as expected. The final shapes with the nodal violations of the packaging
constraint are shown in Figure 8. The nodal violations of the thickness constraint are shown in
Figure 9.

This example demonstrates that aggregation of geometric constraints can be applied also in
more complex shape optimization problems when other physical constraints have to be consid-
ered. The maximum number of simultaneously active constraints in this example is 173 for the
node-wise constraints and 4 for the aggregated formulations. Even though the aggregation of the
geometric constraints does amplify the known zig-zagging behavior of the gradient-projection
algorithm, the negative impact on the objective improvement and enforcement of the physical
constraints is negligible. It is highlighted that globally the same shapes are found in all three
cases.
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6 CONCLUSIONS

Constraint aggregation functions have been successfully applied to geometric constraints
in shape optimization problems with the Vertex Morphing parameterization and a gradient-
projection algorithm. The performance of the aggregation functions has been evaluated in an
academic 1D example and a 3D structural-mechanics example, comparing with the node-wise
application of the constraints. The latter example was also subject to additional structural con-
straints. The overall number of constraints can be drastically reduced, which is of interest,
especially for large models. With both investigated constraint aggregation functions, the same
shapes as are found as with the reference solution with nodal geometric constraints. Depend-
ing on the aggregation formulation, the final shape does either slightly violate the geometric
constraint, or is stopped within a small distance to the constraint limit in case of a conserva-
tive choice of the p value of the Kreisselmeier-Steinhausser formulation. Such small deviations
from the geometric constraints are often acceptable when searching new shapes, and constraint
aggregation can be an efficient alternative to the numerically challenging nodal application of
the constraints.
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