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Abstract The Riemann hypothesis has been considered the most important unsolved
problem in mathematics. Robin criterion states that the Riemann hypothesis is true
if and only if the inequality σ(n) < eγ × n× log logn holds for all natural numbers
n > 5040, where σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the
Euler-Mascheroni constant. We show that the Robin inequality is true for all natural
numbers n> 5040 which are not divisible by the prime 3. Moreover, we prove that the
Robin inequality is true for all natural numbers n > 5040 which are divisible by the
prime 3. Consequently, the Robin inequality is true for all natural numbers n > 5040
and thus, the Riemann hypothesis is true.
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1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex numbers with real
part 1

2 [3]. The Riemann hypothesis belongs to the David Hilbert’s list of 23 unsolved
problems [3]. Besides, it is one of the Clay Mathematics Institute’s Millennium Prize
Problems [3]. As usual σ(n) is the sum-of-divisors function of n [4]:

∑
d|n
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where d | n means the integer d divides n and d ∤ n means the integer d does not divide
n. Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n)< eγ × log logn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [9].

It is known that Robins(n) holds for many classes of numbers n. Robins(n) holds for
all natural numbers n > 5040 that are not divisible by 2 [4]. In addition, we show
that Robins(n) holds for all natural numbers n > 5040 that are not divisible by 3.
Furthermore, we prove that Robins(n) holds for all natural numbers n > 5040 that
are divisible by 3. Putting all together yields the proof that the Riemann hypothesis
is true.

2 A Central Lemma

These are known results:

Lemma 2.1 [4]. For n > 1:

f (n)< ∏
q|n

q
q−1

. (2.1)

Lemma 2.2 [5].
∞

∏
k=1

q2
k

q2
k −1

=
∞

∏
k=1

1
1− 1

q2
k

= ζ (2) =
π2

6
. (2.2)

The following is a key lemma. It gives an upper bound on f (n) that holds for all
natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical
because it holds for all natural numbers n. Further the bound only uses the primes
that divide n and not how many times they divide n.

Lemma 2.3 Let n > 1 and let all its prime divisors be q1 < · · ·< qm. Then,

f (n)<
π2

6
×

m

∏
i=1

qi +1
qi

.

Proof We use that lemma 2.1:

f (n)<
m

∏
i=1

qi

qi −1
.

Now for q > 1,
1

1− 1
q2

=
q2

q2 −1
.
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So

1
1− 1

q2

× q+1
q

=
q2

q2 −1
× q+1

q

=
q

q−1
.

Then by lemma 2.2,
m

∏
i=1

1
1− 1

q2
i

< ζ (2) =
π2

6
.

Putting this together yields the proof:

f (n)<
m

∏
i=1

qi

qi −1

≤
m

∏
i=1

1
1− 1

q2
i

× qi +1
qi

<
π2

6
×

m

∏
i=1

qi +1
qi

.

3 A Basic Case

In basic number theory, for a given prime number p, the p-adic order of a natural
number n is the highest exponent νp ≥ 1 such that pνp divides n. This is a known
result:

Lemma 3.1 In general, we know that Robins(n) holds for a natural number n> 5040
that satisfies either ν2(n) ≤ 19, ν3(n) ≤ 12 or ν7(n) ≤ 6, where νp(n) is the p-adic
order of n [6].

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 3.2 Robins(n) holds for n > 5040 when q ≤ 7, where q is the largest prime
divisor of n.

Proof Let n > 5040 and let all its prime divisors be q1 < · · ·< qm ≤ 5, then we need
to prove

f (n)< eγ × log logn

that is true when
m

∏
i=1

qi

qi −1
≤ eγ × log logn

according to the lemma 2.1. For q1 < · · ·< qm ≤ 5,

m

∏
i=1

qi

qi −1
≤ 2×3×5

1×2×4
= 3.75 < eγ × log log(5040)≈ 3.81.
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However, we know for n > 5040

eγ × log log(5040)< eγ × log logn

and therefore, the proof is complete when q1 < · · · < qm ≤ 5. The remaining case
is for n > 5040 when all its prime divisors are q1 < · · · < qm ≤ 7. Robins(n) holds
for n > 5040 when ν7(n)≤ 6 according to the lemma 3.1 [6]. Hence, it is enough to
prove this for those natural numbers n > 5040 when 77 | n. For q1 < · · ·< qm ≤ 7,

m

∏
i=1

qi

qi −1
≤ 2×3×5×7

1×2×4×6
= 4.375 < eγ × log log(77)≈ 4.65.

However, for n > 5040 and 77 | n:

eγ × log log(77)≤ eγ × log logn

and as a consequence, the proof is complete when q1 < · · ·< qm ≤ 7.

4 A Better Bound

This is a known result:

Lemma 4.1 [10]. For x > 1:

∑
q≤x

1
q
< log logx+B+

1
log2 x

(4.1)

where
B = 0.2614972128 · · ·

denotes the (Meissel-)Mertens constant [10].

We show a better result:

Lemma 4.2 For x ≥ 11, we have

∑
q≤x

1
q
< log logx+ γ −0.12.

Proof Let’s define H = γ −B [7]. The lemma 4.1 is the same as

∑
q≤x

1
q
< log logx+ γ − (H − 1

log2 x
).

For x ≥ 11,

(H − 1
log2 x

)> (0.31− 1
log2 11

)> 0.12

and thus,

∑
q≤x

1
q
< log logx+ γ − (H − 1

log2 x
)< log logx+ γ −0.12.
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5 On a Square Free Number

We know the following results:

Lemma 5.1 [4]. For 0 < a < b:

logb− loga
b−a

=
1

(b−a)

∫ b

a

dt
t
>

1
b
. (5.1)

Lemma 5.2 [4]. For q > 0:

log(q+1)− logq =
∫ q+1

q

dt
t
<

1
q
. (5.2)

We recall that an integer n is said to be square free if for every prime divisor q of
n we have q2 ∤ n [4].

Lemma 5.3 Robins(n) holds for all natural numbers n> 5040 that are square free [4].

Lemma 5.4 For a square free number

n = q1 ×·· ·×qm

such that q1 < q2 < · · ·< qm are odd prime numbers, qm ≥ 11 and 3 ∤ n, then:

π2

6
× 3

2
×σ(n)≤ eγ ×n× log log(219 ×n).

Proof By induction with respect to ω(n), that is the number of distinct prime factors
of n [4]. Put ω(n) = m [4]. We need to prove the assertion for those integers with
m = 1. From a square free number n, we obtain

σ(n) = (q1 +1)× (q2 +1)×·· ·× (qm +1) (5.3)

when n = q1 × q2 ×·· ·× qm [4]. In this way, for every prime number qi ≥ 11, then
we need to prove

π2

6
× 3

2
× (1+

1
qi
)≤ eγ × log log(219 ×qi). (5.4)

For qi = 11, we have

π2

6
× 3

2
× (1+

1
11

)≤ eγ × log log(219 ×11)

is actually true. For another prime number qi > 11, we have

(1+
1
qi
)< (1+

1
11

)

and
loglog(219 ×11)< log log(219 ×qi)
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which clearly implies that the inequality (5.4) is true for every prime number qi ≥ 11.
Now, suppose it is true for m−1, with m≥ 2 and let us consider the assertion for those
square free n with ω(n) = m [4]. So let n = q1×·· ·×qm be a square free number and
assume that q1 < · · ·< qm for qm ≥ 11.

Case 1: qm ≥ log(219 ×q1 ×·· ·×qm−1 ×qm) = log(219 ×n).
By the induction hypothesis we have

π2

6
× 3

2
×(q1+1)×·· ·×(qm−1+1)≤ eγ ×q1×·· ·×qm−1×log log(219×q1×·· ·×qm−1)

and hence
π2

6
× 3

2
× (q1 +1)×·· ·× (qm−1 +1)× (qm +1)≤

eγ ×q1 ×·· ·×qm−1 × (qm +1)× log log(219 ×q1 ×·· ·×qm−1)

when we multiply the both sides of the inequality by (qm +1). We want to show

eγ ×q1 ×·· ·×qm−1 × (qm +1)× log log(219 ×q1 ×·· ·×qm−1)≤

eγ ×q1×·· ·×qm−1×qm×log log(219×q1×·· ·×qm−1×qm)= eγ ×n×log log(219×n).

Indeed the previous inequality is equivalent with

qm × log log(219 ×q1 ×·· ·×qm−1 ×qm)≥ (qm +1)× log log(219 ×q1 ×·· ·×qm−1)

or alternatively

qm × (log log(219 ×q1 ×·· ·×qm−1 ×qm)− log log(219 ×q1 ×·· ·×qm−1))

logqm
≥

log log(219 ×q1 ×·· ·×qm−1)

logqm
.

We can apply the inequality in lemma 5.1 just using b = log(219 ×q1 ×·· ·×qm−1 ×
qm) and a = log(219 ×q1 ×·· ·×qm−1). Certainly, we have

log(219 ×q1 ×·· ·×qm−1 ×qm)− log(219 ×q1 ×·· ·×qm−1) =

log
219 ×q1 ×·· ·×qm−1 ×qm

219 ×q1 ×·· ·×qm−1
= logqm.

In this way, we obtain

qm × (log log(219 ×q1 ×·· ·×qm−1 ×qm)− log log(219 ×q1 ×·· ·×qm−1))

logqm
>

qm

log(219 ×q1 ×·· ·×qm)
.

Using this result we infer that the original inequality is certainly satisfied if the next
inequality is satisfied

qm

log(219 ×q1 ×·· ·×qm)
≥ log log(219 ×q1 ×·· ·×qm−1)

logqm
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which is trivially true for qm ≥ log(219 ×q1 ×·· ·×qm−1 ×qm) [4].
Case 2: qm < log(219 ×q1 ×·· ·×qm−1 ×qm) = log(219 ×n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × log log(219 ×n).

We know 3
2 < 1.503 < 4

2.66 . Nevertheless, we could have

3
2
× σ(n)

n
× π2

6
<

4×σ(n)
3×n

× π2

2×2.66

and therefore, we only need to prove

σ(3×n)
3×n

× π2

5.32
≤ eγ × log log(219 ×n)

where this is possible because of 3 ∤ n. If we apply the logarithm to the both sides of
the inequality, then we obtain

log(
π2

5.32
)+(log(3+1)− log3)+

m

∑
i=1

(log(qi+1)− logqi)≤ γ + log loglog(219×n).

In addition, note that log( π2

5.32 )<
1
2 +0.12. However, we know

γ + log logqm < γ + log loglog(219 ×n)

since qm < log(219 ×n). We use that lemma 5.2 for each term log(q+1)− logq and
thus,

0.12+
1
2
+

1
3
+

1
q1

+ · · ·+ 1
qm

≤ 0.12+ ∑
q≤qm

1
q
≤ γ + log logqm

where qm ≥ 11. Hence, it is enough to prove

∑
q≤qm

1
q
≤ γ + log logqm −0.12

but this is true according to the lemma 4.2 for qm ≥ 11. In this way, we finally show
the lemma is indeed satisfied.

6 Main Insight

The next result is a main insight.

Lemma 6.1 Let n > 5040 and let all its prime divisors be q1 < · · ·< qm. When qm ≥
11, 3 ∤ n and 220 | n, then

π2

6
×

m

∏
i=1

qi +1
qi

≤ eγ × log logn.
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Proof We need to prove that

π2

6
×

m

∏
i=1

qi +1
qi

≤ eγ × log logn.

Using the formula (5.3) for the square free numbers, then we obtain that is equivalent
to

π2

6
× σ(n′)

n′
≤ eγ × log logn

where n′ = q1 × ·· · × qm is the square free kernel of the natural number n [4]. We
know that 220 | n and thus,

eγ ×n′× log log(219 × n′

2
)≤ eγ ×n′× log logn

because of 219 × n′
2 ≤ n where 220 | n and 2 | n′. So,

π2

6
×σ(n′)≤ eγ ×n′× log log(219 × n′

2
).

According to the formula (5.3) for the square free numbers and 2 | n′, then,

π2

6
×3×σ(

n′

2
)≤ eγ ×2× n′

2
× log log(219 × n′

2
)

which is the same as

π2

6
× 3

2
×σ(

n′

2
)≤ eγ × n′

2
× log log(219 × n′

2
)

where this is true according to the lemma 5.4 when 3 ∤ n′
2 and qm ≥ 11. To sum up,

the proof is complete.

7 Proof of the Riemann Hypothesis

Let q1 = 2,q2 = 3, . . . ,qm denote the first m consecutive primes, then an integer of the
form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan integer [4].
A natural number n is called superabundant precisely when, for all natural numbers
m < n

f (m)< f (n).

Lemma 7.1 If n is superabundant, then n is an Hardy-Ramanujan integer [2].

Lemma 7.2 The smallest counterexample of the Robin inequality greater than 5040
must be a superabundant number [1].

This is an important lemma that we use:
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Lemma 7.3 Let x ≥ 11. For y > x we have [8]:

log logy
log logx

<

√
y

√
x
.

Theorem 7.4 The Riemann hypothesis is true.

Proof Let ∏
m
i=1 qai

i be the representation of n as a product of primes q1 < · · · < qm
with natural numbers as exponents a1, . . . ,am. In this way, we assume that n > 5040
could be the smallest integer such that Robins(n) does not hold. According to the
lemmas 7.1 and 7.2, the primes q1 < · · ·< qm must be the first m consecutive primes
and a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 since n > 5040 should be an Hardy-Ramanujan integer.
We know that n> 5040 complies that Robins(n) holds when ν2(n)≤ 19 or qm ≤ 7 ac-
cording to the lemmas 3.1 and 3.2. Therefore, the natural number n > 5040 complies
with qm ≥ 11 and 220 | n. So,

π2

6
× 3

4
×

m

∏
i=1

qi +1
qi

≤ eγ × log log
n

3ν3(n)

because of the lema 6.1. This is equivalent to

π2

8
×

m

∏
i=1

qi +1
qi

≤ eγ × log log
n

3ν3(n)
.

If we divide the two sides of the previous inequality by eγ × log logn, then

π2

8 ×∏
m
i=1

qi+1
qi

eγ × log logn
≤

log log n
3ν3(n)

log logn
.

We use that lemma 7.3 to show that

log log n
3ν3(n)

log logn
>

1√
3ν3(n)

.

We know that Robins(n) holds for a natural number n > 5040 when ν3(n) ≤ 12.
Consequently, we obtain that

π2

8 ×
√

312 ×∏
m
i=1

qi+1
qi

eγ × log logn
≤ 1√

3ν3(n)−12
.

We have that
π2

8
×
√

312 ≥ π2

6
.

We use that theorem 2.2 to show that

π2

6
×

m

∏
i=1

qi +1
qi

>

(
m

∏
i=1

q2
i

q2
i −1

)
×

m

∏
i=1

qi +1
qi

.
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Besides, (
m

∏
i=1

q2
i

q2
i −1

)
×

m

∏
i=1

qi +1
qi

=
m

∏
i=1

qi

qi −1

because of
q

q−1
=

q2

q2 −1
× q+1

q
.

Consequently, we obtain that

∏
m
i=1

qi
qi−1

eγ × log logn
<

π2

8 ×
√

312 ×∏
m
i=1

qi+1
qi

eγ × log logn

and thus,
f (n)

eγ × log logn
< 1

according to the lemma 2.1 and 1√
3ν3(n)−12

< 1. That is the same as

f (n)< eγ × log logn.

However, this is a contradiction, since Robins(n) does not hold under our initial as-
sumption. Finally, we can see that the Riemann hypothesis is true because of the
theorem 1.1.
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pures appl 63(2), 187–213 (1984)

10. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois
Journal of Mathematics 6(1), 64–94 (1962). DOI doi:10.1215/ijm/1255631807


