

EURASIAN JOURNAL OF ACADEMIC RESEARCH

Innovative Academy Research Support Center

www.innacademy.uz

ABOUT THE PROPERTIES OF NETWORKS

¹Tufliyev Egamberdi Olimovich,

² Gulomova Muhabbat Maxmudovna,

³ Bozarov Dilmurod Uralovich

¹ Senior teacher of "Higher Mathematics" department of Karshi Engineering and Economics Institute. Email: d.bozorov@inbox.ru, ² Senior teacher of "Higher Mathematics" department of Karshi Engineering and Economics Institute. Email: d.bozorov@inbox.ru,

³ Assistant Professor of "Higher Mathematics", Karshi Engineering and Economics Institute. Email: d.bozorov@inbox.ru https://doi.org/10.5281/zenodo.5759421

ARTICLE INFO

Received: 20th November 2021 Accepted: 25th November 2021 Online: 30th November 2021

KEY WORDS

cs-network, cs*-network, k-network, sequencecovering map, compactcovering map.

ABSTRACT

In this paper, we investigate the following (1) the product of cs-networks, the image of cs-network by sequence-covering map is csnetwork, the product of cs*-networks is cs*-networks, the product of k-networks is a k-network, the image of cs*-network by 1-sequencecovering map is cs*-network, the image of k-network by compactcovering map is a k-network.

Introduction

To determine preserving topological properties of topological spaces by product and continuous map is one of the central question of general topology. The networks (cs, cs*, k) are characterized by important properties of topological spaces. Soma properties of networks (cs, cs*, k) and of covering maps (sequence, 1-sequence, compact) are discussed in [1, 3-12].

Main results

Let *X* be a T_1 topological space and $P = \{P_{\alpha} : P \subset X\}$ be a family with $x \in \bigcap P_{\alpha}$.

Definition-1. A sequence $\{x_n\}$ in *X* is called eventually in *P* if $\{x_n\}$ converges to *x*, and there exists $m \in N$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P$. **Definition-2.** The family *P* is called a network at point $x \in X$ if for any sequence $\{x_n\}$ converging to x and a neighborhood U of x, there exists $P \in P$ such that $P \subset U$ and $\{x_n\}$ is eventually in *P*.

Definition-3. The family *P* is called a network at point $x \in X$ if for each neighborhood of *x* there exists $P \in P$ such that $P \in U$.

Definition-4. The family *P* is called a cs*network at a point $x \in X$ if whenever $\{x_n\}$ is a sequence converging to a point $x \in U$ with *U* open is *X*, then $\{x_{n_i}: i \in N\} \subset P \subset U$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some $P \in P$.

Proposition-1. If the families *P* and *T* are cs-networks respectively at points $x \in X$ and $y \in Y$, then the family $P \times T$ is cs-network too at point $(x, y) \in X \times Y$.

Prof. Let *G* be a neighborhood of point (x, y)and $\{x_n\}$, $\{y_n\}$ are some sequences converging to points *x* and *y* respectively. It is easy to see that there exist neighborhoods U, V of points *x* and *y* respectively, such that $U \times V \subset G$. Moreover, there exist $P \in P, T \in$ T and $n_0 \in N$, $m_0 \in N$ that $\{x_n\} \subset P \subset U$ and $\{y_k\} \subset T \subset V$ for each $n > n_0$, $k > m_0$. We take $m = \max(n_0, m_0)$, then $\{(x_n, y_n)\} \subset P \times T \subset G$ for each n > m. Hence, $P \times T$ is cs-network at point (x, y).

Corollary-1. The families P_i , $i = \overline{1, n}$ are csnetworks at points $x_i \in X_i$ respectively, then their product $\prod_{i=1}^{n} P_i$ is a cs-network too at point $(x_1, x_2, ..., x_n) \in \prod_{i=1}^{n} X_i$.

Example. Let X = [=3,3] be space. It is easy to see the family $P = \{ \cup (1 - \frac{1}{n}, 1 +$ $\left(\frac{1}{n}\right)$ } is a cs-network at point x = 1 and T = $\left\{ \cup \left(2 - \frac{1}{n}, 2 + \frac{1}{n}\right) \right\}$ is a cs-network at point y = 2, where $n \in N$. For each neighborhood of point A(x, y)G we take r = $min_{B \in \partial G} \{ d(A, B) \}$, where d is metric in X. Next we take $U = (1 - \frac{r}{3}, 1 + \frac{r}{3}), (V = (2 - \frac{r}{3}, 1 + \frac{r}{3}))$ $\left(\frac{r}{3}, 2 + \frac{r}{3}\right)$, then $U \times V \subset G$. We can find $n_0 \in$ *N* such that for $P = \left(1 - \frac{1}{n_0}, 1 + \frac{1}{n_0}\right), T =$ $\left(2-\frac{1}{n_0},2+\frac{1}{n_0}\right)$ this attitude $P \times T \subset U \times$ $V \subset G$ is understandable. Therefore, $P \times T$ is a cs-network too.

Proposition-2. If the families *P* and *T* are cs^* -networks respectively at points $x \in X$, $y \in Y$ then a family $P \times T$ is cs^* -network too at point $(x, y) \in X \times Y$.

Proof. In this case again let *G* be a neighborhood of point (x, y) and $\{x_n\}$ and $\{y_n\}$ are some sequences converging to points *x* and *y* respectively and is known there exists neighborhoods *U*, *V* of points *x* and *y* respectively, such that $U \times V \subset G$. Moreover, by definition of cs*-network there exist $P \in P$, $T \in T$ and subsequences $\{x_{n_i}: i \in N\}$ and $\{y_{n_j}: j \in N\}$ of sequences $\{x_n\}$ and $\{y_n\}$ respectively, such that $\{x_{n_i}: i \in N\}$ and $\{y_{n_j}: j \in N\}$ of sequences $\{x_n\}$ and $\{y_n\}$ respectively, such that $\{x_{n_i}: i \in N\} \subset P \subset U$ and $\{y_{n_j}: j \in N\} \subset T \subset V$. Afterward we re-numbered subsequences and we have $\{(x_{n_k}, y_{n_k}): k \in N\} \subset P \times T \subset G$.

www.innacademy.uz

Hence, $P \times T$ is a cs*-network at the point (x, y) and we have proved the proposition-2.

Corollary-2. The families P_i , $i = \overline{1, n}$ are cs*-networks respectively at points $x_i \in X_i$, then their product $\prod_{i=1}^{n} P_i$ is a cs*-network at the point $(x_1, x_2, ..., x_n) \in \prod_{i=1}^{n} X_i$.

Definition-5. [8]. Let $f: X \to Y$ be a map continuous and onto

f is a sequence-covering map if each convergent sequence (includes its limit point) of *Y* is the image of some convergent sequence of *X*.

f is a 1-sequence-covering map if for each $y \in Y$, there is $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to *y* in *Y* there is sequence $\{x_n\}$ converging to *x* in *X* with each $x_n \in f^{-1}(y_n)$.

Remark. 1-sequence-covering map \Rightarrow sequence-covering map.

Proposition-3. If $f: X \to Y$ is sequencecovering map and *P* is a cs-network at point $x_0 \in X$, then $f(P) = \{f(P): P \in P\}$ is a csnetwork at the point $y_0 = f(x_0)$.

EURASIAN JOURNAL OF ACADEMIC RESEARCH Innovative Academy Research Support Center

Proof. By definition of continuous map for each neighborhood V of point y_0 there exists a neighborhood U of points x_0 such that $f(U) \subset V$. Since the family P is csnetwork at the point x_0 , there exists $P \in P$ such that $P \subset U$. Therefore, there exists T = $f(P) \in f(P)$ such that $T \subset V$. Now we will show that for each sequence $\{y_n\}$ converging to y_0 there is $m \in N$ such that $\{y_n\} \subset T$ for every n > m. We have that f is sequence-covering map, so the sequence $\{y_n\}$ is the image of some sequence $\{x_n\}$ of X converging to x_0 . Then there exists $m \in N$ such that $\{x_n\} \subset P$ for every n > m, so $\{f(x_n)\} = \{y_n\} \subset f(P) = T$ for every n >*m*. So f(P) is cs-network at point y_0 .

Proposition-4. If $f: X \to Y$ 1-sequence covering map and *P* is a cs*-network at point $x_0 \in X$, then $f(P) = \{f(P): P \in P\}$ is cs*-network at point $y_0 = f(x_0)$.

Proof. Us sufficient show that for every sequence $\{y_n\}$ converging to point $y_0 \in V$ with V open in Y there exists subsequence $\{y_{n_i}: i \in N\}$ and $T \in f(P)$ such that $\{y_{n_i}: i \in N\} \subset T \subset V$. We have that f is 1-sequence covering map. Therefore, there exist $z_0 \in f^{-1}(y_0)$ and $x_n \in f^{-1}(y_n)$ such that $\{x_n\}$ is a converging sequence to z_0 . In addition, P is a cs*-network at a point x_0 , so there exists subsequence $\{x_{n_i}: i \in N\}$ of $\{x_n\}$ and $P \in P$ such that $\{x_{n_i}\} \subset P$, therefore, $\{f(x_{n_i}) = y_{n_i}\} \subset \{y_n\} \subset f(P) = T$. Hence, $f(P) = \{f(P): P \in P\}$ is cs*-network at the point y_0 .

Definition-6. *P* is called k-network if whenever $K \subset U$ with *K* compact and *U* open in *X*, then $K \subset \bigcup P' \subset U$ for some finite $P' \subset P$.

Let $f: X \to Y$ be a map continuous and onto.

Definition-7. The map *f* is called *compact-covering map* if each compact subset of *Y* is the image of some compact subset of *X*.

www.innacademy.uz

Definition-8. If the families *P* and *T* are knetworks respectively in *X* and *Y*, then the family $P \times T$ is k-network in $X \times Y$.

Proof. Let *K* be a compact subset of $X \times Y$ and $K \subset U$ with *U* open in $X \times Y$. We denote by K_1 and K_2 the projects of *K* to *X* and *Y* respectively. It is easy to see K_1 and K_2 are compact subsets of *X* and *Y* respectively. Let be $K_1 \subset U_1$ and $K_2 \subset U_2$, for some open subsets U_1, U_2 . We have that *P* and *T* are knetworks. So there exist finite subfamilies $P' = \{P_i: P_i \in P, i = \overline{1, n}\}$ and $T' = \{T_j: T_j \in$ $T, j = \overline{1, m}\}$ of *P* and *T* respectively such that $K_1 \subset \{\bigcup_{i=1}^n P_i\} \subset U_1$ and $K_2 \subset \{\bigcup_{j=1}^m T_j\} \subset$ U_2 . Then it is easy to see $K \subset (K_1 \times$ $K_2) \cap U \subset (\{\bigcup_{i=1}^n P_i\} \times \{\bigcup_{j=1}^m T_j\}) \cap U \subset$ $(U_1 \times U_2) \cap U \subset U$.

As you know, $\{\bigcup_{i=1}^{n} P_i\} \times \{\bigcup_{j=1}^{m} T_j\} = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} P_i \times T_j$, where $P_i \times T_j \in P \times T$. Hence, $P \times T$ is k-network in $X \times Y$ too.

Corollary-3. The families P_i , $i = \overline{1, n}$ are knetworks respectively in X_i then their product $\prod_{i=1}^{n} P_i$ is k-network in $\prod_{i=1}^{n} X_i$.

Proposition-9. If $f: X \to Y$ is compactcovering map and *P* is a k-network in *X*, then $f(P) = \{f(P): P \in P\}$ is k-network in *Y*.

Proof. Let be *F* is compact and *V* is open with $F \subset V$. By definition of compactcovering map there exists compact subset *K* of *X* such that f(K) = F. We have that *f* is continuous map so $f^{-1}(V)$ is open in *X* and $K \subset f^{-1}(V)$. Otherwise, *P* is a k-network so there exists finite $P' \subset P$ such that $K \subset$ $\cup P' \subset f^{-1}(V)$. Thus implies $F \subset f(\cup P') =$

www.innacademy.uz

 $\bigcup f(P') \subset V$. Therefore, f(P) is k-network in *Y*.

REFERENCES:

- 1. Arhangel'skii A.V., Mappings and spaces / A.V.Arhangel'skii // Russian Math. Surveys 21, 1966, no. 4-P. 115-162.
- 2. Engelking. R. General topology/ R.Engelking Moscow:MIR, 1986.
- Воzarov D. U. Функтор единичного шара пространства знакопеременных мер с конечным носителем и бесконечной степенью Бозаров Дилмурод Уралович Каршинский инженерно-экономический институт e-mail: d. bozorov@ inbox. ru //MINISTRY OF HIGHER AND SECONDARY SPECIAL EDUCATION OF THE REPUBLIC OF UZBEKISTAN. – C. 107.
- 4. Franklin. S.P. Spaces in which sequences suffice / S.P.Franklin // Fund. Math. 57, 1965 P. 107-115
- 5. Gu, J. On 1-sequential quotient mappings / J.Gu // J.Math. Study, 44, 2003.-P. 305-308.
- 6. Lin, S. Sequence-covering maps of metric spaces / S.Lin. P.Yan // Topology Appl., 109. 2001.-P.301-314.
- 7. Nguyen Van Dung. On 1-sequence-covering π S-Images of Locally Separable Metric Spaces / Nguyen Van Dung / Evropean Journal Of Pure And Applied Mathematics, Vol. 2, No. 2, 2009.- P.182-194.
- 8. Rongxing Shen. On generalized metrizable properties in quasitopological groups / Rongxing Shen // Topology and in Applications, 173, 2014.- P.219-226.
- 9. Shou Lin. Sequence-covering maps of metric spaces / Shou Lin, Pengfei Yan // Topology and its Applications, 109,2001- P.301-314.
- 10. Zhaowen Li. On sequence-covering msss-maps / Zhaowen Li, Qingguo Li, Xiangnan Zhou // Matematiki vesnik, 59, 2007- P.15-21