
SAFETY CONSIDERATIONS FOR WCET EVALUATION METHODS IN

AVIONIC EQUIPMENT

Xavier Jean, Sylvain Girbal – Thales Research and Technology – Palaiseau, France

Anthony Roger, Thomas Megel– Thales Avionics – Vélizy-Villacoublay, France

Vincent Brindejonc – Thales Air System – Limours, France

Abstract

Most safety-critical avionics systems are defined

as “hard real time”. That means they must deliver

their function within pre-defined deadlines. Missing a

single deadline at system level is considered as a

failure condition that may be catastrophic. At

software level, this is a single failure that must be

mitigated with appropriate means to prevent that

failure condition.

Real-time requirements are addressed in

software components by Worst Case Execution Time

(WCET) evaluations. Several methods have been

explored in the literature, for which classifications

have been proposed according to their techniques and

precision of their results. However, these

classifications do not consider the contribution of

WCET evaluation techniques to safety processes.

In this paper, we present a safety process that

integrates WCET evaluation on embedded software.

This process allows us to highlight the benefits and

limits that WCET evaluation methods bring in

industrial practices.

Introduction

Today’s aircrafts embed several avionics

systems that are critical for flight safety. These

systems are usually qualified as “hard real-time”.

That means they must fulfill their service within pre-

defined deadlines, while a single miss would be

considered as a failure condition in the meaning of

CS-25.1309 [1].

Hardware and software components belonging

to a hard real-time system inherit from timing

requirements, and are given local deadlines. In safety

terminology, a deadline miss by one component is a

“single failure”. By design, the occurrence of a single

failure cannot lead solely to a catastrophic failure

condition [1]. However it may be directly linked to a

hazardous failure condition, and/or combine with

another failure to reach a catastrophic level. Hence it

represents a non-negligible risk for flight safety, that

shall be mitigated in order to achieve certification.

We focus in this paper on a class of analyses

called “Worst Case Execution Time” (WCET)

evaluation. This kind of analysis aims at assessing a

time budget for a piece of software, with guarantees

that it will terminate its execution if it is granted that

budget. WCET evaluation actually refers to a large

variety of concepts and techniques; many of them are

summarized in a survey by Wilhelm et al. [2].

Several criteria can be proposed to classify

WCET evaluation techniques. For instance, static

methods are computational and simulate the behavior

of a processor’s model executing the task’s software;

dynamic methods rely on measurements of execution

times of software on the final target. Some techniques

claim true upper bounds on execution time, while

others give probabilistic results [3]. Finally, some

techniques apply on isolated tasks, while others

require a global knowledge of all task’s details. All

methods share common principles, for instance they

admit evaluated WCET is approximated more or less

precisely, but will never be reached. However, there

is no consensus on what kind of guarantees WCET

evaluation is supposed to bring, and how it can be

used to ensure that in the end, the system is safe.

That paper aims at proposing an overview of a

safety process that includes a WCET evaluation

method, and at illustrating how that method can

contribute to avionics system’s safety. This overview

enables a qualitative comparison of WCET

evaluation methods, with a focus on the way they can

be combined to improve safety assurance.

That paper starts with two sections that sum up

aspects relative to safety process and WCET

evaluation. It is followed by one section that deals

with WCET evaluation methods limitations and

possible enhancement, and two sections that develop

Work for this paper was executed within the SAFURE project. The project has received funding from the European

Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

the following classes of analysis encountered in a

safety process:

 Safe design. Top-down methods that aim

at building a product that copes optimally

with safety constraints.

 Safety assessment. Methods ensuring that

safety objectives, as defined at design

time, have been met.

Safety Process Overview

In industrial practices, design and development

phases of safety-critical equipment are performed by

engineers alongside with safety processes. In this

section, we give an outline of the safety process

WCET evaluation methods will have to comply with.

Figure 1 provides a sketch view of a standard safety

process in avionics as provided by ARP4754A [4] or

ARP4761 [5].

Figure 1: Sketch of Avionics Safety Process

This process is centered on a standard V cycle

which descending branch is in general called

allocation and an ascending branch called integration

(see ARP4754 [4]). From a safety-centered point of

view, the allocation phase can be named “safe design

phase” and the integration phase, “safety assessment

phase”. This denomination will be used all

throughout this paper even though the allocation and

integration principles are also applicable to safety

process.

At the top of the safe design phase (and even

prior to this phase, the Functional Hazard Analysis

(FHA) determines Failure Conditions (or Feared

Events) on which the complete analysis will be

based. Preliminary System Safety Assessment

(PSSA) is dedicated to architectural mitigation of

these Feared Events. Safety requirements determined

in PSSA are both qualitative via the definition of

safety mechanism and quantitative via failure

probabilities and performances of safety mechanisms.

In the safety assessment phase a System Safety

Analysis (SSA) compiles evidences that safety

requirements are correctly implemented and realized

on the final product.

Although this process is mainly defined at

aircraft level, it is also applicable with a slight

modification at lower levels, and it can become an

iterative process from aircraft to basic components.

This process is aeronautics-oriented but is in fact

very general and inspired by standard system

engineering principles. It can be refined and

implemented depending upon the application domain

and the problem at hand.

Safe Design Phase

A safe design process aims at guiding the overall

design phase so that the system copes optimally with

high-level safety requirements. It is performed during

the PSSA phase.

Figure 2 proposes a way of performing a PSSA

in the safe design phase. On that figure, red boxes are

PSSA related, orange boxes are inputs to PSSA

process and green ones. Green arrows flow design

data and red ones flow safety related data.

A safe design process presents the advantage to

prepare the safety assessment phase very early by

performing safety studies for allocation of safety

requirements. This will be directly used in the safety

assessment phase for the synthesis of evidences.

On Figure 2, preliminary design elements are

used to imagine a safety concept for each Feared

Events. Such safety concepts can be informal or not,

but simplicity of exposition and communication

should be favored. In its basic principle, it is based on

scheme and drawing that only focuses on the design

elements (systems, parts, information flows, etc.)

contributing to the considered feared events (see for

instance the Functional Failure Path Analysis of

DO254 [6]) and the mitigation principle that avoid

propagation of the various associated failures up to a

the Feared Event. These mitigation measures are

summarized in requirements, that are further refined

to particular timing performances (see [7] for

instance). These requirements are thus qualitative

with quantitative performance characteristics.

Figure 2: Overview Of Safe Design Process

It is a general assumption that on safety concept

elaboration, safety engineers and design engineers

work in a close collaboration. This is even more

crucial when technology aspects are key.

Feared Events are characterized by probability

objectives that are allocated to requirements on

design elements failure modes through detailed safety

studies. These studies are basically of two

complementary types:

 Failure Mode Effect Analysis (FMEA),

 Fault Tree Analysis (FTA).

The requirements on design elements failure

modes, derived through these studies, are focused on:

 The safety level to be reached on the

control of systematic failures (e.g. DAL),

 The probability allocated to the failure

mode.

 Safety Assessment Process

The goals of the Safety Assessment phase is to

confirm that the designed and tested product

complies with the safety objectives of the FHA and

does not introduce other risks that have not been

foreseen. These general goals are realized through

three main activities (see Figure 3):

 Verification of qualitative safety

requirements, in particular on safety

mechanisms. It corresponds to the

verification of presence and correct

implementation of the mechanisms.

 Verification of quantitative safety

performances of safety mechanisms: lapse

time to safe state, coverage rate, etc.

 Verification of qualitative requirements on

development level objectives (e.g. DAL).

 Verification of quantitative requirements

on failure mode probabilities. This will be

developed in sections dealing with WCET

evaluation.

 Analysis of technical events occurring

during development or on similar systems

already in operation. This analysis can

influence safe design phase analysis up to

Feared Event definition in the FHA

(hopefully rarely). It has to be analyzed

through Detailed Safety Analysis that it, in

turn, influences. It has not been

represented on Figure 3 for readability

reasons and because it is out of the scope

of this paper.

Figure 3: Overview Of Safety Assessment Process

When the safe design phase has been performed,

the integration or safety assessment process is

simplified for all preceding aspects. For instance

 Safety concepts allow to identify directly

the impact of an incorrect realization of a

safety mechanism on the Feared Events.

Of particular interest for WCET is the

correct timing realization of safety

mechanisms that rely on software.

 Quantitative requirements on failure

modes are directly checked unitarily. In

case of discrepancy, a safety analysis

performed during safe design phase is

reused in order to verify that the safety

requirement is still enforced despite this

particular requirement.

We presented in this section a safety process that

can be applied on avionic equipment. This process is

generic and can be refined according to specific topic

of interests, WCET evaluation in our case. The

following sections present an overview of WCET

evaluation methods, their limitations, and the way

they can be integrated in our safety process.

WCET Evaluation Methods Overview

Motivations

In avionics equipment, embedded software is

usually a set of tasks that are executed under the

control of a scheduler, and that interact with third-

party libraries through pre-defined API, e.g. libc,

mathematical library.

Each task is associated to local deadlines, that

come up periodically or are triggered by external

events. Ensuring that each task will meet its deadline

requires the following analyses:

 A task-per-task evaluation of individual

needs for computation time. That stage is

called “Worst Case Execution Time

Evaluation” (WCET). The leading idea

consists in exploring jointly hardware and

software’s most unfavorable behaviors.

 A global verification that scheduling will

grant all tasks their needed amount of

computation time before they reach their

deadlines. That can be performed through

simulation or offline tests. Scheduling

analysis is a field that has both a wide

community and has a rich literature, e.g.

Davis and Burns survey for multi-core

scheduling algorithms [8].

Worst Case Execution Time is a metric defined

for each task, even if it may depend on the overall

tasks set. We define it as the duration for which it is

considered, with an acceptable level of confidence,

that the task will have fulfilled its execution,

whatever the processor’s initial state and the events it

will face, as long as their occurrences are compatible

with a predefined usage domain.

When a WCET evaluation method is applied on

a complex processor, the resulting WCET is always

an approximation. Therefore, methods are usually

ranked according to their precision, i.e. the difference

between the computed WCET and the empirical

bound observed on the execution times distribution.

Finally, many WCET evaluation methods claim to

produce “safe” WCET, i.e. sound overestimations of

the real one. Other methods [9] [3] provide WCET

associated with a probability.

WCET Evaluation Flow

WCET evaluation is a process that takes as input

raw binaries. The goal is to ease certification by

focusing on the final binary, and making this analysis

independent from the compilation chain and

associated software optimization flow. Hence WCET

soundness does not depend on external tools.

WCET evaluation is composed of the following

steps, represented on Figure 4. The first three steps

are described in [2], and consider the task as

uninterrupted. The fourth one is more empirical and

comes from industrial practices:

 Flow Analysis. The binary will be

explored to find out reachable execution

paths. It abstracts the task as a “Control

Flow Graph” (CFG), whose nodes, called

“Basic Blocs”, usually refer to functions

and loops. Some methods formalize

relations between basic blocs in the form

of “execution contexts”.

 Timing Analysis. Each basic bloc’s

execution time is assessed. At this level,

we distinguish dynamic methods from

static ones. The former gather basic bloc’s

execution time by test campaigns. The

latter evaluates them with a simulation of

software execution on a processor timing

model (step 2 of Figure 4). Timing

analysis results are often formalized as

annotations on the CFG.

Figure 4: Overview Of WCET Evaluation Flow

 Estimate Calculation. Information from

flow and timing analyses are correlated to

find out the longest path in the program.

An intermediate WCET is computed.

 Penalties Application on the intermediate

WCET. Penalties mitigate the impact of

phenomena that were ignored in previous

stages, because of their complexity and/or

the incapacity to anticipate them

accurately. These phenomena may refer to

Operating System ticks, external

interrupts, DRAM refresh cycles…In most

cases, penalties are evaluated empirically.

These steps are encountered under more or less

formalized and automatized forms in industrial

processes. They may be performed by WCET

analyzers, which are available in commercial or open

source solutions, described thereafter.

Static vs. Dynamic Methods

As described in step 2 of Figure 4, WCET

evaluation methods are classified as “static” and

“dynamic”.

Static methods rely on the analysis of software

execution over a nearby cycle-accurate model of the

processor. This enables fine grain analyses that

identify worst case behaviors in components like

pipeline and caches. These analyses are capable to

cover non trivial behaviors on the processor, such as

timing anomalies [10], i.e. worst case behaviors on

the processor that result from local non worst-case

behaviors. These situations cannot be easily

reproduced by tests. However, soundness of static

methods relies on the possibility to build correct

models of processors. In practice, processor cores are

described by manufacturers with a good level of

details. Therefore, models’ soundness can be

assessed with a correct level of confidence. On other

resources of the processor, timing models are coarser.

They just associate timings for each operations over

each device. This timing information refers to worst

case situations, which are not systematic. For

instance, they are strongly linked to banks and page

states in DRAM controllers [11].

On the other hand, dynamic methods aim at

gathering execution times from test campaigns. Thus,

such a method will guide test scenarios to ensure that

reachable execution paths have been explored, and

unfavorable hardware behaviors have been covered.

A dynamic method may rely on local measurements

of portions of code, or end-to-end measurements over

the whole task. The objective of a dynamic method is

rather to speed up test campaigns without changing

the test procedures.

Finally, static and dynamic methods only differ

on a small part of the evaluation flow. Both require a

deep exploration of the task’s binary. That

exploration is not trivial and often requires additional

information provided by the user, and called

“annotations”.

We introduced the general analysis flow

encountered in existing solutions, under more or less

automatized forms. The next section is about WCET

analysis tools available in the state of the art.

WCET Analysis Tools

The WCET evaluation process described earlier

is implemented in several tools, commercial or open-

source. Census of existing tools have been performed

in several publications [2] [12]. We focus here on

tools that competed during the latest WCET Tool

Challenge in 2011 [13], with a focus on a tool we

consider as representative.

aiT [14] [15], developed by AbsInt, is a mature

tool that implements a WCET computation flow with

a static method. It supports several COTS processors

cores, including PowerPC and ARM series, and has

been used successfully in industrial environment

[16]. Moreover, aiT has been designed to meet

stability and traceability requirements for

certification. Finally, it has been observed that aiT

could compute WCET with a high precision [17],

often under 25%.

Competitors of aiT in the field of static methods

are Bound-T [18], TuBound [19], SWEET [20],

Otawa [21]. All these tools have some maturity either

in the academic or industrial communities. We can

also encounter more recent tools that have interesting

properties, such as formal validation of the absence

of error in the analysis flow [22].

In the field of dynamic methods, RapiTime [23],

developed by Rapita Systems, is considered as a

mature tool. It aims at speeding up existing industrial

processes by automating time measurement

operations. Hence it automatically collects execution

traces produced at runtime and computes statistics to

obtain a distribution of execution times. A WCET

can be derived from such measurements with an

associated probability. Even if all reachable states at

hardware level are not covered, RapiTime relies on

randomization to ensure that pathological situations

are highly improbable.

Competitors of RapiTime are TimeWeaver,

developed by AbsInt, and GameTime [24] which is

open-source.

WCET Analysis Flow Limitations and

Possible Enhancements

In the previous section, we presented the

analysis flow involved in existing WCET evaluation

methods. To reduce certification costs, this flow is

directly applied to the application binary so that it

does not involve the compilation chain. It however

introduces a set of limitations due to the lack of

semantic of the binary format.

Limitations Due To CFG Complexity

Performing a retro-engineering construction of

the control flow graph from the binary format is a

tremendous task. Furthermore, the complexity of this

generated CFG is very high, as it covers every

possible execution paths, including control path

corresponding to unrecoverable errors. Such errors

usually correspond to sanity checks that might be part

of the program itself, or part of the application

libraries such as libmath sanity checks.

For safety critical software, it is part of the

design process to decide which paths will be

analyzed and which paths will not. Uncovered paths

will require guarantee that they are not taken at

runtime. For instance it may be possible to ensure

that none of sensitive sanity checks can fail, relying

on proof or testing, keeping sure that each of the

program value is used within its usage domain.

Nevertheless, sanity checks do exist in the

binary and the WCET analysis tool cannot

differentiate them from the regular nominal control

flow. This is illustrated on Figure 5 and Figure 6.

Figure 5: Raw CFG of Fibonacci Computation

Figure 5 provides an overview of CFG

computed from a binary code that performs a

Fibonacci computation. We used a non-optimized

recursive Fibonacci implementation provided as an

example with aiT [14]. CFG were also computed by

aiT with a version for MPPA many-core processor

developed by Kalray. While it is not appearing in the

original source code, for each recursion, the program

checks for a possible overflow, responsible for most

of the Fibonacci function control, and the complexity

of the CFG depicted on Figure 5.

Assuming that the domain usage analysis has

already being performed, these sanity checks are

useless and will never be triggered. We can therefore

eliminate the corresponding CFG branches for the

analysis, providing some annotations for the WCET

estimation tool. Doing so leads to a simplified CFG

appearing in Figure 6.

Figure 6: Simplified CFG, Ready For Analysis

Performing time analysis on the first version of

the CFG will result in the best case a much more

pessimistic WCET bound than performing it on the

second simplified version, and in a worse case will

not let the WCET analysis converge in an acceptable

time.

Therefore, user-provided annotations are critical

for the estimation tool to produce an acceptable, not

overestimated WCET value.

Limitations Due To Complex Loop Bounds

Beyond not being able to spot unrecoverable-

error related paths, performing the analysis on the

binary format of the application also impacts the

ability to successfully identify loop nests and their

associated loop bounds.

The only kind of control appearing in the binary

format are branches and conditional branches. It is

therefore not trivial to distinguish the control flow

associated with a loop to the one associated with a

conditional.

Let’s assume we analyze the program appearing

in Figure 7. While being minimalistic, it involves a

computation within a triangular loop with

conditionals. The associated WCET will clearly

depend on the number of time the computation is

executed.

Figure 7: Source Code of Triangular Loop

Once compiled the corresponding assembly code

appears in Figure 8. It is already very hard to identify

the triangular nested loops, and WCET evaluation

tools will usually fail to accurately compute the loop

bounds, overestimating the number of iterations, and

therefore the number of time the computation is

executed and thus, the worst case execution time.

Again, user-provided annotations can solve the

issue by indicating to the evaluation tool the exact

number of iterations for most loops, avoiding some

over bounding.

Figure 8: PowerPC Assembly of Triangular Loop

Limitations Due To Dependency Analysis

Through instruction level parallelism (ILP),

pipeline architectures are able to execute several

instructions concurrently. However, dependency

between instructions may prevent such a parallel

execution, impacting the overall execution time. For

instance, successive instructions, each using the

result of the previous instruction cannot be run in

parallel.

To compute an efficient execution time, it is

therefore necessary to perform a dependency

analysis. Such kind of analysis already exist in

compilers [25] [26] to check for the applicability of

code transformations.

Dependency analysis are already very complex

when applied to an high level compiler intermediate

representation of the source code. When applied to

binaries, they are even more complex, as the

semantic behind variables has disappeared, with

several variables being successively stored in the

same register.

For this particular case, user-provided

annotation cannot really help. The efficiency of the

evaluated WCET will strictly depend on the accuracy

of the pipeline model in the estimation tool.

Limitations Due To Data Alignment

The efficiency of many data-processing

algorithms depends on data alignment: computation

on well-aligned data can usually directly be

performed by the ISA, while misaligned data require

a set of shifting and logic operation to be performed

prior and after the computation.

For global variables appearing in the final

binary, the developer can enforce a suitable

alignment. However, all the local variables appearing

in the functions composing the application are

allocated at runtime on the stack. As a consequence,

they do not exist in the binary, and therefore, no

assumption can be made by the evaluation tool on

their existence not their alignment. Some functions

like “memcpy” are very sensitive to this behavior:

Let’s assume the source code of Figure 9 that is only

copying one structure into another.

Figure 9: Piece of Code Calling Memcpy

Both the source and the destination of the copy

are local variables that will be allocated on the stack

with unknown addresses at the time of the analysis.

The memcpy algorithm appears in Figure 10.

Figure 10: Overview of Memcpy Algorithm

The control path of the worst execution

corresponds to mis-aligned source and destination,

with an offset for their alignment and some

overlapping regions. All these conditions depend on

the source and destination addresses, so the

evaluation tools have to systematically consider the

worst case. In a code with a lot of recopy of data

structures, the impact on WCET over bounding can

be significant.

However, as the source and the destination are

allocated on the stack, 1) there will be no overlap,

and 2) both struct will be 32-bit aligned with a null

alignment offset. As a consequence, only the best

possible control path will be used at runtime for this

copy, with no possibility for the evaluation tool to

discover it.

Such information on data alignment can be

provided by the user as annotations. However, to

identify the issue, the user needs a deep knowledge,

not only of his own source code, but also of the

standard libraries such as libc which is providing

memcpy.

Enhancements Due To Compiler Information

Many of the limitations described in this section

are due to the lack of semantic associated with the

binary form, and can be complemented by the user

with annotations to provide the lost semantic. Rather

than relying on the user, it would be possible to rely

on the compiler that produced this binary to get the

required information, as proposed in [27].

A compiler tool suite such as GCC [28] is

organized in successive analysis and optimization

passes. The compiler itself is manipulating a CFG

structure, which is annotated during analysis phases

and transformed during optimization phases down to

producing the CFG corresponding to the binary.

If the annotations and analysis performed by the

compiler are not related to timing, these annotations

still carries some useful information like originating

loop nests, loop bounds values, or variable-to-register

mapping.

For a more efficient WCET evaluation, a first

option would be to replace the generated CFG with

the one used internally by GCC. If it would avoid the

flow graph generation part of the analysis, it will

make the analysis tool compiler-dependent. As the

internal representations of compilers may evolve

without notice, it might not be viable for a multi-

target approach running different versions of various

compilers.

A more suitable second approach would be to

make the compiler systematically dump the

information related to the currently user-provided

annotations. In GCC, modularity allows us to develop

a new pass that would be dedicated to extracting the

required information from the internal CFG

representation.

A first advantage would be to benefits from the

existing loop bound computation pass of the

compiler. Such a pass is very complex and relies on

Z-polyhedral representation techniques to accurately

compute loop bounds, as long as they are defined as

affine functions of external loop iterators [29].

In this model, each instruction is clearly

associated with an execution domain corresponding

to the possible iterations during which this instruction

will be executed. For instance the domain

corresponding to the computation of Figure 7 is

defined in Figure 11.

This domain information is later used by the

compiler to effectively compute the number of

iteration at instruction level [30] Extracting such

information for the WCET evaluation tools would

solve the issue related with over bounding of such

loop bounds.

Figure 11: Execution Domain of Triangular Loop

The compiler has also more knowledge about

the application data. While only the global variables

are appearing in the application binary, the compiler

also keeps information related to local variables. This

would allow us to extract more information about

alignment and data size, that could be used to

statistically resolve some checks as those appearing

for the memcpy example depicted in Figure 10.

While the source and destination addresses are still

unknown, the compiler knows that these addresses

are 32-bit aligned, and that there is no overlap for the

memcpy. Again, extracting such information can be

useful to automatically build some annotations

instead of forcing the user to provide them.

Several studies have already considered a

coupled compiler / WCET estimation tool approach:

 In [19] Prantl et al. are coupling together a

set of standalone tools including a Fortran

compiler, an interval analyzer, a loop

bound analyzer and a WCET estimation

tool. From a source code, annotated with

both real time constraints and loop bound

information, the tool-suite generates an

annotated binary that is later analyzed by

the CALCWCET167 estimation tool.

 In [31] the authors push the concept

forward with a tight integration of the aiT

engine with an ad-hoc C compiler. Beyond

the ability to pass relevant information to

the WCET estimation engine, this tight

coupling also enable the compiler to

perform some optimization passes

dedicated to the worst-case optimization

by considering estimated execution times

while evaluating the pertinence of some

loop transformations.

The proposed solutions have not yet reached a

sufficient maturity level to be integrated into an

industrial process. Considering the wide variety of

hardware targets and of compilation languages, the

integration of dedicated WCET-related passes in

GCC seems promising.

The efficiency of the WCET estimation tools are

usually tightly coupled with the effort the user

provide to annotate the source code. Being able to

automatically extract most of this information from

the compiler will considerably reduce this effort and

the applicability of WCET estimation tools.

Enhancements Toward Multi-Cores Support

Multi-core processors are expected to be

embedded in the next generation of avionics

equipment. On such processors, various sequential

tasks will run at the same time on different cores.

Evaluation of WCET is hardened because of

interferences [32] [33] [34] [35].

Regarding WCET evaluation flow, the impact of

interferences must be represented as a penalty, that is

applied either in the second step (see Figure 4) that

deals with timing analysis, or in the last step that

deals with offline penalties applications.

On COTS multi-core processors, bounding

interferences on a set of tasks is a complex problem.

The largest research effort focuses on efficient and

smart ways to constrain embedded tasks to bound

interferences in order to provide static interferences

penalties. That means they consider WCET

evaluation method as fixed and alter the hardware

and/or software environment to make them

applicable.

Several approaches have extended existing

WCET evaluation methods to take interferences into

account on a closed set of tasks. Nowotsch [36]

proposes the notion of Interference Sensitive WCET

(isWCET), which extends the analysis flow

implemented in aiT. It alters the processor’s model

with an interference penalty that is obtained by

gathering a profile of resource usage for each task.

That operation is also performed by aiT.

In [37], Bin proposes a set of benchmarks that

stress selected components on a processor. Then she

defines the notion of signature over a component of

the processor, that roughly corresponds to the level of

interferences inside the component with regard to the

amount of incoming traffic. The signature also

applies on software. Hence, by combining signatures

at hardware and software level, it becomes possible

to compute an interferences penalty over a set of

tasks, and apply this penalty at the last step of

evaluation flow.

An alternative approach based on budgets

allocation for resource usage has been proposed in

[38]. The authors allocate to each embedded task a

budget for the number of operations they are allowed

to perform on shared resources. An interference

penalty is computed according to this budget. At

runtime, a monitoring mechanism is in charge of

stopping a task that exceeds its budget.

In this section, we pointed out some limitations

of WCET evaluation methods due to the lack of

information retrievable from a binary code of a task.

This lack of precision is not by itself due to imprecise

hardware models. It comes from the assertion that

computed WCET will correspond to an execution

path that cannot be actually reached.

These limitations, and others that are more

dependent on methods, impact the way WCET

evaluation methods contribute to safety processes.

This is developed in the following sections.

WCET Considerations In Safe Design

In the preceding sections a general safety

process has been depicted and articulation of the

different WCET methods has been presented. This

section shows how to integrate WCET evaluation in

safe design process.

Probabilistic Objectives On Failures

WCET problematic arises in FHA at Failure

Condition (or Feared Event) level or at refined levels.

Consider at aircraft level that a deadline miss leads to

a Feared Event (FE). Consider for instance an

elevator raise time characterized by a random

variable then while

corresponds to a timing budget.

Consequently, we have the following equations:

 (1)

If a timing constraint occurs only on some

system participating elements failure mode then

similar equation applies.

For any refinement level, as soon as time

constraints appear, the process in Figure 2 applies at

system and electronic device levels with the

following customization.

At system level, design specification provide a

preliminary basic design. Then, designer and safety

engineer collaborate to propose an architecture that

can reach objectives on failures probabilities

including deadline miss induced failures. This is the

safety concept step in Figure 2. At this level the

safety mechanism will consist in redundancies and

surveillance of elapsed time. With this enriched

architecture, the designer can allocate timing

constraints and the safety engineer can allocate

probabilities of failure including probabilities of

missed deadlines using the previous equation. At this

level, probabilities are allocated to mechatronics

elements such as actuators, wires, computers…

The same process can be applied to electronic

devices where the safety mechanisms are mainly

timing surveillance. Probabilities will be allocated to

electronic basic processes (IO transmissions, PCIe

communication, PLD treatments and microprocessor

treatments).

At microprocessor level, the same process can

be implemented with significant differences if the

microprocessor is a COTS. In this case, safety

mechanisms can be either external to the

microprocessor, either software. For the same reason,

the electronic timings and associated probabilities

cannot be considered as simple allocations but as

constrained allocations. The only possible adjustment

is at software level, as hardware is a COTS and

remains as it is. In the case of multicore use or even if

DMA are fully used in a single-core context, timing

allocation should apply a safety margin for possible

interferences. In the case of a multi-core processor, in

failure probability computation, a probability could

be allocated to the interferences: the deadline is not

met at processor level if the processes do not meet

their deadlines or if processes interfere.

A safe design process is thus applicable to

WCET problems through the assimilation of a

deadline miss to a particular failure mode. Several

aspects may be explored regarding WCET

evaluation, some of them have been detailed in [39]:

 It is valuable to be capable to perform

WCET evaluation in early design for an

equipment. In this case static methods

offer a clear advantage: they do not require

a final hardware to be applied. A model of

this hardware, even if it is approximated,

may be used to guide timing budgets

allocation and failure probabilities.

 It is recommended to leverage qualitative

risks linked with WCET evaluation

methods as soon as possible. For instance,

limitations described in the previous

section may weaken budgets allocation, or

rely on compiler information to get

exploitable results.

 A WCET evaluation method will have to

be integrated in an industrial process,

which may integrate several actors. It is

the case for Integrated Modular Avionics

(IMA) systems [32]. A WCET evaluation

method may require specific information

that usually are not exchanged within

existing processes. That is the case for

details on an Operating System

implementation.

This approach allows for considering deadline

misses in a system failure from a safety analysis point

of view. Consequently it allows for considering

safety mechanisms that can mitigate the deadline

misses. In an aeronautics context, as requested by

CS25-1309 [1] a single failure cannot lead alone to a

catastrophic event.

WCET Aspects In Safety Assessment

As presented in Safety Process Overview, the

Safe Design Phase can enlighten the Safety

Assessment Phase.

The safety concepts settled for the mitigation of

deadline misses have to be tested, including the

estimation of coverage rate through modeling and

computation. Latency time, when it relies on software

processing, have to be carefully checked by WCET

evaluation methods. Even if the method does not

returns probabilistic WCET, it is recommended to

associate it with a failure probability, so that its

impact can be directly integrated in safety analyses,

e.g. FTA.

For instance, in [39], the authors pointed out

several risks for WCET evaluation methods. These

risks deal with:

 Uncertainty over processor models

soundness in the case of static methods.

 Uncertainty over path analysis, especially

if compiler information is used.

 Uncertainty about processor’s state

coverage, in case of dynamic methods.

 Uncertainty about annotations that are

written by the end-user.

Quantitative requirements on timing failure

modes are expressed in probability through Equation

(1). These requirements can be checked unitarily

using probabilistic WCET estimation methods [3], or

jointly over the whole set of tasks. In case of

discrepancy between a requirement and a

probabilistic evaluation, this probabilistic evaluation

can be directly inserted in the safety detailed study

(for instance a fault tree), issued from Safe Design

studies, in order to verify that the objective of safety

goal is reached despite this particular requirement.

Static methods’ results are locally very accurate

and exhaustive on the hardware and software

behavior. Additionally, they are expressive enough to

provide feedback on why a WCET has been reached,

even if the incriminated path or hardware

configuration is not reachable. That makes them

valuable bug-finders for WCET evaluation.

Finally, in the framework of safety assessment,

timing global properties should be assessed using

probabilistic arguments, whatever the evaluation

method.

It is interesting to note that the probabilities of

missed deadlines do not model WCET as exponential

probability laws (see for example [40]). This leads to

quantitative treatments in fault trees that are

mathematically more complicated than the examples

of ARP-4761 [5].

Conclusion

Satisfying hard real-time constraints with COTS

hardware is a complex problem, especially on today’s

multi-core processors. This problem has been

addressed in the academic and industrial

communities as a matter of Worst Case Execution

Time computation performed on each sequential

piece of software. Literature dealing with WCET

evaluation is abundant. Several WCET analyzers are

available, under commercial license or open-source,

and are organized in a structured ecosystem.

As explained in this paper, one of the main

limitations of WCET analyzers is their difficulty to

accurately retrieve and explore all binary’s execution

paths. Historically, that was seen as the cost of being

independent from compilers. However, several

approaches coupling a compiler and a WCET

analyzer have recently emerged.

We proposed in this paper an outline of a safety

process that integrates WCET evaluation. This safety

process starts from system-level requirements, and

refines these requirements among processing chains,

that may include computation tasks, but also network

communications and occasionally electro-mechanical

elements, e.g. actuators. This safety process shows

that :

 A safety-critical system at the highest level

of criticality must tolerate at least one

deadline miss.

 The “safe design” part of the process

allocates time budgets and failure

probabilities to each tasks.

 Time budgets and failure probabilities are

checked in the “safety assessment”

process. Iterations may be performed to

adjust budgets.

During the safe design process, it seems relevant

to apply static WCET evaluation methods in an early-

design phases. Static methods do not require final

hardware to be available, which is often the case in

certification projects. Hence their use on hardware

models, even if they are approximated, helps

allocating time budgets and check that the platform is

not over neither undersized. Among industrial

practices, the main effort is focused on validation

rather than pre-analysis. This approach would benefit

from early WCET evaluation.

Later, in the development process corresponding

to safety assessment phases, both static and dynamic

methods can be applied. What is important is to keep

in mind that all methods, even safe ones, bring their

own sources of risks, either in WCET itself, or the

way these methods are used. The risk has to be as

easy as possible to assess. Hence it would be valuable

to distribute alongside with WCET evaluation tools

some skeletons or pre-filled information that could be

used by safety engineers in analyses such as FMEA

or FTA.

Combining dynamic and static methods also

seems valuable in a safety assessment process. While

the former does not rely on a hardware model, and

considers the final platform as a whole, the latter can

act as a pathfinder, by highlighting non-trivial

execution paths and/or hardware situations that

should be covered.

One interesting extension of this work would be

the application of this safety process with a specific

refinement for a multi-core processor. That would

entail the introduction of a random variable that

represents interferences impact over a set of tasks.

That random variable, like for execution times, would

be gathered in order to size a budget of interferences,

while exceeding this budget might lead to a deadline

miss.

References

[1] CS-25, Certification Specifications for Large

Aeroplanes, Amendment 6, 2009.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N.

Holsti, S. Thesing, D. Whalley, G. Bernat, C.

Ferdinand, R. Heckmann, T. Mitra, F. Mueller,

I. Puaut, P. Puschner, J. Staschulat and P.

Stenström, "The Worst-Case Execution-Time

problem overview of methods and survey of

tools," ACM Trans. Embed. Comput. Syst., vol.

7, no. 3, pp. 36:1--36:53, may 2008.

[3] F. J. Cazorla, E. Quiñones, T. Vardanega, L.

Cucu-Grosjean, B. Triquet, G. Bernat, E.

Berger, J. Abella, F. Wartel, M. Houston, L.

Santinelli, L. Kosmidis, C. Lo and D. Maxim,

"PROARTIS: Probabilistically Analyzable

Real-Time Systems," ACM Trans. Embed.

Comput. Syst., vol. 12, no. 2s, pp. 94:1--94:26,

may 2013.

[4] SAE, ARP-4754 : Certification Considerations

for Highly-Integrated or Complex Aircraft

Systems, 1996.

[5] SAE, ARP-4761 : Guidelines And Methods For

Conducting The Safety Assessment Process On

Civil Airborne Systems And Equipment, 1996.

[6] RTCA/EUROCAE, DO-254/ED-80: Design

Assurance Guidance For Airborne Electronic

Hardware, 2000.

[7] V. Brindejonc and N. Plaze, “Rédaction,

vérification et gestion des exigences de Sûreté

de Fonctionnement,” in Lambda-Mu 18, Tours,

2012.

[8] R. I. Davis and A. Burns, "A survey of hard

real-time scheduling for multiprocessor

systems," ACM Comput. Surv., vol. 43, no. 4,

pp. 35:1--35:44, oct 2011.

[9] G. Bernat, A. Colin and S. Petters, "WCET

analysis of probabilistic hard real-time systems,"

in 23rd IEEE Real-Time Systems Symposium

(RTSS), 2002.

[10] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm,

I. Polian, J. Eisinger and B. Becker, "A

Definition and Classification of Timing

Anomalies," in 6th Intl. Workshop on Worst-

Case Execution Time (WCET) Analysis,

Dagstuhl, Germany, 2006.

[11] U. Drepper, What Every Programmer Should

Know About Memory, 2007.

[12] J. Gustafsson, A. Betts, A. Ermedahl and B.

Lisper, "The Mälardalen WCET Benchmarks:

Past, Present And Future.," WCET, vol. 15, pp.

136-146, 2010.

[13] R. von Hanxleden, N. Holsti, B. Lisper, E.

Ploedereder, A. Bonenfant, H. Cassé, S. Bünte,

W. Fellger, S. Gepperth, J. Gustafsson, B.

Huber, N. M. Islam, D. Kästner, R. Kirner, L.

Kovacs, F. Krause, M. de Michiel, M. C.

Olesen, A. Prantl, W. Puffitsch, C. Rochange,

M. Schoeberl, S. Wegener, M. Zolda and J.

Zwirchmayr, "WCET Tool Challenge 2011:

Report," in Proc. 11th International Workshop

on Worst-Case Execution Time (WCET)

Analysis (WCET 2011), 2011.

[14] AbsInt. http://www.absint.com/ait/

[15] C. Ferdinand and R. Heckmann, "aiT: Worst-

Case Execution Time Prediction by Static

Program Analysis," in Building the Information

Society, vol. 156, R. Jacquart, Ed., Springer US,

2004, pp. 377-383.

[16] J. Souyris, E. L. Pavec, G. Himbert, V. Jégu and

G. Borios, "Computing the worst case execution

time of an avionics program by abstract

interpretation," in In Proceedings of the 5th Intl

Workshop on Worst-Case Execution Time

(WCET) Analysis, 2005.

[17] J. Gustafsson, "The Worst Case Execution Time

Tool Challenge 2006," in Leveraging

Applications of Formal Methods, Verification

and Validation, 2006. ISoLA 2006. Second

International Symposium on, 2006.

[18] Tidorum Ltd, http://www.bound-t.com/

[19] A. Prantl, M. Schordan and J. Knoop, "TuBound

- A Conceptually New Tool for Worst-Case

Execution Time Analysis," in 8th International

Workshop on Worst-Case Execution Time

Analysis (WCET'08), Dagstuhl, Germany, 2008.

[20] B. Lisper, "SWEET – a Tool for WCET Flow

Analysis," in 6th International Symposium On

Leveraging Applications of Formal Methods,

Verification and Validation, 2014.

[21] C. Ballabriga, H. Cassé, C. Rochange and P.

Sainrat, "OTAWA: an open toolbox for adaptive

WCET analysis," in Proceedings of the 8th IFIP

WG 10.2 international conference on Software

technologies for embedded and ubiquitous

systems, Berlin, Heidelberg, 2010.

[22] A. Oliveira Maroneze, S. Blazy, D. Pichardie

and I. Puaut, "A Formally Verified WCET

Estimation Tool," in 14th International

Workshop on Worst-Case Execution Time

Analysis, Madrid, Spain, 2014.

[23] Rapita Systems,

www.rapitasystems.com/products/rapitime/

[24] S. A. Seshia and J. Kotker, "Game Time: A

Toolkit for Timing Analysis of Software," in

Proceedings of the 17th International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems: Part of

the Joint European Conferences on Theory and

Practice of Software, Berlin, Heidelberg, 2011.

[25] M. Wolfe and U. Banerjee, "Data dependence

and its application to parallel processing,"

International Journal of Parallel Programming,

vol. 16, no. 2, pp. 137-178, 1987.

[26] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.

andré Silber and N. Vasilache, "GRAPHITE:

Polyhedral Analyses and Optimizations for

GCC," in In Proceedings of the 2006 GCC

Developers Summit, 2006.

[27] R. Kirner, P. P. Puschner and others,

"Classification of Code Annotations and

Discussion of Compiler-Support for Worst-Case

Execution Time Analysis.," WCET, vol. 1, 2005.

[28] R. M. Stallman and G. DeveloperCommunity,

Using The Gnu Compiler Collection: A Gnu

Manual For Gcc Version 4.3.3, Paramount, CA:

CreateSpace, 2009.

[29] C. Bastoul, A. Cohen, S. Girbal, S. Sharma and

O. Temam, "Putting Polyhedral Loop

Transformations to Work," in LCPC’16

International Workshop on Languages and

Compilers for Parallel Computers, LNCS 2958,

College Station, Texas, 2003.

[30] C. Bastoul, "Code Generation in the Polyhedral

Model Is Easier Than You Think," in PACT'13

IEEE International Conference on Parallel

Architecture and Compilation Techniques, Juan-

les-Pins, France, 2004.

[31] H. Falk, P. Lokuciejewski and H. Theiling,

"Design of a WCET-Aware C Compiler," in

Proceedings of the 2006 IEEE/ACM/IFIP

Workshop on Embedded Systems for Real Time

Multimedia, Washington, DC, USA, 2006.

[32] G. Fernandez, J. Abella, E. Quiñones, C.

Rochange, T. Vardanega and F. J. Cazorla,

"Contention in Multicore Hardware Shared

Resources: Understanding of the State of the

Art," in 14th International Workshop on Worst-

Case Execution Time Analysis, Dagstuhl,

Germany, 2014.

[33] T. Moscibroda and O. Mutlu, "Memory

performance attacks: denial of memory service

in multi-core systems," in Proceedings of 16th

USENIX Security Symposium on USENIX

Security Symposium, Berkeley, CA, USA, 2007.

[34] J. Nowotsch and M. Paulitsch, "Leveraging

Multi-core Computing Architectures in

Avionics," European Dependable Computing

Conference, vol. 0, pp. 132-143, 2012.

[35] P. Radojkovic, S. Girbal, A. Grasset, E.

Quiñones, S. Yehia and F. J. Cazorla, "On the

evaluation of the impact of shared resources in

multithreaded COTS processors in time-critical

environments," ACM Trans. Archit. Code

Optim., vol. 8, no. 4, pp. 34:1--34:25, jan 2012.

[36] J. Nowotsch, M. Paulitsch, D. Buhler, H.

Theiling, S. Wegener and M. Schmidt, "Multi-

core Interference-Sensitive WCET Analysis

Leveraging Runtime Resource Capacity

Enforcement," in Real-Time Systems (ECRTS),

2014 26th Euromicro Conference on, 2014.

[37] J. Bin, S. Girbal, G. P. Daniel, A. Grasset and A.

Merigot, "Studying co-running avionic real-time

applications on multi-core COTS architectures,"

in 7th European Congress On Embedded Real

Time Software And Systems (ERTS), 2014.

[38] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L.

Thiele and M. Caccamo, "Worst-case response

time analysis of resource access models in

multi-core systems," in Proceedings of the 47th

Design Automation Conference, New York, NY,

USA, 2010.

[39] S. Altmeyer, B. Lisper, C. Maiza, J. Reineke

and C. Rochange, "WCET and Mixed-

Criticality: What does Confidence in WCET

Estimations Depend Upon?," in 15th

International Workshop on Worst-Case

Execution Time Analysis, 2015.

[40] W. Talaboulma, C. Maxim, A. Gogonel, Y.

Sorel and L. Cucu-Grosjean, "Estimation of

probabilistic worst case execution time while

accounting OS costs," 21st IEEE Real-Time and

Embedded Technology and Applications

Symposium, p. 21, 2015.

Acknowledgements

This research has been performed under FAA

Aviation Research Division’s Software and

Electronics Section contract SDS-TO05. The

technical monitor for this research was Srini

Mandalapu of ANG-E271 Software and Electronics

Section.

The authors acknowledge the contribution of

Ms. Laurence Mutuel from CGH for reviewing the

paper.

34th Digital Avionics Systems Conference

September 13-17, 2015

