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 In this paper, we investigate the following (1) the product of 
cs-networks, the image of cs-network by sequence-covering map is cs-
network, the product of cs*-networks is cs*-networks, the product of 
k-networks is a k-network, the image of cs*-network by 1-sequence-
covering map is cs*-network, the image of k-network by compact-
covering map is a k-network. 
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Introduction 

To determine preserving topological 

properties of topological spaces by product 

and continuous map is one of the central 

question of general topology. The networks 

(cs, cs*, k) are characterized by important 

properties of topological spaces. Soma 

properties of networks  (cs, cs*, k) and of 

covering maps (sequence, 1-sequence, 

compact) are discussed in [1, 3-12]. 

Main results 

Let 𝑋 be a 𝑇1 topological space and 𝑃 =

{𝑃𝛼: 𝑃 ⊂ 𝑋} be a family with 𝑥 ∈ ⋂𝑃𝛼 . 

Definition-1. A sequence {𝑥𝑛} in 𝑋 is called 

eventually in 𝑃 if {𝑥𝑛} converges to 𝑥, and 

there exists 𝑚𝜖𝑁 such that {𝑥} ∪ {𝑥𝑛: 𝑛 ≥

𝑚} ⊂ 𝑃. 

Definition-2. The family 𝑃 is called a 

network at point 𝑥 ∈ 𝑋 if for any sequence 

{𝑥𝑛} converging to 𝑥 and a neighborhood 𝑈 

of 𝑥, there exists 𝑃 ∈ 𝑃such that 𝑃 ⊂ 𝑈 and 

{𝑥𝑛} is eventually in 𝑃. 

Definition-3. The family 𝑃 is called a 

network at point 𝑥 ∈ 𝑋 if for each 

neighborhood of 𝑥 there exists 𝑃 ∈ 𝑃 such 

that 𝑃 ∈ 𝑈. 

 

Definition-4. The family 𝑃 is called a cs*-

network at a point 𝑥 ∈ 𝑋 if whenever {𝑥𝑛} is 

a sequence converging to a point 𝑥 ∈ 𝑈 with 

𝑈 open is 𝑋, then {𝑥𝑛𝑖
: 𝑖 ∈ 𝑁} ⊂ 𝑃 ⊂ 𝑈 for 

some subsequence {𝑥𝑛𝑖
} of {𝑥𝑛} and some 

𝑃 ∈ 𝑃. 
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Proposition-1. If the families 𝑃 and 𝑇 are 

cs-networks respectively at points 𝑥 ∈ 𝑋 

and 𝑦 ∈ 𝑌, then the family 𝑃 × 𝑇 is cs-

network too at point (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

Prof. Let 𝐺 be a neighborhood of point  (𝑥, 𝑦) 

and {𝑥𝑛}, {𝑦𝑛} are some sequences 

converging to points 𝑥 and 𝑦 respectively. It 

is easy to see that there exist neighborhoods 

𝑈, 𝑉 of points 𝑥 and 𝑦 respectively, such that 

𝑈 × 𝑉 ⊂ 𝐺. Moreover, there exist 𝑃 ∈ 𝑃, 𝑇 ∈

𝑇 and 𝑛0 ∈ 𝑁, 𝑚0 ∈ 𝑁 that {𝑥𝑛} ⊂ 𝑃 ⊂ 𝑈 

and {𝑦𝑘} ⊂ 𝑇 ⊂ 𝑉 for each 𝑛 > 𝑛0, 𝑘 > 𝑚0. 

We take 𝑚 = max (𝑛0, 𝑚0), then 

{(𝑥𝑛, 𝑦𝑛)}  ⊂ 𝑃 × 𝑇 ⊂ 𝐺 for each 𝑛 > 𝑚. 

Hence, 𝑃 × 𝑇 is cs-network at point (𝑥, 𝑦). 

Corollary-1. The families 𝑃𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅ are cs-

networks at points 𝑥𝑖 ∈ 𝑋𝑖  respectively, 

then their product ∏ 𝑃𝑖
𝑛
𝑖=1  is a cs-network 

too at point (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ∏ 𝑋𝑖
𝑛
𝑖=1 . 

Example. Let 𝑋 = [= 3, 3] be space. It is 

easy to see the family 𝑃 = {∪ (1 −
1

𝑛
, 1 +

1

𝑛
)} is a cs-network at point 𝑥 = 1 and  𝑇 =

{∪ (2 −
1

𝑛
, 2 +

1

𝑛
)} is a cs-network at point 

𝑦 = 2, where 𝑛 ∈ 𝑁. For each neighborhood 

𝐺 of point 𝐴(𝑥, 𝑦) we take 𝑟 =

𝑚𝑖𝑛𝐵∈𝜕𝐺{𝑑(𝐴, 𝐵)}, where 𝑑 is metric in 𝑋. 

Next we take 𝑈 = (1 −
𝑟

3
, 1 +

𝑟

3
), (𝑉 = (2 −

𝑟

3
, 2 +

𝑟

3
),  then 𝑈 × 𝑉 ⊂ 𝐺. We can find 𝑛0 ∈

𝑁 such that for 𝑃 = (1 −
1

𝑛0
, 1 +

1

𝑛0
), 𝑇 =

(2 −
1

𝑛0
, 2 +

1

𝑛0
) this attitude 𝑃 × 𝑇 ⊂ 𝑈 ×

𝑉 ⊂ 𝐺 is understandable. Therefore, 𝑃 × 𝑇 

is a cs-network too. 

Proposition-2. If the families 𝑃 and 𝑇 are 

cs*-networks respectively at points 𝑥 ∈ 𝑋, 

𝑦 ∈ 𝑌 then a family 𝑃 × 𝑇 is cs*-network too 

at point (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

Proof. In this case again let 𝐺 be a 

neighborhood of point (𝑥, 𝑦) and {𝑥𝑛} and 

{𝑦𝑛} are some sequences converging to 

points 𝑥 and 𝑦 respectively and is known 

there exists neighborhoods 𝑈, 𝑉 of points 𝑥 

and 𝑦 respectively, such that 𝑈 × 𝑉 ⊂ 𝐺. 

Moreover, by definition of cs*-network 

there exist 𝑃 ∈ 𝑃, 𝑇 ∈ 𝑇 and subsequences 

{𝑥𝑛𝑖
: 𝑖 ∈ 𝑁} and {𝑦𝑛𝑗

: 𝑗 ∈ 𝑁} of sequences 

{𝑥𝑛} and {𝑦𝑛} respectively, such that {𝑥𝑛𝑖
: 𝑖 ∈

𝑁} ⊂ 𝑃 ⊂ 𝑈 and {𝑦𝑛𝑗
: 𝑗 ∈ 𝑁} ⊂ 𝑇 ⊂ 𝑉. 

Afterward we re-numbered subsequences 

and we have {(𝑥𝑛𝑘
, 𝑦𝑛𝑘

): 𝑘 ∈ 𝑁} ⊂ 𝑃 × 𝑇 ⊂

𝐺. 

Hence, 𝑃 × 𝑇 is a cs*-network at the point 

(𝑥, 𝑦) and we have proved the proposition-

2. 

Corollary-2. The families 𝑃𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅ are  

cs*-networks respectively at points 𝑥𝑖 ∈ 𝑋𝑖 , 

then their product  ∏ 𝑃𝑖
𝑛
𝑖=1  is a cs*-network 

at the point (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ∏ 𝑋𝑖
𝑛
𝑖=1 . 

Definition-5. [8]. Let 𝑓: 𝑋 → 𝑌 be a map 

continuous and onto  

𝑓 is a sequence-covering map if each 

convergent sequence (includes its limit 

point) of 𝑌 is the image of some convergent 

sequence of 𝑋. 

𝑓 is a 1-sequence-covering map if for each 

𝑦 ∈ 𝑌, there is 𝑥 ∈ 𝑓−1(𝑦) such that 

whenever {𝑦𝑛} is a sequence converging to 

𝑦 in 𝑌 there is sequence {𝑥𝑛} converging to 

𝑥 in 𝑋 with each 𝑥𝑛 ∈ 𝑓−1(𝑦𝑛). 

Remark. 1-sequence-covering map ⇒ 

sequence-covering map. 

Proposition-3. If 𝑓: 𝑋 → 𝑌 is sequence-

covering map and 𝑃 is a cs-network at point 

𝑥0 ∈ 𝑋, then 𝑓(𝑃) = {𝑓(𝑃): 𝑃 ∈ 𝑃} is a cs-

network at the point 𝑦0 = 𝑓(𝑥0). 



EURASIAN JOURNAL OF ACADEMIC RESEARCH 
Innovative Academy Research Support Center 

www.innacademy.uz 

Volume 1 Issue 8, November 2021                       ISSN 2181-2020  Page 382 

Proof. By definition of continuous map for 

each neighborhood 𝑉 of point 𝑦0 there 

exists a neighborhood 𝑈 of points 𝑥0 such 

that 𝑓(𝑈) ⊂ 𝑉. Since the family 𝑃 is cs-

network at the point  𝑥0, there exists 𝑃 ∈ 𝑃 

such that 𝑃 ⊂ 𝑈. Therefore, there exists 𝑇 =

𝑓(𝑃) ∈ 𝑓(𝑃) such that 𝑇 ⊂ 𝑉. Now we will 

show that for each sequence {𝑦𝑛} 

converging to 𝑦0 there is 𝑚 ∈ 𝑁 such that 

{𝑦𝑛} ⊂ 𝑇 for every 𝑛 > 𝑚. We have that 𝑓 is 

sequence-covering map, so the sequence 

{𝑦𝑛} is the image of some sequence {𝑥𝑛} of 𝑋 

converging to  𝑥0. Then there exists 𝑚 ∈ 𝑁 

such that {𝑥𝑛} ⊂ 𝑃 for every 𝑛 > 𝑚, so 

{𝑓(𝑥𝑛)} = {𝑦𝑛} ⊂ 𝑓(𝑃) = 𝑇 for every 𝑛 >

𝑚. So 𝑓(𝑃) is cs-network at point 𝑦0. 

Proposition-4. If 𝑓: 𝑋 → 𝑌 1-sequence 

covering map and 𝑃 is a cs*-network at 

point 𝑥0 ∈ 𝑋, then 𝑓(𝑃) = {𝑓(𝑃): 𝑃 ∈ 𝑃} is 

cs*-network at point 𝑦0 = 𝑓(𝑥0). 

Proof. Us sufficient show that for every 

sequence {𝑦𝑛} converging to point 𝑦0 ∈ 𝑉 

with 𝑉 open in 𝑌 there exists subsequence 

{𝑦𝑛𝑖
: 𝑖 ∈ 𝑁} and 𝑇 ∈ 𝑓(𝑃) such that {𝑦𝑛𝑖

: 𝑖 ∈

𝑁} ⊂ 𝑇 ⊂ 𝑉. We have that 𝑓 is 1-sequence 

covering map. Therefore, there exist 𝑧0 ∈

𝑓−1(𝑦0) and 𝑥𝑛 ∈ 𝑓−1(𝑦𝑛) such that {𝑥𝑛} is a 

converging sequence to 𝑧0. In addition, 𝑃 is 

a cs*-network at a point 𝑥0, so there exists 

subsequence {𝑥𝑛𝑖
: 𝑖 ∈ 𝑁} of {𝑥𝑛} and 𝑃 ∈ 𝑃 

such that {𝑥𝑛𝑖
} ⊂ 𝑃, therefore, {𝑓(𝑥𝑛𝑖

) =

𝑦𝑛𝑖
} ⊂ {𝑦𝑛} ⊂ 𝑓(𝑃) = 𝑇. Hence, 𝑓(𝑃) =

{𝑓(𝑃): 𝑃 ∈ 𝑃} is cs*-network at the point 𝑦0. 

Definition-6. 𝑃 is called k-network if 

whenever 𝐾 ⊂ 𝑈 with 𝐾 compact and 𝑈 

open in 𝑋, then 𝐾 ⊂ ⋃ 𝑃′ ⊂ 𝑈 for some 

finite 𝑃′ ⊂ 𝑃.  

Let 𝑓: 𝑋 → 𝑌 be a map continuous and onto. 

Definition-7. The map 𝑓 is called compact-

covering map if each compact subset of 𝑌 is 

the image of some compact subset of 𝑋.  

Definition-8. If the families 𝑃 and 𝑇 are k-

networks respectively in 𝑋 and 𝑌, then the 

family 𝑃 × 𝑇 is k-network in 𝑋 × 𝑌. 

Proof. Let 𝐾 be a compact subset of 𝑋 × 𝑌 

and 𝐾 ⊂ 𝑈 with 𝑈 open in 𝑋 × 𝑌. We denote 

by 𝐾1 and 𝐾2 the projects of 𝐾 to 𝑋 and 𝑌 

respectively. It is easy to see 𝐾1 and 𝐾2 are 

compact subsets of 𝑋 and 𝑌 respectively. Let 

be 𝐾1 ⊂ 𝑈1 and 𝐾2 ⊂ 𝑈2, for some open 

subsets 𝑈1, 𝑈2. We have that 𝑃 and 𝑇 are k-

networks. So there exist finite subfamilies 

𝑃′ = {𝑃𝑖: 𝑃𝑖 ∈ 𝑃, 𝑖 = 1, 𝑛̅̅ ̅̅̅} and 𝑇′ = {𝑇𝑗: 𝑇𝑗 ∈

𝑇, 𝑗 = 1, 𝑚̅̅ ̅̅ ̅̅ } of 𝑃 and 𝑇 respectively such that 

𝐾1 ⊂ {⋃ 𝑃𝑖} ⊂ 𝑈1
𝑛
𝑖=1  and 𝐾2 ⊂ {⋃ 𝑇𝑗} ⊂𝑚

𝑗=1

𝑈2. Then it is easy to see 𝐾 ⊂ (𝐾1 ×

𝐾2)⋂𝑈 ⊂ ({⋃ 𝑃𝑖}𝑛
𝑖=1 × {⋃ 𝑇𝑗})⋂𝑈 ⊂𝑚

𝑗=1

(𝑈1 × 𝑈2)⋂𝑈 ⊂ 𝑈. 

As you know, {⋃ 𝑃𝑖}𝑛
𝑖=1 × {⋃ 𝑇𝑗}𝑚

𝑗=1 =

⋃ ⋃ 𝑃𝑖 × 𝑇𝑗
𝑚
𝑗=1

𝑛
𝑖=1 , where 𝑃𝑖 × 𝑇𝑗 ∈ 𝑃 × 𝑇. 

Hence, 𝑃 × 𝑇 is k-network in 𝑋 × 𝑌 too. 

Corollary-3. The families 𝑃𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅ are k-

networks respectively in 𝑋𝑖  then their 

product ∏ 𝑃𝑖
𝑛
𝑖=1  is k-network in ∏ 𝑋𝑖

𝑛
𝑖=1 . 

Proposition-9. If 𝑓: 𝑋 → 𝑌 is compact-

covering map and 𝑃 is a k-network in 𝑋, 

then 𝑓(𝑃) = {𝑓(𝑃): 𝑃 ∈ 𝑃} is k-network in 

𝑌. 

Proof. Let be 𝐹 is compact and 𝑉 is open 

with 𝐹 ⊂ 𝑉. By definition of compact-

covering map there exists compact subset 𝐾 

of 𝑋 such that 𝑓(𝐾) = 𝐹. We have that 𝑓 is 

continuous map so 𝑓−1(𝑉) is open in 𝑋 and 

𝐾 ⊂ 𝑓−1(𝑉). Otherwise, 𝑃 is a k-network so 

there exists finite 𝑃′ ⊂ 𝑃 such that 𝐾 ⊂

⋃𝑃′ ⊂ 𝑓−1(𝑉). Thus implies 𝐹 ⊂ 𝑓(⋃𝑃′) =
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⋃𝑓(𝑃′) ⊂ 𝑉. Therefore, 𝑓(𝑃) is k-network 

in 𝑌.
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