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Abstract 

Most safety-critical avionics systems are defined 

as “hard real time”. That means they must deliver 

their function within pre-defined deadlines. Missing a 

single deadline at system level is considered as a 

failure condition that may be catastrophic. At 

software level, this is a single failure that must be 

mitigated with appropriate means to prevent that 

failure condition. 

Real-time requirements are addressed in 

software components by Worst Case Execution Time 

(WCET) evaluations. Several methods have been 

explored in the literature, for which classifications 

have been proposed according to their techniques and 

precision of their results. However, these 

classifications do not consider the contribution of 

WCET evaluation techniques to safety processes.  

In this paper, we present a safety process that 

integrates WCET evaluation on embedded software. 

This process allows us to highlight the benefits and 

limits that WCET evaluation methods bring in 

industrial practices. 

Introduction 

Today’s aircrafts embed several avionics 

systems that are critical for flight safety. These 

systems are usually qualified as “hard real-time”. 

That means they must fulfill their service within pre-

defined deadlines, while a single miss would be 

considered as a failure condition in the meaning of 

CS-25.1309 [1]. 

Hardware and software components belonging 

to a hard real-time system inherit from timing 

requirements, and are given local deadlines. In safety 

terminology, a deadline miss by one component is a 

“single failure”. By design, the occurrence of a single 

failure cannot lead solely to a catastrophic failure 

condition [1]. However it may be directly linked to a 

hazardous failure condition, and/or combine with 

another failure to reach a catastrophic level. Hence it 

represents a non-negligible risk for flight safety, that 

shall be mitigated in order to achieve certification. 

We focus in this paper on a class of analyses 

called “Worst Case Execution Time” (WCET) 

evaluation. This kind of analysis aims at assessing a 

time budget for a piece of software, with guarantees 

that it will terminate its execution if it is granted that 

budget. WCET evaluation actually refers to a large 

variety of concepts and techniques; many of them are 

summarized in a survey by Wilhelm et al. [2].  

Several criteria can be proposed to classify 

WCET evaluation techniques. For instance, static 

methods are computational and simulate the behavior 

of a processor’s model executing the task’s software; 

dynamic methods rely on measurements of execution 

times of software on the final target. Some techniques 

claim true upper bounds on execution time, while 

others give probabilistic results [3]. Finally, some 

techniques apply on isolated tasks, while others 

require a global knowledge of all task’s details. All 

methods share common principles, for instance they 

admit evaluated WCET is approximated more or less 

precisely, but will never be reached. However, there 

is no consensus on what kind of guarantees WCET 

evaluation is supposed to bring, and how it can be 

used to ensure that in the end, the system is safe. 

That paper aims at proposing an overview of a 

safety process that includes a WCET evaluation 

method, and at illustrating how that method can 

contribute to avionics system’s safety. This overview 

enables a qualitative comparison of WCET 

evaluation methods, with a focus on the way they can 

be combined to improve safety assurance. 

That paper starts with two sections that sum up 

aspects relative to safety process and WCET 

evaluation. It is followed by one section that deals 

with WCET evaluation methods limitations and 

possible enhancement, and two sections that develop 
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the following classes of analysis encountered in a 

safety process: 

 Safe design. Top-down methods that aim 

at building a product that copes optimally 

with safety constraints. 

 Safety assessment. Methods ensuring that 

safety objectives, as defined at design 

time, have been met. 

Safety Process Overview 

In industrial practices, design and development 

phases of safety-critical equipment are performed by 

engineers alongside with safety processes. In this 

section, we give an outline of the safety process 

WCET evaluation methods will have to comply with. 

Figure 1 provides a sketch view of a standard safety 

process in avionics as provided by ARP4754A [4] or 

ARP4761 [5].  

 

Figure 1: Sketch of Avionics Safety Process 

This process is centered on a standard V cycle 

which descending branch is in general called 

allocation and an ascending branch called integration 

(see ARP4754 [4]). From a safety-centered point of 

view, the allocation phase can be named “safe design 

phase” and the integration phase, “safety assessment 

phase”. This denomination will be used all 

throughout this paper even though the allocation and 

integration principles are also applicable to safety 

process.  

At the top of the safe design phase (and even 

prior to this phase, the Functional Hazard Analysis 

(FHA) determines Failure Conditions (or Feared 

Events) on which the complete analysis will be 

based. Preliminary System Safety Assessment 

(PSSA) is dedicated to architectural mitigation of 

these Feared Events. Safety requirements determined 

in PSSA are both qualitative via the definition of 

safety mechanism and quantitative via failure 

probabilities and performances of safety mechanisms. 

In the safety assessment phase a System Safety 

Analysis (SSA) compiles evidences that safety 

requirements are correctly implemented and realized 

on the final product. 

Although this process is mainly defined at 

aircraft level, it is also applicable with a slight 

modification at lower levels, and it can become an 

iterative process from aircraft to basic components. 

This process is aeronautics-oriented but is in fact 

very general and inspired by standard system 

engineering principles. It can be refined and 

implemented depending upon the application domain 

and the problem at hand. 

Safe Design Phase 

A safe design process aims at guiding the overall 

design phase so that the system copes optimally with 

high-level safety requirements. It is performed during 

the PSSA phase. 

Figure 2 proposes a way of performing a PSSA 

in the safe design phase. On that figure, red boxes are 

PSSA related, orange boxes are inputs to PSSA 

process and green ones. Green arrows flow design 

data and red ones flow safety related data.   

A safe design process presents the advantage to 

prepare the safety assessment phase very early by 

performing safety studies for allocation of safety 

requirements. This will be directly used in the safety 

assessment phase for the synthesis of evidences. 

On Figure 2, preliminary design elements are 

used to imagine a safety concept for each Feared 

Events. Such safety concepts can be informal or not, 

but simplicity of exposition and communication 

should be favored. In its basic principle, it is based on 

scheme and drawing that only focuses on the design 

elements (systems, parts, information flows, etc.) 

contributing to the considered feared events (see for 

instance the Functional Failure Path Analysis of 

DO254 [6]) and the mitigation principle that avoid 

propagation of the various associated failures up to a 

the Feared Event. These mitigation measures are 

summarized in requirements, that are further refined 

to particular timing performances (see [7] for 



instance). These requirements are thus qualitative 

with quantitative performance characteristics. 

 

Figure 2: Overview Of Safe Design Process 

It is a general assumption that on safety concept 

elaboration, safety engineers and design engineers 

work in a close collaboration. This is even more 

crucial when technology aspects are key.   

Feared Events are characterized by probability 

objectives that are allocated to requirements on 

design elements failure modes through detailed safety 

studies. These studies are basically of two 

complementary types: 

 Failure Mode Effect Analysis (FMEA),  

 Fault Tree Analysis (FTA). 

The requirements on design elements failure 

modes, derived through these studies, are focused on:  

 The safety level to be reached on the 

control of systematic failures (e.g. DAL), 

 The probability allocated to the failure 

mode. 

 Safety Assessment Process 

The goals of the Safety Assessment phase is to 

confirm that the designed and tested product 

complies with the safety objectives of the FHA and 

does not introduce other risks that have not been 

foreseen. These general goals are realized through 

three main activities (see Figure 3): 

 Verification of qualitative safety 

requirements, in particular on safety 

mechanisms. It corresponds to the 

verification of presence and correct 

implementation of the mechanisms. 

 Verification of quantitative safety 

performances of safety mechanisms: lapse 

time to safe state, coverage rate, etc.  

 Verification of qualitative requirements on 

development level objectives (e.g. DAL). 

 Verification of quantitative requirements 

on failure mode probabilities. This will be 

developed in sections dealing with WCET 

evaluation. 

 Analysis of technical events occurring 

during development or on similar systems 

already in operation. This analysis can 

influence safe design phase analysis up to 

Feared Event definition in the FHA 

(hopefully rarely). It has to be analyzed 

through Detailed Safety Analysis that it, in 

turn, influences. It has not been 

represented on Figure 3 for readability 

reasons and because it is out of the scope 

of this paper.  

 

Figure 3: Overview Of Safety Assessment Process 

When the safe design phase has been performed, 

the integration or safety assessment process is 

simplified for all preceding aspects. For instance  

 Safety concepts allow to identify directly 

the impact of an incorrect realization of a 

safety mechanism on the Feared Events. 

Of particular interest for WCET is the 



correct timing realization of safety 

mechanisms that rely on software. 

 Quantitative requirements on failure 

modes are directly checked unitarily. In 

case of discrepancy, a safety analysis 

performed during safe design phase is 

reused in order to verify that the safety 

requirement is still enforced despite this 

particular requirement. 

We presented in this section a safety process that 

can be applied on avionic equipment. This process is 

generic and can be refined according to specific topic 

of interests, WCET evaluation in our case. The 

following sections present an overview of WCET 

evaluation methods, their limitations, and the way 

they can be integrated in our safety process. 

WCET Evaluation Methods Overview 

Motivations 

In avionics equipment, embedded software is 

usually a set of tasks that are executed under the 

control of a scheduler, and that interact with third-

party libraries through pre-defined API, e.g. libc, 

mathematical library. 

Each task is associated to local deadlines, that 

come up periodically or are triggered by external 

events. Ensuring that each task will meet its deadline 

requires the following analyses: 

 A task-per-task evaluation of individual 

needs for computation time. That stage is 

called “Worst Case Execution Time 

Evaluation” (WCET). The leading idea 

consists in exploring jointly hardware and 

software’s most unfavorable behaviors. 

 A global verification that scheduling will 

grant all tasks their needed amount of 

computation time before they reach their 

deadlines. That can be performed through 

simulation or offline tests. Scheduling 

analysis is a field that has both a wide 

community and has a rich literature, e.g. 

Davis and Burns survey for multi-core 

scheduling algorithms [8]. 

Worst Case Execution Time is a metric defined 

for each task, even if it may depend on the overall 

tasks set. We define it as the duration for which it is 

considered, with an acceptable level of confidence, 

that the task will have fulfilled its execution, 

whatever the processor’s initial state and the events it 

will face, as long as their occurrences are compatible 

with a predefined usage domain. 

When a WCET evaluation method is applied on 

a complex processor, the resulting WCET is always 

an approximation. Therefore, methods are usually 

ranked according to their precision, i.e. the difference 

between the computed WCET and the empirical 

bound observed on the execution times distribution. 

Finally, many WCET evaluation methods claim to 

produce “safe” WCET, i.e. sound overestimations of 

the real one. Other methods [9] [3] provide WCET 

associated with a probability. 

WCET Evaluation Flow 

WCET evaluation is a process that takes as input 

raw binaries. The goal is to ease certification by 

focusing on the final binary, and making this analysis 

independent from the compilation chain and 

associated software optimization flow. Hence WCET 

soundness does not depend on external tools. 

WCET evaluation is composed of the following 

steps, represented on Figure 4. The first three steps 

are described in [2], and consider the task as 

uninterrupted. The fourth one is more empirical and 

comes from industrial practices: 

 Flow Analysis. The binary will be 

explored to find out reachable execution 

paths. It abstracts the task as a “Control 

Flow Graph” (CFG), whose nodes, called 

“Basic Blocs”, usually refer to functions 

and loops. Some methods formalize 

relations between basic blocs in the form 

of “execution contexts”. 

 Timing Analysis. Each basic bloc’s 

execution time is assessed. At this level, 

we distinguish dynamic methods from 

static ones. The former gather basic bloc’s 

execution time by test campaigns. The 

latter evaluates them with a simulation of 

software execution on a processor timing 

model (step 2 of Figure 4). Timing 

analysis results are often formalized as 

annotations on the CFG. 



Figure 4: Overview Of WCET Evaluation Flow 

 Estimate Calculation. Information from 

flow and timing analyses are correlated to 

find out the longest path in the program. 

An intermediate WCET is computed. 

 Penalties Application on the intermediate 

WCET. Penalties mitigate the impact of 

phenomena that were ignored in previous 

stages, because of their complexity and/or 

the incapacity to anticipate them 

accurately. These phenomena may refer to 

Operating System ticks, external 

interrupts, DRAM refresh cycles…In most 

cases, penalties are evaluated empirically. 

These steps are encountered under more or less 

formalized and automatized forms in industrial 

processes. They may be performed by WCET 

analyzers, which are available in commercial or open 

source solutions, described thereafter. 

Static vs. Dynamic Methods 

As described in step 2 of Figure 4, WCET 

evaluation methods are classified as “static” and 

“dynamic”.  

Static methods rely on the analysis of software 

execution over a nearby cycle-accurate model of the 

processor. This enables fine grain analyses that 

identify worst case behaviors in components like 

pipeline and caches. These analyses are capable to 

cover non trivial behaviors on the processor, such as 

timing anomalies [10], i.e. worst case behaviors on 

the processor that result from local non worst-case 

behaviors. These situations cannot be easily 

reproduced by tests. However, soundness of static 

methods relies on the possibility to build correct 

models of processors. In practice, processor cores are 

described by manufacturers with a good level of 

details. Therefore, models’ soundness can be 

assessed with a correct level of confidence. On other 

resources of the processor, timing models are coarser. 

They just associate timings for each operations over 

each device. This timing information refers to worst 

case situations, which are not systematic. For 

instance, they are strongly linked to banks and page 

states in DRAM controllers [11]. 

On the other hand, dynamic methods aim at 

gathering execution times from test campaigns. Thus, 

such a method will guide test scenarios to ensure that 

reachable execution paths have been explored, and 

unfavorable hardware behaviors have been covered. 

A dynamic method may rely on local measurements 

of portions of code, or end-to-end measurements over 

the whole task. The objective of a dynamic method is 

rather to speed up test campaigns without changing 

the test procedures. 

Finally, static and dynamic methods only differ 

on a small part of the evaluation flow. Both require a 

deep exploration of the task’s binary. That 

exploration is not trivial and often requires additional 

information provided by the user, and called 

“annotations”. 



We introduced the general analysis flow 

encountered in existing solutions, under more or less 

automatized forms. The next section is about WCET 

analysis tools available in the state of the art. 

WCET Analysis Tools 

The WCET evaluation process described earlier 

is implemented in several tools, commercial or open-

source. Census of existing tools have been performed 

in several publications [2] [12]. We focus here on 

tools that competed during the latest WCET Tool 

Challenge in 2011 [13], with a focus on a tool we 

consider as representative. 

aiT [14] [15], developed by AbsInt, is a mature 

tool that implements a WCET computation flow with 

a static method. It supports several COTS processors 

cores, including PowerPC and ARM series, and has 

been used successfully in industrial environment 

[16]. Moreover, aiT has been designed to meet 

stability and traceability requirements for 

certification. Finally, it has been observed that aiT 

could compute WCET with a high precision [17], 

often under 25%. 

Competitors of aiT in the field of static methods 

are Bound-T [18], TuBound [19], SWEET [20], 

Otawa [21]. All these tools have some maturity either 

in the academic or industrial communities. We can 

also encounter more recent tools that have interesting 

properties, such as formal validation of the absence 

of error in the analysis flow [22]. 

In the field of dynamic methods, RapiTime [23], 

developed by Rapita Systems, is considered as a 

mature tool. It aims at speeding up existing industrial 

processes by automating time measurement 

operations. Hence it automatically collects execution 

traces produced at runtime and computes statistics to 

obtain a distribution of execution times. A WCET 

can be derived from such measurements with an 

associated probability. Even if all reachable states at 

hardware level are not covered, RapiTime relies on 

randomization to ensure that pathological situations 

are highly improbable. 

Competitors of RapiTime are TimeWeaver, 

developed by AbsInt, and GameTime [24] which is 

open-source. 

WCET Analysis Flow Limitations and 

Possible Enhancements 

In the previous section, we presented the 

analysis flow involved in existing WCET evaluation 

methods. To reduce certification costs, this flow is 

directly applied to the application binary so that it 

does not involve the compilation chain. It however 

introduces a set of limitations due to the lack of 

semantic of the binary format. 

Limitations Due To CFG Complexity 

Performing a retro-engineering construction of 

the control flow graph from the binary format is a 

tremendous task. Furthermore, the complexity of this 

generated CFG is very high, as it covers every 

possible execution paths, including control path 

corresponding to unrecoverable errors. Such errors 

usually correspond to sanity checks that might be part 

of the program itself, or part of the application 

libraries such as libmath sanity checks. 

For safety critical software, it is part of the 

design process to decide which paths will be 

analyzed and which paths will not. Uncovered paths 

will require guarantee that they are not taken at 

runtime. For instance it may be possible to ensure 

that none of sensitive sanity checks can fail, relying 

on proof or testing, keeping sure that each of the 

program value is used within its usage domain.  

Nevertheless, sanity checks do exist in the 

binary and the WCET analysis tool cannot 

differentiate them from the regular nominal control 

flow. This is illustrated on Figure 5 and Figure 6. 

 

Figure 5: Raw CFG of Fibonacci Computation 

Figure 5 provides an overview of CFG 

computed from a binary code that performs a 

Fibonacci computation. We used a non-optimized 

recursive Fibonacci implementation provided as an 

example with aiT [14]. CFG were also computed by 



aiT with a version for MPPA many-core processor 

developed by Kalray. While it is not appearing in the 

original source code, for each recursion, the program 

checks for a possible overflow, responsible for most 

of the Fibonacci function control, and the complexity 

of the CFG depicted on Figure 5. 

Assuming that the domain usage analysis has 

already being performed, these sanity checks are 

useless and will never be triggered. We can therefore 

eliminate the corresponding CFG branches for the 

analysis, providing some annotations for the WCET 

estimation tool. Doing so leads to a simplified CFG 

appearing in Figure 6. 

 

Figure 6: Simplified CFG, Ready For Analysis 

Performing time analysis on the first version of 

the CFG will result in the best case a much more 

pessimistic WCET bound than performing it on the 

second simplified version, and in a worse case will 

not let the WCET analysis converge in an acceptable 

time. 

Therefore, user-provided annotations are critical 

for the estimation tool to produce an acceptable, not 

overestimated WCET value. 

Limitations Due To Complex Loop Bounds 

Beyond not being able to spot unrecoverable-

error related paths, performing the analysis on the 

binary format of the application also impacts the 

ability to successfully identify loop nests and their 

associated loop bounds. 

The only kind of control appearing in the binary 

format are branches and conditional branches. It is 

therefore not trivial to distinguish the control flow 

associated with a loop to the one associated with a 

conditional. 

Let’s assume we analyze the program appearing 

in Figure 7. While being minimalistic, it involves a 

computation within a triangular loop with 

conditionals. The associated WCET will clearly 

depend on the number of time the computation is 

executed. 

 

Figure 7: Source Code of Triangular Loop 

Once compiled the corresponding assembly code 

appears in Figure 8. It is already very hard to identify 

the triangular nested loops, and WCET evaluation 

tools will usually fail to accurately compute the loop 

bounds, overestimating the number of iterations, and 

therefore the number of time the computation is 

executed and thus, the worst case execution time. 

Again, user-provided annotations can solve the 

issue by indicating to the evaluation tool the exact 

number of iterations for most loops, avoiding some 

over bounding. 

 

Figure 8: PowerPC Assembly of Triangular Loop 

Limitations Due To Dependency Analysis 

Through instruction level parallelism (ILP), 

pipeline architectures are able to execute several 

instructions concurrently. However, dependency 

between instructions may prevent such a parallel 

execution, impacting the overall execution time. For 



instance, successive instructions, each using the 

result of the previous instruction cannot be run in 

parallel. 

To compute an efficient execution time, it is 

therefore necessary to perform a dependency 

analysis. Such kind of analysis already exist in 

compilers [25] [26] to check for the applicability of 

code transformations. 

Dependency analysis are already very complex 

when applied to an high level compiler intermediate 

representation of the source code. When applied to 

binaries, they are even more complex, as the 

semantic behind variables has disappeared, with 

several variables being successively stored in the 

same register. 

For this particular case, user-provided 

annotation cannot really help. The efficiency of the 

evaluated WCET will strictly depend on the accuracy 

of the pipeline model in the estimation tool. 

Limitations Due To Data Alignment 

The efficiency of many data-processing 

algorithms depends on data alignment: computation 

on well-aligned data can usually directly be 

performed by the ISA, while misaligned data require 

a set of shifting and logic operation to be performed 

prior and after the computation. 

For global variables appearing in the final 

binary, the developer can enforce a suitable 

alignment. However, all the local variables appearing 

in the functions composing the application are 

allocated at runtime on the stack. As a consequence, 

they do not exist in the binary, and therefore, no 

assumption can be made by the evaluation tool on 

their existence not their alignment. Some functions 

like “memcpy” are very sensitive to this behavior: 

Let’s assume the source code of Figure 9 that is only 

copying one structure into another. 

 

Figure 9: Piece of Code Calling Memcpy 

Both the source and the destination of the copy 

are local variables that will be allocated on the stack 

with unknown addresses at the time of the analysis. 

The memcpy algorithm appears in Figure 10. 

 

Figure 10: Overview of Memcpy Algorithm 

The control path of the worst execution 

corresponds to mis-aligned source and destination, 

with an offset for their alignment and some 

overlapping regions. All these conditions depend on 

the source and destination addresses, so the 

evaluation tools have to systematically consider the 

worst case. In a code with a lot of recopy of data 

structures, the impact on WCET over bounding can 

be significant. 

However, as the source and the destination are 

allocated on the stack, 1) there will be no overlap, 

and 2) both struct will be 32-bit aligned with a null 

alignment offset. As a consequence, only the best 

possible control path will be used at runtime for this 

copy, with no possibility for the evaluation tool to 

discover it. 

Such information on data alignment can be 

provided by the user as annotations. However, to 

identify the issue, the user needs a deep knowledge, 

not only of his own source code, but also of the 

standard libraries such as libc which is providing 

memcpy. 

Enhancements Due To Compiler Information 

Many of the limitations described in this section 

are due to the lack of semantic associated with the 

binary form, and can be complemented by the user 

with annotations to provide the lost semantic. Rather 

than relying on the user, it would be possible to rely 

on the compiler that produced this binary to get the 

required information, as proposed in [27]. 



A compiler tool suite such as GCC [28] is 

organized in successive analysis and optimization 

passes. The compiler itself is manipulating a CFG 

structure, which is annotated during analysis phases 

and transformed during optimization phases down to 

producing the CFG corresponding to the binary.  

If the annotations and analysis performed by the 

compiler are not related to timing, these annotations 

still carries some useful information like originating 

loop nests, loop bounds values, or variable-to-register 

mapping. 

For a more efficient WCET evaluation, a first 

option would be to replace the generated CFG with 

the one used internally by GCC. If it would avoid the 

flow graph generation part of the analysis, it will 

make the analysis tool compiler-dependent. As the 

internal representations of compilers may evolve 

without notice, it might not be viable for a multi-

target approach running different versions of various 

compilers. 

A more suitable second approach would be to 

make the compiler systematically dump the 

information related to the currently user-provided 

annotations. In GCC, modularity allows us to develop 

a new pass that would be dedicated to extracting the 

required information from the internal CFG 

representation. 

A first advantage would be to benefits from the 

existing loop bound computation pass of the 

compiler. Such a pass is very complex and relies on 

Z-polyhedral representation techniques to accurately 

compute loop bounds, as long as they are defined as 

affine functions of external loop iterators  [29]. 

In this model, each instruction is clearly 

associated with an execution domain corresponding 

to the possible iterations during which this instruction 

will be executed. For instance the domain 

corresponding to the computation of Figure 7 is 

defined in Figure 11. 

This domain information is later used by the 

compiler to effectively compute the number of 

iteration at instruction level [30] Extracting such 

information for the WCET evaluation tools would 

solve the issue related with over bounding of such 

loop bounds.  

 

Figure 11: Execution Domain of Triangular Loop 

The compiler has also more knowledge about 

the application data. While only the global variables 

are appearing in the application binary, the compiler 

also keeps information related to local variables. This 

would allow us to extract more information about 

alignment and data size, that could be used to 

statistically resolve some checks as those appearing 

for the memcpy example depicted in Figure 10. 

While the source and destination addresses are still 

unknown, the compiler knows that these addresses 

are 32-bit aligned, and that there is no overlap for the 

memcpy. Again, extracting such information can be 

useful to automatically build some annotations 

instead of forcing the user to provide them. 

Several studies have already considered a 

coupled compiler / WCET estimation tool approach: 

 In [19] Prantl et al. are coupling together a 

set of standalone tools including a Fortran 

compiler, an interval analyzer, a loop 

bound analyzer and a WCET estimation 

tool.  From a source code, annotated with 

both real time constraints and loop bound 

information, the tool-suite generates an 

annotated binary that is later analyzed by 

the CALCWCET167 estimation tool. 

 In [31] the authors push the concept 

forward with a tight integration of the aiT 

engine with an ad-hoc C compiler. Beyond 

the ability to pass relevant information to 

the WCET estimation engine, this tight 

coupling also enable the compiler to 

perform some optimization passes 

dedicated to the worst-case optimization 

by considering estimated execution times 

while evaluating the pertinence of some 

loop transformations. 

The proposed solutions have not yet reached a 

sufficient maturity level to be integrated into an 



industrial process. Considering the wide variety of 

hardware targets and of compilation languages, the 

integration of dedicated WCET-related passes in 

GCC seems promising. 

The efficiency of the WCET estimation tools are 

usually tightly coupled with the effort the user 

provide to annotate the source code. Being able to 

automatically extract most of this information from 

the compiler will considerably reduce this effort and 

the applicability of WCET estimation tools. 

Enhancements Toward Multi-Cores Support 

Multi-core processors are expected to be 

embedded in the next generation of avionics 

equipment. On such processors, various sequential 

tasks will run at the same time on different cores. 

Evaluation of WCET is hardened because of 

interferences [32] [33] [34] [35]. 

Regarding WCET evaluation flow, the impact of 

interferences must be represented as a penalty, that is 

applied either in the second step (see Figure 4) that 

deals with timing analysis, or in the last step that 

deals with offline penalties applications. 

On COTS multi-core processors, bounding 

interferences on a set of tasks is a complex problem. 

The largest research effort focuses on efficient and 

smart ways to constrain embedded tasks to bound 

interferences in order to provide static interferences 

penalties. That means they consider WCET 

evaluation method as fixed and alter the hardware 

and/or software environment to make them 

applicable. 

Several approaches have extended existing 

WCET evaluation methods to take interferences into 

account on a closed set of tasks. Nowotsch [36] 

proposes the notion of Interference Sensitive WCET 

(isWCET), which extends the analysis flow 

implemented in aiT. It alters the processor’s model 

with an interference penalty that is obtained by 

gathering a profile of resource usage for each task. 

That operation is also performed by aiT. 

In [37], Bin proposes a set of benchmarks that 

stress selected components on a processor. Then she 

defines the notion of signature over a component of 

the processor, that roughly corresponds to the level of 

interferences inside the component with regard to the 

amount of incoming traffic. The signature also 

applies on software. Hence, by combining signatures 

at hardware and software level, it becomes possible 

to compute an interferences penalty over a set of 

tasks, and apply this penalty at the last step of 

evaluation flow. 

An alternative approach based on budgets 

allocation for resource usage has been proposed in 

[38]. The authors allocate to each embedded task a 

budget for the number of operations they are allowed 

to perform on shared resources. An interference 

penalty is computed according to this budget. At 

runtime, a monitoring mechanism is in charge of 

stopping a task that exceeds its budget. 

In this section, we pointed out some limitations 

of WCET evaluation methods due to the lack of 

information retrievable from a binary code of a task. 

This lack of precision is not by itself due to imprecise 

hardware models. It comes from the assertion that 

computed WCET will correspond to an execution 

path that cannot be actually reached. 

These limitations, and others that are more 

dependent on methods, impact the way WCET 

evaluation methods contribute to safety processes. 

This is developed in the following sections. 

WCET Considerations In Safe Design 

In the preceding sections a general safety 

process has been depicted and articulation of the 

different WCET methods has been presented. This 

section shows how to integrate WCET evaluation in 

safe design process.  

Probabilistic Objectives On Failures  

WCET problematic arises in FHA at Failure 

Condition (or Feared Event) level or at refined levels. 

Consider at aircraft level that a deadline miss leads to 

a Feared Event (FE). Consider for instance an 

elevator raise time characterized by a random 

variable  then  while  

corresponds to a timing budget.  

Consequently, we have the following equations: 

 

    (1) 

If a timing constraint occurs only on some 

system participating elements failure mode then 

similar equation applies. 



For any refinement level, as soon as time 

constraints appear, the process in Figure 2 applies at 

system and electronic device levels with the 

following customization. 

At system level, design specification provide a 

preliminary basic design. Then, designer and safety 

engineer collaborate to propose an architecture that 

can reach objectives on failures probabilities 

including  deadline miss induced failures. This is the 

safety  concept step in Figure 2. At this level the 

safety mechanism will consist in redundancies and 

surveillance of elapsed time. With this enriched 

architecture, the designer can allocate timing 

constraints and the safety engineer can allocate 

probabilities of failure including probabilities of 

missed deadlines using the previous equation.  At this 

level, probabilities are allocated to mechatronics 

elements such as actuators, wires, computers… 

The same process can be applied to electronic 

devices where the safety mechanisms are mainly 

timing surveillance. Probabilities will be allocated to 

electronic basic processes (IO transmissions, PCIe 

communication, PLD treatments and microprocessor 

treatments).  

At microprocessor level, the same process can 

be implemented with significant differences if the 

microprocessor is a COTS. In this case, safety 

mechanisms can be either external to the 

microprocessor, either software. For the same reason, 

the electronic timings and associated probabilities 

cannot be considered as simple allocations but as 

constrained allocations. The only possible adjustment 

is at software level, as hardware is a COTS and 

remains as it is. In the case of multicore use or even if 

DMA are fully used in a single-core context, timing 

allocation should apply a safety margin for possible 

interferences. In the case of a multi-core processor, in 

failure probability computation, a probability could 

be allocated to the interferences: the deadline is not 

met at processor level if the processes do not meet 

their deadlines or if processes interfere. 

A safe design process is thus applicable to 

WCET problems through the assimilation of a 

deadline miss to a particular failure mode. Several 

aspects may be explored regarding WCET 

evaluation, some of them have been detailed in [39]: 

 It is valuable to be capable to perform 

WCET evaluation in early design for an 

equipment. In this case static methods 

offer a clear advantage: they do not require 

a final hardware to be applied. A model of 

this hardware, even if it is approximated, 

may be used to guide timing budgets 

allocation and failure probabilities. 

 It is recommended to leverage qualitative 

risks linked with WCET evaluation 

methods as soon as possible. For instance, 

limitations described in the previous 

section may weaken budgets allocation, or 

rely on compiler information to get 

exploitable results. 

 A WCET evaluation method will have to 

be integrated in an industrial process, 

which may integrate several actors. It is 

the case for Integrated Modular Avionics 

(IMA) systems [32]. A WCET evaluation 

method may require specific information 

that usually are not exchanged within 

existing processes. That is the case for 

details on an Operating System 

implementation. 

This approach allows for considering deadline 

misses in a system failure from a safety analysis point 

of view. Consequently it allows for considering 

safety mechanisms that can mitigate the deadline 

misses. In an aeronautics context, as requested by 

CS25-1309 [1] a single failure cannot lead alone to a 

catastrophic event.   

WCET Aspects In Safety Assessment 

As presented in Safety Process Overview, the 

Safe Design Phase can enlighten the Safety 

Assessment Phase. 

The safety concepts settled for the mitigation of 

deadline misses have to be tested, including  the 

estimation of coverage rate through modeling and 

computation. Latency time, when it relies on software  

processing, have to be carefully checked by WCET 

evaluation methods. Even if the method does not 

returns probabilistic WCET, it is recommended to 

associate it with a failure probability, so that its 

impact can be directly integrated in safety analyses, 

e.g. FTA. 

 



For instance, in [39], the authors pointed out 

several risks for WCET evaluation methods. These 

risks deal with: 

 Uncertainty over processor models 

soundness in the case of static methods. 

 Uncertainty over path analysis, especially 

if compiler information is used. 

 Uncertainty about processor’s state 

coverage, in case of dynamic methods. 

 Uncertainty about annotations that are 

written by the end-user. 

Quantitative requirements on timing failure 

modes are expressed in probability through Equation 

(1). These requirements can be checked unitarily 

using probabilistic WCET estimation methods [3], or 

jointly over the whole set of tasks. In case of 

discrepancy between a requirement and a 

probabilistic evaluation, this probabilistic evaluation 

can be directly inserted in the safety detailed study 

(for instance a fault tree), issued from Safe Design 

studies, in order to verify that the objective of safety 

goal is reached despite this particular requirement. 

Static methods’ results are locally very accurate 

and exhaustive on the hardware and software 

behavior. Additionally, they are expressive enough to 

provide feedback on why a WCET has been reached, 

even if the incriminated path or hardware 

configuration is not reachable. That makes them 

valuable bug-finders for WCET evaluation.  

Finally, in the framework of safety assessment, 

timing global properties should be assessed using 

probabilistic arguments, whatever the evaluation 

method. 

It is interesting to note that the probabilities of 

missed deadlines do not model WCET as exponential 

probability laws (see for example [40]). This leads to 

quantitative treatments in fault trees that are 

mathematically more complicated than the examples 

of ARP-4761 [5]. 

Conclusion 

Satisfying hard real-time constraints with COTS 

hardware is a complex problem, especially on today’s 

multi-core processors. This problem has been 

addressed in the academic and industrial 

communities as a matter of Worst Case Execution 

Time computation performed on each sequential 

piece of software. Literature dealing with WCET 

evaluation is abundant. Several WCET analyzers are 

available, under commercial license or open-source, 

and are organized in a structured ecosystem.  

As explained in this paper, one of the main 

limitations of WCET analyzers is their difficulty to 

accurately retrieve and explore all binary’s execution 

paths. Historically, that was seen as the cost of being 

independent from compilers. However, several 

approaches coupling a compiler and a WCET 

analyzer have recently emerged. 

We proposed in this paper an outline of a safety 

process that integrates WCET evaluation. This safety 

process starts from system-level requirements, and 

refines these requirements among processing chains, 

that may include computation tasks, but also network 

communications and occasionally electro-mechanical 

elements, e.g. actuators. This safety process shows 

that : 

 A safety-critical system at the highest level 

of criticality must tolerate at least one 

deadline miss. 

 The “safe design” part of the process 

allocates time budgets and failure 

probabilities to each tasks. 

 Time budgets and failure probabilities are 

checked in the “safety assessment” 

process. Iterations may be performed to 

adjust budgets. 

During the safe design process, it seems relevant 

to apply static WCET evaluation methods in an early-

design phases. Static methods do not require final 

hardware to be available, which is often the case in 

certification projects. Hence their use on hardware 

models, even if they are approximated, helps 

allocating time budgets and check that the platform is 

not over neither undersized. Among industrial 

practices, the main effort is focused on validation 

rather than pre-analysis. This approach would benefit 

from early WCET evaluation.  

Later, in the development process corresponding 

to safety assessment phases, both static and dynamic 

methods can be applied. What is important is to keep 

in mind that all methods, even safe ones, bring their 

own sources of risks, either in WCET itself, or the 

way these methods are used. The risk has to be as 

easy as possible to assess. Hence it would be valuable 

to distribute alongside with WCET evaluation tools 



some skeletons or pre-filled information that could be 

used by safety engineers in analyses such as FMEA 

or FTA. 

Combining dynamic and static methods also 

seems valuable in a safety assessment process. While 

the former does not rely on a hardware model, and 

considers the final platform as a whole, the latter can 

act as a pathfinder, by highlighting non-trivial 

execution paths and/or hardware situations that 

should be covered. 

One interesting extension of this work would be 

the application of this safety process with a specific 

refinement for a multi-core processor. That would 

entail the introduction of a random variable that 

represents interferences impact over a set of tasks. 

That random variable, like for execution times, would 

be gathered in order to size a budget of interferences, 

while exceeding this budget might lead to a deadline 

miss. 
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