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ABSTRACT

Stylostome and skin inflammatory reaction during feeding of Neotrombicula talmiensis
(Schluger, 1955) (Acariformes, Trombiculidae) larvae on the naturally infected host
animals – voles Myodes rufocanus Sundevall, 1846 and Asian chipmunk Tamias sibiricus
(Laxmann, 1769) were studied by histological methods. In addition, larvae were studied
in scanning electron microscope (SEM). The apical hypostomal portions form a temporal
sucker, which applies to the host skin during feeding. Larval feeding on both naturally
infected voles and chipmunks causes an epidermal hyperkeratosis and a permanent delayed
inflammation with predominance of neutrophil leukocytes, dilation of dermal capillaries
and local hemorrhages. Larvae tend to feed in tight groups and may attach themselves to
both ‘living’ epidermis and hypertrophic stratum corneum. The stylostome is organized
nearly identically in the two host species, which points to the species-specific character of
the feeding tube in trombiculid larvae. The stylostome does not penetrate the epidermis
through, so it may be classified as belonging to the epidermal type. The stylostome is
produced by a solidifying larval secretion and composed of the proximal eosinophil cone
and the main stylostome tube, both pale-pink in azure-II-eosin with a greyish peripheral
portion more pronounced in voles. No longitudinal and transverse stratification is found
in the stylostome composition. In contrast with other trombiculid larvae studied so far,
larvae of N. talmiensis also ingest, besides liquefied nutrients, a pure blood that reveals a
possibility for trombiculid larvae to be natural bloodsuckers.

Keywords larvae; mouth apparatus; feeding tube; histology; trombiculid mites; Acariformes

Introduction
Larvae of trombiculid mites (chiggers) are known as ectoparasites of the wide range of
vertebrate animals, several species serve as vectors of tsutsugamushi disease agents – Orientia
tsutsugamushi (Hayashi). Scrub typhus, or tsutsugamushi fever, is an acute infection disease,
which is widely distributed in countries of the Eastern hemisphere from Tajikistan to Papua New
Guinea and, in particular, of South-Eastern Asia (Kulagin and Tarasevitch 1972; Kawamura
et al. 1995; Takahashi et al. 2004). Therefore, the medical and epidemiological importance
of this mite group cannot be overrated. During a parasitizing period, larvae of all trombiculid
species produce a special feeding tube – stylostome – in the skin of the affected animals for
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better obtaining of the appropriate nutrients – lymph and tissue liquids (Shatrov 2009). A pure
blood was not recorded as typical food of trombiculid larvae.

The stylostome is found to have different organization in different parasite and host species
(Hoeppli and Schumacher 1962; Schumacher and Hoeppli 1963; Voigt 1970; Hase et al. 1978;
Arnold 1986; Goldberg and Holshuh 1992; Shatrov 2009, 2018; Shatrov and Stekolnikov 2011;
Shatrov et al. 2014; Shatrov and Mirolubov 2015). Nevertheless, there is still no evidence that
its structure is species-specific, irrespective of the host species and feeding site. However, Hase
et al. (1978) have shown that different Leptotrombidium larvae feeding on laboratory mice
produce three different stylostome types – epidermal, mesenchymal and mixed – in accordance
with the depth of penetration and position of the feeding tube in the host skin. While the
organization of the stylostome may vary, the host skin reaction was found to be rather similar
in its type but quite variable in degree in different host species and could depend on the number
of feeding larvae and the duration of infection (Hoeppli and Schumacher 1962). The intensity
of skin reaction, as supposed by Audy (1951), may serve as a measure of the novelty of the host
for the given parasite species. The hyaline mass of the stylostome tube as such reveals a very
low capability to react with different histological stains and may contain only some amount of
acid mucopolysaccharides (Schumacher and Hoeppli 1963; Shatrov 2009).

The trombiculid mite Neotrombicula talmiensis (Schluger, 1955) is one of the most
widespread species of the large and complex genus Neotrombicula Hirst, 1925. The species
was first described from the Russian Far East and later it was found in the natural focus of
tsutsugamushi disease in this region (Kudryashova and Tarasevitch 1964). It was later recorded
in a broad range from Korea to Central Europe (Stekolnikov 2001, Stekolnikov et al. 2014)
and revealed to be highly variable morphologically. It was shown that the name N. talmiensis
had actually been used for a group of closely related species (Stekolnikov 2001, 2002).

Elucidation of the stylostome organization in this trombiculid species, in particular, its
position within the host tissue as well as the intensity of the accompanied tissue reaction in
two different host species – vole and chipmunk – is important in terms of the capability of
these larvae to serve as a vector of the disease agents. In addition, disclosure of the stylostome
structure may throw light upon the problem of its species-specific organization.

Material and methods
Trombiculid larvae of Neotrombicula talmiensis (Schluger, 1955) were collected by A.B.
Shatrov in August 2019 from the volesMyodes rufocanus Sundevall, 1846 and Asian chipmunk
Tamias sibiricus (Laxmann, 1769) in the Silinskiy forest, Komsomolsk-on-Amur (50°34′29′′N,
137°02′09′′E). Animals were captured using standard Gero traps. In total, five voles and four
chipmunks were captured, trombiculid larvae parasitized all of them with the minimum number
of around ten feeding larvae on a chipmunk. Larvae fed within ears in tight groups at different
feeding stages. Some skin samples with feeding larvae were fixed in 70% ethyl alcohol for
their further identification and systematical consideration, which were performed by A.A.
Antonovskaia, some were fixed for histological examination in parallel.

Specimens selected for morphological identification were processed after alcohol fixation.
Five larvae were mounted on microscopic slides in Faure-Berlese medium (Neuhaus et al.
2017) and then examined under a Micromed-3 Professional microscope (Ningbo Sheng Heng
Optics & Electronics, Gao Qiao, China) equipped with phase contrast and a ToupCam camera
(ToupTek Photonics, Hangzhou, China). Measurements were made from photos by the
calibrated software ToupView (ToupTek Photonics, Hangzhou, China). The morphological
terminology follows Kudryashova (1998) and Stekolnikov (2013). To distinguish between
species of the talmiensis group, we also used functions calculated by Stekolnikov (2001).
The examined specimens are deposited at the Department of Entomology, Faculty of Biology,
Lomonosov Moscow State University.

For histological examinations, small skin samples with feeding larvae from three voles and
three chipmunks were cut out from ears and immediately fixed in a compound histological
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fixative fluid composed of 40% formalin (30 ml), 96% ethyl alcohol (10 ml) and glacial acetic
acid (3 ml) for 3-4 hours. After fixation in the field, the samples were preserved in 96% ethyl
alcohol and kept at 4-6 °C for some months. In the laboratory, the skin samples were treated
with celloidin and then they were embedded in paraffin. Paraffin blocks were serially sectioned
at 5-7 µm, and then the sections were stained with azure II-eosin that allows differentiating
both basophilic and oxyphilic tissue properties (Lillie 1965). The sections were then studied
and photographed with a Leica DM LS-2 light-optical microscope combined with a Leica
EC-3 digital camera at the objective magnifications from x10 to x100 (oil immersion). In total,
around several tens of stylostomes were examined in the two host species.

For investigation of the optical anisotropy of tissues, a plane-polarized emission was applied
to sections with the help of a special device coupled with a light microscope and provided with
the polarizer and the analyzer.

For Scanning Electron Microscope (SEM) examination, alcohol-preserved larvae that had
dropped off their hosts as well as small skin samples with still attached larvae were washed
in graded alcohol series and treated with hexamethyldisilazane (HMDS) for 5–10 min. Some
larvae were additionally washed in an ultrasonic cleaner for 10-30 sec and then were treated
with HMDS. The larvae, after placement on the microscope stubs, were then covered with
a platinum layer in an Eiko IB-5 ion coater and examined with a SEM Quanta-250 (FEI
Company) at 15 kV.

The histological and SEM preparations are deposited at the Zoological Institute of the
Russian Academy of Sciences, St-Petersburg.

Results
Larvae

The morphological characters of the collected larvae match the diagnosis of N. talmiensis
(Kudryashova 1998; Stekolnikov 2001). The examined larvae are characterized by branched
galeal setae, palpal claw with 3 prongs (trifurcate), branched palpal setae, sensilla with 7–9 long
branches, 30–34 dorsal setae, 29–34 ventral setae (SIF = 7BS-B-3-3111-1000; fPp = B/B/NBB
or B/B/BBB; fCx = 1-1-1; fSt = 2.2; fD = 2H-8-6-6-4-4-2, 2H-8-6-6-6-4-2, etc.) (Table 1,
Figure 1A-G).

SEM of N. talmiensis larvae has also revealed two eye lenses closely positioned on one
plate on both sides of the scutum (Figure 1A-B) and long trifurcate palpal claws looking down
and back nearby the sucker (Figure 1D). Like in other trombiculid larvae (Shatrov 2000),
the apical hypostomal lips form a temporal sucker during larval feeding (Figure 1D). This
sucker closely attaches to the host skin from the outside sealing the wound thus facilitating
the action of the pharyngeal pump. The cheliceral movable digits (cheliceral blades), curved
dorsally, protrude forward in active position (Figure 1C) and reveal a certain groove on the inner
surface (Figure 2A), as well as barely noticeable barbs at their tips (Figure 2B) (tricuspid cap)
(Kudryashova 1998). SEM of the host skin samples shows the sites of the larval attachment
with the stylostome substance protruding from the place of puncture above the epidermal
surface (Figure 2C-D). This substance reveals imprints of the hypostomal sucker outside and
the cheliceral movable digits inside it (Figure 2C-D) thus disclosing the ‘starting point’ of the
stylostome canal. The stylostome canal remains free from any material. As seen from the equal
orientation of ridges of the stylostome substance in the larval puncture remaining after loosely
shifted cheliceral blades, larvae attach to the host skin in the same general position (Figure 2C).
This, obviously, may help larvae to feed in the tightest groups. It is also seen that the trifurcate
palpal claws do not pierce the host skin and do not penetrate into it because there are no traces
of such perforation found on the epidermal surface.
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Figure 1 Organization of Neotrombicula talmiensis (Schluger, 1955) larvae. SEM. A – Scutum (one of sensilla broken). Scale bar – 40 μm;
B – Paired eye and posterolateral seta of scutum. Arrow points to a pore on the scutal surface. Scale bar – 10 μm; C – Gnathosoma, dorsal
view (palpal claws not visible). Arrows show branched setae on palpal femur, genu, and tibia (ventral seta of tibia and palpal tarsus not shown).
Arrowhead points to a sucker formed of the turned back apical hypostomal lips. Scale bar – 40 μm; D – Gnathosoma, ventral view. Note the
long trifurcate palpal claws adjacent to the sucker. Arrows show branched setae (dorsal, ventral, and lateral) on palpal tarsus and branched setae
on tibia. Arrowhead shows branched seta on palpal femur (not in focus). Scale bar – 40 μm; E – Leg I. Arrows show specialized nude setae.
Scale bar – 50 μm; F – Leg II, tarsus and tibia. Arrows show specialized nude setae. Scale bar – 20 μm; G – Posterior portion of the larval
body showing disposition of the dorsal setae, and legs III. Arrows show specialized nude setae. Scale bar – 50 μm. — AL – anterolateral seta,
AM – anteromedian seta, Ch – chelicera, ChBl – cheliceral blades (cheliceral movable digits), E – paired eyes, Ga – branched galeal seta, Gn –
gnathocoxal plate, GS – gnathocoxal seta, Mt – mastitarsala, PCl – palpal claw, PF – palpal femur, PG – palpal genu, PL – posterolateral seta,
PTa – palpal tarsus, PTi – palpal tibia, S – sensillum (trichobothrium), Sc – scutum, Sol – solenidion, TaIII – tarsus of leg III, Ur – urstigma
(Claparède organ)
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Figure 2 Cheliceral blades and sites of attachment of Neotrombicula talmiensis (Schluger, 1955) larvae. SEM. A – Cheliceral blades, dorsal
view. Arrows show two small barbs on the tip of the cheliceral blades, the third barb is not visible. Arrowhead points to a groove on the medial
surface of the cheliceral blade. Scale bar – 10 μm; B – Cheliceral blades, lateral view. Arrows indicate hardly noticeable barbs on the tip of
the cheliceral blades (tricuspid cap). Scale bar – 10 μm; C – Sites of the larval attachment on the vole skin (arrows). Scale bar – 40 μm; D
– Larval attachment site/puncture with an extruded material of the eosinophil cone (arrow) and a groove remaining from the cheliceral blade
(arrowhead). Note the ridge of the stylostome substance along the axis of the stylostome canal. Scale bar – 10 μm. — Ch – basal cheliceral
segment, ChBl – cheliceral blade, Ga – branched galeal seta, rd – ridge of the stylostome substance remaining from cheliceral blades
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Figure 3 Skin injury of voles Myodes rufocanus Sundevall, 1846 during feeding of Neotrombicula talmiensis (Schluger, 1955) larvae. His-
tological sections of aural cavity. Azure II-Eosin. A – General view of aural cavity damaged by feeding larvae. Scale bar – 200 μm; B –
Stylostomes evolved within the hypertrophic stratum corneum. Scale bar – 100 μm; C – Single young stylostome obliquely sectioned evolved
within the epidermis. Note the feeding cavity filled with inflammatory cells. Scale bar – 100 μm. — bv – blood vessel, car – aural cartilage,
der – dermis, ep – epidermis, fc – feeding cavity, sb – scab, st – stylostome, stc – stratum corneum
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Stylostome

In both vole and chipmunk, the epidermis-dermis tissue system in the auricles is organized
similarly (Figures 3A, 6A, B). It reveals the well-developed papillary layer of the dermis and
the thick epidermal layer with the expressed stratum spinosum – spiked layer of the epidermis,
whereas the stratum granulosum – granular layer, and the stratum lucidum – shiny layer of
the epidermis are significantly thinner. At the same time, in the highly immunized naturally
infected animals, like voles and chipmunks, the epidermis in the very deep portions of the
auricles, mostly affected by feeding larvae, undergoes hyperplasia and hyperkeratosis. This
leads to the significant increase of the overall thickness of the epidermis and, especially, the
stratum corneum (horn layer) as well. However, larvae may attach themselves irrespectively
in both greatly keratinized sites (Figure 3B) and ‘normal’ epidermis (Figures 3C, 6B, C) and
usually tend to feed close to each other by tight groups (Figures 3A, B, 6A, B).

The initial stages of the stylostome formation in larvae of N. talmiensis are identical in
both host species. In the case of the ‘normal’ epidermis, where the stratum corneum is not
thick, larvae cut this layer by the cheliceral blades and reach the stratum lucidum – shiny
layer of the epidermis by their tips (Figures 4A, 7A, B). The stylostome begins to evolve from
this level. On the longitudinal sections to the stylostome axis, the first stylostome portion
is a cone-shaped structure, of which the lateral angles generally radiate between the stratum
lucidum and the stratum corneum (Figures 4A, 7A, B). In turn, its upper margins may protrude
beyond squamae of the stratum corneum as seen in SEM images (see above). The color of this
cone-shaped structure in azure-eosin staining, as in other trombiculids, is variably pale-pink,
so it is termed ‘eosinophil cone’ (Shatrov 2009). Remarkably, this structure apparently reveals
viscous properties because it shows high meniscuses with the cheliceral blades inserted into and
adhered to it (Figures 4A, 7B). The narrow portion of the growing stylostome just beneath the
eosinophil cone may be light grayish on this initial stage of the stylostome formation (Figure
7A, B). The cheliceral blades are moved apart by around 10 µm thus forming the most proximal
portion of the stylostome canal (Figure 4A). Immediately after formation of the eosinophil
cone, a particular clear cavity (the so-called feeding cavity) evolves in the upper portions of
the stratum granulosum just beneath the eosinophil cone (Figures 3C, 4A, 7A, B) as a result of
dissolution of the epidermal cells by action of the larval salivary secretion. Importantly, this

Table 1 Standard measurements of Neotrombicula talmiensis (Schluger, 1955) larvae from this study
(n=5).

 

Range, μm Median, μm Range, μm Median, μm

AW 76–79 78 Vmin 29–30 30

PW 91–100 92 Vmax 44–54 47

SB 33–37 36 pa 281–311 287

ASB 31–35 32 pm 242–279 262

PSB 25–29 26 pp 305–319 306

SD 56–63 61 Ip 830–896 862

P-PL 24–30 27 DS 30–34 33

AP 26–30 28 VS 29–34 32

AM 44–47 47 NDV 62–66 64

AL 41–45 44 TaIII (L) 73–79 77

PL 63–70 67 TaIII (W) 16–18 16

S 70–73 72 dmt 12–14 13

H 62–68 66 m-t 0,16–0,19 0,17

Dmin 40–46 46

Dmax 57–65 61
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Figure 4 Stylostomes ofNeotrombicula talmiensis (Schluger, 1955) larvae in the skin of volesMyodes rufocanus Sundevall, 1846. Histological
sections. Azure II-Eosin. A – Young stylostome evolved in the hypertrophic stratum corneum. Note the active stratum lucidum surrounding
growing stylostome and feeding cavity filled with a flocculent material without inflammatory cells. Stylostome canal is also empty. Scale bar
– 20 μm; B – Stylostome at the advanced stage also evolved in the hypertrophic stratum corneum and tightly surrounded by cells of the stratum
lucidum. Note the greyish substance on the periphery of the stylostome (arrows). The stylostome canal contains cell debris, although feeding
cavity is devoid of inflammatory cells. Scale bar – 20 μm; C – Stylostome at the advanced stage evolved against the scab underneath it, so
the feeding cavity is not obviously manifested. The stylostome canal is filled with debris. Note the greyish substance on the periphery of the
stylostome (arrow). Scale bar – 20 μm; D – Transverse section of a stylostome evolved within the moderately expressed scab. Note the greyish
substance on the periphery of the stylostome (arrow). Scale bar – 20 μm. — ChBl – cheliceral blade, ec – eosinophil cone, fc – feeding cavity,
sb – scab, sc – stylostome canal, st – stylostome, stc – stratum corneum, stg – stratum granulosum, stl – stratum lucidum
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Figure 5 Skin injury of volesMyodes rufocanus Sundevall, 1846 and stylostomes of Neotrombicula talmiensis (Schluger, 1955) larvae. Histo-
logical sections. Azure II-Eosin. A – Several stylostomes evolving in both hypertrophic epidermis and penetrating into the strongly expressed
feeding cavities filled with numerous infiltrating cells and cell debris. Note the grayish substance at the periphery of stylostomes (arrows).
Scale bar – 100 μm; B – Two closely disposed stylostomes evolving within the cell association of the broken inflammatory and epidermal cells
(arrows). Scale bar – 50 μm; C – Three differently arranged stylostomes evolving within the pronounced feeding cavity tightly packed with
the broken inflammatory and epidermal cells fused to form a scab. Note the grayish substance at the periphery of stylostomes (arrows). Scale
bar – 50 μm; D – Strongly dilated capillary in the papillary dermal layer tightly packed with erythrocytes and containing polymorphnonuclear
leucocytes (neutrophils) (arrows). Scale bar – 20 μm. — ep – epidermis, fc – feeding cavity, sc – scab, st – stylostome, stc – stratum corneum,
stl – stratum lucidum
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cavity appears when there are still no leukocytes present in the epidermis. In the case of two or
several closely attached larvae, the initial feeding cavities fuse to form a large common cavity
in the upper epidermal layers (Figures 5A, C, 6C). In more or less developed condition, these
cavities begin to fill up with numerous neutrophil leucocytes (Figures 3C, 5A, C, 6C, 7C, D)
migrating here across the epidermis from the dilated blood vessels of the terminal vessel bed
(see below). Leucocytes and their nuclear fragments may be also seen within the initial short
stylostome canal and in the area between the cheliceral blades (Figure 4B, C). Nevertheless, the
midgut of the feeding larvae never contains any intact host cells or their debris as on the initial
so on the advanced feeding stages. In the developed inflammatory focus with the perforated
epidermis, leucocytes may be also seen coming outside the epidermis and disposing among
squamae of the stratum corneum as well as among feeding larvae.

The stylostome tube grows straight down from the base of the eosinophil cone (Figures
4B, C, 7C) but may extend into the epidermis at various angles to its surface (Figures 5A-C,
8B). In the more or less developed condition, the internal stylostome portion around the canal
is always variably pale-pink and do not differ significantly from the eosinophil cone by its
staining ability (Figures 4B, C, 5B, C, 7D, E). Sometimes, especially in the case of chipmunk,
this staining may spread over the entire stylostome (Figures 7C-E, 8B). By contrast, the external
and the peripheral (deepest) portions of the stylostome tube may be lighter and greyish and may
be to some extent distinct from the internal stylostome portion (Figures 4B-D, 5A, C). This
character seems to be more pronounced in the case of voles, whereas in the case of chipmunk
the peripheral stylostome portions are only slightly lighter than the middle ones and are not
distinctly divided from the latter. However, the general stylostome composition in both cases
is quite similar and certain layers in the stylostome walls cannot be surely identified. The
stylostome canal may show some dilations throughout its length and is always opened at its
end (Figures 4A, C, 7B). The diameter of the canal varies within 10-15 µm. The stylostome
measurements are indicated in Table 2.

Differences in the stylostome size in two host species generally depend on the place of
the larvae attachment and may reflect only particular and local variations. The stylostome is
typically shorter and wider when it evolves within the already existed feeding cavity or when
it is surrounded only by epidermal cells (Figures 4B, 7C, E). By contrast, the stylostome may
be longer and narrower when it develops in the scab formed of numerous broken necrotic
lymphoid cells on the epidermal surface (Figures 5B, 7D). Nevertheless, due to a great variety
of the particular tissue condition in the site of the larval attachment (Figures 3B, 5A, 8A, B),
no exact regularity in the stylostome size may be apparently ascertained.

The study of stylostome with a polarizer-analyzer system reveals a very weak light in the
internal pale-pink layer of the distal stylostome portions of the developed stylostomes. This
optical anisotropy indicates that the distal stylostome portions may be processed by particular
structural changes different from other stylostome substance without any anisotropy.

In the course of the stylostome formation, the cells of the stratum granulosum and the
stratum lucidum become active and pronounced. They come to the growing stylostome tube in
a perpendicular direction to its axial line (Figures 4A, C, 7C-E), obviously acting in displacing

Table 2 Measurements of stylostome of Neotrombicula talmiensis (Schluger, 1955) larvae feeding
on two natural host species (n=7 from each host).

 

Host species Indication\Sign Range, µm Median, µm

Myodes rufocanus  Sundevall, 1846 Length 70-110 85

Half-length width 20-50 34

Tamias sibiricus  (Laxmann, 1769) Length 80-130 105

Half-length width 25-55 39
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Figure 6 Skin injury of the Asian chipmunk Tamias sibiricus (Laxmann, 1769) during feeding of Neotrombicula talmiensis (Schluger, 1955)
larvae. Histological sections of aural cavity. Azure II-Eosin. A - General view of aural cavity damaged by numerous feeding larvae. Note the
differently developed stylostomes evolving within scabs. Scale bar – 500 μm; B – Two young closely disposed stylostomes evolving within the
epidermis. Note the numerous larvae at different feeding stages occupying the aural cavity. The feeding cavity is barely expressed. Scale bar –
200 μm; C – Two young stylostomes of the recently attached larvae at different developmental stages evolving within the epidermis showing
the large feeding cavity filled with numerous inflammatory cells. — car – aural cartilage, der – dermis, ec – eosinophil cone, ep – epidermis,
fc – feeding cavity, lar – larvae, sb – scab, st – stylostome, stc – stratum corneum

Shatrov A. B. and Antonovskaia A. A. (2021), Acarologia 61(2): 412-431; DOI 10.24349/acarologia/20214442 422

http://www1.montpellier.inra.fr/CBGP/acarologia/


 

 

 

 

Figure 7 Stylostomes ofNeotrombicula talmiensis (Schluger, 1955) larvae in the skin of the Asian chipmunk Tamias sibiricus (Laxmann, 1769).
Histological sections of aural cavity. Azure II-Eosin. A –Young stylostome composed of one eosinophil conewith the already developed feeding
cavity situated within the upper epidermal layers. Note the grayish substance underneath the eosinophil cone (arrow). Scale bar – 50 μm; B –
Young stylostome at the initial stage of development with the nearly empty feeding cavity underneath it. Note that the pale-grey substance on
the distal periphery of the stylostome (arrow) does not show any delimitations with the eosinophil cone. Scale bar – 20 μm; C – Stylostome at
the advanced stage of development in the epidermis. Scale bar – 50 μm; D – Developed stylostome in the area of scabs and extensive feeding
cavity filled with tightly infiltrating cells. Scale bar – 50 μm; E – Developed stylostome with walls of an equal homogeneous pale-pink staining.
Note the stylostome encompassed by cells of the stratum lucidum showing a hyperactivity. Scale bar – 50 μm. — ChBl – cheliceral blades, ec
– eosinophil cone, ep – epidermis, fc – feeding cavity, sb – scab, sc – stylostome canal, st – stylostome, stc – stratum corneum, stg – stratum
granulosum, stl – stratum lucidum
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and isolation of the alien object from the host organism. At the same time, inflammatory cells
and their nuclear debris, located within the feeding cavity, typically tightly surround the most
distal stylostome portions (Figures 5A, C, 7D). The cells of the stratum granulosum being in the
area of the inflammatory focus are disorganized or even destroyed and take part in the formation
of necrotic scab. Squamae of the stratum corneum remain outside the epidermal injury and
being hyperkeratotic may nearly totally envelope the feeding larvae by sides (Figures 3A, B,
6B, 8A). Finally, the larval feeding leads to the ulceration of the epidermis. This ulceration is
manifested in (i) the penetrability of the epidermis for cells of the internal environment, (ii)
the extremely large cavities in the hyperplastic epidermis filled with inflammatory cells and
(iii) formation of necrotic scabs on the epidermal surface composed of the tight and mixed
associations of migrating inflammatory cells and destroyed epidermal cells. This situation on
the epidermal surface within the auricles provokes larvae to attach themselves more and more
distally.

Several variations of the attaching and feeding process may be obviously observed. Larvae
attach themselves to (i) the ‘pure’ highly keratinized stratum corneum (Figure 3B), (ii) the
previously hyperplastic stratum lucidum after already fed or simultaneously feeding larvae
(Figures 4B, 7E), (iii) the scab consisting of tight associations of the epidermal and inflammatory
cells (Figures 5B, C, 8A, B) and (iiii) the area of feeding cavity (Figures 3C, 6C). All these
situations lead to slightly different results in the stylostome formation and, apparently, feeding
process. In particular, a tightly packed tissue in the attaching site results in formation of the
longer and narrower stylostome (Figures 5B, 7D) than in the case of the loosely packed tissue
like feeding cavity. In all other cases of the ’distally’ attaching larvae, a tight association
of the destroyed cells surrounds the stylostome and prevents formation of the pronounced
feeding cavity. Remarkably, however, leucocytes are still coming to the stylostomes through
the damaged epidermis and may be even seen in the stylostome canal.

It is clear that in the observed feeding mode, the stylostomes do not pierce the epidermis
through and reach the dermis. Nevertheless, the dermis in the damaged area undergoes a strong
dilation of venules and capillaries of the terminal vessel bed. These vessels are filled with
erythrocytes and contain polymorphonuclear neutrophil leucocytes (PMN) (Figure 5D), which
penetrate through the vessel walls and infiltrate the area of the inflammatory focus in mass.
Eosinophils and basophils were not identified with certainty as well as mast cells. Certain
hemorrhages may be also found in the upper dermal layers and even penetrate through the
damaged epidermis to discharge themselves among stylostomes and scabs. This type of tissue
reaction during feeding period of trombiculid larvae N. talmiensis on both naturally infected
voles and chipmunks may be characterized as a permanent delayed inflammation.

Stages of the larval feeding, i.e. filling of their midgut and the midgut cells of nutrients and
nutrition globules correspond to the progressive grades of the stylostome development – the
larger stylostome, the more advanced feeding stage. Importantly, however, that on the early
stages of the stylostome formation no aliment is present in the larval midgut, even if the feeding
cavity is already developed. Remarkably, while the debris of inflammatory and epidermal cells
may be observed in the stylostome canal, no whole cell elements or even cell debris of the
host tissues are usually present in the midgut lumen and the midgut cells of feeding larvae.
During feeding, the midgut cells are greatly enlarged and become filled with round violet
nutrition globules varying in size, whereas the midgut lumen become squeezed and contains
only vacuolated blueish material with small dark grains. While feeding, the excretory organ
of larvae is gradually filled with tightly packed brownish guanine granules showing an optical
anisotropy, among which small violet globules are also present. These globules in the excretory
organ may be seen even in the case when the midgut is still free from nutrition. During feeding,
the excretory products are periodically evacuated through the excretory pore. As a result of
feeding, larvae greatly increase in sizes and are filled with food.

In spite of these general characteristic of feeding, in one case larva on the middle feeding
stage parasitizing chipmunk contained the whole blood in its midgut lumen – tightly packed
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Figure 8 Stylostomes of Neotrombicula talmiensis (Schluger, 1955) larvae in the skin of the Asian chipmunk Tamias sibiricus (Laxmann,
1769). Histological sections of aural cavity (A-B). The midgut of larva (C). Azure II-Eosin. A – Stylostomes evolved within the extensive
scabs outside the epidermis. Scale bar – 100 μm; B – Differently arranged stylostomes completely enclosed in scabs composed of mixed
association of the broken inflammatory and epidermal cells. Scale bar – 50 μm; C – The midgut of larva filled with erythrocytes. Nutrition
globules located in the midgut cells badly preserved. Scale bar – 20 μm. — ChBl – cheliceral blades, ec – eosinophil cone, ep – epidermis, er
– erythrocytes, fc – feeding cavity, ng – nutrition globules, sb – scab, st – stylostome, stc – stratum corneum
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erythrocytes (Figure 8C). Leucocytes were absent. This finding indicates that generally larvae
of this species may engulf erythrocytes.

Discussion
The present investigation has evidently shown that larvae of the studied trombiculid species
produce nearly identical stylostomes by their shape and localization in the two different host
species. Because all studied stylostomes of N. talmiensis were restricted within the epidermis
and never penetrated into the dermis, this type of the stylostome may be attributed as the
epidermal ones (Hase et al. 1978). At the same time, the position of stylostome, depending on
the site of the larval attachment, is highly variable – from within the ‘living’ epidermal layer up
to the keratinized horn layer only. This situation may provoke the particular variations in the
stylostome shape and size that may also depend on the activity of the surrounding host tissues.
This activity seems to be more pronounced in the case of voles in which the external greyish
portion of the stylostome walls appears to be a result of a complex interaction of tissue fluids
and the external stylostome substances. However, the main stylostome configuration and the
staining ability are restricted within the minimum variations.

Stylostomes of all previously studied trombiculid species also differ from each other (Jones
1950; Allred 1954; Aoki 1957; Clark and Stotts 1960; Hoeppli and Schumacher 1961, 1962;
Schumacher and Hoeppli 1963; Voigt 1970; Hase et al. 1978; Goldberg and Holshuh 1992;
Shatrov 2000, 2009, 2018; Shatrov and Stekolnikov 2011; Shatrov et al. 2014; Shatrov and
Mirolubov 2015) that may point to a species-specific stylostome organization with regard to
a given parasite species. The main function of any stylostome type, besides anchoring of the
parasite to the host skin, is to obtain liquefied nutrients from the underlying tissues dissolved
by the larval salivary secretion, ultimately from the loosely organized connective tissue layer
of the host skin (Schumacher and Hoeppli 1963; Voigt 1970; Shatrov 2009). This phenomenon
– feeding by the already dissolved liquid host nutrients – has been termed as the ‘extra-oral’
or ‘extra-intestinal’ digestion (Cohen 1995, 1998) highly characteristic for arthropods and, in
particular, arachnids.

The initial stylostome portion – the eosinophil cone – is a constant characteristic of
trombiculid larvae (Shatrov 2009) and shows an apparent viscosity because the cheliceral
movable digits adhere to it and leave prints in its substance after the larval detachment.
Immediately after discharging onto the host epidermal surface, this initial larval viscous fluid
secretion supposedly transforms from the ‘sol’ into the ‘gel’ condition and firmly cements the
larva to the host epidermis (see Schramlová 1978). Nearly the same situation was observed
during attachment of the cattle-tick Boophilus microplus (Canestrini), when the tick just before
piercing the host skin releases an immunological inactive fluid secretion – the proximal portion
of the further cement cone (Moorhouse and Tatchell 1966). The further steps of attachment
in both these cases are also quite similar. In the case of trombiculid larvae, immediately after
piercing of the stratum corneum and adhering of the chelicerae to the solidifying substance
of the eosinophil cone, the larva apparently injects a type of the liquid lytic secretion into
the wound that liquefies the epidermal cells just beneath the perforation. This results in the
formation of the particular feeding cavity (Shatrov 2009). Nearly the same fluid-filled cavity
is formed underneath the cement cone during feeding of ixodid ticks (Moorhouse and Tatchell
1966; Banerjee et al. 1992). However, in the case of ixodids, the formation of feeding cavity is
more attributable to the activity of neutrophil leukocytes (Tatchell and Moorhouse 1970; Brown
and Knapp 1980; Banerjee et al. 1992; Amosova 1994). Conversely, trombiculid larvae form
a feeding cavity within the upper epidermal layers immediately after attachment when there
are no leukocytes still present in the wound. Nevertheless, this joint action – the mechanical
damage and lytic secretion activity – causes the host response inflammatory reaction, which
manifests itself in the epidermal hyperplasia, dilation of the terminal blood vessels and active
migration of lymphoid cells to the inflammatory focus.
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The subsequent stylostome formation is confined in the gradual building of the stylostome
tube that is facilitated by simultaneous liquefying of the underneath host tissues by the lytic
salivary secretion of the larva as well as by substances released from destroyed leukocytes. It is
no doubt that the stylostome tube is a derivative of the feeding larva (Aoki 1957; Schumacher
and Hoeppli 1963; Voigt 1970; Hase et al. 1978; Shatrov 2009; etc.). Nevertheless, it has been
supposed that the eosinophil substance surrounding the proximal stylostome portions of larvae
Eutrombicula lipovskyana (Wolfenbarger) during their feeding on spiny lizards Sceloporus
jarrovii (Cope) is derived from coagulated proteins of the host tissues (Goldberg and Holshuh
1992). It is clear, however, that the external stylostome portions are more or less affected by
the host tissue fluids that is more obvious in the case of voles in the present study. Throughout
the entire feeding period of larvae, the stylostome continues to build, and, generally, the
longer feeding period of the given trombiculid species – the longer stylostome (Shatrov 2000).
However, the ultimate length of the stylostome tube that directly related to the stylostome age,
is not random, totally depends on the parasite species and duration of its feeding. For example,
the stylostome may reach 350 µm (Shatrov and Stekolnikov 2011) and even 926 µm (Allred
1954) significantly exceeding in the latter case the length of the larval body in a totally fed
state. In the case of Kepkatrombicula desaleri (Methlagl) feeding on chamois in Europe, a
comparatively thin stylostome penetrates deep into the host dermis (Shatrov and Stekolnikov
2011). The stylostome substance reveals an extremely low staining ability with some amount
of acid mucopolysaccharides (Schumacher and Hoeppli 1963; Voigt 1970) and combination of
glycoproteins (Schramlová 1978; Shatrov 2000). By this character, a stylostome is also quite
similar to a combined cement substance of some ixodid ticks (Moorhouse and Tatchell 1966;
Balashov 1967; Chinery 1973) showing the presence of carbohydrate-containing proteins and
lipoproteins as well with a low antigenic activity. The latter prevents rapid elimination of the
parasite from the host owing to its immunological response and provides growing of stylostome
up to the appropriate condition allowing a successful feeding.

Concerning the possible action of the mite salivary secretion in the wound and the
mechanism of the stylostome formation as such, two opposite opinions exist. In accordance
with the first one, an unreactive stylostome, produced by one type of secretion, provides only the
mechanical penetration into the host skin, whereas another type of secretion, injected alternately
with the cemented secretion, possesses hydrolytic properties, liquefies the host tissues and acts
mostly upon dermis (Schumacher and Hoeppli 1963; Schramlová 1978). According to another
idea, the one-time portion of the injected saliva serves for both building of the solidifying
stylostome walls and dissolution of the host tissues, and formation of stylostome continues for
the entire feeding period (Voigt 1970), as was mentioned above. Most likely, however, that,
starting with formation of the eosinophil cone, several salivary fractions, differently targeted,
function in a strict sequence in every given trombiculid species that leads to the species-specific
stylostome characteristics. Differences in action of different saliva fractions are clearly seen
from the comparison of feeding larvae of Euschoengastia rotundata (Schluger) and Cheladonta
costulata (Willmann). Larvae of E. rotundata form a type of deep capsules on the ventral body
regions of voles Myodes rufocanus Sundevall composed of solidifying secretion spreading
upon the epidermal surface that is accompanied by an edema and a weak inflammatory response
(Shatrov 2000). Conversely, larvae of Ch. costulata feeding on voles Microtus arvalis (Pallas)
cause strong ulceration with degradation of the host epidermis and partial encapsulation owing
not to a larval secretion but to a strong tissue edema (Schramlová 1978).

While the stylostome substance shows weak antigenic properties, the liquid hydrolytic
fraction injected into the epidermal perforation provokes the cell inflammatory response
and formation of the skin ulceration in the feeding site. It was found that in naturally
immunized highly sensitized hosts like voles, a strong specific inflammatory response is
evolved against feeding larvae (Wright et al. 1988; Wrenn 1996). The latter is especially
evident in the case of deeply penetrating the so-called ‘mesenchymal’ stylostomes, which
‘accumulate’ many leukocytes, in particular, neutrophils, lymphocytes and macrophages
around themselves (Hase et al. 1978; Shatrov and Stekolnikov 2011). It is considered that a
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strong inflammation and numerous destroyed host inflammatory cells in the attachment site
around deeply immersed stylostomes is a good background for transmission of disease agents
from a parasite to a recipient (Boese 1972; Hase et al. 1978). It was shown in this regard
that larvae of Leptotrombidium, which were recorded as vectors of tsutsugamushi disease
agents (O. tsutsugamushi), reveal the comparatively long stylostomes penetrating deep into the
dermis, and their feeding is accompanied by an intensive inflammatory reaction with dilation
of capillaries and intensive hemorrhages (Hase et al. 1978). A particular role in this process
can be attributed to macrophages because it was shown that rickettsia might survive and even
reproduce themselves in these cells for some time (Boese 1972).

In the case of N. talmiensis, an intensive larval feeding cause, however, a moderate
inflammatory response both in voles and chipmunk with the not so strong skin ulceration,
formation of scabs on the epidermal surface composed of the broken inflammatory and
epidermal cells with predominance of neutrophil leukocytes in the focus. The venules and
capillaries are found dilated. At the same time, the initial thickness of the epidermis prevents
a rapid and intensive incoming of leukocytes to the wound. Other leukocytes like eosinophils
and basophils, as well as mast cells were not identified with certainty in the tissue damage.
The latter may indicate that feeding of N. talmiensis on both naturally infected host animals
provokes not so strong inflammatory response to attract mast cells to the damage, which would
release histamine to attract, in turn, eosinophils, as it was shown in the case of feeding of some
ixodid ticks (e.g. Tatchell and Moorhouse 1970; Brown and Knapp 1980; Amosova 1994).
Although larvae perforate the epidermis by the action of the saliva secretion, the stylostomes do
not penetrate beyond the epidermal layer into the dermis. Nevertheless, owing to this feeding
characters, one can suppose that generally this trombiculid species under certain conditions
can serve as a potential vector of pathogens and could transmit disease’s agents if they would
occur in the epidemic foci. In any case, this feature can be defined not by the type and length of
stylostome as such but most likely by the type and intensity of the accompanied inflammation.
Several pathogenic bacteria (i.e. Borrelia burgdorferi s.l.) were detected in species of the N.
talmiensis group in Europe (Fernandez-Soto et al. 2001; Kampen et al. 2004; Literak et al.
2008). Although their importance in maintaining the natural foci is not proven.

The infection agent of scrub typhus, O. tsutsugamushi, was detected in several species of
Neotrombicula (Elliot et al. 2019), but there have been no proven vectors of O. tsutsugamushi
among the genus members. Orientia tsutsugamushi has been mostly recorded as transmitted by
Leptotrombidiummites in Japan (Kawamura et al. 1995), and representatives of this genus were
also found in the Far East of Russia (i.e. Leptotrombidium pallidum, L. orientale, L. palpale)
(Kulagin and Tarasevitch 1972; Kudryashova 1998). In this region, the infections caused to
humans were reported and high rates of the disease agents were found in trombiculid mites and
small mammals in the 1960s (Kulagin and Tarasevitch 1972). Although since then, there were
seldom data about these foci, and the infection rates have decreased (Urakami et al. 1999).
In Primorye, N. talmiensis is abundant species and it could probably take part in maintaining
epidemiological foci of scrub typhus in the Far East of Russia (Kulagin and Tarasevitch 1972).
For example, during co-feeding with infected vector species or on the infected hosts (Frances et
al. 2000). Nevertheless, to our best knowledge, there have been no experiments on acquisition
of O. tsutsugamushi by Neotrombicula larvae. Small mammals maintain the natural focus of
scrub typhus, andO. tsutsugamushiwas detected both in T. sibiricus and inM. rufocanus (Elliot
et al. 2019). However, this question needs further investigations.

Previously, erythrocytes have not been found in the midgut lumen of trombiculid larvae,
and so a pure blood was not attributed to potential nutrients of these mites (Shatrov 2000).
Typically, the midgut lumen of larvae contains a totally non-cellular weakly stained substance
without any cell fragments. Conversely, the midgut cells gradually accumulate nutrients in the
form of large round violet globules throughout feeding (Shatrov 2000). The same situation
is also seen in the case of N. talmiensis. Nevertheless, an accidental discovery of the pure
blood in the midgut lumen of a feeding larva evidently points to a possibility for larvae to be
bloodsuckers in a particular but still unknown eco-physiological situation. This is indirectly
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confirmed by the fact that erythrocytes were also found in the stylostome canal of the very
long stylostomes of another trombiculid species – K. desaleri feeding on chamois in Europe
(Shatrov and Stekolnikov 2011). It may be supposed that this feature is a new evolutionary
acquisition of trombiculid larvae. While the erythrocytes can be only occasionally found in the
stylostome canal, the fragments of the lymphoid cells have been frequently seen throughout the
stylostome canal, but they have also never been found in the midgut lumen.

Conclusion
Trombiculid mites are the only group of the parasitic arthropods, whose parasitic larvae, feeding
on vertebrates, produce a particular structure specially designed for two main purposes – (i)
anchoring of the parasite to the host body and (ii) obtaining an appropriate food, typically
not blood, from the skin layer both within and beneath the epidermis. The stylostome
of trombiculids is one of the leading factors in the question of the origin of parasitism in
trombiculid mites and other Parasitengona (Shatrov 2001). Other Parasitengona groups feeding
on insects also produce stylostomes designed for similar purposes but of a quite different
structure, which cannot be compared in detail with the stylostome of trombiculids (e.g. Davids
1973; Åbro 1984; Lanciani and Smith 1989; Smith 2003; Mohamed and Hogg 2004; Shatrov
and Felska 2017; Felska et al. 2020). In particular, these stylostomes may be extremely long,
branched and blindly ended. Nevertheless, the first above-mentioned function is characteristic
for both stylostomes of all Parasitengona and special ‘cement substance’ of some ixodid ticks
from the subfamily Amblyomminae (Moorhouse and Tatchell 1966; Chinery 1973; Banerjee
et al. 1992; Jaworski et al. 1992; etc.). Both structures – stylostome and cement cone – are
produced by the parasites’ salivary glands (Jaworski et al. 1992) and appear to be characterized
by low antigenic properties. The latter prevents rapid elimination of the parasite from the
host and provides an effective feeding. All these reasons make these two systematically
and phylogenetically distant groups effective and evolutionary progressive parasites with
surprisingly similar feeding mechanisms evolving independently in the course of evolution.
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