

Project Acronym - GA 881775

Formal development demonstrator prototype,
final release

Project acronym: 4SECURail

Starting date: 01/12/2019

Duration (in months): 24
Call (part) identifier: H2020-S2R-OC-IP2-2019-01

Grant agreement no: 881775
Due date of TIN: Month 20 (31 July 2021)

Actual submission date: 31-07-2021

Responsible/Author: CNR / Franco Mazzanti
Dissemination level: PU

Status: Draft/Issued

Reviewed: yes

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 881775.

4SECURail – GA 881775

Document history
Revision Date Description

0.1 25-06-2021 first structure of content
0.2 20-07-2021 version for internal review

0.3 27-07-2021 version with consolidated review comments

1.0 31-07-2021 final version

Report contributors

Name Beneficiary Short
Name

Details of contribution

Franco Mazzanti CNR Overall Structure and Content

Dimitri Belli CNR Overall Structure and Content
Alessio Ferrari CNR Comments and suggestions

Alessandro Fantechi CNR Comments and suggestions

Davide Basile CNR Comments and suggestions
Stefania Gnesi CNR Comments and suggestions

Laura Masullo SIRTI/MERMEC-STE1 Comments and suggestions
Daniele Trentini SIRTI/MERMEC-STE Comments and suggestions

Lisa Quadrini SIRTI/MERMEC-STE Comments and suggestions

Lambert Grange ARDANUY Final Internal Review
Carlo Vaghi FIT Final Internal Review

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s view – the
Joint Undertaking is not responsible for any use that may be made of the information it contains. The users
use the information at their sole risk and liability. The content of this deliverable does not reflect the official
opinion of the Shift2Rail Joint Undertaking (S2R JU). Responsibility for the information and views expressed
in the deliverable lies entirely with the author(s).

1 Sirti S.p.A. was awarded the Open Call and signed the Grant Agreement for 4SECURAIL In December 2020, the BU
Transportation of Sirti S.p.A. became a new company called Sirti Transportation srl, 100% owned by Sirti SpA. On
February 9th 2021 Sirti Transportation srl was totally acquired by MER MEC SpA, changing the name into MER MEC
STE srl. At the time this deliverable is written, the procedure for the replacement of Sirti with MER MEC STE in this
project is still ongoing. Therefore, the name SIRTI appears in this deliverable when documents, facts, events from up
to February 2021 are reported. The name MER MEC STE appears when referring to documents, facts, events from
February 2021 on.

4SECURail – GA 881775

Table of Contents

 Executive Summary ...1

 Abbreviations and acronyms ..3

 Background ...4

 Objective/Aim ...5

 The Exercising of the Formal Development Demonstrator ..6

5.1 An Overview of the Signalling Case Study ...7

5.2 From Natural Language to Semi-Formal, to Formal ..8

5.3 From Formal, to Semi-Formal, to Natural Language .. 16

5.4 Verification Architectures and Scenarios ... 19

5.5 Advanced Formal Analysis .. 22

 Conclusions .. 29

 References .. 33

Appendix A: Formal notations and transformations .. 35

Appendix B: Graphical semiformal UML state machine designs .. 40

Appendix C: Structured Natural Language Requirement Specifications .. 42

Appendix D: Difformities with respect to the D2.3 Requirements .. 60

Appendix E: Model reduction techniques .. 70

Appendix F: Analysing the behavior at the interfaces .. 73

Project Acronym – GA 881775 1 | 79

 Executive Summary

This Deliverable describes the final results of Task 2.3 of 4SECURail project. The goal of Task 2.3 is
to apply the formal development demonstrator process defined in Task 2.1 to the signalling case
study defined in Task 2.2 and to describe the observed impact of the selected tools and
methodologies for improving the quality of the system specifications under analysis.

The activity performed in Task 2.3 focusses on three main issues:

1. A revision of the modelling and analysis process adopted for the initial fragment of the case
study. In particular, the main revisions involve:

a. The choice to complement the initially selected formal method with a second one.
b. The choice to mechanically generate formal models from their semi-formal

description.
c. The definition of a structured logical framework within which to experiment with

formal analysis based on the UMC, ProB, and CADP frameworks.
2. The extension of selected portion of the case study already considered in Task 2.1, to

progress towards its complete modelling and analysis.
3. The experimentation of formal verification approaches based upon the definition of

selected scenarios for the stimulation of the subsystems (or group of subsystems) of
interest.

In this deliverable, we also describe the observations resulting from the demonstrator process
activity. In particular, from our perspective, the most important takeaways concern:

• The presentation of an easy way in which UML/SysML artefacts can be effectively used as
a complement to the specification of system requirements.

• The importance of multiple (formal methods diversity), mechanical generation of formal
models of different types.

• The observation of the practical impact of semi-formal modelling and formal analysis
techniques on identifying weaknesses in the initial natural language system requirements
definition.

• The observation of difficulties and limits incurring in the exploitation of formal methods
for the requirement specification phase.

• The importance of a consistent and integrated set of rigorous natural language
descriptions, UML-based semi-formal artefacts, and formal models to consolidate the
overall quality of the system requirements specification.

In defining the structure of this document, we have tried to keep separate, as far as possible, the
formal technical details of the points raised by the demonstrator process activity from the
conceptual issues to which they are related.
After presenting in Section 5.1 an overview on the case study to which 4SECURail demonstrator

Project Acronym – GA 881775 2 | 79

has been applied, in Section 5.2, 5.4 and 5.5 the model construction and analysis process which
has been undergone is described. In Section 5.3 the kind of output which can be expected from
the application of our formal analysis process is described, and in Appendix B, C, and D specific
demonstrator outputs related to the selected case study are reported.
Appendix A, E, and F provide a more detailed description of the undergone process, but can be
skipped if the reader is not particularly interested in more technical details.
All the generated models, developed architectures, and analysed scenarios are available from a
public data repository [ZenodoWP2] containing all the WP2 generated artifacts.

Project Acronym – GA 881775 3 | 79

 Abbreviations and acronyms

Abbreviation / Acronyms Description
CADP Construction and Analysis of Distributed Processes

CFM Communication Functional Module
CSL Communication Supervision Layer

EA Enterprise Architect

ECS Execution Cycle Start
ER-SL EuroRadio Safety Layer

ERTMS European Rail Traffic Management System
ETCS European Train Control System

FIFO First-In-First-Out

IC Innovation Capability
IM Infrastructure Manager

LNT LOTOS New Technology
LTS Labelled Transition System

MAAP Multi-Annual Action Plan

MBSD Model-Based Software/System Development
OMG Object Management Group

RBC Radio Block Centre
SAI Safe Application Intermediate sub-Layer

SFM Safe Functional Module
SysML Systems Modeling Language

TD Technology Demonstrator

TTS Triple Time Stamp

UMC UML Model Checker

UML Unified Modelling Language
UNISIG Union industry of signalling

WP Work Package

Project Acronym – GA 881775 4 | 79

 Background

The present document is the Deliverable 2.5 (D2.5) "Formal development Demonstrator
prototype" of Task 2.3 of Work Package 2 (WP2) "Demonstrator Development for the use of Formal
Methods in Railway Environment" of the project 4SECURail (GA 881775) in the context of the open
call S2R-OC-IP2-01-2019, part of the “Annual Work Plan and Budget 2019”, of the programme
H2020-S2RJU-2019.

The challenge to which 4SECURail is deemed to deal, and its relation with the Shift2Rail Technology
Demonstrator 2.7 (TD2.7) "Formal methods and standardisation for smart signalling systems" is
well described in the call S2R-OC-IP2-01-2019, as shown below:

“Shift2Rail has identified the use of formal methods and standard interfaces as two key concepts
to enable reducing the time it takes to develop and deliver railway signalling systems, and to
reduce costs for procurement, development, and maintenance. Formal methods are needed to
ensure correct behavior, interoperability and safety, and standard interfaces are needed to
increase market competition and standardization, reducing long-term life cycle costs.”

According to [MAAP2019], the Shift2Rail Innovation Programme 2 (IP2) focusses on innovative
technologies, systems, and applications in the fields of telecommunication, train separation,
supervision, engineering, automation, and security to enhance the overall performance of all
railway market segments.
The TD2.7 aims at contributing to enable two Innovation Capabilities (ICs) of the Shift2Rail IP2,

● IC7 “Low-Cost Railway”
● IC12 “Rapid and Reliable R&D Delivery”

through the Building Block achievement BB2.7_1 “Formal and semi-formal methods for
requirement capture, design, verification, and validation, proposing open standards”.

4SECURail contributes to the above Building Block achievement with the demonstration and
evaluation of techniques based on formal methods to reduce life-cycle costs and to improve the
global availability of railway systems.

For our purposes, the project scenario considers the Infrastructure Managers (IMs) applying
formal and semi-formal methods to build robust and verifiable system requirements
specifications, which makes the procurement of systems and equipment - compliant with legal
requirements and needs of operators - possible and suitable for their easy integration in the
existing railway subsystems. Such an effort contributes to the progress towards an open market
for maintenance (availability of spare parts) and future enhancements (implementation of new
functions and/or performance, exploiting open and standardized interfaces).
The idea of IMs is to have modular systems and to define standardized interfaces to integrate
these modules. In this context of modular systems, the use of formal methods is a solid support
for the definition of more effective, efficient, and satisfactory standard interfaces.

Project Acronym – GA 881775 5 | 79

 Objective/Aim

One of the objectives of the 4SECURail project is to perform a cost-benefit analysis for the adoption
of formal methods in the railway environment by prototyping a formal method Demonstrator to
be exercised with a selected case study. The use of formal methods in the railway context covers
many distinct aspects, from the definition of verifiable requirements to the construction of a more
affordable and efficient development process. A recent detailed study on the subject is presented
in [FMRMAP].
The objective of Task 2.3 is to exercise a system requirements analysis process that exploits the
use of semi-formal and formal methods to improve the quality of the specifications written by the
railway IMs. The definition, rationale, and overall structure of this process have been described in
detail in Deliverable 2.1 (D2.1) and Deliverable 2.2 (D2.2). The purpose of this deliverable is to
describe the experience gained in the application of the defined formal methods demonstrator
process to the signalling system case study explained in D2.3, by putting in evidence the
advantages gained in terms of better understanding and possibly better specification and
presentation of the system requirements.
This activity is aligned with the objective of TD2.7 [MAAP2019] Formal Methods and
standardisation for smart signalling, which focusses on applying Formal Methods and Standard
Interfaces in application Demonstrators and the business case study for using them.

Project Acronym – GA 881775 6 | 79

 The Exercising of the Formal Development Demonstrator

The goal of our formal methods demonstrator is to illustrate a possible impact of the introduction
of formal methods inside the system requirements definition process of the IMs.
This is done by observing, in our specific case, the effects of applying the specific tools and
methodologies used by the demonstrator process to our specific case study. We take the point of
view of an IM that intends to define the system requirements specification document to be used
in tenders or in standard interface definitions. Formal methods are exploited in this requirements
definition process for improving the confidence that:

• the requirements document clearly and unambiguously reflects the intentions of the
designers (aka the IMs);

• the implementations eventually deriving from the requirements document will correctly
interoperate with other environment components with which the system is expected to
interact.

We are, in fact, talking of two very different kinds of goals. The first one is related to the precision
(i.e., the clarity, the completeness, and the consistency) of a determined subsystem specification,
targeted to become an attractive tender for the providers.
The second one is related to the improvement of the confidence that what specified is precisely
what is needed, i.e., it is something that really corresponds to the ideas of the designer and to the
expectation of a proper interoperability of the system with the other components of the railway
framework, which is essentially a system of systems.

It is worth pointing out that our experimentation does not cover the possible adoption of formal
methods during the system development phase carried out by the system providers. However, it
is clear that a potential application of formal methods in the development phase is useful only in
presence of a clear, rigorous, complete, and consistent system requirements specification
document.

The activity described in this document is strictly related to three previous deliverables:

• D2.1 [D2.1] describes the planned structure of our formal development demonstrator
process and the rationale behind it.

• D2.2 [D2.2] presents a first attempt to apply the demonstrator process to an initial
fragment of the case study. Such an attempt allowed us to gain some early experience and
led us to the improvement of the process itself.

• Deliverable 2.3 (D2.3) [D2.3] describes the planned case study for testing the application
of the formal development demonstrator process.

Parts of the above deliverables might be repeated here to give a more self-contained view of the
demonstrator process activity.

Project Acronym – GA 881775 7 | 79

The rest of the Section is split as follows: In Subsection 5.1 we give an overview of the case study
in use to exercise the demonstrator; in Subsection 5.2 we describe the building process of formal
models, starting from the initial Natural Language requirements provided and the basic
verification steps that can be performed; in Subsection 5.3 we describe the set of artifacts
generated as a result of the demonstrator process activity, which represents the feedback towards
the IMs of the formal analysis; in Subsections 5.4 and 5.5 we describe in detail the ways in which
we conducted the formal analysis.

5.1 An Overview of the Signalling Case Study

In the European Rail Traffic Management System/ European Train Control System (ERTMS/ETCS),

a Radio Block Centre (RBC) is responsible for managing trains under its area of supervision. A

handover procedure is needed to manage the interchange of train control supervision between

two neighbour RBCs. When a train is approaching the end of the area supervised by one handing

over RBC, an exchange of information with the accepting RBC takes place to manage the

transaction of responsibilities. Since the two neighbouring RBCs may have been manufactured by

different providers, the RBC/RBC interface is a typical product where the products (RBCs) of

different suppliers must be interoperable.

D2.3 [D2.3] integrates the ETCS specifications contained in SUBSET-039 – "FIS for the RBC/RBC

Handover"[SUB-039] and SUBSET-098 – "RBC/RBC Safe Communication Interface [SUB-098] with

additional requirements". The adapted definition of the subsystem is limited to higher application

levels and safety levels (SAI sub-level of SUBSET-098). Thus, the case study isolates and identifies

two layers:

• A Communication Supervision Layer (CSL): It is responsible for commanding the

opening/closing of the communication line between RBCs and for keeping the connection

alive through Life Signs. Its functional requirements are covered by UNISIG SUBSET-039.

• A Safety Application Intermediate sub-Layer (SAI): it is logically located below the CSL, and

relies on the introduction of time-related data (e.g., execution cycle counters), message

sequence numbers to implement the protection mechanisms against threats (like package

deletion, replication, resequencing, and delay) as identified by CENELEC EN50159

[EN50159]. In this case, its functional requirements are covered by UNISIG SUBSET-098.

Most requirements related to the safety of the communication are allocated in the SAI sub-

layer.

Above the CSL, the RBC User layer includes all application functions (e.g., evaluation of Movement

Authorities, communication with on-board units, actual management of RBC/RBC handover

transactions) and the generation/reception of information to communicate. While protocol layers

are dedicated to formatting and exchanging such information with communication partners. The

specification of RBC User functions is not included in the requirements of the case study.

Moreover, also the lower levels below SAI, that is, the EuroRadio Safety Layer (ER-SL) [SUB-037]

Project Acronym – GA 881775 8 | 79

and the Communication Functional Module (CFM) of SUBSET-098, are not part of the

requirements of the case study.

Thus, the Demonstrator will be applied to the CSL and SAI levels, whilst RBC User, ER-SL, and CFM

are treated as components of the external environment.

Figure 1 shows the overall structure of the system. Notice that of the two communicating sides,

one side is configured as initiator of safe connections while the other is configured as called side.

Figure 1 The signaling case study structure

Summarizing, in our case study we have seven logical components:

• Two sides of RBC responsible for the RBC/RBC handover transactions;

• Two sides of CSL responsible for the creation and supervision of RBC communications.

• Two sides of SAI in charge of handling the creation and maintenance of the safe connection;

• The underlying ER-SL abstracting the physical communication line between the two RBC
sides.

Only the CSL and the SAI components are the object of the requirements specification, for which
we have an initial natural language description in [D2.3], which is also the target of the analysis.
The RBC and ER-SL/CFM components act as elements of the execution environment. They
stimulate and receive data from our system components. More than one version of these
environmental elements can be imagined to model different scenarios and to analyze the
responses to the various stimuli of our key system components.

5.2 From Natural Language to Semi-Formal, to Formal

In line with the current trend in fact of signalling system interfaces standardisation in the railway

Project Acronym – GA 881775 9 | 79

sector (see, e.g., [EULYNX]), the first step towards the formalization of our initial natural language
requirements is based on the construction of a SysML operational model of the system, in which
the various components are described in terms of UML state machines.

As deeply discussed in D2.1, this choice can be rather risky due to the numerous ambiguities still
present in the (still in natural language) definition of SysML/UML, and due to the great level of
implementation freedom that is left to the UML-like supporting tools.
To mitigate this risk, it is essential that all the semantic details of the inter-state-machine
communications are rigorously specified, and that a clear and unambiguous subset of the UML
state machines features is used so that their behavior appears to be uniquely specified. However,
it is definitely not a goal of the project to define a maximal UML subset. The subset used in our
Demonstrator is based just on the set of clear and simple features required for the modelling of
our case study. Such restrictions ease the translation from the UML state machines to the target
formal notations.

With respect to the precise semantics of our inter-state-machine communications, the
assumptions we made are as follows:

1. The sending of an event from one side corresponds to the receiving of the event in the
event pool of the other side during inter-machine communications. Therefore,
communication events are not delayed, lost, or reordered.

2. The event pool associated with each state machine is an (unbounded) FIFO queue.

The first assumption reflects the case in which communications between system components
occur via shared memory (e.g., by writing into a buffer). If this is not the case, we must explicitly
model the existence of a communication component introducing delay, loss, or reordering of
messages2.
The second assumption (i.e., the FIFO event queues) directly reflects the default policy suggested
by the UML standard [OMG-UML, OMG-PSSM], which is in agreement with the needs of our case
study.

The system requirements introduced in D2.3 describe a generic system with many configuration
parameters, customizable according to several configuration options. Most of the parameters can
be modelled as parameters of the state machines and take a definitive value when a specific
system configuration is defined. Other aspects, like the protocols describing the SAI connection
initialization phases (i.e., the TTS or ECS option), have been fixed before the beginning of the actual
modelling. In particular, we chose the ECS option for our implementations. Therefore, the analysis
performed refers to a specific configuration.
While the actual system is a real-time system, the planned modelling techniques do not support
real-time features. Therefore, time-related aspects are reflected in the actual models only in an
approximate way.

2 This is what has been done with the introductions of the EuroRadio component.

Project Acronym – GA 881775 10 | 79

The first step towards the definition of formal models of our system is the design of the UML state
machines constituting the system itself.

A possible way, already discussed in D2.1 and D2.2, is to use a commercial Model-Based
Software/System Development (MBSD) environment, like the Sparx Enterprise Architect (EA)
framework, for the UML design phase. For our purposes, the Sparx-EA framework has been
selected during the activity of Task 2.1. This choice has the advantage of introducing in the process
a robust, commercially supported MBSD framework well integrated in the software development
life cycle. The disadvantages are related to the limited utility of the framework during the
requirements analysis phase. In particular, the deterministic execution model supported by the
tool does not allow to observe all the possible evolutions of the SysML system, and the translation
from the UML code to our target formal notations should be done by hand since it is not available,
nor easy to produce, automatic translators.
In D2.2 we describe the experience of designing the CSL layers with the support of the Sparx-EA
[SPARX], but then the generated UML designs have been subsequently encoded in the state
machine textual format accepted by the UML Model Checker (UMC) tool before translation into
the other target formal notations. This intermediate UMC step allowed us to perform system
animations and many consistency checks, as well as to increase the confidence about the
correctness of the design before affording the complex manual tasks of translating the SysML
design into other formal notations. In Task 2.3 these translations are performed mechanically and
consistency checks can be performed, as the design proceeds incrementally, in the used formal
frameworks.

The experience gained in the second part of Task 2.1 has clearly shown the importance of being
able to mechanically generate formal models directly from the SysML design. This advantage has
been obtained by the development of reasonably simple translators capable of producing from
the UMC textual encoding the desired formal notations (ProB [ProB] and LNT [LNT]). Therefore,
the activity of designing and modelling the complete version of the system in Task 2.3 has been
achieved bypassing the Sparx-EA step and directly using UMC for the design, animation, and
mechanical translation of the system model into the various formal notations.

Many possible target specification languages can be selected, and even once the target notation
has been chosen, many different translation schemes can be adopted.
As already mentioned in previous deliverables, there is no single formal notation, method, or tool
that can act as a silver bullet for satisfying the verification needs about all the desirable properties.
The world of formal verification is extremely variegated, based on very different mathematical
concepts, and supported by different - often not much cooperating - communities.
In the case of requirements designs, the starting point is likely not to be a precise specification but
a more abstract, parametric, often generic, natural language description, sometimes enriched with
graphical artefacts as exemplified by our initial D2.3 requirements. In this case, formal methods
based on model construction and model checking may be easier and more effective to apply than
formal methods based, e.g., on theorem proving, that fits well the case of an already precise and
correct specification to be refined and implemented.

Project Acronym – GA 881775 11 | 79

A novelty introduced in Task 2.3 is the experimentation of a second approach (beyond the initial
one based on "B" state machine notation) for the formalization of our UML design. This second
approach is based on the LNT [LNT] specification language of the CADP [CADP] toolset. One
interesting aspect of this new approach is that the mathematical representation used for the
model is based on process algebras and can exploit the rich theory around Labelled Transition
Systems (LTS) for supporting the verification process. The goal of this second experimentation is
to observe if and how a compositional approach can be helpful in reducing the risk of state
combinatorial explosion, so to improve the overall scalability in the analysis of the system
properties.
Another interesting aspect of the CADP framework is that the structure of models in use is event-
based, and in particular of communication actions. The logic used to reason on these models is a
very powerful, action-based branching-time logic. This creates another point of view from the one
supported by ProB, which is more state-oriented.

This "application of formal methods diversity" (in the style of [FMDR]) allowed us to solve also the
issue of improving the confidence in the correctness of the performed translations because,
starting from an initial UML model, we are able to generate two other models using different
notations, and formally verify that the three formal frameworks actually describe the same
behavior3.
More details about UMC, ProB, and LNT notations, as well as about their translations, are given in
Appendix A. The models and the source code of the translators are publicly accessible through
Zenodo [ZenodoWP2].

Figure 2: From NL Requirements to Formal Notations

Figure 2 summarizes the flow of information occurring in the Demonstrator when passing from
the D2.3 natural language requirements to the encoding of the formal models.
The biggest and most troublesome step is the first one, where the initial requirements must be
interpreted, bypassing all the possibly existing ambiguities and inconsistencies, and where all

3 i.e., The labelled transition system which can be generated from them are strongly bisimilar.

Project Acronym – GA 881775 12 | 79

those aspects that are intentionally left unspecified must be in some way implemented to
generate an actually executable (and possibly nondeterministic) model. The second step consists
of the mechanical translation from the UMC model to the ProB and the LNT one, so to perform
static and other lightweight formal analysis activity on all of them. Clearly, the first and second
steps are iteratively repeated each time the prototypical UMC model is corrected and/or refined
with the progress of the modelling.

In this first step, many weaknesses of the initial document can already be spotted, especially
ambiguities, inconsistencies, duplications, and missing points.
Appendix D reports the complete list of the weaknesses in the initial requirements identified or
further specified in the Demonstrator.

Let us consider, for example, REQ_064 of D2.3:

The underlying idea is rather clear: all the messages are sequentially numbered. Looking at those
numbers, it should be possible to detect if the incoming message is either a duplication, or a
previously expected message that has been overtaken by a subsequent one, or a new message
showing that several other messages have been lost (or further delayed) during the communication.
In other words, we can compute the distance (in terms of sequence position) between the incoming
message and the previous one. Based on the above, four cases may occur:

1. if the distance is equal to 1 then all is OK;
2. if the distance is lower than 1, the message is old and therefore discarded;
3. if the distance is between 2 and N (limits included) the message is still accepted
 (an error is notified);
4. if the distance is greater than N, the message is discarded and the connection is closed.

The problem is that sequence numbers have an upper bound range defined by the number of bits
allocated for the field, and after reaching the maximum value, a new sequence number series restarts
from 0. Therefore, the computation of the distance cannot be just the value
current_received_seqnum minus last_received_seqnum but, more properly, it must take into account
the range overflow. For small distances this computation is rather intuitive: the distance between
max_seq_num and zero is 1, and the distance between 2 and max_seq_num - 1 is 4. But if the
distance is very great (e.g., max_seq_num / 2), it might become not obvious to decide if the last
received message is a very old one (to be discarded) or a new one notifying the loss of a long
sequence of messages. This aspect is neither properly covered in the original SUBSET-98 standard
which describes the operations to be performed without taking into account the possibility of range
overflow.
For computing such distance, in our implementation4, we opted to perform the following:

4 see SEQ_NUM5 in Appendix C for more details.

Project Acronym – GA 881775 13 | 79

Where M is, in our case, a model parameter that specifies the upper limit of sequence numbers.
However, the above calculus remains an implementation dependent aspect that might actually affect
the system behavior and creates interoperability problems if not clearly specified.
A similar issue exists in the management of execution cycle numbers, used to evaluate the delay
occurred for the transmission of the message.

Another example of ambiguity/implementation freedom is related to D2.3 REQ_008. Again, the
rationale is clear: While in state COMMS (Connected), the CSL should not let pass a certain period of
time (send timeout) without sending a DATA.request or a life sign to the SAI.
A potential implementation freedom is left, when the CSL moves to Connected state, about the delay
to be awaited before sending a first life sign (if no user data request is pending). In fact, it might be
allowed (and useful) to immediately send a first life sign without delay; if the ExecutionCycle option
is active for the SAI initialization process, the called SAI should wait for a first DATA.indication
message before moving to the Connected state. If we send the life sign only when the send-timeout
delay is expired, the successful creation of the connection becomes more difficult.

It is also in this first step that, unfortunately, coding errors can easily be introduced while encoding
implementation dependent aspects. Fortunately, there are some lightweight formal analysis
techniques that can be exploited with very little (or null) effort to repeatedly perform, as the
design progresses incrementally, quick but very useful checks.

Static Analysis
All tools automatically perform some degree of static analysis on the models to which they are
applied. Static analysis of the resulting SysML executable design is particularly useful for detecting
early errors introduced in the UML encoding. Since UMC supports only a limited form of static
analysis, it is useful to generate the ProB and LNT versions in order to exploit the more advanced
static analysis features of these environments.

For example, a LNT warning about the existence of a declared variable not later used in the body of
a process statically revealed the presence of some anomaly in the code of the SysML model. On the
other side, ProB revealed statically a type error on the expression:

(currentEC - OFFSET) mod Mec

pointing out the issue that the modulus operation is not unambiguously defined in presence of
negative values. For instance:

• in C the expression "(-2) % 7" evaluates "-2";

• in Ada the expression "(-2) mod 7 " evaluates "5"5.

5 In our model we modified the code so that modulus operations are always performed on positive values,

Project Acronym – GA 881775 14 | 79

Interactive simulation
Interactive simulation of the whole system, controlling all the system nondeterministic aspects, is
another useful method for the early discovery of coding errors that do not require advanced
competencies in formal methods. All the three formal frameworks allow an interactive
exploration of all the possible system evolutions, and interactive simulations over them have
actually allowed to quickly identify simple coding errors (e.g., duplications of rules, copy & paste
mistakes, etc.).

Full statespace exploration
Full statespace exploration can be easily triggered in all the three environments in a simple push
button way. Full statespace exploration reveals runtime errors (e.g., violation of invariants),
deadlocks, or missing requirements (i.e., situations for which no rules specify how to system
evolution should progress). This a very powerful method that has been extensively used during
our incremental design and analysis process for detecting mistakes. Clearly, when the model
statespace becomes rather big, this kind of analysis may require (too) much time for being
routinely used during the incremental design.

In UMC, the absence of a necessary transition rule can be detected through the observation of a "lost
event" event. In ProB and LNT, with the current encoding, the absence of a transition rule causes an
observable deadlock (the state machine is not able to remove the top element from the queue of
events).
In ProB ,full statespace exploration is activated, as shown by the left side of Figure 3, by just selecting
the default “Verify -> Model_Check" command.
In CADP, the statespace exploration can be requested with the command "bcginfo", or by evaluating
on-the-fly the formula "[true*] <true> true".
In UMC the statespace exploration can be requested the command "umcstats" or evaluating the
formulas "EF FINAL" and "EF {lostevent}".
In case of failure of the above tests it is possible to observe the execution trace that leads to the
failure (and in the case of Prob and UMC also visualize the execution trace as a message sequence
chart).

Figure 3: a result of standard ProB checks.

Project Acronym – GA 881775 15 | 79

Another rather standard check is the analysis of the coverage of the state machine transitions. With
ProB this can be obtained directly, once performed the previous model checking, with the command
Analyse -> Coverage -> Operation Coverage.
Activating this check on the ICSLtesting_V27_nodata we obtain the result shown in Figure 3 (right
side), from which we can see that there are several transitions that are never triggered, but this is
precisely what we would expect given the no data request or data indication messages are ever
generated.

Reachability analysis
Finally, reachability analysis requires a little more effort in writing simple logical formulas but
allows to observe specific executions traces (In the case of ProB and UMC also in the form of
message sequence diagrams) that lead to a given situation or event. For example, a simple
reachability property like,

"Eventually, in at last one execution, the initiator CSL receives the notification of the
establishment of a safe connection"

can be encoded:

• in UMC as EF {ISAI_Connect_confirm}6;

• in ProB as not G not [R4_ICSL_userconnind]7;

• in LNT as <true*.ISAI_Connect_confirm>true.

The verification of reachability properties like the above one also allows (in the ProB and UMC
cases) to display a requested execution paths in terms of a user-friendly sequence diagram usable
for documentation purposes.

Figure 3: "lightweight" use of Formal Methods (static analysis, statespace exploration)

6 ISAI_Connect_confirm is the event correspond the delivering of the notification
7 R4_ICSL_userconnind is the label of the CSL transition (operation name in prob) accepting the notification

Project Acronym – GA 881775 16 | 79

The above verification techniques already allow to increase the confidence that the created
models of the various system components reflect a clear and complete design, not an inconsistent
one. Figure 3 summarizes such lightweight use of formal methods.
Apart from that, we want to see if it is possible to go beyond these properties and try to provide
some evidence to reply to the following question:

Are all the components and the whole system doing what it is actually desired?

This question encloses within it two crucial ones:

• Have we correctly modelled the initial natural language requirements?

• Actually, are those requirements correct?

We do not know for sure what it is actually desired, and which were the designer intentions behind
the initial natural language requirements, but we can provide some feedback on the overall
behavior of the system (or some components), hoping that the feedback confirms the designer's
expectations.
We should also remember that we are in the phase of constructing/analysing the requirements,
not in the phase of developing a system starting from some presumably rigorous and correct
requirements.
In the following section, we attempt to provide appropriate answers to the above questions so to
clarify the doubts related to this problem.

5.3 From Formal, to Semi-Formal, to Natural Language

Abstracting from the introduced implementation details

During the UMC encoding of the system, several design/implementation choices have been made
that appear not to be explicitly specified by the initial D2.3 requirements. This is normal, because
system requirements are usually at a higher level of abstraction than a directly and fully executable
model.

As a trivial example, while in the requirements we have a rule stating that "if something does not
happen within a given timeout, something else should be done" in our encoding, we have a timer
object sending tick events, a counter variable initialized with 0 and incremented at each tick event,
and a check on the value of the counter that triggers the timeout-related activities.
Similarly, while in the requirements we have the rule stating that "periodically we should set an ack-
request flag in the next outgoing message unless the previous request is still waiting for a response",
in the actual encoding we might have an ack_request counter, appropriately initialized and
incremented at each tick event, a variable recording the fact that the flag should be set in the next
outgoing message, and another variable recording whether there are still pending requests.
Moreover, to reduce the state-explosion effect, it is advisable to reset all the variables to some

Project Acronym – GA 881775 17 | 79

default static values as soon as their current value is no longer needed.

However, it is definitely useful to present a graphical view of the encoded UML state machine that
abstracts away again from all these details, allowing a reader to understand the overall structure
of the actually modelled design without being overwhelmed by all these implementation details.
These abstract graphical views of the UML state machines actually composing the formal model
of the system may provide a first kind of evidence towards a reply to the main question raised in
the previous section, that is:

• Have we correctly modelled the initial natural language requirements?

In Appendix B are shown the 4 (graphical, semiformal) state machine diagrams corresponding to
our relevant system components (i.e., initiator and called CSL, initiator and called SAI).

Together with our new abstract, semiformal UML state machine models of the system
components, it would make sense to associate them with a new system specification in the form
of structured, rigorous natural language requirements8. These new requirements should now
overcome all the potential weaknesses present in the informal natural language requirements that
have been taken as input for our formal analysis process.
We believe that it is an important point to have strictly connected natural language, semi-formal,
and formal artefacts as an output of our formal analysis process. Figure 4 illustrates the resulting
information flow generated by our demonstrator.

Figure 4 Input and Outputs of Formal Analysis Process

8 The process might also be reversed, i.e., starting from the formal models we might produce the rigorous,
structured, NL requirements, and from these than generate the abstract semiformal UML designs.

Project Acronym – GA 881775 18 | 79

The output of the analysis process becomes usable when the complete system is finally designed
in its entirety, the generated formal models9 are correctly described by the rigorous natural
language description, their overview correctly presented in terms of graphically semi-formal
SysML/UML models, and sufficient confidence is gained on the fact that all the properties of
interest are satisfied.
Notice that there is not a precise "ending point" for the process. More "properties of interest" can
be identified at a later time, and a "greater level of confidence" might be desired, triggering the
creation of further architectures and scenarios to be analysed.

Making explicit assumptions and guarantees

This natural language description, for each system component under design, should describe in a
precise way:

• the parametric aspects of the component;

• the interface towards the outside of the component (i.e., the messages sent and received);

• the assumptions on the external environment which underlies the component definition
(whose violation might compromise the correct component behavior);

• the requirements on the internal functional behavior of the component;

• the guarantees that the component should ensure towards the external environment.

Most of this information, and in particular the assumptions and guarantee related aspects, are
somewhat already present also in our initial D2.3 requirements, but often in a not-well-structured,
explicit and clear form, and sometimes only in the form of external references to other standards.
The presence or the absence of external assumptions may play a relevant role in the design of a
component, and inconsistencies on these aspects may lead to interoperability problems.

For example, in the D2.3 requirements, the assumptions on the expected behavior of the ER-SL are
completely missing. Looking at the UNISIG-SUBSET-037 [SUB-037] standard, we have observed that
the SAI can assume that the ER-SL always responds (eventually) with either a Sa_CONNECT.confirm
or a Sa_DISCONNECT.indication to a Sa_CONNECT.request. Such information led us to a design in
which as the component is in the Connecting state, further SAI_CONNECT.request orders (triggered
by a connection timeout) from the CSL are discarded. If the above assumption would not hold, the
SAI design would become inconsistent and at risk of deadlocks.

In Appendix C, we present the Rigorous Natural Language rewriting of the requirements that,
applying our demonstrator process, have been associated with our formal and semi-formal
models. These new rigorously structured natural language requirements play two very important
roles:

• They constitute a clear human-oriented documentation artifact of the system
specification;

9 It is in this step that the the system properties of interest are indentified.

Project Acronym – GA 881775 19 | 79

• They appear to state the properties that are really expected to be satisfied by the system,
still using the natural language, but in a form more amenable to confirmation by formal
analysis.

5.4 Verification Architectures and Scenarios

Prologue

"All models are wrong, but some are useful"

The above is a famous quote [BOX] from the statistician George E. P. Box. The meaning of the
quote is that all models are, necessarily, an abstraction and an approximation that fails to
represent reality in all its details. This means that from a rigorous point of view, models are all
wrong. This does not exclude, however, that in their abstraction they allow reasoning in a simple
way on specific aspects of the system, getting useful insights and confirmations or
counterexamples about the expected behaviors of the system. However, we should be careful not
to consider them as a gold standard, forgetting the implicit assumptions and abstractions which
are at their base.
In our demonstrator, starting from the initial natural language requirements, we progress by
designing operational UML models of the system. In doing that, it is important to state explicitly
all the assumptions and abstractions that underlie the model design. Moreover, we should not
forget that the resulted model is just one of the possible models that could be designed, as the
natural language requirements are usually and intentionally at a higher level of abstraction (and
ambiguity) than the specific operational design that if being modelled.
The operational UML models of the system constitute the base to derive our verifiable formal
specifications.
The correct question we should ask about these specifications is therefore: Is our formal model
good enough for reasoning on the properties of the real system in which we are interested?
The answer to the question partly depends on the available verification functionalities provided
by the selected formal framework and partly depends on the various steps of abstraction and
approximations performed from the initial system requirements. But it also depends on the
correctness of the translation and encoding of the model into the notation of the formal
specification.

Architectures

When reasoning on our CSL and SAI components, we have used two ways to build verification
architectures for our analysis. As shown in Figures 5 and Figure 6, the first one is to build an
architecture in which a single system component interacts with abstract models of the
environment that satisfy only the set of required assumptions. Such environmental components
must be consistent with the system component to be analysed, and able to stimulate all the
possible interactions with it. This kind of architecture remembers the "single component stress

Project Acronym – GA 881775 20 | 79

testing" of a module, with the difference that through model checking are analysed all the possible
component behaviors.

Figure 5 Testing CSL components in isolation

This kind of architecture has the advantage of being simple, and it is useful to check the
consistency, safety, and robustness of the design. The environment, in this case, might also behave
in ways that in practice might not occur when replaced by the actual software and hardware
components. This kind of verification may also show undesirable behaviors of the system
component that are not necessarily caused by mistakes in its design, but, more properly, they are
due to the absence of further assumptions on the environment beyond those already stated.

Figure 6 Testing SAI components in isolation

In order to analyse the interacting behavior of the components at the two sides of the same layer
(i.e., initiator and called CSL), we need more complex architectures that integrate all the needed
components as shown, for example, in Figures 7, 8, and 9.

Project Acronym – GA 881775 21 | 79

Figure 7: the architecture of the complete system

Figure 8: CSL layer testing architecture used in Task 2.1

Figure 9: SAI layer testing architecture

If we model all the needed components as UML state machines (therefore instantiating in some
way of the parametric aspects of the components), we can exploit the mechanical transformation

Project Acronym – GA 881775 22 | 79

of the architecture into a verifiable formal scenario without any further effort (apart from that of
removing coding errors in the design of the new environment components).

Scenarios

Once fixed the overall architecture, we have that our system components may actually depend on
several system parameters (e.g., timeouts, limits), and each instantiation for these parameters
gives rise to a particular scenario used for the verification process.
Moreover, the SAI layer definition given in D2.3 is a generic system definition, whose instantiation
can be configured according to a predefined set of options: Safe connection initialization through
Triple Time Stamp (TTS), Execution Cycle Start (ECS). Each option gives rise to a different system
and must be specifically instantiated before formally reasoning on it. In particular, our
demonstrator models the SAI ECS option.

With respect to the other environment related components, like the RBC Users, the ER-SL
component, or abstract versions of the CSL and SAI used to stimulate the other component under
analysis, we have that several versions can be generated depending on the kind of properties that
we are interested to observe and analyse. For example, when analysing the Safe Connection
creation and abort events in the system, we are not interested in the values actually exchanged
between the RBC User components, and we might ignore aspects related to the duplication or
reordering of messages, therefore testing the system under restricted conditions that make the
analysis easier to be performed.

Finally, in our architecture, we must introduce timer components that still allow the various system
components to asynchronously proceed in parallel, but still preserving a certain degree of
comparable speed. Several variations are possible in this case as well, and such variations give rise
to several different verification scenarios.

5.5 Advanced Formal Analysis

The source of properties to be analysed

As previously mentioned, the initial D2.3 requirements cannot be considered as a correct base for
the specification of the system properties to be formally verified. In Appendix D the original D2.3
requirements, annotated with the main interpretation problems faced during the analysis, are
reported.

Let us consider, as a simple example, REQ_070 of D2.3:

- The event signaling the loss of safe connection is Sa_DISCONNECT.indication, not
 Sa_DISCONN.indication
- The meaning of "order" is not clear. It can be imagined that a SAI_CONNECT.request is meant.

Project Acronym – GA 881775 23 | 79

- The meaning of "wait" is not clear. What is the component allowed to do while "waiting"?
 If the normal handling of all the incoming events (as described by all the other requirements)
 is what is actually intended, then this requirement actually does not describe anything.

Any attempt to directly "formalize" this requirement in terms of logical formulas would make no
sense.

Let us now see how the behavior of the initiator SAI, with respect to this situation, is instead
described by our new requirements10 (the "order from CSL" is the SAI_CONNECT.request):

- R1: At startup, the SAI is in Disconnected state.
- R2: When in Disconnected state is received a SAI_CONNECT.request from the CSL component,
 the SAI sends a Sa_CONNECT.request to the ER-SL and moves to Connecting state.
- R4: When in Connecting state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI

moves to Disconnected state.
- R9: When in Initializing state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI
 moves to Disconnected state.
- R15: When in Connected state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI
sends a SAI_DISCONNECT.indication to the CSL component and moves to Disconnected state.

The above requirements precisely correspond to the abstract structure of SAI state machine11, and
there is no formal encoding of logical formulas to be done and to be verified.

In fact, most of the requirements on the internal functional behavior of the CSL component have
the form:

 < When in a certain state a certain event occurs, and certain local conditions hold,
 then certain effects should occur>

It is worth pointing out that such requirements directly reflect the structure of the formal and
semi-formal models. In other words, in the UML design each transition that generates certain
effects when activated under certain conditions, has a corresponding requirement that precisely
specifies the relationship between conditions and effects without ambiguities, redundancies, or
inconsistencies.

Not all the new requirements on the internal functional behavior of the system have the above
state:event[guard]/effect structure.
Several other requirements, typically those expressing complex data flow relations (like
requirements over SAI sequence numbers, ack management, ECS counter management), do not
have an immediate correspondence with the state machine structure.
Also in this case, however, passing through a temporal logic encoding of the whole property and
relying on explicit model checking does not seem to be an advisable (if ever feasible) approach.
For our experience, a combination of code inspections, statespace exploration and minimizations,
and the use of the model checker like a debugger for the analysis of simple variable related
properties is a much more viable solution.

10 The complete list of new requirements is shown in Appendix C.
11 The graphical representation of the abstract SAI and CSL state machines are shown in Appendix B).

Project Acronym – GA 881775 24 | 79

We have previously described two important parts of system component specification, that is:

• The assumptions on the other system components that are needed to guarantee the
correct behavior of the component;

• the guarantees that the component can ensure to the rest of the system.

Clearly, these two aspects are correlated: if component C1 assumes property P from component
C2, necessarily component C2 should guarantee property P to the environment.
Formal verification can be a useful technique for verifying that a component actually guarantees
the assumption on which other components rely.

In our case, the requirements in D2.3 are not very precise in stating the assumptions/guarantees
associated with the various components. This is probably also a consequence of the fact that for
each side, the CSL and SAI components are supposed to be developed by the same provider, which
is likely to have a complete and detailed knowledge of the whole architecture on its side.
Nevertheless, we believe that it is useful to make explicit the dependencies between the
components on the same side because, even if developed by the same provider, the two
components might be actually developed by different teams, and a clear documentation of the
dependencies between components is surely welcome.

One of these assumptions, not clearly stated in the D2.3 requirements, is that the initiator SAI should
always reply with a SAI_DISCONNECT.indication message to a SAI_DISCONNECT.request.
In the absence of such a reply, the CSL would remain forever in the NOCOMMS Waiting state.
In this case, the proof of this guarantee on the SAI side can easily be obtained by just observing the
transitions in the SAI statechart that are triggered by the SAI_DISCONNECT.request signal.
Another assumption which underlies our SAI design is that the EuroRadio sublayer should always,
eventually, reply with a Sa_CONNECT.confirm or Sa_DISCONNECT.indication to a
Sa_CONNECT.request. While in state Connecting, in fact, the SAI discards further connection
requests from the CSL while the current one is still in progress. Failure to reply from the ER side would
therefore create a deadlock.

Encoding properties with temporal logics operators over state and event predicates

We have already seen in Section 5.2 some simple examples of reachability properties that can be
encoded and verified without much effort.

Even if, in most cases, using model checking for verifying simple structural property can be just
overkilling, because just a plain observation of the CSL state machine diagram would allow us to
easily check the property, sometimes we might be interested to still formally check functional
properties that can be expressed in logical terms by composing state and event predicates.

For instance, let us consider, for example, the property12:

12 This is a property which refers directly to the UMC model

Project Acronym – GA 881775 25 | 79

"it never happens that the initiator CSL forwards an RBC User data request to the SAI when
not in state COMM”

In our formal frameworks this property can be formalized as:

in UMC13 as: not EF (not inState(COMM) and <ISAI_DATA_request>)
in ProB as: not F (not {ICSL_STATE=COMM} and [R8_ICSL_saidatareq])
in LNT: not expressible without changes in the model.14

In other cases, the property of interest cannot be directly mapped on temporal operators over
state or event predicates, and its encoding can require rather advanced formalization capabilities
(e.g., parametric fix point operators) and some more advanced knowledge of the theory behind
the used formal methods.

For instance, let us consider the property:

 "the messages received by the called RBC contain a continuously growing value" (i.e., no
reordering occurs).

In our formal frameworks this property can be expressed as:
in UMC as:
 AG ([CRBC_User_Data_Indication($v1)]
 not EF {CRBC_User_Data_Indication($v2)} (%v2 <= %v1))
in LNT as:
 mu X (n : nat := 0).
 ([true] false
 or ([{ CRBC_User_Data_Indication(?m:nat)}] if m >= n then X(m+1) else false end if
 and [i] X (n)))
in ProB: not expressible.15

When the system becomes rather big, as in our case happens when we try to analyse the complete
system composed by all the seven components, it is likely that full statespace exploration becomes
impossible or very expensive in terms of time and resources.
On-the-fly model checking techniques, may allow to verify system properties without requiring
the generation and analysis of the full statespace.

In our scenario ERnice_irbcdata_V53 we have modelled an environment in which:

• The initiator RBC waits for a Connect indication and sends five messages to the other side,

• The ER level is a "nice" one which does only introduce acceptable delays, does not lose or
reorder messages, and does not autonomously abort the safe connections.

In this context we would expect that the five messages sent from the initiator side will all arrive to

13 Appropriate "Abstractions" must be defined in UMC to make these basic predicates observable.
14 The values of local variables of a LNT process specification are not observable from the supported logic.
15 In ProB there are no parametric fix points in the logic, and it is not possible to express relations between the
values of parameters or local varables in different states.

Project Acronym – GA 881775 26 | 79

the called RBC side and in the correct sequence, and that no Error reports nor Disconnect
indications are ever generated.
After an appropriate fine-tuning of scenario timeout parameters (receive timeout, send timeout,
initialization timeout, connection timeout, ack-response timeout), we can verify that this is
precisely what happens by evaluating the following formulas (shown in the UMC style):

• "The called RBC does never receive any message before a Connect indication".
 A[{not CRBC_User_Data_indication} U { CRBC_User_Connect_indication}]

• "The called RBC , after receiving a Connect indication, always receives as first data message the
first data message sent by the initiator RBC".

 AF {CRBC_User_Connect_indication}
 A[{not CRBC_User_Data_indication} U { CRBC_User_Data_indication(1)}]

• "The called RBC , after receiving a first data message, always receives as second data message
the second data message sent by the initiator RBC".

 AF {CRBC_User_Data_indication(1)}
 A[{not CRBC_User_Data_indication} U { CRBC_User_Data_indication(2)}]

• "The called RBC , after receiving a second data message, always receives as third data message
the third data message sent by the initiator RBC".

 AF {CRBC_User_Data_indication(2)}
 A[{not CRBC_User_Data_indication} U { CRBC_User_Data_indication(3)}]

• "The called RBC , after receiving a third data message, always receives as forth data message
the fourth data message sent by the initiator RBC".

 AF {CRBC_User_Data_indication(3)}
 A[{not CRBC_User_Data_indication} U { CRBC_User_Data_indication(4)}]

• "The called RBC , after receiving a fourth data message, always receives as fifth data message
the fifth data message sent by the initiator RBC".

 AF {CRBC_User_Data_indication(4)}
 A[{not CRBC_User_Data_indication} U { CRBC_User_Data_indication(5)}]

• "Until the all the five messages have been received, the called RBC does never receive a
Disconnect indication".

 A[true {not CRBC_User_Disconnect_indication} U {CRBC_User_Data_indication(5)}]

• "Until the all the five messages have been received by the RBC, the called CSL does never receive
any error report".

 A[true {not CCSAI_Error_report } U {CRBC_User_Data_indication(5)}]

Notice that the above properties can be checked by observing only 16million states (a check that

Project Acronym – GA 881775 27 | 79

can be done in a bunch of minutes) while the complete statespace has still an unknown size but in
the order of several hundred-million states.
The violation of this properties, and the observation of the counter-examples, has also allowed to
detect and correct several (some of which severe) implementation errors in the SAI model.

Verifying with Observers

In many cases, like the one related to the check of the growing values in arriving messages, the
simplest solution is that of building a specific scenario where the environment acts as an
"observer" of the intended property. This is what is done, for example, for the verification of the
previously mentioned property. In this case, we need to define a (called) RBC User element that
saves the last value received and makes a comparison between it and the current value each time
a new message arrives, notifying the error if the check fails.
In this way, the complex to encode property becomes a simple to write/understand reachability
property. This solution might not always be feasible, but when it is possible it can solve the
problems of hard encoding and verification of logical properties. Encoding a complex logical
property can really be a very error-prone task.

Abstract Overviews of the System Behavior at the interfaces: Minimized information flows

While reasoning on the possible behavior of a system component (or group of components), it is
sometimes useful to observe all the possible information flows, regarding a small set of selected
messages, that may occur, e.g., at the interface between two components.
For example, let us suppose that we want to observe, at the interface between the CSL and the
RBC User at the initiator side, all the possible sequences of messages flowing from the CSL to the
RBC. Starting from an architectural description of the system that includes both sides of the CSL
(in a given scenario), it is possible to mechanically extract and visualize all the possible streams of
RBC connect, disconnect, and data indications at the initiator side16, obtaining the picture shown
in Fig. 10.

Figure 10: all the possible messages flow from CSL and RBC (initiator side)

By just observing this picture, several properties of the scenario can be observed. For instance,

16 In Appendix E (Model reduction techniques) is shown the theory and practice of this approach.

Project Acronym – GA 881775 28 | 79

• It is possible that no connection ever occurs (self-loop in the initial state);

• a disconnection indication is always preceded by a previous connection indication;

• data indications may arrive only after a connection, in no disconnection has occurred in
the meanwhile;

• data indications might never arrive;

• disconnect indications might never arrive (the CSL remains connected forever);

• after a disconnection, there is no guarantee that a new connection will follow.

All these properties might also be explicitly verified by encoding them as logical formulas and
evaluating them in this scenario, but the mechanical generation of the description of the possible
sequences of interest might be a more friendly approach to the system analysis.
The advantage of the full model checking approach with respect to the model reduction approach,
is that in the first case we might also ask for an explanation of the result of the verification and
obtain, for example, a detailed sequence diagram that shows how it can happen that the system
is never successful in establishing a communication line. Moreover, the model reduction approach
requires the traversal and analysis of the full statespace, and in case of complex systems this might
become unfeasible.

Project Acronym – GA 881775 29 | 79

 Conclusions

"The actual goal of our demonstrator"
We have associated our initial requirements with a precise, executable SysML/UML model. Then
we have translated it into rigorous formal specifications, after which we have embedded the
formalized components in specific verification architectures and scenarios17, and started making
rigorous analysis upon them. Our goal, however, is neither to complete the "validation" of the
initial system requirements, nor to provide a generic "proof of correctness" of the formal design.
The actual goal of the 4SECURail demonstrator is just to show if and how certain tools and methods
can improve our confidence that specific properties (about safety, interoperability, functionality)
are guaranteed by our formal models and, therefore, likely supported by our system requirements.
Indeed, considering the role of the demonstrator inside the whole project, we are interested to
show the kind of question we can study, the kind of answer we can obtain, the difficulty of the
process, and the kind of feedback returned to the user by this activity.

"The output produced by our demonstrator"
The choice of selected case study and structure of the formal methods demonstrator process have
proved to be very effective for illustrating, in a qualitative way, the advantages that can be
obtained by the adoption of semi-formal and formal methods in the early phase of system
requirements specification, as well as the difficulties that can be encountered in this activity.

Starting from requirements defined in D2.3, the application of our formal methods demonstrator
process has allowed us to derive:

• A new rigorous / formally backed requirements specification of the system. Descriptions
are provided in Appendix B, Appendix C, and their discussions are present in Section 5.5).

• A list of weaknesses in the initial D2.3 requirements. These are reported in Appendix D.

The experience gained with the design and exercising of the demonstrator with our case study has
also allowed us to highlight several "takeaways" that we have observed and found most relevant
during the activity of Task 2.3, which are summarized below.

"System requirements definition and analysis are very different from system implementation"
The activity of transforming the designer's intentions into a system requirements document is very
different from taking a system requirement document and developing an executable system from
it. In particular, the role that formal and semi-formal methods play is very different between these
two activities.
For the development phase, the focus is likely to be on the "correctness" of the developed product
with respect to its requirements. If formal methods are adopted in this development phase, they
are focused on guaranteeing the correct transformation of a semi-formal design into executable
code (e.g., by formal refinements).
For the requirement construction phase, the focus is likely to be on two other aspects:

17 Architectures and scenarios are discussed in Section 5.4.

Project Acronym – GA 881775 30 | 79

• The precision (i.e., completeness, non-ambiguity, safety, internal consistency) of the
requirement document.

• The external consistency (i.e., interoperability) of the system specification with respect to
the other systems with which it must interact.

In the absence of precise and consistent requirements, any effort on the developer side to adopt
formal methods during the development phase risks being useless or counter-productive because
a rigorous implementation of misleading or non-interoperable requirements will likely lead to
implementation errors.

"The need of UML design guidelines to support simple, well defined UML design"
Indeed, as widely recognized in many papers (many of them already cited in D2.1 and D2.2) and
project results (e.g., X2RAIL2), the use of UML as a specification language for System of Systems
can be very problematic because of its generality. Too many "hidden" assumptions are concealed
within the UML designs and might have a strong impact on the expected behavior of the system.
This problem can be overcome if:

• We take care of explicitly stating all the otherwise hidden assumptions in the design.

• We restrict the use of UML features to those which currently have a clear semantics and
for which there is a clear and simple way to be translated into a (one or more) formal
notation.

This is precisely what we have tried to do with our demonstrator.

"The need of mechanical generation of formal models"
Mechanical translations from UML designs to formal specification languages are not just highly
preferable (as already stated in D2.1 and D2.2), but reveal to be mandatory for any exploitation of
formal methods from semiformal UML designs. In our specific demonstrator case, we would not
have been able to deal with our more than 50 refinement/correction steps if we had not developed
our translators from the UMC to the ProB and LNT notations. From our point of view, the ideal
source for this transformation should not be a vendor-specific XMI representation of the UML
design as generated by any commercial MBSD framework (PTC, Sparx-EA, IBM-Rapsody, ...) but a
human-oriented, vendor-independent textual description of the system18.

"Inadequacy of existing MBSD frameworks to support formal analysis of system requirements"
With the experience gained so far in the demonstrator, the role of the selected Sparx-EA MBSD
platform is limited to providing some help in the generation of readable, well-formatted
documentation and (sometimes) in creating executable system designs that satisfy a first pass of
static analysis. From the point of view of usability towards modelling high-level requirements and
performing a rigorous analysis or verification of them, this MBSD platform, despite its animation

18 The problems with XMI are twofold: 1) it is apparently a standard format, while in practice makes impossible the
migration of models among different frameworks, with our first-hand experience in import/export XMI from Sparx
EA to Cameo Modeling tool, and 2) it is not a human oriented format usable to directly communicate in a simple,
textual, easily reusable way a model design.

Project Acronym – GA 881775 31 | 79

capabilities, has resulted rather useless as it does not allow to explore all the theoretically allowed
system evolutions. The situation is likely to be the same with other platforms like Magic Draw or
PTC, until eventually all these platforms are enriched with mechanical facilities to translate UML
model designs into formal notations.

"Semi-formal and formal methods can be exploited at many levels of detail and with different
degrees of effort"
We have observed that many of the weaknesses present in a plain natural language system
requirements document, mostly related to ambiguity or imprecision of the requirements, can
already be revealed during the initial attempt to generate an operational model of the system. The
formal modelling and analysis steps greatly improve the depth of analysis on the system, allowing
to discover further hidden design defects potentially leading to non-uniformity of
implementations and interoperability problems. Formal analysis can be done with different levels
of effort resulting in different levels of confidence about the correctness of the design.
The three verification platforms that have been used (UMC, Prob, CADP) are frameworks upon
which we already had some experience in other projects and in our professional careers.
Nevertheless, for lack of time and experience, only a small fraction of the features made available
by these frameworks have been exploited. Becoming an expert in the use of any formal method
and its supporting framework is a task that goes much further than simply being able to obtain
some results with it. However, it is not mandatory to be a real expert to (partially) benefit from
the gains that formal methods can give. While it is recognized the difficulty (and error proneness)
of translating requirements and properties into temporal logics properties for formal verification,
there are semi-automatic verification approaches dealing with deadlocks, coverage, consistency
checking, absence of runtime-errors, invariants preservation, abstraction of the system behavior
at the interfaces, that may greatly improve the confidence on the design with a relatively low
effort.
In our case, the formalization/verification focus has been posed on three specific frameworks;
however, these specific choices did not seem to play a particularly relevant role in the overall
formal analysis process. Any other formal framework which guarantees an advanced level of static
analysis, an interactive exploration method that allows experimenting *all* the possible system
evolutions, and some kind of property verification strategy could easily replace/complement any
of our adopted methods (SPIN, NuSMV, mCRL2, FDR4, just to mention some).

"Usefulness of formal methods diversity"
Another confirmation that we have had from our demonstrator process activity is that the
"diversity of approaches" in formal modelling and verification improves the flexibility of the
analysis and the reliability of results. Many errors in the translation programs have been quickly
put in evidence when different behaviors and different statespaces resulted from the translation
of the UML model into the ProB / LNT / UMC notations. Moreover, different points of view can be
exploited with formal methods diversity in the analysis of the expected properties of the system
under design.

"From natural language to formal models and back"

Project Acronym – GA 881775 32 | 79

If the used UML features are appropriately constrained, it might also become possible to re-
associate a rigorous, clear, well-structured natural language description19 to the semi-formal and
formal models of the systems. Such natural language description should communicate in a natural
way to the developers the intended internal behavior of the system, the properties that each
component is supposed to guarantee to the other ones, and the assumptions about the
dependencies over the other components behavior.

"Formal methods are not a silver bullet: many difficulties still exist."
The introduction of formal methods in the system requirements specification phase still has to
face several technical difficulties. Our case study has clearly put in evidence three main difficulties:

• Statespace explosion: This typically arises when we have to deal with the integration of
different subsystems or with operations carrying wide range data.

• Parameterized specification: The adopted model-checking approach can only work on non-
parametric systems. We had to explicitly define specific scenarios upon which to make the
analysis, by setting specific values for the various parameters of the system components.
But this analysis may not cover the full range of system configurations.

• Interfaces with wide-range data values: When a system is composed of subsystems
interacting through messages containing data values (in our case, the CSL exchanging
DATA_requests/ Data_indications), the benefits of a compositional approach may be
severely endangered. The possible statespace describing of a CSL-standalone can be larger
than the statespace of the integrated system where the CSL component is composed of
specific (limited) data producers.

"The evidences from the demonstrator"
The evidences revealed by the application of our formal methods demonstrator process to our
specific case study have clearly highlighted the potential advantages, in terms of requirements
specification quality, gained with the - possibly lightweight - introduction of formal methods in the
system requirements definition process20.
However, the introduction of formal methods, in order to be fully exploited, would require
additional support of formal methods from industry-ready MBSD frameworks, further efforts from
the designers of formal verification tools to simplify the integration of their features in industrial
settings, and further efforts from standardization entities like OMG for the rigorous definition of
their specifications.

19 like the one shown in Appendix C.
20 see, e.g., the annotations to the D2.3 requirements in Appendix D, and the revised system specifications shown in
Appendix B and C.

Project Acronym – GA 881775 33 | 79

 References

[ACTLX] R. De Nicola and F.W Vaandrager. Three Logics for Branching Bisimulation. Journal of the
Association for Computing Machinery, 1990.

[BOX] Box, G. E. P. (1976), "Science and statistics" (PDF), Journal of the American Statistical
Association, 71 (356): 791–799,

[CADP] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: A
Toolbox for the Construction and Analysis of Distributed Processes. Springer International
Journal on Software Tools for Technology Transfer (STTT), 15(2):89–107, April 2013.

[E-LOTOS] International Standard ISO-15437:2001.

[EN50159] CENELEC-EN 50159:2018 “Railway applications – Communication, signalling and
processing systems - Safety related electronic systems for signalling”.

[Compositional] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compositional Verification of
Asynchronous Concurrent Systems Using CADP. Acta Informatica, 52(4):337–392, April 2015.

[Combining] Frédéric Lang, Radu Mateescu, and Franco Mazzanti: Compositional Verification of
Concurrent Systems by Combining Bisimulations, in Formal Methods in System Design,
Springer, 18 February 2021.

[D2.1] Deliverable 2.1 of Task 2.1 of 4SECURail project,
 "Formal development demonstrator prototype 1st release",
 https://projects.shift2rail.org/download.aspx?id=560cdd44-83e7-4f5d-879e-d8dcdf2e2b1b

[D2.2] Deliverable 2.3 of Task 2.2 of 4SECURail project,
 "Formal development demonstrator prototype 1st release"
 https://projects.shift2rail.org/download.aspx?id=1761f4fa-c701-4321-b40c-3e67146ed482

[D2.3] Deliverable 2.3 of Task 2.2 of 4SECURail project,
 "Case study requirements and specification"
 https://projects.shift2rail.org/download.aspx?id=6917d0da-122f-41cb-8194-5f3e5029516b

[DBR] Rob J. van Glabbeek and W. Peter Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555–600, 1996.

[EULYNX] The Eulynx project site. https://eulynx.eu/
[FMDR] F.Mazzanti, A.Ferrari, G.O. Spagnolo "Towards formal methods diversity in railways: an

experience report with seven frameworks", International Journal on Software Tools for
Technology Transfer (STTT) volume 20 2018,
https://link.springer.com/article/10.1007/s10009-018-0488-3

[FMRMAP] A. Ferrari and M.H. ter Beek, Formal Methods in Railways: a Systematic Mapping Study.
arXiv:2107.05413 [cs.SE], 2021. https://arxiv.org/abs/2107.05413

[GRA] Graphviz - Graph Visualization Software, https://www.graphviz.org/
[LDBR] Radu Mateescu and Anton Wijs. Property-Dependent Reductions Adequate with

Divergence-Sensitive Branching Bisimilarity. Science of Computer Programming,
96(3):354–376, 2014.

[LNT] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Fr éd ́eric Lang, Christine
McKinty, Vincent Powazny, Wendelin Serwe, and Gideon Smeding, "Reference Manual of
the LNT to LOTOS Translator",

 https://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf

[MAAP2019] Shift2Rail Multi-Annual Action Plan – Part B (2019)

Project Acronym – GA 881775 34 | 79

 https://shift2rail.org/wp-content/uploads/2019/05/
 /Draft-Shift2Rail-Multi-Annual-Action-Plan-Part-B-20.5.2019.pdf

[OMG-SysML] Object Management Group, "SysML 1.6 Specification", November 2019.
http://www.omg.org/spec/SysML/1.6/

[OMG-UML] Object Management Group "Unified Modelling Language" version 2.5.1, December
2015, https://www.omg.org/spec/UML/About-UML/

[OMG-PSSM] Object Management Group "Precise Semantics of UML State Machine" version 1.0,
May 2019, https://www.omg.org/spec/PSSM/1.0/About-PSSM/

[PlantUML] PlantUML website, https://www.plantuml.com (also https://www.planttext.com)
[PROB] ProB website, https://www3.hhu.de/stups/prob/
[SHARP] Frédéric Lang, Radu Mateescu, and Franco Mazzanti. Sharp congruences Adequate with

Temporal Logics Combining Weak and Strong Modalities. In Armin Biere and Dave Parker,
editors, Proceedings of the 26th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS 2020 (Dublin, Ireland), Lecture Notes in
Computer Science. Springer, 2020.

[SPARX] Sparx Systems Enterprise Architect https://sparxsystems.com/products/ea/index.html
[STRONG] David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen, editor,

Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages
167–183. Springer, March 1981.

[SUB-037] UNISIG - “EuroRadio FIS “- SUBSET-037 - 15-12-2015 (Issue 3.2.0)
[SUB-039] UNISIG - “FIS for the RBC/RBC Handover “- SUBSET-039 - 17-12-2015 (Issue 3.2.0)
[SUB-098] UNISIG - “RBC/RBC Safe Communication Interface” - SUBSET-098 - 21-05-2007
[SVL] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Compositional Verification.

In Myungchul Kim, Byoungmoon Chin, Sungwon Kang, and Danhyung Lee, editors,
Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE’01), Cheju Island, Korea, pages 377– 392.
Kluwer Academic Publishers, August 2001. Full version available as INRIA Research Report
RR-4223.

[UMC1] KandISTI project website http://fmt.isti.cnr.it/kandisti
[UMC2] UMC project website http://fmt.isti.cnr.it/umc
[X2RAIL2] X2Rail2 project website https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
[ZenodoWP2] http://doi.org/10.5281/zenodo.4280773

Project Acronym – GA 881775 35 | 79

Appendix A: Formal notations and transformations

UMC modelling

The main characteristic of UMC is that a simple textual notation is used to specify the state
transitions of a UML state machine. In Figure A.1 one of these transitions is depicted.

Figure A.1 : Example of UMC rule

Each transition definition is defined by:

• an optional transition name (R9_ICSL_userdataind in Figure A.1),

• the source and target states of the transition (COMMS, COMMS in Figure A.1),

• A block { } containing:
o the triggering event of the transition (ISAI_DATA_indication in Figure A.1), possibly

with parameters and guards,
o the sequence of actions to be performed as an effect of the transition (the sending

of the IRBC_User_Data_indication signal to the RBC User component and the
assignment to the receiveTimer variables in Figure A.1).

The names that appear inside a transition definition can refer to names of the other components
constituting the system, the possible parameter of the triggering event, and to local variables of
the state machine.

With UMC it is possible to check if/how a given transition is eventually fired, if/when a certain
signal is sent, if/when a certain variable is modified, or a certain state reached.

For example, we can ask for an explanation about when the transition shown in Figure A.1 is fired
(i.e., when it happens that the signal SAI_CONNECT_confirm causes the sending of the
RBC_User_Connect_indication), and the answer can be observed in term of a sequence diagram,
as shown in Figure A.2 (the graphical layout is automatically generated by UMC using the PlantUML
online services [PlantUML].

Project Acronym – GA 881775 36 | 79

Figure A.2: A sequence diagram generated with UMC

The complete set of UMC models and some related audio-visual material can be retrieved from
the public Zenodo repository [ZenodoWP2].

Several programs have been developed to facilitate the integration of the various tools used in the
demonstrator. In Section 5.1.5 we have already mentioned the translator that mechanizes the
transformation of UMC [UMC1, UMC2] models into ProB [PROB] and LNT [LNT] models.

ProB modelling

A system specification is structured in ProB as a "B machine". In our case, since the system under
analysis is composed of several mutually interacting state machines (and the B language is not able
to deal with this concept), we need to "merge" all these components into a unique, global state
machine. This has several implications:

• The separate class attributes of UML state machines must be merged into a single B state
machine. This may require the prefixing of the variable names with the component names
to avoid name clashes (e.g., while in UML we have the I_CSL and C_CSL classes making use
of their own "send_timer" attribute, in B we will have the two attributes "icsl_send_timer"
and "ccsl_send_timer"). The same needs to be done for the operation names (transition
labels in UMC) and the other entities that require duplication.

• The currently active state of a UML state machine is represented in B by the current value
of an ad-hoc variable statemachine_STATUS. There is one such variable for each UML state
machine.

• Within the B machine structure, all types, constants, and variable definitions and
initializations must appear at the beginning of the machine definition. This disrupts the

Project Acronym – GA 881775 37 | 79

original structure of the system forcing to spread the UML state machine definition into
several places in the B machine specification.

• In UML State Machines the event pool (a buffer implementing asynchronous
communications that contains at each moment the set of signals arrived in a state machine
but not yet dispatched or discarded) is part of the engine support and thus is not explicitly
modelled. In B these event-pool components must be explicitly modelled. This is because,
contrary to UMC, B is not a tool designed for handling UML State Machines. Our
UML/UMC/ProB assumption is that these pools are instantiated as First-In First-Out (FIFO)
queues (this is the default implementation suggested by UML standard), therefore a
"buffer" variable representing the state machine event pool is added to the B model.
Consequently, the action of sending a signal to another state machine will be modelled
with the insertion of a value to the corresponding variable buffer, and the dispatching of a
signal to trigger a transition will be modelled with the extraction of the first element of
such a buffer.

• Each transition rule definition of the UMC state machine design is mapped onto an
equivalent operation of the B machine.
This mapping is at this point very direct as shown below:

 UMC transition B machine operation

R4_ICSL_userconnind R4_ICSL_userconnind =
NOCOMMSconnecting -> COMMS PRE
 { ISAI_CONNECT_confirm / ICSL_buff /= [] &
 RBC_User.IRBC_User_Connect_indication; first(ICSL_buff) = ISAI_CONNECT_confirm &
 connect_timer := max_connect_timer; ICSL_STATE = ICSL_NOCOMMSconnecting
 receive_timer := 0; THEN
 send_timer := 0; } IRBC_buff := IRBC_buff <- IRBC_User_Connect_indication;
 ICSL_connect_timer := ICSL_max_connect_timer;
 ICSL_receive_timer := 0;
 ICSL_send_timer := 0;
 ICSL_buff := tail(ICSL_buff);
 ICSL_STATE := ICSL_COMMS
 END;

LNT modelling
LNT [LNT] is one of the formal notations accepted by the CADP [CADP] verification framework.
The notation is a simplified variant of E-LOTOS [E-LOTOS], of which preserves the expressiveness
but adopting a more user-friendly and regular notations borrowed from imperative and functional
programming languages. A system is described in LNT as a parallel composition of (parametric)
processes, which synchronize upon a statically defined set of gates. A process can have a local set
of variables on which can operate with classical imperative instructions and statements.
The global environment is constituted by the data types and functions used by the processes.
A LNT specification is internally translated into the LOTOS algebraic notation and can be analyzed
using the CADP toolbox.

The schema adopted for the translation into the LNT language (umc2lnt) is instead quite different
from the one adopted in the ProB case. This time each UMC state machine is associated with an
independent LNT process. All the processes do not share any memory and interact through

Project Acronym – GA 881775 38 | 79

synchronous actions in the typical style of process algebras. Each process handles a local event
pool modelled as a FIFO buffer and is always available to accept synchronizations from other
processes willing to push a new message. Beyond accepting incoming messages, the LNT process
can internally evolve, performing internal steps that transform the local status of synchronizing
with other processes when sending messages towards other state machines.
The final system is finally obtained by composing in parallel all the processes which synchronize
the corresponding actions of sending and receiving a message.
The code below shows a sample fragment of the LNT transformation.

 UMC state machine LNT process

Class ICSL is process ICSL [..] is

 ... var mybuff: ICSL_BUFF, ... in
Behavior loop
 ... select
R4_ICSL_userconnind -- R4_ICSL_userconnind
NOCOMMSconnecting -> COMMS only if
 { SAI_CONNECT_confirm / mybuff /= nil and
 RBC_User.IRBC_User_Connect_indication; head(mybuff) = ISAI_CONNECT_confirm and
 connect_timer := max_connect_timer; STATE = NOCOMMSconnecting
 receive_timer := 0; then
 send_timer := 0; } IRBC_User_Connect_indication;
 ... connect_timer := ICSL_max_connect_timer;
end; receive_timer := 0;
 send_timer := 0;
 mybuff := tail(mybuff);
 STATE := COMMS
 end if
 []
 ...
 end select
 end loop
 end var
 end process

Translation Tools
It is outside of the project goals the generic implementation of translators for full UML (or full UMC
subset). For the purpose of this project our goal is limited to the translation of the set of features
used in our models. This initial approach may constitute the base for further developments.
Due to the drastic simplifications which have been made in defining the subset of features to be
used in the initial UML designs (e.g., no composite states, no parallel states, no deferred events,
no competition between triggered and completion transitions), the final effect of the
transformations is the generation of formal models which have almost the same readability than
the original UML model; this is helped by the fact that also the original comments present in the
UMC code are preserved in the generated ProB and LNT encodings.

The transformation of UMC models into ProB and LNT models are not the only programs that have
been developed. In order to compare and reason upon the formal semantics of the generated
formal models, several other translators have been considered useful. There is, in particular, an
explicit format of Labellel Transition Systems (LTS) that fits well the need of cross-platform
analysis: this is the .aut format, invented at INRIA (FR) and widely recognized by several
frameworks.
The KandISTI/UMC framework allows to save the statespace of a model in the .aut format, and the

Project Acronym – GA 881775 39 | 79

same occurs in the CADP[CADP] framework for the LNT language. What was missing is just the
possibility to save the Prob statespace of a system model in the same .aut format. Since ProB
already allows to save the model statespace in a simple textual format, we have developed a
probspace2aut program that just transforms that native Prob statespace in the .aut format.
These three translations have allowed us, starting from an initial UMC model, to compare the
statespaces of the UMC, ProB, LNT formal models and formally verify their equivalence.

Several other auxiliary tools, still operating on the .aut format have been developed to support
the formal analysis process. For instance,
- aut2fmc -- - transformation of explicit LTS statespace into code for KandISTI/FMC model checker
- plainaut2dot -- graphical visualization of LTS with the .dot Graphvix [GRA] notation.
- wtprepare -- transformation of explicit LTS with the identification of deadlocks and
 infinite loops of non-observable actions.

These tools complement the already mentioned:
- umc2prob
- umc2lnt
- procstatespace2aut
and the probtrace2sd tool (mentioned in D2.2) that can be used to display a ProB history trace in
the more user-friendly form of a message sequence diagram.

All these tools will be freely available, open-source, and retrievable from the Zenodo [ZenodoWP2]
repository containing all the WP2 complementary material (including all the developed models in
the various notations).

Project Acronym – GA 881775 40 | 79

Appendix B: Graphical semiformal UML state machine designs

Project Acronym – GA 881775 41 | 79

Project Acronym – GA 881775 42 | 79

Appendix C: Structured Natural Language Requirement Specifications

Requirements Specification for the Initiator CSL Component

Configuration Parameters
System parameters,

• connect_timer;

• send_timer;

• receive_timer.

External Interactions
The Initiator CSL can receive from the Initiator RBC component the following message:

• RBC_User_Data.request(RBC_data_value);

and can send to the RBC component the following messages:

• RBC_User_Connect.indication;

• RBC_User_Disconnect.indication;

• RBC_User_Data.indication(RBC_data_value).
The CSL can receive from the Initiator SAI component the following messages:

• SAI_CONNECT.confirm;

• SAI_DISCONNECT.indication;

• SAI_DATA.indication(message_type 21, SAI_data_value);

• SAI_ERROR.report;

and can send to the SAI component the following messages:

• SAI_CONNECT.request;

• SAI_DISCONNECT.request;

• SAI_DATA.request(message_type, SAI_data_value).

States
The CSL can be in the following four main states:

• Disconnected, when the communication is unactive;

• Connecting, when the communication is in the establishment phase;

• Connected, when the communication is active;

• Waiting, when the communication is between the Connected and Disconnected states.

External Guarantees

• CSL sends RBC_User_Data.indication messages only after an RBC_User_Connect.request not
followed by RBC_User_Disconnect.indication;

• CSL sends to the RBC component an RBC_User_Disconnect.indication message only after an
RBC_User_Connect.request message not already followed by RBC_User_Disconnect.indication;

• CSL sends to the RBC component an RBC_User_Connect.indication message only as first message
or after an RBC_User_Disconnect.indication not already followed by RBC_User_Connect.indication;

21 message_type may refer to either life_sign or RBC_data.

Project Acronym – GA 881775 43 | 79

• the first message (possibly) sent to the RBC component is an RBC_User_Connect.indication
message;

• the initiator CSL periodically sends to the SAI component either SAI_CONNECT.request or
SAI_DATA.request messages;

• if the initiator CSL, while in Connected (COMMS) state, does not receive any SAI_DATA.indication
message from the SAI for a certain specified amount of time, a SAI_DISCONNECT.request message
is sent to the SAI;

• the initiator CSL may send a SAI_DISCONNECT.request message only when in Connected (COMMS)
state;

• incoming messages are buffered and served with FIFO policy.

External Assumptions

• The SAI always replies with a SAI_DISCONNECT.indication message to SAI_DISCONNECT.request
messages issued by the CSL.

Behavioral Requirements

R1: At startup, the CSL is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state, the CSL immediately sends a SAI_CONNECT.request to the SAI component,
starts a connTimer, and moves to the Connecting state.

When in Connecting State

R3: When in Connecting state the connTimer expires, the CSL moves to Disconnected state.

R4: When in Connecting state is received a SAI_CONNECT.confirm from the SAI component, the CSL sends
an RBC_User_Connect.indication to the RBC component, starts both the sendTimer and the recTimer, and
moves to Connected state. It is allowed to set the sendTimer so that an initial lifesign is sent without delay.

When in Waiting State

R5: When in Waiting state is received a SAI_DISCONNECT.indication from the SAI component, the CSL
moves to Disconnected state.

When in Connected State

R6: When in Connected state the recTimer expires, the CSL sends a SAI_DISCONNECT.request to the SAI
component, an RBC_User_Disconnect.indication to the RBC and moves to Waiting state.

R7: Each time that in Connected state the sendTimer expires, the CSL sends a SAI_DATA.request with a
life_sign to the SAI component.

R8: When in Connected state is received an RBC_User_Data.request with RBC_data from the RBC
component, the CSL sends a SAI_DATA.request with such RBC_data to the SAI component.

Project Acronym – GA 881775 44 | 79

R9: When in Connected state is received a SAI_DATA.indication with SAI_data from the SAI component, the
CSL sends an RBC_User_Data.indication with such SAI_data to the RBC component and restarts the
recTimer.

R10: When in Connected state is received a SAI_DATA.indication with a life_sign from the SAI component,
the CSL restarts the recTimer.

R11: When in Connected state is received a SAI_DISCONNECT.indication from the SAI component, the CSL
sends an RBC_User_Disconnect.indication to the RBC component and moves to Disconnected state.

Discarding of Messages

RD1: When in Connecting state, the CSL discards any message except for SAI_CONNECT.confirm from the
SAI component.

RD2: When in Waiting state, the CSL discards any message except for SAI_DISCONNECT.indication from the
SAI component.

RD3: When in Connected state, the CSL component discards only SAI_CONNECT.confirm and
SAI_ERROR.report messages from the SAI component.

Project Acronym – GA 881775 45 | 79

Requirements Specification for the Initiator SAI Component

Configuration Parameters
Initialization kind: Execution Cycle option.
System parameters,

• for Execution Cycle procedure:

o maximum initialization delay

o Mec (limit of the execution cycle counters);

o K (max acceptable transmission delay for a message);

• for ACK procedure:

o ack_request_period;

o ack_response_timeout;

• for sequence number:

o N (limit of acceptable, consecutive message losses, N = 1 means no losses);

o M (limit of the sequence number values, which have range 0..M-1).

External Interactions
The Initiator SAI can receive from the Initiator CSL component the following messages:

• SAI_CONNECT.request;

• SAI_DISCONNECT.request;

• SAI_DATA.request (message_type22, RBC_data_value);

and can send to the CSL component the following messages:

• SAI_CONNECT.confirm;

• SAI_DISCONNECT.indication;

• SAI_DATA.indication(message_type, RBC_data_value);

• SAI_ERROR.report.
The SAI can receive from the EuroRadio Safety Layer (henceforth ER-SL) the following messages:

• Sa_CONNECT.confirm;

• Sa_DISCONNECT.indication;

• Sa_DATA.indication(message_type, data_value, ack_request, ack_response, sequence_number,

execution_cycle_number);

• Sa_ExecutionCycleStart(sequence_number, execution_cycle_counter);

and can send to the ER-SL the following messages:

• Sa_CONNECT.request;

• Sa_DISCONNECT.request;

• Sa_DATA.request(message_type, data_value, ack_request, ack_response, sequence_number,

execution_cycle_number);

• Sa_ExecutionCycle(sequence_number, execution_cycle_counter).

Internal Variables

• sequence_number;

• execution_cycle_counter;

22 message_type may refer to either life_sign or RBC_data.

Project Acronym – GA 881775 46 | 79

• last_received_sequence_number;

• last_received_execution_cycle_counter;

• execution_cycle_OFFSET.

States
The SAI can be in the following four main states:

• Connected, when the communication is active;

• Connecting, when the communication is in the establishment phase;

• Initializing, while performing the execution cycle start procedure;

• Disconnected, when the communication is unactive.

External Guarantees

• The SAI always replies with a SAI_DISCONNECT.indication message to SAI_DISCONNECT.request
messages issued by the CSL;

• the data messages delivered to the CSL are valid (i.e., arrived with a limited delay), not duplicated,
not reordered messages;

• no more than one data message per execution cycle is sent to the ER-SL;

• incoming messages are buffered and served with FIFO policy.

External Assuptions

• The ER-SL always eventually replies either with a Sa_DISCONNECT.indication or with a

SAI_CONNECT.confirm to Sa_CONNECT.request messages issued by the SAI;

• the initiator CSL, after having sent a SAI_CONNECT.request message to the SAI, does not send a

SAI_DISCONNECT.request message until SAI_CONNECT.indication messages is received.

Behavioral Requirements

R1: At startup, the SAI is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state is received a SAI_CONNECT.request from the CSL component, the SAI sends
a Sa_CONNECT.request to the ER-SL and moves to Connecting state.

R3: When in Disconnected state is received a SAI_DISCONNECT.request from the CSL component, the SAI
replies with a SAI_DISCONNECT.indication to the CSL component.

When in Connecting State

R4: When in Connecting state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI moves to
Disconnected state.

R6: When in Connecting state is received a Sa_CONNECT.confirm from the ER-SL, the SAI replies with a
Sa_ExecutionCycle(seqnum, ecnum) to the ER-SL and moves to the Initializing state, waiting for a
Sa_ExecutionCycleStart message from the ER-SL within a maximum initialization delay. The management

Project Acronym – GA 881775 47 | 79

of the Sa_ExecutionCycleStart parameters is done according to the requirements in the following Sequence
Numbers Management and Execution Cycle Counters Management sections.

When in Initializing State

R7: When in Initializing state the maximum initialization delay expires, the SAI sends an SAI_ERROR.report
to the CSL component, a Sa_DISCONNECT.request to the ER-SL and moves to Disconnected state.

R9: When in Initializing state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI moves to
Disconnected state.

R11: When in Initializing state is received a Sa_ExecutionCycleStart(seqnum, ecnum) from the ER-SL, the
SAI sends a SAI_CONNECT.confirm to the CSL component and moves to Connected state. The received
seqnum is accepted as initial remote sequence number and the ecnum is accepted as initial value of the
remote execution cycle counter. The execution_cycle_OFFSET variable is set as the difference between the
current execution cycle counter and the received execution cycle counter. While the
last_received_sequence_number variable is set to the received sequence number.

When in Connected State

R12: When in Connected state is received a SAI_DISCONNECT.request from the CSL component, the SAI
replies with a SAI_DISCONNECT.indication to the CSL component, sends a Sa_DISCONNECT.request to the
ER-SL, and moves to Disconnected state.

R13a: When in Connected state is received a SAI_DATA_request(msgtype, data) from the CSL component,
and yet no other data message has been sent in this cycle, the SAI sends a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) to the ER-SL.
The ackreq and ackresp parameters are set according to REQ_ACKs.
The seqnum parameter is set according to SEQ_NUMs and the ecnum parameter is set according to
REQ_ECNUMs.

R13b: When in Connected state is received a SAI_DATA.request(msgtype, data) from the CSL component,
but another data message has already been sent in this cycle, the SAI_DATA.request is saved in a FIFO
dataout buffer (see also REQ_OUTDATABUFF).

R14: Each time that in Connected state the set_ack_response expires, the SAI sends a SAI_ERROR.report to
the CSL component.

R15: When in Connected state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI sends a
SAI_DISCONNECT.indication to the CSL component and moves to Disconnected state.

R16: When in Connected state is received a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum,
ecnum) from the ER-SL we can have four cases, depending on the received seqnum and ecnum values (see
SEQ_NUMs and REC_ECNUMs Management).
* The seqnum is the one EXPECTED and ecnum is VALID: In this case the SAI sends a
SAI_DATA.indication(msgtype, data) to the CSL component.
* The seqnum is ACCEPTABLE and the ecnum is VALID: in this case the SAI sends
a SAI_DATA.indication(msgtype, data) and a SAI_ERROR.report to the CSL component.

Project Acronym – GA 881775 48 | 79

* The seqnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID): In this case the SAI sends a
SAI_ERROR.report to the CSL component and discards the Sa_DATA.indication message.
* The seqnum is NOT_ACCEPTABLE: In this case the SAI component sends a Sa_DISCONNECT.request to
ER-SL and a SAI_DISCONNECT.indication to the CSL component, and then moves to Disconnected state.

OUTDATA Buffer Management

REQ_OUTDATABUFF1: At the beginning of each cycle, if the dataout buffer is not empty, the first
SAI_DATA.request(msgtype, data) in the queue is removed and its data are used to send a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) to the ER-SL.
The ackreq, ackresp, seqnum, ecnum parameters are set according to REQ_ECNUM, REQ_ACK, and REQ
SEQNUM requirements.

REQ_OUTDATABUFF2: When the SAI moves from the Connected state to the Disconnected state, the
dataout buffer is emptied and the possibly waiting messages are discarded.

Execution Cycle Counters Management

REQ_ECNUM1: When entering in the Initializing state, the initial value of the execution cycle counter is set
to 0.

REQ_ECNUM2: While in the Initializing or Connected state, the execution cycle counter is incremented
modulo Mec at every cycle.

REQ_ECNUM3: When sending a Sa_ExecutionCycleStart(seqnum,ecnum) message or a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) the value of the ecnum parameter is set
to the current value of the execution cycle counter.

REQ_ECNUM4: When receiving a Sa_ExecutionCycleStart(seqnum,ecnum) message from the ER-SL, the
value of the ecnum parameter is used to compute the EC_OFFSET as difference between the current value
of the execution cycle counter and the received seqnum value.

REQ_ECNUM5: When receiving a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum, ecnum)
message from ER-SL, the message in considered VALID if the message delay is less than K, where the
message delay is computed as follows23:

 message_delay = (execution_cycle_counter - EC_OFFSET) mod Mec24) - ecnum;
 if message_delay < -Mec/2 then
 message_delay∶= message_delay + Mec;
 elsif message_delay > Mec/2 then
 message_delay∶= message_delay - Mec;
 end if

23 This is a simplification from what required by UNISIG-098 as we assume that the EC period is 1 cycle for both SAI
sides.
24 Also when applied to negative numbers, (N mod M) is assumed to be equal to ((N+M) mod M).

Project Acronym – GA 881775 49 | 79

Sequence Numbers Management

SEQ_NUM1: When entering in the state Connected, the sequence_number is set to 0.

SEQ_NUM2: When in Connecting state a Sa_ExecutionCycleStart(seqnum,ecnum) message is sent to the
ER-SL, the seqnum parameter is set to the current value of sequence_number.

SEQ_NUM3: When in the Initializing or Connected state a Sa_DATA.request(msgtype, data, ackreq, ackresp,
seqnum, ecnum) message is sent to the ER-SL, the seqnum parameter is set to the current value of
sequence_number, and the sequence_number is incremented by 1 mod M.

SEQ_NUM4: When in Initializing state is received a Sa_ExecutionCycleStart(seqnum,ecnum) message from
ER-SL, the value of the seqnum parameter is saved as last_received_sequence_number.

SEQ_NUM5: When in the Initializing or Connected state is received a Sa_DATA.indication (msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the ER-SL, the distance of the current message from the last received
one is computed as follows:

 distance ∶= seq_num - last_received_sequence_number;
 if (distance < -M/2) then {distance := distance + M};
 else if (distance > M/2) then {distance := distance - M};

If the distance value is equal to 1, the seqnum is considered EXPECTED.
If the distance value is lower than 1, the seqnum is considered OLD.
If the distance value is greater than 1 and less or equals to N, the seqnum is considered ACCEPTABLE.
If the distance value is greater than N, the seqnum is considered NOT_ACCEPTABLE.

ACK Management

REQ_ACK1: When in Connected state, the SAI periodically (with a configurable ack_request_period) sets an
ackreq flag to the first Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be
forwarded to the ER-SL and starts an ack_response_timer with a max_response_delay limit.
The ackreq flag is not set and the timer is not started if the SAI is still waiting for the response to a previous
ack request.

REQ_ACK2: When the ack_response_timeout expires, if a Sa_DATA.indication(msgtype, data, ackreq,
ackresp, seqnum, ecnum) message with an ackresp parameter set has not yet been received from the ER-
SL, the SAI sends a SAI_ERROR.report to the CSL component and restarts the ack request timer.

REQ _ACK3: While in Connected or Initializing state, when it is received a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the CSL component, the SAI sets the ackresp parameter in next
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be sent to the ER-SL.

Discarding of Messages

RD1: When in Disconnected state the SAI discards any message except for,

• SAI_CONNECT.request and SAI_DISCONNECT.request from the CSL component.

Project Acronym – GA 881775 50 | 79

RD2: When in Connecting state, the SAI discards any message except for,

• Sa_DISCONNECT.indication, and Sa_CONNECT.confirm from the ER-SL;

RD3: When in Initializing state, the SAI discards any message except for,

• Sa_DISCONNECT.indication and Sa_ExecutionCycleStart from the ER-SL;

RD4: When in Connected state, the SAI discards any message except for,

• Sa_DISCONNECT.indication and Sa_DATA.indication from the ER-SL;

• SAI_DISCONNECT.request, SAI_DATA.request from the CSL component.

Project Acronym – GA 881775 51 | 79

Requirements Specification for the Called CSL Component

Configuration Parameters
System parameters,

• send_timer;

• receive_timer.

External Interactions
The Called CSL can receive from the Called RBC component the following message:

• RBC_User_Data.request(RBC_data_value);

and can send to the RBC component the following messages:

• RBC_User_Connect.indication;

• RBC_User_Disconnect.indication;

• RBC_User_Data.indication(RBC_data_value).
The CSL can receive from the Called SAI component the following messages:

• SAI_CONNECT.indication;

• SAI_DISCONNECT.indication;

• SAI_DATA.indication(message_type 25, SAI_data_value);

• SAI_ERROR.report;

and can send to the SAI component the following messages:

• SAI_CONNECT.request;

• SAI_DISCONNECT.request;

• SAI_DATA.request(message_type, SAI_data_value).

States
The CSL can be in the following two states:

• Disconnected (NOCOMMS), when the communication is unactive;

• Connected (COMMS), when the communication is active.

External Guarantees

• The frequency of messages being sent by CSL to RBC is limited by an upper bound;

• the frequency of messages being sent by CSL to SAI is limited by an upper bound;

• CSL sends RBC_User_Data.indication messages only after an RBC_User_Connect.request not
followed by RBC_User_Disconnect.indication;

• CSL sends to the RBC component an RBC_User_Disconnect.indication message only after an
RBC_User_Connect.indication message not already followed by RBC_User_Disconnect.indication;

• the first message (possibly) sent to the RBC component is an RBC_User_Connect.indication
message;

• CSL sends to the RBC component an RBC_User_Connect.indication message only as first message
or after an RBC_User_Disconnect.indication not already followed by RBC_User_Connect.indication;

• the called CSL, while in the Connected (COMMS) state periodically sends to the SAI component
SAI_DATA.request messages;

25 message_type may refer to either life_sign or RBC_data.

Project Acronym – GA 881775 52 | 79

• if the called CSL, while in the Connected (COMMS) state, does not receive any SAI_DATA.indication
message from the SAI for a certain specified amount of time, a SAI_DISCONNECT.request message
is sent to the SAI;

• incoming messages are buffered and served with FIFO policy.

Behavioral Requirements

R1: At startup, the CSL is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state is received a SAI_CONNECT.indication from the SAI component, the CSL
sends an RBC_User_Connect_indication to the RBC component, starts both the sendTimer and the recTimer,
and moves to Connected state. It is allowed to set the sendTimer so that an initial lifesign is sent without
delay.

When in Connected State

R4: When in Connected state is received an RBC_User_Data.request(userdata) from the RBC component,
the CSL sends a SAI_DATA.request(RBC_data,userdata) to the SAI component.

R5: Each time that in Connected state the sendTimer expires, the CSL sends a SAI_DATA.request with a
life_sign to the SAI component.

R6: When in Connected state is received a SAI_DATA.indication with a life_sign from the SAI component,
the CSL restarts the recTimer.

R7: When in Connected state is received a SAI_DATA.indication with SAI_data from the SAI component, the
CSL sends an RBC_User_Data.indication with such SAI_data to the RBC component and restarts the
recTimer.

R8: When in Connected state is received a SAI_DISCONNECT.indication from the SAI component, the CSL
sends an RBC_User_Disconnect.indication to the RBC component and moves to Disconnected state.

R9: When in Connected state the recTimer expires, the CSL sends a SAI_DISCONNECT.request to the SAI
component, an RBC_User_Disconnect.indication to the RBC component and moves to Disconnected state.

Discarding of Messages

RD1: When in Disconnected state the CSL does not accept any kind of message except for
SAI_CONNECT.indication from the SAI component.

RD2: When in Connected state the CSL discards SAI_CONNECT.indication and SAI_ERROR.report messages
from the SAI component.

Project Acronym – GA 881775 53 | 79

Project Acronym – GA 881775 54 | 79

Requirements Specification for the Called SAI Component

Configuration Parameters
Initialization kind: Execution Cycle option.
System parameters,

• for Execution Cycle procedure:

o maximum initialization delay

o Mec (limit of the execution cycle counters);

o K (max acceptable transmission delay for a message);

• for ACK procedure:

o ack_request_period;

o ack_response_timeout;

• for sequence number:

o N (limit of acceptable, consecutive message losses, N = 1 means no losses);

o M (limit of the sequence number values, which have range 0..M-1).

External Interactions
The Called SAI can receive from the Called CSL component the following messages:

• SAI_DISCONNECT.request;

• SAI_DATA.request(message_type26, RBC_data_value);

and can send to the CSL the following messages:

• SAI_CONNECT.indication;

• SAI_DISCONNECT.indication;

• SAI_DATA.indication(message_type, RBC_data_value);

• SAI_ERROR.report.
The SAI can receive from the EuroRadio Safety Layer (henceforth ER-SL) the following messages:

• Sa_CONNECT.indication;

• Sa_DISCONNECT.indication;

• Sa_DATA.indication(message_type, SAI_data_value, ack_request, ack_response,

sequence_number, execution_cycle_number);

• Sa_ExecutionCycleStart(sequence_number, execution_cycle_counter);

and can send to the ER-SL the following messages:

• Sa_CONNECT.response;

• Sa_DISCONNECT.request;

• Sa_DATA.request(message_type, SAI_data_value, ack_request, ack_response, sequence_number,

execution_cycle_number);

• Sa_ExecutionCycle(sequence_number, execution_cycle_counter).

Internal Variables

• sequence_number;

• execution_cycle_counter;

• last_received_sequence_number;

26 message_type may refer to either life_sign or RBC_data.

Project Acronym – GA 881775 55 | 79

• last_received_execution_cycle_counter;

• execution_cycle_OFFSET.

States
The SAI can be in the following four main states:

• Connected, when the communication is active;

• Connecting, when the communication is in the establishment phase;

• Initializing, while performing the execution cycle start procedure;

• Disconnected, when the communication is unactive.

External Guarantees

• The data messages delivered to the CSL are valid (i.e., arrived with a limited delay), neither
duplicated nor reordered;

• no more than one data message per execution cycle is sent to the ER-SL;

• incoming messages are buffered and served with FIFO policy.

Behavioral Requirements

R1: At startup, the SAI is in Disconnected state.

When in Disconnected State

R2: When in Disconnected state is received a Sa_CONNECT.indication from the ER-SL, the SAI replies with a
Sa_CONNECT.response to the ER-SL and moves to Connecting state.

When in Connecting State

R2b: When in Connecting state is received a Sa_CONNECT.indication from the ER-SL, the SAI replies with a
Sa_CONNECT.response to the ER-SL and remains in the Connecting state.

R3: When in Connecting state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI moves to
Disconnected state.

R5: When in Connecting state is received a Sa_ExecutionCycleStart(seqnum, ecnum) from the ER-SL, the SAI
replies with a Sa_ExecutionCycle(seqnum, ecnum) to the ER-SL, starts an initTimer set to the maximum
initialization delay, and moves to Initializing state. The management of the Sa_ExecutionCycleStart
parameters are done according to the rules in the Sequence Numbers Management and Execution Cycle
Counters Management sections.

When in Initializing State

R2c: When in Initializing state is received a Sa_CONNECT.indication from the ER-SL, the SAI replies with a
Sa_CONNECT.response to the ER-SL and moves to Connecting state.

R6: When in Initializing state the maximum initialization delay expires, the SAI sends a SAI_ERROR.report
to the CSL component and moves to Disconnected state.

Project Acronym – GA 881775 56 | 79

R8: When in Initializing state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI moves to
Disconnected state.

R9: When in Initializing state is received a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum,
ecnum) from the ER-SL may have four cases, depending on the received seqnum and ecnum values (see
REQ SEQ_NUMs and REC_ECNUMs).
* The seqnum is the one EXPECTED and ecnum is VALID: In this case the SAI moves to Connected state and
sends both a SAI_CONNECT.indication and a SAI_DATA.indication(msgtype, data) to the CSL component.
* The seqnum is ACCEPTABLE and the ecnum is VALID: in this case the SAI moves to Connected state and
sends a SAI_CONNECT.indication, a SAI_DATA.indication(msgtype, data) and a SAI_ERROR.report to
the CSL component.
* The seqnum is NOT_ACCEPTABLE: in this case the SAI component sends a Sa_DISCONNECT.request to ER-
SL and moves to Disconnected state.
* The seqnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID): In this case the SAI sends a
SAI_ERROR.report to the CSL component and discards the Sa_DATA.indication message.

When in Connected State

R10: When in Connected state is received a SAI_DISCONNECT.request from the CSL component, the SAI
replies with a SAI_DISCONNECT.indication to the CSL component, sends a Sa_DISCONNECT.request to the
ER-SL, and moves to Disconnected state.

R11: When in Connected state is received a Sa_DISCONNECT.indication from the ER-SL, the SAI sends a
SAI_DISCONNECT.indication to the CSL component and moves to Disconnected state.

R12: When in Connected state is received a Sa_CONNECT.indication from the ER-SL, the SAI replies with a
Sa_CONNECT.response to the ER-SL, sends a SAI_DISCONNECT.indication to the CSL component, and moves
to Connecting state.

R13a: When in Connected state is received a SAI_DATA_request(msgtype, data) from the CSL component,
and yet no other data message has been sent in this cycle, the SAI sends a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) to the ER-SL.
The ackreq and ackresp parameters are set according to REQ_ACKs.
The seqnum parameter is set according to SEQ_NUMs and the ecnum parameter is set according to
REQ_ECNUMs.

R13b: When in Connected state is received a SAI_DATA.request(msgtype, data) from the CSL component,
but another data message has already been sent in this cycle, the SAI_DATA.request is saved in a FIFO
dataout buffer (see also REQ_OUTDATABUFF).

R14: When in Connected state is received a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum,
ecnum) from the ER-SL we can have four cases, depending on the received seqnum and ecnum values (see
SEQ_NUMs and REC_ECNUMs).
* The seqnum is the one EXPECTED and ecnum is VALID: In this case the SAI sends a

SAI_DATA.indication(msgtype, data) to the CSL component.
 Depending on the received values of the ackreq and ackresp parameters, appropriate actions are

performed (see REQ_ACKs).
* The seqnum is ACCEPTABLE and the ecnum is VALID: in this case the SAI sends

a SAI_DATA.indication(msgtype, data) and a SAI_ERROR.report to the CSL component.

Project Acronym – GA 881775 57 | 79

 Depending on the received values of the ackreq and ackresp parameters, appropriate actions are
performed (see REQ_ACKs).

* The seqnum is OLD or (the seqnum is ACCEPTABLE and the ecnum is VALID): In this case the SAI sends a
SAI_ERROR.report to the CSL component and discards the Sa_DATA.indication message.

* The seqnum is NOT_ACCEPTABLE: In this case the SAI component sends a Sa_DISCONNECT.request to
ER-SL, a SAI_DISCONNECT.indication to the CSL component, and then moves to Disconnected state.

OUTDATA Buffer Management

REQ_OUTDATABUFF1: At the beginning of each cycle, if the dataout buffer is not empty, the first
SAI_DATA.request(msgtype, data) in the queue is removed and its data are used to send a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) to the ER-SL.
The ackreq, ackresp, seqnum, ecnum parameters are set according to REQ_ECNUM, REQ_ACK, and REQ
SEQNUM requirements.

REQ_OUTDATABUFF2: When the SAI moves from the Connected state to the Disconnected state, the
dataout buffer is emptied and the possibly waiting messages are discarded.

Execution Cycle Counters Management

REQ_ECNUM1: When entering in the Initializing state, the initial value of the execution cycle counter is set
to 0.

REQ_ECNUM2: While in the Initializing or Connected state, the execution cycle counter is incremented
modulo Mec at every cycle.

REQ_ECNUM3: When sending a Sa_ExecutionCycleStart(seqnum,ecnum) message or a
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) the value of the ecnum parameter is set
to the current value of the execution cycle counter.

REQ_ECNUM4: When receiving a Sa_ExecutionCycleStart(seqnum,ecnum) message from the ER-SL, the
value of the ecnum parameter is used to compute the EC_OFFSET as difference between the current value
of the execution cycle counter and the received seqnum value.

REQ_ECNUM5: When receiving a Sa_DATA.indication(msgtype, data, ackreq, ackresp, seqnum, ecnum)
message from ER-SL, the message in considered VALID if the message delay is less than K, where the
message delay is computed as follows27:

 message_delay = (execution_cycle_counter - EC_OFFSET) mod Mec28) - ecnum;
 if message_delay < -Mec/2 then
 message_delay∶= message_delay + Mec;
 elsif message_delay > Mec/2 then
 message_delay∶= message_delay - Mec;
 end if

27 This is a simplification from what required by UNISIG-098 as we assume that the EC period is 1 cycle for both SAI
sides.
28 Also when applied to negative numbers, (N mod M) is assumed to be equal to ((N+M) mod M).

Project Acronym – GA 881775 58 | 79

Sequence Numbers Management

SEQ_NUM1: When entering in the state Connected, the sequence_number is set to 0.

SEQ_NUM2: When in Connecting state a Sa_ExecutionCycleStart(seqnum,ecnum) message is sent to the
ER-SL, the seqnum parameter is set to the current value of sequence_number.

SEQ_NUM3: When in the Initializing or Connected state a Sa_DATA.request(msgtype, data, ackreq, ackresp,
seqnum, ecnum) message is sent to the ER-SL, the seqnum parameter is set to the current value of
sequence_number, and the sequence_number is incremented by 1 mod M.

SEQ_NUM4: When in Initializing state is received a Sa_ExecutionCycleStart(seqnum,ecnum) message from
ER-SL, the value of the seqnum parameter is saved as last_received_sequence_number.

SEQ_NUM5: When in the Initializing or Connected state is received a Sa_DATA.indication (msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the ER-SL, the distance of the current message from the last received
one is computed as follows:

 distance ∶= last_received_sequence_number – seq_num;
 if (distance < -M/2) then {distance := distance + M };
 else if (distance > M/2) then {distance := distance - M };

If the distance value is equal to 1, the seqnum is considered EXPECTED.
If the distance value is lower than 1, the seqnum is considered OLD.
If the distance value is greater than 1 and less or equals to N, the seqnum is considered ACCEPTABLE.
If the distance value is greater than N, the seqnum is considered NOT_ACCEPTABLE.

ACK Management

REQ_ACK1: When in Connected state, the SAI periodically (with a configurable ack_request_period) sets an
ackreq flag to the first Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be
forwarded to the ER-SL and starts an ack_response_timer with a max_response_delay limit.
The ackreq flag is not set and the timer is not started if the SAI is still waiting for the response to a previous
ack request.

REQ_ACK2: When the ack_response_timeout expires, if a Sa_DATA.indication(msgtype, data, ackreq,
ackresp, seqnum, ecnum) message with an ackresp parameter set has not yet been received from the ER-
SL, the SAI sends a SAI_ERROR.report to the CSL component and restarts the ack request timer.

REQ _ACK3: While in Connected or Initializing state, when it is received a Sa_DATA.request(msgtype, data,
ackreq, ackresp, seqnum, ecnum) from the CSL component, the SAI sets the ackresp parameter in next
Sa_DATA.request(msgtype, data, ackreq, ackresp, seqnum, ecnum) message to be sent to the ER-SL.

Discarding of Messages

RD1: When in Disconnected state the SAI discards any message except for Sa_CONNECT.indication from the
ER-SL.

RD2: When in Connecting state, the SAI discards any message except for,

Sa_DISCONNECT.indication and Sa_ExecutionCycleStart from the ER-SL;

Project Acronym – GA 881775 59 | 79

RD3: When in Initializing state, the SAI discards any message except for,

Sa_DISCONNECT.indication and Sa_DATA.indication from the ER-SL;

RD4: When in Connected state, the SAI discards any Sa_ExecutionCycleStart message from the ER-SL.

Project Acronym – GA 881775 60 | 79

Appendix D: Difformities with respect to the D2.3 Requirements

In this Appendix we summarize the semantic differences between the initial D2.3 and new D2.5
requirements in terms of completeness, consistency, and implementation dependent choices.
These are highlighted as Remarks: annotations.
Some observations are also made on the initial D2.3 requirements about minor presentation
points related to not clearly presented aspects. These are highlighted as Presentation:
annotations.

CSL

REQ_001 If configured as initiator, when switched on (communication in state NOCOMMS), the CSL is

responsible to send to underlying Layers the command for the establishment of a safe connection with

the partner RBC, and to command re-establishment of safe connection when it is considered lost

(communication in state NOCOMMS).

Presentation: The requirement overlaps with REQ_012.

Remarks: For CSL configured as initiator the NOCOMMS state is logically constituted by three

substates, that is: Waiting, Ready, and Connecting. When switched on the CSL is in NOCOMMS Ready

substate.

REQ_002 After sending the command for the establishment of the connection, a timer shall be started by the

initiator. If the timer expires before the connection is established, a new connection request shall be

generated.
-

-

REQ_003 If configured as called, the CSL shall wait for report from underlying Layers that a safe connection is

established.

Presentation: The requirement overlaps with REQ_014.

-

REQ_004 The CSL shall discard any message either from User functions or from partner CSL before a

confirmation of successful clock offset estimation (TTS option) or EC initialization has been received

from SAI sublayer.

Presentation: There is no need to refer to the specific SAI option for initializing the safe connection.

Data messages are always discarded when not in COMMS state.

-

REQ_005 The CSL shall forward a received User message to RBC User functions only if all checks specified in

supervision functions (7.2.2) are passed.
Presentation: Checks over User messages are performed by SAIs instead of CSLs. The requirement

overlaps with REQ_017.

Remarks: When in NOCOMMS states User messages are not forwarded.

REQ_006 Loss of safe connection shall be detected by the CSL reading reports from the underlying SFM

(SAI_DISCONNECT.indication).
-

Project Acronym – GA 881775 61 | 79

-

REQ_007 If a report from underlying Layers is received that safe connection is lost, the CSL shall consider the

communication in state NOCOMMS.

Remarks: The initiator CSL moves to NOCOMMS Ready state, while the called CSL moves to

NOCOMMS state.

REQ_008 TTS option: after reception of report from SAI that the clock offset procedure has been completed, the

CSL shall ensure that a message is sent to the partner RBC at the expiration of a configurable transmit

time interval (reset at the sending of any message). If no User message needs to be sent, CSL is

responsible to send a life sign message (see Figure 4);

EC option: After reception of report from SAI that the EC initialization procedure has been completed,

the sending of messages is scheduled cyclically every (configurable) TC. If no request to send messages

from User application is pending, a life sign is sent by CSL. If requests are pending, only one message

per cycle is sent.
Presentation: The requirement mixes both SAI and CSL aspects.
Remarks: When moving in COMMS state there is no User message to be sent; a first life sign can be

sent without waiting for the expiration of the transmit time (implementation freedom).

REQ_009 After reception of report from SAI that the clock offset procedure or EC initialization has been

completed, the condition where no valid messages are received within a configurable time shall be

recognized by the CSL. This is achieved by means of a configurable receive timer (started at the

reception of report from SAI on completion of initializations and reset at the reception of any message);

if no message (User or life sign) is received within such configurable receive time interval, the

communication shall be considered in state NOCOMMS.
Presentation: The requirement mixes both SAI and CSL aspects.
-

REQ_010 When communication is in state NOCOMMS, the CSL shall not accept/forward messages neither from

its own RBC User functions nor from partner RBC; when switching to NOCOMMS, if the safe

connection is still active, the CSL shall send a termination order (SAI_DISCONNECT.request).

Note: when informed that the communication is in state NOCOMMS, the User functions will terminate

all transactions.
Presentation: This requirement overlaps with REQ_015. The note describes an aspect not related to

the CSL behavior.

-

REQ_011 CSL can switch the communication from state NOCOMMs to state COMMS only when underlying

Layers confirm the re-establishment of a safe connection.

Note: communication in state COMMS is communicated to User functions, that will be able to restart

management of transactions.

Presentation: The requirement partly overlaps with REQ_019.

-

Project Acronym – GA 881775 62 | 79

REQ_012 If configured as initiator, at start-up, and when loss of safe connection is detected, the CSL shall send

safe connection init order to from SFM (SAI_CONNECT.request).

Presentation: The requirement overlaps with REQ_001.

-

REQ_013 If configured as initiator, at start-up, and when loss of safe connection is detected, the CSL shall wait

for reception of safe connection established confirmation from SFM (SAI_CONNECT.confirm).

Presentation: The requirement overlaps with REQ_008, REQ_009, REQ_011, and REQ_019.
Remarks: SAI_CONNECT.confirm message is accepted in NOCOMMS Connecting state only.

REQ_014 If configured as called, at start-up, and when loss of safe connection is detected, the CSL shall wait for

reception of safe connection established confirmation from SFM (SAI_CONNECT.indication).

Presentation: The requirement overlaps with REQ_003.

-

REQ_015 In case loss of communication is detected due to no valid messages received within a configurable time,

the CSL shall send a safe connection termination order to SFM (SAI_DISCONNECT.request).

Presentation: The requirement overlaps with REQ_010.

-

REQ_016 While the safe communication is active (state COMMS), the CSL is responsible of sending User

messages received from RBC User functions to partner RBC.

Presentation: CSL sends to the SAI User messages coming from its own RBC.

CSL sends to its own RBC User messages coming from SAI. The requirement overlaps with REQ_020.

-

REQ_017 While the safe communication is active (state COMMS), the CSL is responsible of checking User

messages received from partner RBC and forwarding (if checks are passed, see 7.2) to RBC User

functions.

Presentation: The requirement describes unnecessary SAI related aspects. CSL receives RBC User

messages from the SAI. The requirement overlaps with REQ_021.
-

REQ_018 The CSL is responsible of reading reports from SFM.

Presentation: The requirement overlaps with several other requirements without reporting anything

relevant.
-

REQ_019 The CSL is responsible of sending reports to RBC User functions about state of communication

(COMMS/NOCOMMS).

Presentation: The requirement partly overlaps with REQ_011, REQ_022, and REQ_023.
Remarks: State switching like NOCOMMS Waiting to NOCOMMS Ready, to NOCOMMS Connecting,

and vice versa are not reported to RBC User functions.

REQ_020 CSL shall receive from User functions the messages to be forwarded to peer RBC User when in state

COMMS.
Presentation: The requirement overlaps with REQ_016.

-

REQ_021 CSL shall forward to User functions the forwarding of messages received from communication partner.

Project Acronym – GA 881775 63 | 79

Presentation: The requirement overlaps with REQ_017.

-

REQ_022 CSL shall send to User functions the reports on loss of communication (missing life sign - state

NOCOMMS).
Presentation: The requirement overlaps with REQ_019.

-

REQ_023 CSL shall send to User functions the reports on state of safe connection state change

(COMMS/NOCOMMS).
Presentation: The requirement overlaps with REQ_019.

-

REQ_024

• SAI_CONNECT.request shall be used by initiator CSL to command the establishment of a safe

connection

• SAI_CONNECT.indication shall be used by called SAI to notify to the CSL the connection

establishment request

• SAI_CONNECT.response shall be used by called CSL to accept the connection request.

• SAI_CONNECT.confirm shall be used by the initiator SAI entity to inform the CSL about the

successful establishment of the safe connection.
-

-

REQ_025 • SAI_DATA.request shall be used by CSL to transmit data to the peer entity.

• SAI_DATA.indication shall be used to indicate to the CSL that data have been received successfully

from the peer entity.
-

-

REQ_026 • SAI_DISCONNECT.request shall be used by the CSL to enforce a release of the safe connection.

• SAI_DISCONNECT.indication shall be used to inform the CSL about a safe connection release.
-

-

REQ_027 SAI Error Report shall be sent from SAI to CSL in case of errors detection by SAI (deletion,

resequencing, delay, repetition).

Presentation: The requirement describes only aspects related to SAI.
-

Project Acronym – GA 881775 64 | 79

SAI

REQ_028 If SAI receives a command to establish a safe connection from CSL (CSL configured as initiator), SAI

shall forward this order to ER Layer.

-

Remarks: The command to establish a safe connection should be discarded by SAI if it arrives in a

state different from NOCONN Disconnected. Furthermore, once the order to establish a safe

connection to the ER Layer has been forwarded, the SAI moves to NOCONN Connecting state. At

startup, the SAI is in NOCONN Disconnected state.

REQ_029 In case initiator, when SAI receives a confirmation of safe connection established from ER Layer, SAI

shall start the initialization procedure (initial clock offset estimation for TTS option or initialization

for EC option).

Presentation: The requirement partly overlaps with REQ_044.

Remarks: A confirmation of safe connection should be discarded by SAI if it arrives in a state different

from NOCONN Connecting.

When in NOCONN Connecting state is received a connect confirmation from the ER Layer, the SAI

moves to NOCONN Initializing state.

REQ_030 In case called, if SAI receives a safe connection establishment indication from the ER Layer, SAI shall

send a confirmation to ER Layer and wait for the start of the initialization procedure (initial clock

offset estimation for TTS option and initialization for EC option).

-

Remarks: When in NOCONN Disconnected, NOCONN Connecting, or NOCONN Initializing state is

received a Sa_CONNECT.indication from the ER Layer, the SAI replies with a

Sa_CONNECT.response to the ER Layer and moves to NOCONN Connecting state.

If a Sa_CONNECT.indication is received in NOCONN Connected state, the SAI sends a

Sa_CONNECT.response to the ER Layer and a SAI_DISCONNECT.indication to the CSL.

REQ_031 (Robustness requirement) Considering that the communicating RBCs might be affected by loss of

communication at different time, the called RBC protocols shall accept the re-establishment of a safe

connection even if they are still considering the communication not lost.

Presentation: The requirement does not report any behavior of the SAI.

Remarks: Robustness requirements are inconsequential compared to those describing a precise

behavior of the component.

From REQ_032 to REQ_043 is described the Triple Time Stamp (TTS) option, which has not been

considered in this exercising of the demonstrator.

Project Acronym – GA 881775 65 | 79

REQ_044

When ER sublayer reports the successful establishment of safe connection, SAI initiating the safe

connection establishment (initiator) shall send an ExecutionCycleStart message containing its initial

value of EC counter and the EC period.

Presentation: The requirement partly overlaps with REQ_029, REQ_068, and REQ_069.

The required management of the parameters is not explicitly specified. It is necessary to investigate

the UNISIG-SUB-98 standard for understanding their use. In fact, based on the UNISIG-SUB-98 the

ExecutionCycleStart message also carries a sequence number parameter.

Remarks: When in Connecting state is received a SA_Connect.confirm from the ER-SL, the SAI

(configured as initiator) replies with a Sa_ ExecutionCycleStart(sequence number, current EC value)

to the ER-SL and moves to Initializing state.

In the modelled scenarios, the EC period is assumed to be either implicitly equal to 1 for both sides or

removed from the actual parameters. The flowing of time is modelled in an approximate way.

SAI should start the safe connection establishment phase only when, in NOCONN Connecting state, is

received a connect confirmation from the ER Layer. Otherwise, it just discards the message.

The expected use of EC values and sequence numbers is not explicitly described. The UNISIG-SUB-

98 does not completely specify the way in which EC values are used in the computation of OFFSET

and delays as well. Especially when we are in presence of values which have overflowed from their

maximum allowed value.

REQ_045 The responder SAI shall answer to an ExecutionCycleStart message with an ExecutionCycleStart

message containing its initial value of EC counter and the EC period and report to the CSL that the

initialization procedure has been completed.

Presentation: Part of the requirement overlaps with REQ_051, REQ_068, and REQ_069.

The required management of the parameters is not explicitly specified. It is necessary to investigate the

UNISIG-SUB-98 standard for understanding their use. In fact, based on the UNISIG-SUB-98 the

ExecutionCycleStart message also carries a sequence number parameter.

Remarks: On the responded side, the initialization procedure is considered completed NOT when the

called SAI replies to the ExecutionCycleStart message with another ExecutionCycleStart message, but

when it receives a first Sa_DATA.indication from the ER Layer. When the first Sa_DATA.indication

from the ER Layer is received the called SAI moves to the CONN Connected state and sends a

SAI_CONNECT.indication to the CSL, notifying that the initialization procedure has been completed.

The expected use of EC values and sequence numbers is not explicitly described. The UNISIG-SUB-

98 does not completely specify the way in which EC values are used in the computation of OFFSET

and delays as well. Especially when we are in presence of values which have overflowed from their

maximum allowed value.

REQ_046 After sending any of the above listed messages, the SAI shall start a timer with configurable time out.

If the time out expires before the reception of a new message (that is a User message or a life sign, in

the case of the responder SAI) the procedure is cancelled, and the error is reported to the CSL.

-

Remarks: If the initialization procedure does not complete within the required timeout, the SAI moves

from NOCONN Initializing state to NOCONN Disconnected state and sends an SAI_Error.report to the

CSL.

REQ_047 At the reception of the message from the responder, the initiator SAI shall inform the CSL that the

initialization procedure has been completed.

-

Remarks: The SAI sends a SAI_CONNECT.confirm to the CSL and moves to CONN Connected

state only when the ExecutionCycleStart reply arrives in NOCONN Connecting state. Otherwise, the

reply is simply discarded without further actions by SAI.

Project Acronym – GA 881775 66 | 79

REQ_048 With a configurable period, by each communicating party, SAI shall ensure that an application message

with request of ACK is sent and start a timer (note: here the ACK specified in message type is meant,

not the ACK managed at User application level inside the User messages).

-

Remarks: If the configurable period for requesting an ack expires and the previous ack request has not

received a response yet, the request is not repeated.

REQ_049 At the request of an ACK, the responding SAI shall ensure that an application message with ACK is

sent.

-

-

REQ_050 If the application message with ACK is not received before expiration of the timer an error is reported

to the CSL.

-

-

REQ_051 For TTS option: No User message shall be accepted by SAI neither from CSL nor from ER sublayer if

the clock offset estimation has not been completed (report from SAI to CSL).

For EC option : No User message shall be accepted by SAI neither from CSL nor from ER sublayer if

the initialization procedure for EC parameters has not been completed (report from SAI to CSL).

Presentation: For EC option, the requirement overlaps with REQ_045.

-

REQ_052 For messages sent by CSL (including life sign messages), SAI shall recognize the destination of the

message from the content of request received from CSL.

-

Remarks: In our scenario we have only one initiator side statically connected with a called side. The

destination of messages is implicit and not subject to changes.

REQ_053 Messages originated by SAI itself (e.g., clock offset estimation) shall contain indication of destination.

-

Remarks: In our scenario we have only one initiator side statically connected with a called side. The

destination of messages is implicit and not subject to changes.

REQ_054 Messages originated by SAI itself (e.g., clock offset estimation) shall comply with SUBSET-098.

Presentation: Not self-contained requirement. Some SAI information can only be acquired by reading

the SUBSET-098.

-

REQ_055 The SAI shall add a message type to User data to be sent. See SUBSET-098.

Presentation: Not self-contained requirement. Some SAI information can only be acquired by

reading the SUBSET-098.

-

REQ_056 The SAI shall add a sequence number to User data to be sent; the sequence number shall be increased

by one at any new message sent (irrespective of its type).

-

Remarks: The requirement should mention the initial sequence number exchanged between SAIs,

which is carried by an EC message.

After reaching their maximum value, the sequence number series restarts from 0.

Project Acronym – GA 881775 67 | 79

Sequence numbers are added onto Sa_DATA.request and ExecutionCycleStart messages.

REQ_058 For EC option, the SAI shall add to the User data to be sent the current value of the cycle counter EC.

-

-

REQ_059 A received User message shall be forwarded to CSL only if all checks specified in Supervision functions

are passed.

-

-

REQ_060 When an order for termination is received from CSL, SAI shall forward it to ER sublayer.

-

Remarks: The initiator SAI should always reply to a SAI_DISCONNECT.request sent by the CSL with

a SAI_DISCONNECT.indication, also when such message is received in the NOCONN Disconnected

state.

When in NOCONN Disconnected state the called SAI receives an order of termination from CSL, such

order is discarded.

REQ_061 When an indication of disconnection is received from ER sublayer, SAI shall forward it to the CSL.

 -

Remarks: If an indication of disconnection (Sa_DISCONNECT.indication) is received from the ER

when the initiator or called SAI is in a state different from the NOCONN Connected one, the indication

of disconnection is not forwarded to the CSL.

REQ_062 The receiver SAI shall accept any value for the sequence number of the first message after establishment

of safe communication.

-

-

REQ_063 If N (configurable) consecutive messages are missing in the sequence of the received messages, i.e., if

a message whose sequence number is greater that the sequence number of the last correctly received

message + N, the message shall be ignored, and the SAI shall send an order to terminate the safe

connection to ER sublayer and report its state to CSL.

-

Remarks: The arithmetic for counting the number of consecutive missing messages should also take

into consideration the possibility of overflows (i.e., sequence numbers restarting from zero after

reaching their allowed maximum value). This aspect is overlooked in the UNISIG_SUBSET_098

standard as well.

REQ_064 In case the sequence number of a received message is greater than the sequence number of the last

correctly received message + 1 and lower than the sequence number of last correctly received message

+ N, the message shall not be discarded, and SAI shall report to CSL the occurrence of the

communication error.

-

Remarks: The arithmetic for counting the number of consecutive missing messages should also take

into consideration the possibility of overflows (i.e., sequence numbers restarting from zero after

reaching their allowed maximum value). This aspect is overlooked in the UNISIG_SUBSET_098

standard as well.

The order in which error reports and the data messages should be sent is not specified.

Project Acronym – GA 881775 68 | 79

The implementation must take a choice, but any choice is not likely to create interoperability problems.

REQ_065 If the sequence number of the received message is lower or equal to the sequence number of an already

received message, the new message shall be discarded, and SAI shall report to CSL the occurrence of

the communication error.

-

Remarks: The arithmetic for counting the number of consecutive missing messages should also take

into consideration the possibility of overflows (i.e., sequence numbers restarting from zero after

reaching their allowed maximum value). This aspect is overlooked in the UNISIG_SUBSET_098

standard as well.

REQ_066 The SAI of the receiver entity shall recognize a message that, after sending, has been delayed in the

communication channel for a time greater than a configurable value.

-

-

REQ_068 For EC option the acceptance of a message shall be checked according to SUBSET-098.

Presentation: Not self-contained requirement. Some SAI information can only be acquired by

reading the SUBSET-098.

Remarks: The arithmetic for evaluating the occurred delay should take into consideration the

possibility of overflows (Execution Cycles numbers restarting from zero after reaching their allowed

maximum value). This aspect is overlooked in the UNISIG_SUBSET_098 standard as well.

REQ_069 For EC option the corrections specified in SUBSET-098.

Presentation: Not self-contained requirement. Some SAI information can only be acquired by reading

the SUBSET-098.

Remarks: EC corrections are not modelled.

The following requirements add details to the description of SAI behaviors provided by the previous

ones, by mapping logical events to specific interface signals (e.g., Sa_DISCONN.indication,

SAI_DATA.request, etc.).

REQ_070 At start-up, and when loss of safe connection is detected (Sa_DISCONN.indication), the SAI, if

configured as initiator, shall wait for order from CSL.

-

-

REQ_071 At start-up, and when loss of safe connection is detected (Sa_DISCONN.indication), the SAI, if

configured as called, shall wait for reception of safe connection established confirmation from ER

sublayer (Sa_CONN.indication).

-

-

REQ_072 In case loss of safe connection is detected, the SAI shall send a safe connection report to CSL

(SAI.DISCONN.indication).

-

-

Project Acronym – GA 881775 69 | 79

REQ_073 The SAI shall be responsible of Sending User messages received from CSL (SAI_DATA.request) to

partner RBC (through Sa_DATA.request).

-

-

REQ_074 The SAI shall be responsible of Checking User messages received from partner RBC (through

Sa_DATA.indication) and forwarding (if checks are passed) to CSL (SAI_DATA.indication).

-

-

REQ_075 The SAI shall be responsible of Reading reports from ER sublayer (Sa_DISCONNECT.indication).

-

-

REQ_076 The SAI shall be responsible of Sending reports to CSL (SAI.DATA.indication,

SAI.CONNECT.indication and SAI.DISCONNECT.indication).

-

-

REQ_077 Sa_CONNECT.request shall be used by initiator SAI to command the establishment of a safe

connection.

Sa_CONNECT.indication shall be used by called ER to notify to the SAI the connection establishment

request.

Sa_CONNECT.response shall be used by called SAI to accept the connection request. The response

shall always be sent automatically without any authorization from upper layers.

Sa_CONNECT.confirm shall be used by the initiator ER entity to inform the SAI about the successful

establishment of the safe connection.

-

-

REQ_078 Sa_DATA.request shall be used by SAI to transmit application data to the peer entity.

Sa_DATA.indication shall be used to indicate to the SAI that data have been received successfully from

the peer entity.

-

-

REQ_079 Sa_DISCONNECT.request shall be used by the SAI to enforce a release of the safe connection.

Sa_DISCONNECT.indication shall be used to inform the SAI about a safe connection release.

-

-

Project Acronym – GA 881775 70 | 79

Appendix E: Model reduction techniques

The possibility of representing all the possible evolutions of a system in the form of an explicit LTS
(e.g., in the .aut format) paves the way to the exploitations of the many results that have been
accumulated through the years upon these structures.

The most basic to minimize a single LTS is to reduce it according to the so-called strong
bisimulation. This minimization essentially reduces the statespace removing duplicated branches
but preserving the same logical structure.
An example of this equivalence/reduction is shown in the Figure 9.

Figure 9 two strongly equivalent LTS

The nice property of strong equivalence [STRONG] is that the two behaviors are completely
equivalent, i.e., there is no property reasoning on the labels of the LTS that is satisfied by one model
but not by the other. All action-based temporal logics are adequate w.r.t. this equivalence.
Moreover, this equivalence is also a congruence w.r.t. parallel composition [Compositional]. This
means that we have a system composed as P1 // P2, we can separately minimize P1 and P2, and
the resulting system P1min // P2min is still strongly equivalent to P1 // P2.
In our case, we can prove that the UMC, ProB, and LNT models are strongly equivalent29.

Much greater reductions can be obtained if not all the possible labels are relevant for the
evaluation of a certain property. In this case, we might "hide" (i.e., replace the actual label with an
unobservable symbolic label "i" or "tau") all the irrelevant labels and minimize the system even
more. A bisimulation/minimization which is particularly well-fitting for this purpose is the so-called
divbranching bisimulation [DBR]. Figure Y shows an example of the use of divbranching
minimization: suppose that on the process of the side we want to check the property that is "it is
always eventually possible to generate an event aa or an event bb. We might first "hide" all the
irrelevant labels cc and dd, obtaining the LTS in the middle, and then applying the divbranching
minimization obtaining the LTS of the right.

29 one we appropriately align the labels in the LTS, and eventually skip additional initial setup steps.

Project Acronym – GA 881775 71 | 79

However, not all properties are preserved by this divbranching minimization. Some of the action-
based temporal logic that can be safely used for this purpose are ACTL-X[ACTLX], Lmu-db[LDBR],
and various weak fragments of UCTL, LTL, PDL.
An example of the application of this process within the CADP framework is shown by the following
SVL [SVL] script:

 "minimizedsystem.bcg" = divbranching reduction of
 hide all but aa, bb in
 "originalsystem.bcg"
 end hide;

 property AA_BB_ALWAYS_EVENTUALLY_POSSIBLE
 "it is always eventually possible to generate an event aa or an event bb"
 is
 "minimizedsystem.bcg" |=
 with evaluator4
 library actl_x.mcl end_library
 AG((AF(aa) and (AF(bb));
 expected TRUE
 end property

Further improvements of this approach, which extend the set of properties that can be verified,
have been introduced with the introduction of sharp bisimulations [SHARP] and by the possibility
to mix different compatible bisimulations during the final parallel composition of the components
of a system [Combining].

Finally, there is a last minimization that might be taken into consideration, at least for
documentation purposes. This is the complete-divergence-sensitive-weak-trace minimization.
Actually, no framework directly supports this minimization, but it can be obtained by applying the
classical weak-trace minimization to an LTS which has been enriched with explicit information
about deadlocks and infinite self-loops of hidden actions. The program wtprepare mentioned in
Appendix 8.1.2 has precisely the purpose of preparing an LTS in .aut format for such minimization.
The result of this minimization is an LTS that describes in the most compact way all the possible
execution traces of the system, completely removing all hidden transitions except those leading
to infinite self-loops.
A simple example of this minimization is shown in the Figure 10:

Project Acronym – GA 881775 72 | 79

Figure 10: example of complete-div-sensitive-weak trace minimization

Since the graph of all the possible sequences of events occurring at an interface with a system is
usually information of interest to a system designer, this minimization can be very useful for
documentation purposes. However, since the original branching structure of the system is lost,
only a few formal temporal properties (e.g., weak action-based LTS fragments) are preserved by
this minimization.

Project Acronym – GA 881775 73 | 79

Appendix F: Analysing the behavior at the interfaces

Once we are confident that the operational model correctly reflects the intended internal
behavioral requirements, we might proceed in verifying that the stated behavioral requirements
(i.e., the formal model) imply the stated external guarantees of the system component, and the
expected designer objectives. Several architecture and scenarios have been defined for this
purpose, and the corresponding models can be retrieved from the public Zenodo repository
[ZenodoWP2].

 ICSLtesting_V27_continuosdata

For example, the scenario ICSLtesting_V27_continuosdata30 is one of those developed early in the
analysis process, and is used to analyze the behavior of the initiator CSL in a standalone way (i.e.,
providing abstract SAI RBC components as part of the stimulating environment). In this scenario
the RBC component waits connect indications from the CSL and, as long as connected sends one
messages every two timeslots, with a max of N messages. The SAI component is a very abstract
one which simply accepts all orders from the CSL, and at each cycle randomly sends connect,
disconnect, rbc user data, life sign indications, and error reports.

In this scenario, all the I_CSL transitions appear to be eventually triggered (i.e., we have achieved

a 100% coverage), even if when the I_CSL is integrated with all the other, more realistic, system

components, several transitions might no longer appear as reachable.

One way to observe the external behavior of the component in one scenario is just to observe all
the possible traces of messages flowing between the components.
For example, if we want to observe all the possible message flows from the ICSL towards the RBC,
we can take the LTS describing all possible evolutions of with our scenario, hide all the labels not
belonging to the set of interactions we want to observe, and minimize the resulting LTS (as shown
in Section 8.1.3) with weak (complete, divergence sensitive) trace equivalence.
This analysis process can be carried out within the CADP framework31 with the SVL script shown in
Figure 14. The result can be observed in Figure 1532.

Looking of the Figure 15 we can easily observe the satisfaction of several ICSL external guarantees
of those mentioned in Appendix C. In particular:

• ICSL can send to I_RBC an RBC_Data_indication message only after a
RBC_Connect_indication not followed by RBC_Disconnect_indication.

• ICSL can send to I_RBC an RBC_Disconnect_indication message only after an

30 All the analysed scenarios and architecture are available in the Zenodo data repository [ZENODO].
31 The same result can be obtained using the umc2aut and ltsconvert tools from the free KandISTI /UMC and mCRL2
frameworks.
32 The same effect can be achived using the online version of UMC, selecting the appropriate filters for the messages
to be observed and using the command "Draw Abstract Traces".

Project Acronym – GA 881775 74 | 79

RBC_Connect_indication not already followed by RBC_Disconnect_indication.

• The first message (possibly) sent to I_RBC is an RBC_Connect_indication message

• ICSL sends to I_RBC an RBC_Connect_indication message only as first messages or after an
RBC_Disconnect_indication not already followed by RBC_Connect_indication.

 % umc2lnt ICSLtesting_V27_continuosdata.umc continuosdata.lnt;
 "continuousdata.bcg" =
 generation of "continuosdata.lnt";
 "continuous_rbcflow_dbmin.bcg" =
 divbranching reduction of
 gate hide all but
 IRBC_User_Connect_indication,
 IRBC_User_Disconnect_indication,
 IRBC_User_Data_indication
 in "continuousdata.bcg";
 % bcg_io continuous_rbcflow_dbmin.bcg continuous_rbcflow_dbmin.aut;
 % wtprepare -i continuous_rbcflow_dbmin.aut continuous_rbcflow_wtready.aut
 % bcg_io continuous_rbcflow_wtready.aut continuous_rbcflow_wtready.bcg
 "continuous_rbctraces.bcg" =
 weak trace reduction of
 multiple rename
 "IRBC_USER_DATA_INDICATION !.*" -> "IRBC_USER_DATA_INDICATION "
 in "continuous_rbcflow_wtready.bcg";
 % bcg_io continuous_rbctraces.bcg continuous_rbctraces.aut;
 % aut2dot continuous_rbctraces.aut continuous_rbctraces.dot
 % dot -Tsvg continuous_rbctraces.dot -o continuous_rbctraces.svg

Figure 14: A SVL script for generation of ICSL-RBC traces

Figure 15: An ICSL->RBC message flow in the scenario ICSLtesting_V27_continuosdata

Other properties that can be observed from these traces are that in this scenario there is no
guarantee that a communication line is ever established, and that even if established, there is no
guarantee that any message arrives, and no guarantee that the connection is eventually
terminated.
Notice that the stated properties hold for *all* the possible system evolutions, therefore it is not
a problem if the *actual* system evolutions, when the abstract environment components are
replaced by more concrete system fragments, are just a subset of those here analysed.

We might have verified the above properties by translating them into temporal logic formulas and
verifying them with CADP, ProB, or UMC, but with a relatively greater effort.

Project Acronym – GA 881775 75 | 79

When the graphical representation of all the possible message flows becomes bigger, the
approach of just observing the picture might not be feasible, and the formal encoding and
verification of the formulas risks to remain the only reliable approach.

Suppose that, in the same architecture/scenario, we want to analyze the other "external I_CSL"
guarantee:

 ICSL periodically sends to I_SAI either SAI_Connect_request or SAI_Data_request messages.

We might repeat the same process described above for observing all the possible message flows
from I_CSL towards ISAI involving Data or Connect requests, obtaining as result the description all
the possible traces shown in Figure 16.

Figure 16: A ICSL->SAI message flow in the scenario ICSLtesting_V27_continuosdata

As we can easily see, there is no unlabeled loop (originated by hiding of actions different from a
DATA or e CONNECT request) in the computed messages flow.

The ProB LTL formulas directly checking this property would be instead:

-- UMC-UCTL: AG AF {ISAI_DATA_request or ISAI_CONNECT_request} true

-- PROB-LTL: G F ([R8_ICSL_saidatareq] or [R7b_ICSL_saidatareq] or [R2_ICSL_connecting])

ICSLtesting_V27_incrdata.

Let us now analyze the flow of messages between RBC and SAI (just looking at ICSL s black box).
We want to observe also the identity of messages to check that no repetitions or mis-ordering are
introduced by the CSL. Messages are sent by RBC only after having received a connection
indication not followed by a disconnection indication. For this, we are using the scenario
ICSLtesting_V27_incrdata. observing only the exchange of the RBC data messages (no life sign, or
connect/disconnect events). Figure 17 shows the generated flow of such messages.

Project Acronym – GA 881775 76 | 79

Figure 17: Flow of RBC Data requests messages through the ICSL

Two interesting things can be easily observed in this picture:

- There is no guarantee that any message is sent (see the loop in the initial node).
 Indeed, there is no guarantee that the ICSL ever has succeeded in establishing an active
 communication line.

- Even if active communication line is established, and a message sent (i.e., after the RBC has
received a connection indication and before receiving any disconnect indication), there is no
guarantee that the message is passed to the SAI.

At first, this might look surprising and in contrast with the ICSL REQ8:

IRBC_USER_DATA_REQUEST(1)

ISAI_DATA_REQUEST(2,1)

IRBC_USER_DATA_REQUEST(2)

IRBC_USER_DATA_REQUEST(3)

ISAI_DATA_REQUEST(2,3)

IRBC_USER_DATA_REQUEST(2)

ISAI_DATA_REQUEST(2,2)

IRBC_USER_DATA_REQUEST(3)

Project Acronym – GA 881775 77 | 79

 R8: When in COMMS state is received an RBC_User_Data_request(userdata), I_CSL forwards a
SAI_Data_request(userdata) with the same data to the SAI.

But this is a possible valid behavior because the current RBC view of the ICSL status might not
precisely reflect the realstatus of CSL. The ICSL might pass in the NOCOMM state just before
receiving the RBC_Data_request, which can be sent just before receiving the Disconnect indication
from the CSL. In this case, the RBC_Data_request might arrive when ICSL is in the NOCOMM state,
and the Data_Request message would be discarded.

This can be checked, in the UMC framework, with the evaluation of the formula:

 EF {R12a_ICSL_discuserdata or R12aa_ICSL_discuserdata}

which states that eventually one of two transitions discarding the Data_request message is
triggered.
The formula is satisfied, and the following trace is presented as explanation33 34:

Notice that the RBC User will surely receive the disconnect indication ... but a little later.

ISAI_testing_ERdata

Another architecture/scenario of interest might be that one constitutes the real initiator SAI
component and by abstract ER and RBC components. In this case we are interested to test if the

33 We have removed from the trace the interactions with the Timer object.
34 Notice that no assumption prevents our "chaos" SAI model to randomly send connection confirmations.

Project Acronym – GA 881775 78 | 79

SAI behavior in terms of protection from duplications/reordering, and excessive delay of data
messages actually works as expected. In this case we have constructed an ER component that
accepts and initializes connection requests from the SAI, and one connected sends a
Sa_DATA.indication message with custom generated sequence and EC numbers.

We remember that the structure of Sa_DATA.indications messages arriving from the ER have the
structure: ISAI_SA_Data_indication(arg1,arg2,arg3,arg4,arg5,arg6) where:
-- arg1 = message type, arg2 = data value,
-- arg3 = ack request, arg4 = ack response,
-- arg5 = sequence number, arg6 = EC number

When the data flow sent by the ER Layer is, for example, the one shown in Figure 18, the
corresponding data flow from SAI to CSL appear to be one shown in figure 19.

Project Acronym – GA 881775 79 | 79

Figure 18 and 19: data flows ER->SAI and SAI-CSL

	1 Executive Summary
	2 Abbreviations and acronyms
	3 Background
	4 Objective/Aim
	5 The Exercising of the Formal Development Demonstrator
	5.1 An Overview of the Signalling Case Study
	5.2 From Natural Language to Semi-Formal, to Formal
	5.3 From Formal, to Semi-Formal, to Natural Language
	5.4 Verification Architectures and Scenarios
	5.5 Advanced Formal Analysis

	6 Conclusions
	7 References
	Appendix A: Formal notations and transformations
	Appendix B: Graphical semiformal UML state machine designs
	Appendix C: Structured Natural Language Requirement Specifications
	Appendix D: Difformities with respect to the D2.3 Requirements
	Appendix E: Model reduction techniques
	Appendix F: Analysing the behavior at the interfaces

