

4SECURail - GA 881775

Deliverable D 2.2
Formal development Demonstrator prototype,

1st Release

Project acronym: 4SECURail

Starting date: 01/12/2019

Duration (in months): 24
Call (part) identifier: H2020-S2R-OC-IP2-2019-01

Grant agreement no: 881775
Due date of deliverable: Month 12 (30 November 2020)

Actual submission date: 30-11-2020

Responsible/Author: CNR / Franco Mazzanti
Dissemination level: PU

Status: Issued

Reviewed: yes

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under Grant Agreement No 881775.

4SECURail – GA 881775

Document history
Revision Date Description

0.1 November 20 2020 First version under review
0.2 November 26 2020 Second version under review

1.0 November 30 2020 Final submitted Version

2.0 December 02 2020 Corrections of wrong cross-references
3.0 January 12 2020 Revision of Section 6 and minor spurious corrections.

Report contributors

Name Beneficiary Short
Name

Details of contribution

Franco Mazzanti,
Davide Basile

CNR Overall Structure and Content

Laura Masullo SIRTI Comments on Structure and Content

Alessandro Fantechi,
Alessio Ferrari

CNR Comments on Structure and Content

Carlo Vaghi,
Elisa Sivori

FIT Internal Review

Albert Ferrer,
Jerónimo Padilla

ARDANUY Internal Review

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s view – the
Joint Undertaking is not responsible for any use that may be made of the information it contains. The users
use the information at their sole risk and liability.

The content of this deliverable does not reflect the official opinion of the Shift2Rail Joint Undertaking (S2R
JU). Responsibility for the information and views expressed in the deliverable lies entirely with the author(s).

4SECURail – GA 881775

Table of Contents

 Executive Summary ...1

 Abbreviations and acronyms ..3

 Background ...4

 Objective/Aim ...6

 First exercise of the formal development Demonstrator process..7

5.1 The structure of the formal development Demonstrator process7

5.1.1 The reference framework ..7

5.1.2 The choice of the MBSD Sparx Enterprise Architect platform 11

5.1.3 The structure of the Demonstrator .. 13

5.2 The selected case study .. 17

5.2.1 Task 2.1 initial case study fragment ... 19

5.3 An overview of the modelling phase of the case study.. 21

5.3.1 UMC modelling ... 21

5.3.2 Sparx Enterprise Architect modelling ... 24

5.3.3 ProB modelling .. 27

5.4 Formal Analysis of the initial case study fragment ... 30

5.4.1 The impact of using the UML as a "standard" notation for the description of the
composition of State Machines ... 30

5.4.2 Semi-formal analysis ... 33

5.4.3 Formal analysis ... 35

 Conclusions .. 42

 References .. 44

 Appendix A – More details on Sparx Modelling .. 46

 Appendix B - Annotated CSL Requirements and Mapping .. 54

 Appendix C - UMC encoding of I_CSL ... 66

 Appendix D - ProB encoding of I_CSL ... 69

 Appendix E - Sparx Model Report – CSL ... 75

4SECURail – GA 881775 1 | 85

 Executive Summary

The overall goal of the Workstream 1 (WP2) "Demonstrator Development for the use of Formal
Methods in Railway Environment", spreading on the activities of Tasks 2.1, 2.2, 2.3 and 2.4 of the
4SECURail project, is:

• the definition of a "Formal Methods Demonstrator process" (shortly Demonstrator) for the
rigorous construction and analysis of system specifications (from the point of view of
Infrastructure Managers),

• the application of the Demonstrator process to a railway signalling system case study, to
perform a cost and benefits analysis and the evaluation of the required learning curve for
the application of this Demonstrator process.

The previous deliverable D2.1 of Task 2.1: "Specification of formal development Demonstrator",
has presented the overall structure of the Demonstrator process and has illustrated the selected
choices for its architecture, both in terms of methodologies and tools.
This deliverable: "Formal development Demonstrator prototype, 1st Release", completes the
description of the selected Demonstrator process (identifying the chosen MBSD framework for
UML-based modelling and simulation) and describes how the defined Demonstrator process has
been exercised in Task 2.1 with an initial fragment of the case study identified in Task 2.2. The
initial fragment concerns the modelling and analysis of a Communication Supervision Layer (CSL),
specifically dedicated to the control of the communication status between two neighbouring Radio
Block Centre (RBC), over the Safe Application Intermediate sub-Layer (SAI) sublevel of the
architecture. Modelling and analysis of the CSL have been conducted in three phases:

1) Fast prototyping of the CSL with the UMC [UMC1][UMC2] tool allowing easy modelling,
animation, and verification of the system structured as set of interacting UML state machines. This
step also includes an initial abstract model of the underlying connection layer allowing the two
sides of the CSL to communicate.

2) Modelling of the prototyped CSL state machine with the Model-based Software Development
[MBSD] framework Sparx Enterprise Architect [SPARX]. This advanced, industry-ready framework
allows us to generate documentation with a graphical representation of the system components,
and to perform interactive simulations of the system.

3) Translation of the prototyped CSL state machine definitions and underlying connection layer in
the Event-B [Bmethod] notation as accepted by the ProB tool [PROB]. The resulting system,
enriched with the components needed to stimulate the Communication Supervision Layer, is
formally analysed using model checking techniques.

4SECURail – GA 881775 2 | 85

The generated models and related audio-visual material are available in [ZenodoWP2].

Both the UML modelling and formal verification steps have allowed identifying ambiguities and
imprecisions in the original natural language requirements, to gain more confidence of the overall
correctness of the specification, and to acquire a deeper understanding of the CSL behaviour.

In our design of the Demonstrator process, we expressed as particularly desirable (but currently
out of reach) the possibility to rely on a single MBSD framework for both design, code-generation,
documentation, and formal verification. Our experimentation has shown that this desire is
currently out of reach, especially if a semi-formal language such as UML is kept as reference
underlying notation. This remains an important direction to be further explored.

An interesting side product of the future activity planned for Task 2.3 might be the generation of
a revised version of the systems requirement, still in natural language, but more rigorous and more
related to a formal model.

Concerning the input to the costs and benefits analysis, this first release of the demonstrator has
identified two categories of costs: licensing costs and training/learning costs. On the other hand,
the demonstrated benefits are in terms of more precise and rigorous system requirements
definition and analysis, and more insight into the expected system behaviour. For example, the
modelling phase in this deliverable, i.e., passing from natural language requirements to a design
in terms of state-machine, has identified and reported various weaknesses/ambiguities of the
requirements of the case study.

In the remaining phases of the 4SECURail project, this Demonstrator process will be applied in Task
2.3 on the complete case study defined in Task 2.2 and that activity will provide the refined
reference for the costs and benefits analysis of Task 2.4.

4SECURail – GA 881775 3 | 85

 Abbreviations and acronyms

Abbreviation / Acronyms Description

CBA Cost-Benefit Analysis
CSL Communication Supervision Layer

EA Enterprise Architect
EC Execution Cycle

ER EuroRadio

FIFO First-In First-Out
FM Formal Methods

fUML Foundational Subset for Executable UML Models

IM Infrastructure Manager

MAAP Multi-Annual Action Plan

MBSD Model Based Software/System Development

NRBC Neighbour RBC

OMG Object Management Group
RBC Radio Block Centre

SAI Safe Application Intermediate sub-Layer

SFM Safe Functional Module
SoS Systems of Systems

TD Technology Demonstrator
TTS Triple Time Stamp

UML Unified Modelling Language

UNISIG Union industry of signalling

WP Work Package

4SECURail – GA 881775 4 | 85

 Background

The present document constitutes the Deliverable D2.2 "Formal development Demonstrator
prototype, 1st Release" of Task 2.1 of WP2 "Demonstrator Development for the use of Formal
Methods in Railway Environment" of the project 4SECURail (GA 881775) in the context of the open
call S2R-OC-IP2-01-2019, part of the “Annual Work Plan and Budget 2019”, of the programme
H2020-S2RJU-2019.

The challenge to which 4SECURail is deemed to deal, and its relation with the Shift2Rail Technology
Demonstrator D2.7 "Formal methods and standardisation for smart signalling systems" is well
described in the call S2R-OC-IP2-01-2019, as shown below:

“Shift2Rail has identified the use of formal methods and standard interfaces as two key concepts
to enable reducing the time it takes to develop and deliver railway signalling systems, and to
reduce costs for procurement, development and maintenance. Formal methods are needed to
ensure correct behaviour, interoperability and safety, and standard interfaces are needed to
increase market competition and standardization, reducing long-term life cycle costs.”

For our purposes, the project scenario considers the Infrastructure Managers (IM) applying formal
and semi-formal methods to build robust and verifiable specifications of system requirements,
which will make the procurement of systems and equipment - compliant with legal requirements
and needs of operators - possible and suitable for easy integration in the existing railway
subsystems. This will contribute to moving towards an open market for maintenance (availability
of spare parts) and future enhancements (implementation of new functions and/or performance
exploiting open and standardised interfaces). The introduction of formal methods in the process
of specifying requirements carries the advantage to reduce ambiguities in the requirements
definition; this could even introduce some benefits about the uniformity of products architectures
and procurement and maintenance costs.

The idea of IMs is to have modular systems and to define standardised interfaces to integrate
these modules (this approach is supported by the Eulynx initiative [EULYNX]). In this context of
modular systems, the use of formal methods is a solid support to the definition of more standard
interfaces.

According to [MAAP2015] [MAAP2017][MAAP2019] the Shift2Rail Innovation Programme 2 (IP2)
will focus on innovative technologies, systems, and applications in the fields of
telecommunication, train separation, supervision, engineering, automation, and security to
enhance the overall performance of all railway market segments.
The Technology Demonstrator TD2.7 aims to contribute to the enabling of two Innovation
Capabilities (IC) of the Shift2Rail Innovation Programme 2 (IP2):

● IC7 "Low-Cost Railway"
● IC12 "Rapid and Reliable R&D Delivery"

through the Building Block achievement BB2.7_1 "Formal and semi-formal methods for

4SECURail – GA 881775 5 | 85

requirement capture, design, verification and validation, proposing open standards”.

4SECURail will contribute to the above Building Block achievement with the demonstration and
evaluation of techniques based on formal methods to reduce life-cycle costs and improve the
global availability of the railway systems.

4SECURail – GA 881775 6 | 85

 Objective/Aim

One of the objectives of the 4SECURail project is to perform a costs and benefits analysis for the
adoption of formal methods in the railway environment by prototyping a formal method
Demonstrator to be exercised with a selected case study. The use of formal methods in the railway
context covers many distinct aspects, from the definition of verifiable requirements to the
construction of a more affordable and efficient development process.

The objective of Task 2.1 is to define and exercise a process of system requirements definition that
exploits the use of semi-formal and formal methods to improve the quality of the specifications
written by the railway IM. The definition and overall structure of this process have been initially
given in D2.1 of Task 2.1. The purpose of this deliverable is to complete the specification process
described in D2.1 and to describe the instantiation of that process with respect to an initial
fragment of the signalling system case study defined in D2.2 of Task 2.3.

This activity is aligned with the objectives of TD2.7 (Shift2Rail MAAP) Formal Methods and
standardisation for smart signalling which focuses on applying Formal Methods and Standard
Interfaces in application Demonstrators and the business case study for using them.

4SECURail – GA 881775 7 | 85

 First exercise of the formal development Demonstrator process

This section is the core of this deliverable. We start, in Section 5.1, by recalling the reference
framework as initially described in D2.1. The structure of the Demonstrator is fully determined,
and the choices made for the various modules are detailed, also providing some background about
techniques and methodologies used inside this Demonstrator.
The case study, which is fully reported in D2.3, is briefly described in Section 5.2 together with the
initial fragment used by Task 2.1. The modelling phase, comprehending the various tools used
inside the Demonstrator, is discussed in Section 5.3. The analysis and verification phase of the case
study through the Demonstrator is performed in Section 5.4, whilst in Section 6 we summarise the
experienced benefits from the application of the adopted approach.

5.1 The structure of the formal development Demonstrator process

This section briefly recalls some important concepts that underlie the definition of our formal
development process, that can be found in full detail in Deliverable 2.1, and completes some
aspects that had been introduced in D2.1, i.e., the rationale and choice of the inclusion of a
commercial MBSE framework.

5.1.1 The reference framework

The point of view of Infrastructure Managers

We start by recalling the point of view of an IM that must provide a validated specification of the
desired equipment not only to single suppliers but to multiple different suppliers that should
produce equivalent products, capable of interacting with each other correctly. This is because the
railway infrastructure is constituted by a multitude of subsystems (each one potentially developed
by a different supplier) that must correctly interact among them, the so-called problem of
interoperability of systems of systems.
A special case is when the produced specification takes the role of “standard specification”
supported by international organisations (like the International Union of Railways (UIC) [UIC], the
European Union Agency for Railways (ERA) [ERA], or UNISIG [UNISIG], an industrial consortium to
develop ERTMS/ETCS technical specifications), defined to create interoperable railways in all
Europe (Single European Railway Area, SERA).
Therefore, to ensure interoperability, the IM must provide system requirements specifications
that meet quality criteria, for example, requirements should not be ambiguous or in contradiction
with each other, and they should be independent from specific implementation choices.
Moreover, the developed system requirements specifications should guarantee the expected
interoperability among subsystems. The goal of a formal specification is exactly to produce a
mathematically precise representation for these system specifications allowing us to formally
analyse such requirements.

4SECURail – GA 881775 8 | 85

The role of standard interfaces

Standard interfaces include two standardisation aspects, firstly the need to have interfaces
between different equipment that have been agreed upon by different suppliers (i.e., standard).
Standard interfaces are promoted and developed by Eulynx [EULYNX], an initiative of a group of
railway IM from different European countries. The Eulynx initiative aims to define a modular
architecture for signalling systems, including standard interfaces for the individual components
such that they can be supplied by different manufactures whilst maintaining the safety integrity
levels required by such a critical railway system. This last point can take advantage of the
introduction of FM into the process.
The second aspect is the need to use a standardised notation for the specification of standard
interfaces. UML is the main standardised modelling language, consisting of an integrated set of
graphical diagrams, developed to help system and software developers in specifying, visualizing,
constructing, and documenting the artifacts of software systems [WHATISUML].
UML behavioural models (e.g., state machines) can be graphically executed (simulated) to obtain
initial feedback on the correctness of the design with respect to the intended requirements. Major
drawbacks of this behavioural notation are uncertainties in the semantics, absence of a standard
action language, and lots of implementation freedom (cf., e.g., [FSKR29] [SG30]).
Within the Demonstrator, UML plays three distinct roles:

• as graphical documentation of system requirements;

• as an engine for the simulation of system models;

• as a base towards translation into other formalisms supported by verification capabilities
for overcoming the semantics limitations of UML.

The role of semi-formal methods and Model-Based Software Development

Model-based Software/System Development (MBSD) [MBSD] is a methodology for creating
software and hardware artifacts that are designed starting from models typically expressed as
graphical diagrams. Models support each phase of the development cycle. The methodology is
also referred to as Model-based System Engineering, Model-based Development, Model-driven
Architecture, and others. Although these terms may have slightly different meanings, hereby we
consider all of them synonyms.
The development is guided by the definition of a model of software architecture. Such a model
represents a semi-formalization at the abstract level of the system. It is indeed important to have
a description of the key features of the system without dealing with the implementation aspects.
Being able to manipulate an abstract model before moving to the implementation phase allows
the early discovery of errors, by verifying the model with respect to the requirements, e.g., using
model checking. Early bug detection will have a minimal impact on the development costs. Finding
such bugs at a later stage of development, instead, would result in increasing costs for fixing them.
Diagrams may help in identifying and reusing portions of systems, to speed-up the development

4SECURail – GA 881775 9 | 85

phase. Best practices and design patterns are used to guide the modelling phase.
One important aspect of using a semi-formal language is to avoid ambiguities that may lead to
errors that would be hard to find in the source code. The models represent different views of the
system at distinct levels, as for example, requirements definition, implementation, deployment.
This supports a modular design methodology favouring independence between modules, so
making them reusable in different contexts.
Once the compliance of the model with the requirements has been ascertained, it is possible to
focus on the actual implementation. In the 4SECURail project we are focused on the role of the
IM, whose goal is to formalise and validate requirements of standard interfaces. The development
phase is delegated to suppliers, who will exploit the provided semi-formal definition of standard
interfaces.
MBSD is also useful in case of evolution of the system. The changes will first be made on the model,
with a chain of changes that are reflected in the subsequent phases of the development and
validation process. This chain is well defined and structured, as an intrinsic consequence of the use
of Model-Driven Engineering techniques. The synchronization among different artifacts produced
in the various phases of development is called Round-trip engineering.
Diagrams are also important as a compound to natural language requirements, to improve the
quality of the documentation and communications between the stakeholders involved in the
software development.
Two important concepts in an MBSD framework are separation of concerns and correctness-by-
construction. An MBSD framework promotes separation of concerns by distinguishing the separate
phases of the development cycle, offering distinct levels of abstraction, and promotes correct-by-
construction solutions, where correctness is intended with respect to a set of desired properties.
These properties are generally derived from the natural language requirements document or the
scenarios to be modelled. Correctness is ascertained on the model solving defined for the problem
at hand and is reflected in the implementation that is derived from the model.
Generally, it is possible to use the designed models to automatize the source code implementation
phase. Such implementation will then follow established design patterns that are enforced by the
model from which they are derived. For example, a State Machine Design will enforce a State
Pattern in the implementation. Several languages are supporting MBSD, and the Object
Management Group (OMG) promotes UML as a modelling language for MBSD [OMG-UML].

The Demonstrator not only defines an MBSD framework but applies it to the development of the
specific case study. The adopted methodology has also been used in complementary projects as
X2Rail2 and Eulynx and is one of the modules of the architecture of the Demonstrator. The
Demonstrator defines an MBSD framework in which the first step addresses the critical phase of
formalising natural language requirements employing (semi)-formal notation, before the software
development, as suggest by methodologies widely spread in software engineering [MBSD] .
These methodologies advocate the usage of models (e.g., UML Diagrams) for modelling system
requirements to produce a first prototype. UML is an ISO standardised notation [OMG-UML], the
standard for MBSD. We recall the twofold aspect of standard interfaces for interoperability
between manufacturers and for the use of a standard notation. A standard notation helps in
minimising ambiguities that could hamper interoperability, and it promotes reusability. Hence,

4SECURail – GA 881775 10 | 85

UML and MBSD are important for our approach that uses a standard notation for developing
standard interfaces.
The Demonstrator can also support costs and benefits analysis of MBSD. Indeed, MBSD is an
industrially adopted methodology that is not only used for requirements and specifications phases
but covers all the phases of system development.
Hence, the impact of the modelling phase is not only restricted to requirements but can spread
down to the artifacts and thus helping to validate the Supplier’s artifacts.
Diagrams and models are proposed for each phase, following a V software development approach
as suggested by CENELEC norms [CENELEC EN50159]. Hence, the costs and benefits analysis can
also consider such development methodology, a part of which will be exercised by our
Demonstrator.

In the Demonstrator architecture, it has been shown that the IM need to formalise the natural
language requirements of the standard interfaces between different entities forming an
infrastructure. This is important to guarantee interoperability between different suppliers. Indeed,
all suppliers must conform to the same standard interface. Slight deviations from the
requirements, due to different interpretations, could lead to the impossibility of making different
subsystems cooperating.
By formalising standard interfaces through a standard notation, the risk of incompatibility
between different subsystems is reduced since the interface's requirements are clear and
unambiguous. Models are also important for reasoning about the correctness of a specification.
This can be performed by directly applying within the MBSE framework the supported formal
verification techniques (if any), or by translating the semi-formal UML model into a formal
specification amenable to automatic verification (e.g., model checking, theorem proving). The
UML models can also be used to generate test cases through Model-based Testing. Test cases can
be handed to suppliers to be used for providing evidence that their subsystems are conformant to
the specification provided by the IM. Automatic code generation starting from such models will
also ensure that the implementation is derived directly from the specification, employing
traceability. Hence, several facilities are available to ensure that suppliers comply with the
specifications provided by the IM.

The role of formal methods

The translation of semi-formal UML diagrams into another formalism equipped with semantics
that is described using rigorous mathematical notation allows mathematical proofs of correctness
of the specification according to the quality criteria that must be met by the specification.
Such mathematical demonstrations will provide further evidence of the correctness of the
specification against the desired quality criteria and will improve the confidence in the actual
interoperability of the designed systems.
These proofs can be obtained by using, for example, theorem proving or model checking. Indeed,
these can be considered the two approaches to system verification that are mostly used, also in
railway-related contexts [Bmethod][ICSE2020] .
Concerning model simulation and validation functionalities provided by semi-formal design

4SECURail – GA 881775 11 | 85

methods, the great advantage of FM is that they allow to verify properties on all possible system
behaviours, whilst simulation is used to observe only some behaviours, those manually stimulated
by the user. To do that, formal verification may require the specification to also include a model
of the environment/user interacting with the (specified) system.

The X2Rail2 complementarity

Both 4SECURail project and complementary project X2Rail2 [X2RAIL2] identify the responsibility
of IM in providing standard/rigorous/verifiable specifications of the standard interfaces.

As described in D2.1, the 4SECURail approach is based on the use case described in Section 5.4.1
("Development of Systems with Standardised interfaces") of D5.1 of X2Rail2 [X2R2D51], which
describes the use of formal and semi-formal methods for the specification and development of
standardised systems.
For that use case, the 4SECURail activity is focused on the part related to the IM, i.e., to the phase
of construction of high-quality system requirements specifications. Moreover, while X2Rail2
focuses its efforts on the use of formal and semi-formal methods for the analysis of a single system
component, in 4SECURail we want to tackle the important but difficult aspect of analysing also
interoperability issues in the case of Systems of Systems.

In agreement with what has been done in X2Rail2 about the use case of FM, our Demonstrator
will also follow the choices made by the Eulynx project [EULYNX] regarding the underlying
notation for the system specification, i.e., the reference to the UML/SysML [OMG-UML] [OMG-
SysML] standards.

Both X2Rail2 and ASTRail [ASTRAIL] projects provide a taxonomy of recommended tools for formal
verification and model-based development. The choices adopted by our Demonstrator, which are
ProB [PROB] as tool for model checking and Sparx Enterprise Architect [SPARX] as a tool for
simulation and model-based development, are among the choices experienced and suggested by
these projects.

5.1.2 The choice of the MBSD Sparx Enterprise Architect platform

This is one aspect that in the previous Deliverable D2.1 ("Specification of the Formal Methods
Demonstrator") has been left open because more experimentation was deemed necessary before
reaching a conclusion.

There is a wide range of tools that support MBSD. Some of them are open-source and thus more
fashionable for research purposes. Others are commercially available, offering the desired
features for industrial adoption, as e.g., customer support and licensing systems. Two top tools for
MBSD are Cameo System Modeler by NoMagic [3DS] and Enterprise Architect by Sparx [SPARX].
Another tool is PTC by WindChill [PTC-Windchill] (adopted by Eulynx) and many others are

4SECURail – GA 881775 12 | 85

available.
An initial task was devoted to test and to select one of the different tools as the most suitable for
the Demonstrator and to collect data as, e.g., costs of licenses, customer support, training. We
focused on those containing features desirable by industrial suppliers. We discuss three of them
now.

● NoMagic Cameo Systems Modeler: Cameo Systems Modeler [3DS] is a UML/SysML
modelling tool that supports MBSD with Round-trip Engineering, and it has been adopted
among the others by Bombardier Transportation, Siemens Mobility, Alstom, Deutsche
Bahn, CAF Signalling. One of the peculiarities is that it enforces UML2 rules for syntax
(notation) and semantics. It also provides solid support for requirements traceability;
automated documentation generation and it offers plugins to integrate with external
Requirements Management and Simulation tools.

● Sparx Enterprise Architect: Sparx Enterprise Architect (Sparx EA) [SPARX] is a competitor
of Cameo Systems Modeler; it is an MBSD tool supporting Round-Trip Engineering, and it
has been used, among the others, by the Belgian National Railway Company SNCB
[SPARXCaseStudy]. It supports requirements traceability, automated documentation
generation and simulation. To its competitors, Sparx EA has a more competitive price.
Sparx EA is designated as a "Best Value" among competitive UML2 modelling tools
according to [UMLReview], and is among the top tools according to [UMLSurv].

● PTC WindChill Modeler: we finally mention PTC WindChill Modeler [PTC-Windchill] as
another tool supporting Model-based Development and Round-trip Engineering, adopted,
among the others, by Alstom SA [PTC-Alstom] . It provides functionalities for document
generation, requirements traceability, and simulation.

Why Sparx Enterprise Architect?

The industrial tools promoting MBSD provide lots of functionalities that span across all the
development phases of a system or software, supporting solutions concerning, e.g., database
management, collaborative working, process analysis, version management and many others.
However, we are focused on the point of view of the IM, whose goal is not to fully develop a
system, but to describe the requirements using (semi-)formal notation. In other words, we are
interested in facilities for modelling state machine diagrams, and simulating their behaviour, to
help interaction with stakeholders and validate the requirements. A strict unambiguous subset of
state machine diagram notation provided by UML can be equipped with a specific algebraic
meaning and thus state-of-the-art formal verification techniques can be applied to it.
We now list some of the desirable properties that lead to the adoption of Sparx EA in the
Demonstrator.
Firstly, a desirable MBSD tool for the Demonstrator must be affordable, given the resources of the
project and the fact that such tools tend to be expensive depending on the specific configuration.
As already mentioned, the cost of the license for Sparx EA, if compared to the cost for the same

4SECURail – GA 881775 13 | 85

service offered by competitors (e.g., PTC), is lower by an order of magnitude (as per November
2020). Thus, Sparx EA provides the best compromise between cost and quality and has been
recognised as one of the top tools for MBSD in recent surveys [UMLReview][UMLSurv].
Apart from the clear cost/benefit advantage, a desirable MBSD tool must also provide an
appealing, clear graphical display of UML State Machine diagrams, and must provide facilities for
simulating such diagrams and documenting them. This is because in the Demonstrator the
infrastructure manager will specify the standard interfaces, document them, and validate them
using simulation.
Moreover, standard interfaces specifically require that different models of the various systems
must be composable and the interactive simulation must span across the various simulatable
components, thus demonstrating their interoperability. Below we will discuss how Sparx EA
provides a light interactive simulation of different interoperable machines, if compared to, for
example, Cameo modelling tools.
We briefly summarise our experience in the usage of Cameo modelling tools.
As already mentioned, Cameo adheres to SysML/UML notation. The crucial task of modelling the
interaction among different devices, potentially provided by different suppliers, required usage of
additional diagrams and notation (i.e., activity diagrams containing opaque behaviours, block
diagrams and internal block diagrams, ports connected to signals in turns connected to triggers).
This is needed to express the primitive operation of sending an event to another device, to model
interactions between components and thus validate their interoperability.
The adoption in Cameo Modelling Tools of the Action Language for Foundational UML (ALF) as the
scripting language for expressing effects of events occurrence made such specification harder to
adapt to the artifact models coming from the other tools included in our Demonstrator (i.e., UMC,
ProB). All these extra layers of diagrams would hamper the initial goal of having visual diagrams
easy to communicate between various stakeholders, and whose translation into a formalism
amenable to formal verification could be straightforward and easily validated.
On the other hand, Sparx EA provides a specific artifact, called Executable State Machine, which is
specifically used for simulating the composition of different state machines. Such state machines
can interact through a simple instruction for sending an event. As such, Executable State Machines
do not require overly superfluous notation and provide all the ingredients for an easy translation
to/from a formal specification amenable to verification, and for graphically displaying, in a succinct
way, the informal specification, as well as simulating it. Apart from simulating a composition of
state machines, it is possible to interact with each state machine using the standard simulation
engine of Sparx EA.

5.1.3 The structure of the Demonstrator

The Demonstrator structure and its rationale have been defined in D2.1. In this section, we briefly
recall the planned structure and its underlying rationale.

4SECURail – GA 881775 14 | 85

5.1.3.1 The desired and the possible

The desirable structure of the Demonstrator would be an industry-ready tool, offering all facilities
desired by industries such as direct support, licensing management, team development, available
training and so on (we refer to ASTRail deliverables for a full account) [ASTRAIL-D41][ASTRAIL-
D43].
Such tool should allow on one hand to design a model of the specification using standard notation
such as UML, and on the other hand to verify, using FM, the designed model. This should come
without any translation effort. The final implementation should be automatically derived from the
validated model.
However, it is not possible to fully achieve the desired structure. The main factor hindering the
desired solution is that UML, although being the standard for MBSD, in its latest incarnation still
has an informal and incomplete semantics of its behavioural models. The semantics is incomplete
because specific semantics choices are left to the producers of tools supporting UML. The reason
for that is to make the standard more adaptable to the various tools.
It is informal because the latest UML standard document still describes semantics in natural
language terms and not in rigorous mathematical notation[OMG-fUML1][OMG-PSSM].
The main practical drawback is that the very same UML behavioural model could behave
differently in different tools. The other important drawback is that to be formally verifiable a
model must be designed using a formalism equipped with a formal semantics described with
rigorous and validated mathematical foundations.
On a positive note, the UML notation can be considered a valuable tool for animating graphical
diagrams, to give intuitions of how a specification behaves to non-experts. UML tools can be used
to provide compound documentation to be attached to natural language requirements such as a
standard interface documents. Once a specific UML tool is chosen, the undefined semantics
choices can be determined, and the resulting diagram can be translated into a formalism amenable
to the application of FM. Finally, UML and MBSD represent the bridge between formal verification
of specifications and their software development, by providing facilities for automatic generation
of code from a given specification.

The structure of the Demonstrator thus consists of different tools for different purposes. UMC
[UMC1][UMC2] is the chosen lightweight tool to provide fast prototyping of UML State Machine
Diagrams, with a formal semantics overapproximating and subsuming possible concrete semantics
of different industry-ready UML tools. This last aspect is crucial in ensuring interoperability
between models potentially having slight semantics differences. UMC is not an industrial tool but
an on-going research project that has been developed and maintained inside the Formal Methods
and Tools lab at ISTI CNR Pisa in the last decades.
The UML State Machine models made in UMC are mechanically translated to Sparx Enterprise
Architect UML models, to perform simulation and documentation using a state-of-the-art UML
industry ready tool, as recommended by X2Rail2 and Eulynx.
On the other hand, UMC models are also translated into ProB, which is a model checking tool
applied in several railway signalling projects.
We underline that the Demonstrator helps bridging formal specification and verification (through

4SECURail – GA 881775 15 | 85

ProB and UMC) with software implementation (using Sparx Enterprise Architect). Thus, the IM
leaves to the suppliers no unspecified aspects about how to handle the standard interfaces to
deliver the final product. Figure 1 below summarises the Demonstrator process.

Figure 1 The Demonstrator process

5.1.3.2 UMC for prototyping

Given the list of natural language requirements describing the selected case study, our first step is
to transform these requirements into a set of interacting UML state machines providing a semi-
formal model of the system.

This step has been done using the UMC framework, developed in the last 20 years internally at
CNR and used in many other projects. The reason for this choice is that UMC is a tool explicitly
oriented to the fast prototyping of systems constituted by interacting state machines. UMC allows
the user to:

• specify a UML state machine design using a simple textual notation,

• visualise the corresponding graphical representation,

• interactively animate the system evolutions,

• formally verify (using on-the-fly model checking) properties of the system behaviour.
Detailed explanations are given when a property is found not to hold, also in terms of
simple UML sequence diagrams.

4SECURail – GA 881775 16 | 85

Notice that UMC is not an industry-ready tool: e.g., its available documentation is limited, and no
commercial support is provided. The role of this CNR framework is the support of
experimentations and teaching of advanced formal verification techniques.
For this reason, our Demonstrator will make use of UMC only in the initial prototyping phase, while
relying on other industry-ready, commercially supported frameworks for the semi-formal and
formal modelling and verification.

The double textual/graphical representation of state machines fits well the need of simplifying the
task of transforming the UML model into the textual Event-B notation accepted by the ProB tool,
as well the need of having an immediate graphical feedback of the state machine design for its
subsequent inclusion in Sparx EA.
Command-line executable binaries for UMC are freely available upon request, while a graphical
interface to the framework is freely accessible on the CNR-ISTI-FMT site [UMC1][UMC2].

5.1.3.3 Sparx Enterprise Architect for Model-based Development

Being that UMC is not industry ready, and only destined to prototyping phase, the official role of
UML tool in the Demonstrator has been assigned to Sparx Enterprise Architect.
As already described in Section 5.1.2 with this platform it is possible (among other functionalities):

• to design graphically appealing UML state machines,

• to animate their behaviour (according to the Sparx EA execution model),

• to automatically generate the corresponding documentation (an example of which is
shown in Appendix E - Sparx Model Report – CSL),

• to handle traceability, that is, the mapping of the model with respect to the initial set of
requirements,

• to generate specific software components of the system from its models.

The Sparx EA execution engine (used for simulations) is deterministic and gives its own specific
solutions to all the aspects intentionally unspecified in the UML standard. From this point of view
the UML semantics adopted by the UMC and ProB formal framework is more general than the one
observable through a specific Sparx EA simulation, in the sense that it is not locked to a specific
vendor solution. This aspect will be discussed in more detail in Section 5.4.1. Sparx EA is a
commercial product, and the license is permanent with renewable customer support each year.
Professional training is available on-demand.

5.1.3.4 ProB for detailed simulations, analysis, verifications

ProB [PROB] is an animator and model checker for the B-Method. It allows animation of Event-B
specifications and can be used to systematically check a specification for a range of errors.
Some of the reasons for the successful experience of its use in the ASTRail project, which have
suggested to reuse it on 4SECURail as well, are the following:

• it is a free, open-source product whose code is distributed under the EPL v1.0 license

4SECURail – GA 881775 17 | 85

[PROB-licensing][EPL];

• it is actively maintained, and commercial support is available from Formal Mind
[FORMALMIND] ;

• it runs on Linux, Windows, and MacOS environments;

• it has several nice, very usable graphical interfaces, but it can also be used from the
command line;

• it is well integrated with the B/Event-B ecosystem (Rodin, AtelierB, iUML, B-Toolkit)
[Bmethod];

• it allows construction, animation and visualisation of nondeterministic systems;

• it allows formal verification through different techniques like constraint solving, trace
refinement checking, and model checking.

Concerning the planned uses of ProB inside 4SECURail project, this framework, however, suffers a
few limitations since it is born and grown around a specific specification notation (Event-B). In
particular:

• It does not allow the explicit modelling of multiple mutually interacting state machines.
The only way to achieve that is to merge all the separate machines into a global one.

• Event-B state machines are different from UML/SysML state machines. At the current state
of the art several proposals for translations from UML to ProB state machines have been
made but, to the best of our knowledge, no industrially usable product currently supports
that mapping.

• Model checking is not likely to scale when the system is composed of many interacting
asynchronous state machines.

The ProB encoding of the UML design can be obtained quite directly from textual UMC
representation of the system, and the coherence of the two specification notations can be formally
verified.

ProB natively provides feedback in the presence of error or as an explanation of properties using
execution traces. To provide a graphical representation of such feedback, a simple tool for
depicting these execution traces in terms of Sequence Diagrams is provided.
ProB is a freely available tool distributed under EPL v1.0 license. As stated above, commercial
support is available from FormalMind.

5.2 The selected case study

The case study chosen to test the 4SECURail Demonstrator is a subset of the RBC/RBC hand over
protocol, as specified by Deliverable 2.3 of 4SECURail project.
In the ERTMS/ETCS train control system, a Radio Block Centre (RBC) is responsible for managing

trains under its area of supervision. A handover procedure is needed to manage the interchange

of train control supervision between two neighbour RBCs: when a train is approaching the end of

the area supervised by one handing over RBC, an exchange of information with the accepting RBC

4SECURail – GA 881775 18 | 85

takes place to manage the transaction of responsibilities. Since the two neighbouring RBCs may

have been manufactured by different providers, the RBC/RBC interface is a typical product where

the products (RBC) of different suppliers must be interoperable.

Deliverable 2.3 integrates the ETCS specifications contained in SUBSET-039 – FIS for the RBC/RBC

Handover [SUB-039] and SUBSET-098 – RBC/RBC Safe Communication Interface [SUB-098] with

additional requirements. The adapted definition of the subsystem is limited to higher application

levels and safety levels (SAI sub-level of SUBSET-098). Thus, the case study isolates and identifies

two layers:

• Communication Supervision Layer (CSL): responsible for commanding opening/closing of a

communication line between RBC and keep the connection alive through Life Signs.

Its functional requirements are covered by UNISIG SUBSET-039 and UNISIG SUBSET-098.

• Safety Application Intermediate sub-layer (SAI): below the CSL, it implements the

protection mechanisms against deletion, replication, resequencing, and delay threats as

identified by CENELEC EN50159 [CENELEC EN50159]. In this case, its functional

requirements are covered by UNISIG SUBSET-098. Most requirements related to the safety

of the communication are allocated in the SAI.

Above the CSL, the RBC User layer includes all application functions (e.g., evaluation of Movement

Authorities MAs, communication with on-board units, actual management of RBC-RBC handover

transactions) and the generation/reception of information to communicate, while protocol Layers

are dedicated to formatting and exchanging such information with communication partners. The

specification of RBC_User functions is not included in the requirements of the case study.

Moreover, lower levels below SAI (EuroRadio and Communication Functional Module of SUBSET-

098) are also not part of the requirements of the case study.

Thus, the Demonstrator will be applied to the CSL and SAI levels, whilst RBC_User, EuroRadio and

Communication Functional Module are treated as external environment.

Figure 2 shows the overall structure of the system. Notice that of the two communicating sides,

one side is configured as "initiator" of safe connections while the other is configured as "called

side".

4SECURail – GA 881775 19 | 85

Figure 2: Overview of the case study structure

5.2.1 Task 2.1 initial case study fragment

Within this first experimentation of the Demonstrator prototype in the context of Task 2.1, we are
interested in analysing the behaviour resulting from the interactions of the two CSL sides (initiator
and called). Therefore, we designed an initial abstract version comprehending both the underlying
SAI and EuroRadio layers allowing the two CSL to interact. Similarly, we added to this composite
system two abstract RBC_User sides that stimulate and receive data from the underlying CSL
subsystems with the exchange of RBC_User data.
As said in D2.3, it is outside the goal of the project to fully model the RBC_User behaviour to give
a complete design and analysis of the RBC-RBC Handover protocol. Thus, such RBC_User will
produce inputs and outputs following pre-determined operational scenarios. The actual modelling
and formal analysis of underlying SAI levels will be an objective of Task 2.3.

The resulting formal model that we consider in this deliverable has therefore the structure:

4SECURail – GA 881775 20 | 85

Figure 3 : Case Study Fragment

At the current stage of the project a formal model of the SAI-EuroRadio level has not yet been
done (this will be a goal of Task 2.3). Thus, the used SAI abstraction that is part of the requirements
of the case study must be a prototypical one. This prototype model will be replaced by the actual
SAI model in the final release of the Demonstrator.
The current prototypal SAI model allows us to perform verifications of the system that provide
useful early feedback on the CSL design.
For simulation in Sparx EA the SAI component, as well as the RBC_User, are not specified. Indeed,
inputs coming from SAI and RBC_User are provided by the human user acting as the environment
stimulating the CSL component. On the converse, for formal verification with model checking the
human is out of the loop, thus the need to provide abstract models of RBC_User and SAI.
For the higher RBC_User levels we have considered the modelling of two kinds of scenarios:

1. A basic scenario in which the two RBC_Users do not play any active role: they just receive

notifications of the creation and destruction of communication sessions between them. In

this case, the entire system activity is centred on the CSL connections, disconnections, and

management of the lifesigns. We briefly recall the behaviour of the two CSL modules:

• If disconnected, the initiator CSL (I_CSL) tries (each period identified by a connect

timer) to establish a new connection.

• If disconnected, the called CSL (C_CSL) waits for connection indication from the initiator

side.

4SECURail – GA 881775 21 | 85

• If connected, when a local send_timeout expires each CSL sends a lifesign message to

the other CSL.

• If connected, when a local receive timeout expires the CSL (initiator or called) closes

the connection, notifying the RBC_USER and the other CSL.

• If connected, when a CSL receives a disconnection indication from the lower SAI level

it becomes disconnected notifying the RBC_User of the event.

• The lower levels (SAI/EuroRadio) in their current abstract modelling behave as if each

message had its own sequence number, and they autonomously close the connection

when the difference between the sequence number of the two most recently received

messages is at least N (N is a parameter). Moreover, in this abstract SAI model, received

messages can be nondeterministically marked as "invalid", while in the real system this

will occur only when the "travelling time" (arrival time - departure time) exceeds a

certain threshold.

2. A second scenario is based on the previous one, with the addition that the RBC_User on

the initiator side tries to send a message to the other RBC_User, and waits for another

message as reply.

3. A third scenario, similar to the previous one, but with inverted roles (the RBC_User on the

caller side is the one that starts sending a message and waiting for a reply).

All these scenarios can furthermore be configured with different values for the timers used for
requesting a connection (max_connect_timer), sending a lifesign (max_send_timer), closing a
connection (max_receive_timer), and the value of N for the SAI abstractions.

5.3 An overview of the modelling phase of the case study

In this (sub-)section, we provide some details on the actual modelling of the case study in this
Demonstrator. We refer to the corresponding Appendix for a complete presentation and the
Zenodo-repository [ZenodoWP2] for the observation of the full models and audio-visual material
on our modelling and analysis steps.

5.3.1 UMC modelling

The main characteristic of UMC is that a simple textual notation is used to specify the state
transitions of a UML state machine. In Figure 4 one of these transitions is depicted.

4SECURail – GA 881775 22 | 85

Figure 4 : Example of UMC rule

Each transition definition is defined by:

• an optional transition name (R8_ICS_IRBC_rbcuserconnectindication in Figure 4),

• the source and target states of the transition (NOCOMMS, COMMS in Figure 4),

• A block { } containing:
o the triggering event of the transition (SAI_CONNECT_confirm in Figure 4), possibly

with parameters and guards,
o the sequence of actions to be performed as an effect of the transition (the sending

of the RBC_User_Connect_indication signal to the RBC_User component and the
assignment of the connect, receive, and send variables in Figure 4).

The names that appear inside a transition definition can refer to names of the other components
constituting the system, the possible parameter of the triggering event, and to local variables of
the state machine.
Figure 5 shows the automatically generated (thanks to Graphviz [GRA]) graphical representation
of a state machine (I_CSL). Its layout is not interactively editable but can be saved in the .dot
format for offline manual adjustments.

With UMC it is possible to check if/how a given transition is eventually fired, if/when a certain
signal is sent, if/when a certain variable is modified, or a certain state reached.

4SECURail – GA 881775 23 | 85

Figure 5 : The initiator CSL state machine

For example, we can ask for an explanation about when the transition shown in Figure 4 is fired
(i.e., when it happens that the signal SAI_CONNECT_confirm causes the sending of the
RBC_User_connect_indication), and the answer can be observed in term of a sequence diagram,
as shown in Figure 6 (the graphical layout is automatically generated by UMC using the PlantUML
online services [PlantUML]).

4SECURail – GA 881775 24 | 85

Figure 6 : A sequence diagram generated with UMC

The complete set of UMC models and some related audio-visual material can be retrieved from
the public Zenodo repository [ZenodoWP2]. The UMC encoding of the I_CSL component is shown
in Appendix C - UMC encoding of I_CSL.

5.3.2 Sparx Enterprise Architect modelling

In the Sparx Enterprise Architect, state machines are specified using a WYSIWYG (What You See Is
What You Get) graphic user interface. In this way the user has intuitive control of the graphical
display of diagrams. Figure 7 depicts the state machine for the CSL derived from the UMC models.
Details about the mapping from UMC to Sparx EA are in Appendix A – More details on Sparx
Modelling.

4SECURail – GA 881775 25 | 85

Figure 7 : The Communication Supervision Layer State Machine

4SECURail – GA 881775 26 | 85

In a UML framework as Sparx Enterprise Architect, one cannot define state machines only. Indeed,
a state machine has to be assigned to a class in a class diagram, so to model the behaviour of that
class. Moreover, to compose state machines and make them interact, an executable state machine
connecting various class instantiations must also be defined.
Details about the class diagram (in Figure 8) and executable state machine (in Figure 9) are in
Appendix A – More details on Sparx Modelling.

Figure 8 : The class diagram

Figure 9 : The executable state machine

Once designed, a system composed of several interacting state machines can be simulated
interactively, by sending triggers, to observe its behavior. The executable state machine is used

4SECURail – GA 881775 27 | 85

for generating code, and the simulation gives an interactive graphical animation of the system
being debugged, as depicted in Figure 10 (a snapshot taken from a 13-inch screen).
Details about the behavior of executable state machines, comparisons with UMC, and description
of the simulation functionalities are in Appendix A – More details on Sparx Modelling.

Figure 10 : Simulation workspace in Sparx EA

Another important feature for the industrial use of the tool is the automatic generation of the
system documentation.
In [ZenodoWP2] the documentation automatically generated (as .docx document) from the
developed model is present. The portion of documentation about the CSL is in the Appendix E -
Sparx Model Report – CSL. It is interesting to note that such documentation can be further
annotated with comments for each element present in the system, using “notes” that may include
important explanations. These notes are rendered as comments in the actual code generated from
the model. A more detailed description of the Sparx EA modelling steps is presented in Appendix
A – More details on Sparx Modelling. The Sparx Enterprise Architect model together with the
generated documentation, generated code and a video presentation demonstrating Sparx EA at
work on the 4SECURail case study is available at [ZenodoWP2].

5.3.3 ProB modelling

A system specification is structured in ProB as an Event-B machine. In our case, since the system
under analysis is composed of several mutually interacting state machines (and Event-B is not able
to deal with this concept), we need to "merge" all these components into a unique, global Event-

4SECURail – GA 881775 28 | 85

B state machine. This has several implications:

• The separate class attributes of UML state machines must be merged into a single Event-B
state machine. This may require the prefixing of the variable names with the component
names to avoid name clashes (e.g., while in UML we have the I_CSL and C_CSL classes
making use of their own "send_timer" attribute, in Event-B we will have the two attributes
"icsl_send_timer" and "ccsl_send_timer"). The same needs to be done for the operation
names (transition labels in UMC) and the other entities that require duplication.

• The currently active state of a UML state machine is represented in Event-B by the current
value of an ad-hoc variable statemachine_STATUS. There is one such variable for each UML
state machine.

• Within the Event-B machine structure, all types, constants, and variable definitions and
initializations must appear at the beginning of the machine definition. This disrupts the
original structure of the system forcing to spread the UML state machine definition into
several places in the Event-B machine specification.

• In UML State Machines the event pool (a buffer implementing asynchronous
communications that contains at each moment the set of signals arrived in a state machine
but not yet dispatched or discarded) is part of the engine support and thus is not explicitly
modelled. In Event-B these event-pool components must be explicitly modelled. This is
because, contrary to UMC, Event-B is not a tool designed for handling UML State Machines.
Our UML/UMC/ProB assumption is that these pools are instantiated as First-In First-Out
(FIFO) queues (this is the default implementation suggested by UML standard), therefore
a "buffer" variable representing the state machine event pool is added to the Event-B
model. Consequently, the action of sending a signal to another state machine will be
modelled with the insertion of a value to the corresponding variable buffer, and the
dispatching of a signal to trigger a transition will be modelled with the extraction of the
first element of such a buffer.

• Each transition rule definition of the UMC state machine design is mapped onto an
equivalent operation of the Event-B machine.
This mapping is at this point very direct as shown below:

 UMC transition Event-B Operation

R8_ICSL_IRBC_rbcuserconnectindication: R8_ICSL_IRBC_rbcuserconnectindication =
NOCOMMS -> COMMS PRE
 { SAI_CONNECT_confirm / ICSL_STATUS = NOCOMMS &
 RBC_User.RBC_User_Connect_indication; icsl_buff /= [] &
 connect_timer := max_connect_timer; first(icsl_buff) = SAI_CONNECT_confirm
 receive_timer := 0; THEN
 send_timer := 0; } ICSL_STATUS := COMMS;
 irbc_buff := irbc_buff <- RBC_User_Connect_indication;
 icsl_connect_timer := icsl_max_connect_timer;
 icsl_receive_timer := 0;
 icsl_send_timer := 0;
 icsl_buff := tail(icsl_buff)
 END;

4SECURail – GA 881775 29 | 85

Clearly the mapping between UMC and ProB appears to be particularly direct because we are
restricting ourselves to use only basic state machine features. For example, deferred events,
completion transitions, parallel states, entry-do-exit activities, pseudo-states and other modelling
facilities of UML State Machines are not used.
This choice was one of our design principles for:

• allowing the design of state machines with a clear meaning not particularly tied to UML
technicalities

• allowing an easy transformation into other notations, not related to UML, for formal
analysis and verification.

The generated models and related audio-visual material are available in [ZenodoWP2].

Once the ProB model has been generated, all its possible executions can be interactively
simulated, and the whole state space can be exhaustively checked for absence of errors,
deadlocks, or invariant violations. Furthermore, properties in the form of Linear Temporal Logics
(LTL) or Computation Tree Logics (CTL) can be verified and counterexamples saved and visualized.

It is important to have an intuitive graphical representation of counterexamples (or in general
execution traces) in terms of the signals exchanged among the various components. Thus, we have
developed a prototype translator that converts a ProB textual execution trace into a sequence
diagram (thanks again to the PlantUML platform [PlantUML]). For example, the confirmation of
the actual reachability of transition R8_ICSL (the same of Figure 4) can be model-checked, and the
resulting trace visualized as shown in Figure 11:

Figure 11 : Sequence diagram of a ProB execution trace

The ProB encoding of the I_CSL component is shown in Appendix D - ProB encoding of I_CSL.

4SECURail – GA 881775 30 | 85

5.4 Formal Analysis of the initial case study fragment

In this section we present an overview of the formal analysis which has been done on the CSL
components of the case study.
In Section 5.4.1 we discuss the implications of having selected the UML as a standard notation for
the design of the system, which in our case is constituted of six mutually asynchronously
interacting state machines.
In the subsequent Section 5.4.2 and Section 5.4.3 we present, with the help of some examples,
the impact of our semi-formal and formal modelling and verification steps towards

• a deeper understanding of the designed system,

• a potential improvement of the initial natural language requirements,

• a greater confidence in the robustness of the requirements.

We emphasise that the goal of our activity is to demonstrate the process of developing system
specifications using semi-formal/formal methods and to identify costs and benefits involved in it,
rather than an exhaustive validation of a given system specification.

5.4.1 The impact of using the UML as a "standard" notation for the
description of the composition of State Machines

Each of the system components shown in Figure 3 has been modelled by its own UML state-
machine as described in Section 5.3. It becomes essential, however, to clarify the role and impact
of using UML as a "standard" notation for describing this kind of composition of state machines.

When reasoning in terms of a single state machine, the UML semantics of Run-To-Completion
steps is precisely defined by the OMG standard (see e.g., fUML [OMG-fUML1] [OMG-PSSM], Alf
[OMG-Alf] [OMG-Alf-Spec]), although not in mathematical terms but using natural language, and
at least when appropriate restrictions are made to avoid more complex and still unclear situations
[SG30]. "Precisely", however, does not mean "complete".
The OMG UML [OMG-UML] definition leaves intentionally unspecified several aspects of the
behaviour of a state machine. For example:

• which transition is fired when multiple transitions are in conflict, that is they have the same

priority and are enabled by the dispatching of the current event,

• which outgoing path from a choice pseudo node is selected when multiple alternatives are

enabled,

• in which order parallel transitions are fired.

4SECURail – GA 881775 31 | 85

Each model-based development tool that is compliant to the UML standard (like Sparx Enterprise
Architect) can make its implementation choices and define its (possibly deterministic) specific
execution model.
If we want to adopt a semantics of a UML state machine design that is as far as possible
independent from any implementation choice, we can model the above aspects as
nondeterministic aspects.
In our case, due to the precise behaviour expected from the CSL components, these
nondeterministic aspects (i.e., conflicting transitions) are not present in the CSL state machine
models.
However, due to the current abstraction of both SAI end EuroRadio layers, we have in our system
some UML state machines that behave in a nondeterministic way (recall that is true for UMC and
ProB, but not for Sparx EA where the human user acts as the environment). This nondeterminism
is indeed introduced either from the UML modelling of some physical component (the
communication mean that can lose, delay, reorder messages) or from the abstraction of the actual
behaviour of other components (e.g., the abstraction of the actual presence of sequence numbers,
sending time of a message, arrival time of a message). Some of these aspects will be refined in the
next release of the Demonstrator.
Moreover, the overall semantics of interacting state machines is intentionally left undefined by
the OMG standards to allow flexibility and adaptivity of the UML notation to different contexts.
From this point of view the most important aspects that are left undefined by the UML standard
are:

• The characteristic of inter-machine communications (e.g., delay, loss of messages,

reordering of messages during communications).

• How the "event pool" associated with each state machine is managed.

• How the various state-machines composing the system are scheduled and executed in

parallel.

• Whether or not a single Run-To-Completion step of a state machine can be interrupted or

overlapped with other Run-To-Completion steps of other state machines.

It is not possible to verify the behaviour of interacting state machines in its complete generality.
As an example, we can imagine pools that select events to trigger a Run-To-Completion step in a
random way, pools that keep the event as a FIFO queue (this is the UML default choice), pools that
handle the arrived events according to some internally defined priority mechanism, pools that are
bounded in size and that discard messages when full, and so on.
Among the many possibilities, we believe that the most interesting and useful choice is to rely on
the UML default choice, unless someone has the goal of specifying the semantics of a particular
class of systems which is known to reflect a different assumption.
Therefore, any attempt to associate a meaning to a composition of UML state machines design
should as first step clarify the assumptions which underlie this design.

In our case, the specific assumptions underlying our UML design for what concerns the UMC
modelling and ProB encoding of the system are that:

4SECURail – GA 881775 32 | 85

Assumption 1. During interstate machine communications, the sending of an event from one side

corresponds to the receiving of the event in the event pool of the other side; therefore,

communication events are not delayed, lost, or reordered.

Assumption 2. The event pool associated with each state machine is an (unbounded) FIFO queue.

Assumption 3. The Run-To-Completion steps of a state machine are executed atomically also in

the context of System-of-Systems.

Assumption 4. The scheduling of the various state machines is considered free and unconstrained.

Some remarks are needed to clarify the above assumptions.

• Assumption 1 reflects the case where communications occur via shared memory (e.g., by

writing into a buffer). If this is not the case (as in our model the ISAI-EuroRadio-CSAI

interactions), we must explicitly model the existence of a "communication layer" which

introduced delay, loss, or reordering of messages.

• Assumption 2 for modelling the event pool with FIFO queues directly reflects the default

policy suggested by the UML standard. If the system being modelled is based on different

assumptions, then this fact should be made clear, and consequently explicitly

modelled/specified within the formal framework (e.g., UMC allows us to specify that the

event pool should behave as a random set of events, but this aspect is not used in our

models).

• Assumption 3 is a simplification that reflects well the case of the atomic execution of

operations that are not interrupted by the scheduling policy adopted within the

architecture that we are trying to model. If the underlying scheduling policy does not

reflect this assumption, then we should explicitly split our non-intended-atomic transition

into a sequence of atomic ones.

• Assumption 4, which in its generality models any possible interleaving of state machines,

implies that the resulting system might be unfair, with certain machines evolving while

others not progressing at all. This implies that additional components might have to be

added to the system to constrain how the various machines can proceed in parallel. In our

case we have modelled all the system components as continuously executing a cycle, and

added a "Timer" component acting as explicit scheduler that allows all the cycles to be

executed in parallel, in all possible orders, but reflecting the property that no machine

executes more cycles than another. Alternative, more specific assumptions might have

been made: e.g., assigning a (possibly dynamic) priority to the various executing state

machines, or scheduling state machines according to some notion of global time and

duration of the Run-To-Completion. Our choice, which is the most general, is also the one

that underlies the UMC design and the simplest one to encode in terms of ProB machine.

4SECURail – GA 881775 33 | 85

In conclusion, our reference model is not a perfect model of the actual real-time system, but it is
a convenient abstraction that allows to reason on the possible properties of the actual system.

5.4.2 Semi-formal analysis

A first consideration is that already the initial step of building an operational model of the system
(as UML state machines) has revealed duplications, implicit assumptions, ambiguities and
unclarities in the natural language system requirements specified by Deliverable 2.3 of 4SECURail
project.

Let us consider, for example, REQ_001:

REQ_001 If configured as initiator, when switched on (communication in state NOCOMMS),
the CSL is responsible to send to underlying Layers the command for the
establishment of a safe connection with the partner RBC, and to command re-
establishment of safe connection when it is considered lost (communication in state
NOCOMMS).

This requirement is found to be overlapping with REQ_012, which says:

REQ_012 If configured as initiator, at start-up, and when the loss of safe connection is
detected, the CSL shall send safe connection init order to SFM
(SAI_CONNECT.request).

Moreover, it is not clear if the SAI_CONNECT.request should be sent immediately as soon as
initiator CSL is switched on, or immediately as soon as it returns to the NOCOMMS state, or if some
delay is allowed (is not clear whether any allowed maximum delay exists at all).
We argue that it is not desirable to write the system requirements at such a level of detail (stating
explicitly that some small delay is allowed, but no more than a certain amount). However, an
explicit note in the form of INFO would not do any harm. In our CSL model the
SAI_CONNECT.request is sent at the beginning of the next cycle.

Continuing to analyse REQ_001, we note that it requires that, when the communication is in state
NOCOMMS, the CSL should send the SAI_CONNECT request. However, after having sent that
request, the CSL still remains in state NOCOMMS and should not continue to send again the same
request (this should be done only after the expiration of the connection timeout, as specified by
REQ_002).

REQ_002 After sending the command for the establishment of the connection, a timer shall
be started by the initiator. If the timer expires before the connection is established,
a new connection request shall be generated.

In this case REQ_012, while requesting the same behaviour, is more explicit in suggesting that the

4SECURail – GA 881775 34 | 85

SAI_CONNECT request should be sent (apparently only) initially, and when "loss of safe connection
is detected". This is further clarified in REQ_006 and REQ_007:

REQ_006 Loss of safe connection shall be detected by the CSL reading reports from the
underlying SFM (SAI_DISCONNECT.indication).

REQ_007 If a report from underlying Layers is received that safe connection is lost, the CSL
shall consider the communication in state NOCOMMS.

But there is another requirement (REQ_009) that mandates a transition back to state NOCOMMS
even without mentioning any "loss of safe connection" (which can still be alive):

REQ_009 After reception of report from the SAI that the clock offset procedure or EC
initialisation has been completed, the condition where no valid messages are
received within a configurable time shall be recognised by the CSL. This is achieved
through a configurable receive timer (started at the reception of report from SAI on
completion of initialisations and reset at the reception of any message); if no
message (User or life sign) is received within such configurable receive time interval,
the communication shall be considered in state NOCOMMS.

Summing up, from all these requirements it seems clear that when a CSL receives a
SAI_DISCONNECT.indication or when the receive timer expires, the CSL should switch to state
NOCOMMS and, if it configured as initiator, it should send the SAI_CONNECT.request.
The next question one may ask is: what if the SAI_DISCONNECT.indication is received when already
in the NOCOMMS state? It is reasonable to imagine that in this case the report is not "read" but
just "discarded", without any resending of SAI_CONNECT.request (until the expiration of
connection timeout).
To complete the picture, we should also consider the cases in which the state NOCOMMS is left:
and re-entered. This is specified by REQ_011, REQ_013 and REQ_014:

REQ_011 CSL can switch the communication from state NOCOMMs to state COMMS only
when underlying Layers confirm the re-establishment of a safe connection.

Note: communication in state COMMS is communicated to User functions, that will
be able to restart management of transactions.

REQ_013 If configured as initiator, at start-up, and when loss of safe connection is detected,

the CSL shall wait for reception of safe connection established confirmation from
SFM (SAI_CONNECT.confirm).

REQ_014 If configured as called, at start-up, and when loss of safe connection is detected, the
CSL shall wait for reception of safe connection established confirmation from SFM
(SAI_CONNECT.indication).

We can see that the above natural language presentation of the system requirements, whilst

4SECURail – GA 881775 35 | 85

describing what the system should do, requires a certain effort in merging the various fragments
and aligning the various overlapping of requirements.
We argue that, if a state machine model of the CSL would be available, probably it would have
been more natural to state the required behaviour in a concise, clear way, like:

• when the initiator CSL enters in state NOCOMMS (either at start-up or when coming from state
COMMS) it shall send a SAI_CONNECT_request to SFM and start a connection-timer.

• when the initiator CSL is in state NOCOMMS, if the connection-timer expires then it shall
resend a SAI_CONNECT.request to SFM.

• when the initiator CSL is in state NOCOMMS and receives SAI_CONNECT.confirm it shall move
to COMMS.

• when the called CSL is in state NOCOMMS and receives SAI_CONNECT.indication it shall move
to COMMS.

• when the (initiator or called) CSL is in state COMMS, if receive-timer expires or a
SAI_DISCONNECT.indication is received, then it shall switch to NOCOMMS.

5.4.3 Formal analysis

While certain weaknesses of the natural language requirements can be spotted already in the UML
design phase, other subtle weaknesses can be detected more easily only if an automatic model
exploration/model checking is done.
Model checking, for example, may reveal missing requirements. This can be put in evidence by the
fact that the state machine deadlocks or discards events (i.e., a signal arrives in a certain
component state, but there is no explicit rule handling it).
During the initial design of new components (e.g., the RBC_Users modelling a scenario) it is quite
easy to initially overlook certain possible system evolutions.

For example, with respect to the above quoted REQ_012, we can observe that the "detection of
loss of connection" (i.e., the SAI_DISCONNECT.indication) can occur when the RBC is already in
state NOCOMMS. In this case the indication should be discarded and no SAI_CONNECT.request
should be issued until the appropriate connection timeout is expired.

An example of how this situation might occur can be seen by observing the generated Sequence
Diagram, obtained by checking a formula (either in UMC or Prob) proving that this situation
(modelled by rule R2_ICSL) might occur.
As shown in Figure 12 the generated Sequence Diagram shows that this event might occur if both
the ISAI and the ICSL autonomously decide (at almost the same time) to move to the disconnected
state, the SAI because it has received a Sa_DISCONNECT.indication, and the RBC because its
timeout is expired. Both components in this case send a disconnection notification to the other,
which is received when already in the disconnected state.

4SECURail – GA 881775 36 | 85

Figure 12 : ICSL and ISAI exchange disconnect messages

We have shown so far just one example of the deeper insights and benefits that can be obtained
by an early formal analysis of a UML design: deeper insights that might lead to the construction of
more complete and clear system requirements specifications.

In Appendix B - Annotated CSL Requirements and Mapping we show the initial version of the D2.3
requirements related to the CSL subsystem, annotated with observations resulting from this initial
phase of modelling and analysis of the CSL specification. This Appendix also shows the direct and
inverse mapping between the natural language requirements and UMC-ProB rules formally
modelling their impact on the system behaviour. On the other hand, the mapping from Sparx EA
transitions (or rules) to UMC-ProB rules is in Appendix E - Sparx Model Report – CSL.

Using the selected scenarios several generic properties of the formal model can be verified, often
at just the price of a single click:

• The modelled systems have no deadlocks (i.e., the two CSL components are always live).

• All transitions present in the CSL state machine diagrams are eventually fired, (i.e., there

are no dead transitions in the CSL state machine diagrams).

• No signals/event are ever lost (i.e., there are no missing transitions in the CSL state machine

diagrams).

Figure 13 shows the ProB default interface for model checking the system, and Figure 14 shows
the coverage report that can be analysed after the verification.

The actual reachability of each UML transition in each scenario (i.e., if a transition will be executed)
can be explicitly checked through model checking, and a Sequence Diagram can be generated that
illustrate a viable way in which the transition is reached.

4SECURail – GA 881775 37 | 85

Figure 13 : Model checking interface of ProB

Figure 14 : Operations coverage summary

An interesting point that we should address is: how can we be sure that the formal model is a good
representation of our requirements?
Different answers to the above question may be given: by tracing requirements to the formal
model and vice versa, from the analysis of the read-write table1 that can be automatically
generated by ProB, and from a manual inspection of the model and requirements.

1 A map that associates each rule with the variables used (reading or writing) by that rule.

4SECURail – GA 881775 38 | 85

If requirements are mapped to properties expressed in the form of temporal logic, formal methods
(in particular, model checking) can be used to automatically check that the model satisfies the
properties, that is, the model is conformant to the requirements.
Let us consider the fragment of REQ_009 (shown previously) stating that if the receive-timer
expires the CSL should move into NOCOMMS state.
We can verify the Linear Temporal Logic formula2 stating that it never happens that in the initiator
CSL (the property for the called CSL is equivalent) the receive-timer is greater than the maximum
allowed value. This property will be checked exhaustively over all possible system executions (i.e.,
by generating the so-called state-space).
We can also verify more complex conditions. For example, it is possible to check whether,
assuming that the CSL is connected and no data has been received from the partner RBC within
maximum allowed time, at the next time slot either a data or disconnect command is received
from SAI, or the CSL will close the connection3.
By expressing through temporal logic formulae all behaviour characterising functional
requirements of the CSL, it is possible to automatically check them on an arbitrary model of the
CSL to check if it is conformant to the requirements. This type of formal verification is a step
towards more automatization with respect to full manual validation and is also equipped with
formal guarantees that all executions of the model will respect the desired properties.
This way of checking the model conformance surely is of help in complementing other validation
practices described above.

Another interesting question might be: how can we ensure that the adopted tools faithfully model
the expected behaviour of the provided UML design (under the chosen assumptions in terms of
UML state machine interactions)? I.e., is our ProB approach to the modelling of UML designs
correct?
In this Demonstrator we used two formal tools that explore all executions of the (composition of)
UML state machine models. These tools are ProB and UMC. We can automatically verify that their
generated state-space coincides4. This proves that the ProB approach towards the modelling of
interacting state machines reflects the UML assumptions that underlie the UMC behaviour, and
that the translation of the UMC code into the ProB code is correct (i.e. we have a mathematically
grounded proof that the behaviour of the two models is equivalent). Still, even though both ProB

2 G (({icsl_receive_timer <= icsl_max_receive_timer}))
3 G (({icsl_receive_timer = icsl_max_receive_timer}) =>
 (({ICSL_STATUS = COMMS}) &
 ((not ([R17_ICSL_Timer_okicsl_IRBC_rbcuserdisconnectindication_ISAI_saidisconnectrequest]))
 U
 (((([R17_ICSL_Timer_okicsl_IRBC_rbcuserdisconnectindication_ISAI_saidisconnectrequest])
 or ([R16_ICSL_IRBC_rbcuserdisconnectindication]) => X({ICSL_STATUS = NOCOMMS}))
 or ((([R13_ICSL_IRBC_rbcuserdataindication]) or ([R14_ICSL_handle_lifesign]))
 => (({icsl_receive_timer = 0}) & ({ICSL_STATUS = NOCOMMS}))
))))))
4 This has been achieved by asking the two tools to save their state-space as labelled transition systems,
transforming these state-spaces into the .bcg format of the CADP [CADP] framework and comparing them with the
bcg_cmp tool.

4SECURail – GA 881775 39 | 85

and UMC models are proved equivalent, we may ask whether this is the case also for Sparx model.
Indeed, even if Sparx and UMC support the same UML design, their semantics is allowed to be
different by the UML Standard. Since a semi-formal tool as Sparx does not offer the above type of
formal verification, the semantics compliance between Sparx and UMC has been manually
validated, to check whether it satisfies the initial intuition on the model behaviour.

Reasoning at a higher level on the composed CSL-SAI behaviour

In this project the functional CSL-SAI requirements have been extracted from well-established
UNISIG standards so we can reasonably trust that the specified requirements satisfy some global
system expectations.

If, from the point of view of the system developer, producing a system which complies to the
requirements is in principle all that is needed, from the point of view of the Infrastructure Manager
it is of paramount importance to confirm that all the possible system behaviours satisfy certain
higher-level requirements, which constitute the base for successful interoperation of the whole
system.
In the case of the SAI subcomponent, these higher-level requirements essentially coincide with
the safety requirements of the SAI component, while in the case of CSL these higher-level
requirements are not explicitly stated.

FM are a possible and reliable way to support this task. In our case, let us consider the full system
composed of the EuroRadio level, the two SAI levels, and the two CSL levels.
We might ask:

 which properties of our full system can the two RBC_User trust (or should not trust) to design
their handover protocol (or whatever other functionality) based over the CSL layer?

Notice that we are not making hypotheses on the possible behaviour (or requirements) of
RBC_Users, but we are just trying to better understand what in the end is the behaviour of our
CSL+SAI+Euroradio system.

Some answers to this question can be given quite immediately. E.g.

• the composed system does not guarantee that a successful connection can be achieved (and

this is acceptable, e.g., if the wire connecting the two sides is broken),

• the composed system does not guarantee that a User message sent from one side is actually

delivered to the other side (and this is acceptable, because the message might be lost),

• the composed system guarantees that if one RBC sends two messages to the other RBC, the

two messages, if received, are received within a certain timeout and in the correct order

(actually the correct ordering is supposed to be guaranteed by the SAI component, and the CSL

layer does not introduce reordering).

Additional answers can be given with some simple simulation of the system. E.g.

4SECURail – GA 881775 40 | 85

• the full system does not guarantee that two RBC always have the same view on the status of

the safe connection (for a limited time their views can be different, and not matching the actual

SAI status).

Other answers might be less obvious to check, especially if they depend on the specific
configuration parameters with which the system components have been instantiated. In this case
the model checking of the system may be of help in providing some clarity.

For example, we might ask:

"Does the full system guarantee that, once successfully connected, an exchange of messages
between two sides5 will always eventually have success or a disconnection will occur?"

We can see, by an exhaustive automatic formal analysis of the system6, that the answer is negative.
For example, it is sufficient that the message is unfortunately lost each time it is sent. If the SAI
component is configured with parameter N set to 27, if the subsequent lifesign is successfully
delivered then no disconnection would occur and no reply would ever arrive.

We can therefore analyse what happens if we set the SAI parameter N to 1. Also, in this case the
above property is not guaranteed, because the SAI of destination may receive the message, find it
"invalid" (i.e., arrived too late) and discard it, without delivering it to the higher CSL and RBC levels.
Again, we would have no reply nor disconnections.

If we assume instead that no invalid messages are found, N=1 and connections do always have
success, then we can see that finally the above property is satisfied.

This kind of analysis of the overall system behaviour is interesting as it may put in evidence useful
insights into the system behaviour and suggest indications for the system configuration and use.

E.g., in our case we might for example observe that:

• Too frequent sending of lifesigns might be dangerous as they can hide the loss of more

important NRBC messages.

• Generally, it is possible to automatically analyse the behaviour of the system at the varying

of parameters such as N or send_timer, to perform a sensitivity analysis on properties as

the one described above,

• Since the RBC_User, when sending an RBC message, in our case study cannot rely on an

explicit feedback on the fact that the message has been actually delivered or not delivered

5 I.e. one side send an initial message and the other message sends a reply
6 e.g. by checking the LTL formula "F (([R9_IRBC_aborted]) or ([R10_IRBC_done])) on the Scenario 2 described in
Section 5.2
7 The parameter N of SAI specified the maximum number of successive messages which be accepted to be lost
without terminating the safe connection.

4SECURail – GA 881775 41 | 85

or delivered as "invalid"8, it might become necessary, also at the higher layers levels, to

reason again in terms of timeouts for detecting that something has gone wrong at the

lower levels of communications and therefore resending the messages which have had no

reply.

• Also, the strategy of sending RBC messages in chains of N repetitions might not solve the

problem, because in the unfortunate case that all the RBC messages are marked as

"invalid" and the exchanged life-signs were instead successfully delivered, we would

continue to have no disconnections and no successful delivery of messages.

The above considerations should be considered just examples of the insights that formal modelling
and verification can provide, with no intention to provide official feedback or comment of the
system requirements specification being analysed, nor to suggest requirements on the outer
RBC_User levels which are clearly out of scope.
During this analysis only the CSL layer has been modelled completely while some aspects of the
SAI have been abstracted away by modelling them in a simpler (and nondeterministic) way. In the
next release of the Demonstrator a deeper and more rigorous modelling and analysis of the SAI
will be present.

8 Subset-98 [SUB-098] leaves to the implementation the error handling procedure.

4SECURail – GA 881775 42 | 85

 Conclusions

Context, goals, approach, and results of the activity

The activity described in this Deliverable is part of the activity of Task 2.1, whose objective is the
definition of a formal methods Demonstrator process (D2.1) to be applied (D2.2, D2.5) to a
selected signalling case study (D2.3) to demonstrate the costs and benefits of the use of formal
methods (D2.4, D2.6) in the requirements definition phase.
This Deliverable (D2.2) is related to the second part of T2.1 and has the goal of demonstrating and
validating with a trial case study from D2.3 the formal-methods based specification-design process
defined in D2.1.

The formal (model checking) and semi-formal (MBSD) process adopted in our Demonstrator
process starts with the design in terms of UML state machines of the systems being specified. This
semi-formal design is then translated to more rigorous formal notations that can be used for
exhaustive formal analysis.

While the focus of Task 2.4 will be the quantitative evaluation of the costs and benefits of the
introduction of formal methods in the system requirements definition phase, the experimentation
within Tasks T2.1 and T2.3 of our demonstrator has the purpose of testifying the overall categories
of costs and benefits that are revealed by the process.

From this point of view this first release of the demonstrator has identified two explicit categories
of costs: licensing costs and training/learning costs.
It is not be ignored, however, the fact that the application of formal methods has been done in
Task 2.1 by people with already a solid background and competence in the field of formal methods.
In absence of staff with these characteristics a third category of costs might have to be taken into
account which should not be confused with the training/learning costs associated with the use of
specific tools or methodologies.
A qualitative evaluation of the kind of difficulties and efforts needed for passing from a set of
natural language requirements to a formal model and a set of formally verifiable properties is an
activity which needs further investigation and that will be more thoroughly addressed in the future
deliverables of the project.

On the other side the experienced benefits are, not surprisingly, related to the detection of
imprecisions and ambiguities in the initial natural language system requirements that should be
fixed to obtain a more rigorous and clear natural language requirements specification document.
Moreover, even when the requirements are clearly defined, the use of formal methods allows to
obtain further deeper insights on the possible system behaviour, allowing the designer to evaluate
the completeness and consistency of the requirements document.

4SECURail – GA 881775 43 | 85

The choice of the initial UML-based design has been done in agreement with what has been done
in EULYNX and X2RAIL2, where UML/SysML is used as a standardised notation for the semi-formal
design of system specifications.
The tools which have been used so far (UMC, ProB, Sparx EA) have been applied with a limited
effort and cost, exploiting features among those provided that were necessary for our initial
experimentation. Becoming an expert in the use of these tools and mastering all their many
functionalities is outside the goals of this project.

Our experience has shown that the specification of a single UML state machine, when used with
certain constraints, may well fit the need to give standardized definitions of system components
that are easily translatable in other formal notations.

Potential future extensions and recommendations

In our design of the Demonstrator we expressed, as particularly desirable (but currently out of
reach) the possibility to rely on a single MBSD framework for both design, code-generation,
documentation, and formal verification. Our experimentation has shown that this desire is
currently out of reach, especially if a semi-formal language such as the UML is kept as reference
underlying notation. This remains an important direction to be further explored.

With this experimentation, the FM Demonstrator process defined in D2.1 has proved to be in line
with the goals required by Task 2.3. This, however, does not exclude that in the project
continuation additional FM will be taken into consideration due to the specific characteristics of
the signalling system case study to be analysed in Task 2.3.

An interesting side product of the future activity planned for Task 2.3 might be the generation of
a revised version of the systems requirement, still in natural language, but more rigorous and more
related to a formal model.
As a general recommendation for future projects and research activities towards the adoption of
FM in industry we observe that it might be worth to promote the development of the standard
UML profiles (i.e., where no semantics choices are left free) oriented to the specification of
Systems of Systems, that standardize the characteristics of inter-state-machine interactions. This
is one of the weakest points for the successful use of the UML as a standard notation for Systems
of Systems.
It might be also worth promoting the design of a basic UML profile for state machines, which
simplifies their behaviour and reduces the degree of their undefined aspects, to propose and make
easier standardised translations from UML state machines to other formal notations.

4SECURail – GA 881775 44 | 85

 References

[3DS] 3DS Catia nomagic "Cameo Systems Modeler"
 https://www.nomagic.com/products/cameo-systems-modeler
[ASTRAIL] ASTRail project. https://projects.shift2rail.org/s2r_ip2_n.aspx?p=ASTRAIL
[ASTRAIL-D41] ASTRail Deliverable D4.1 "Report on Analysis and on Ranking of Formal Methods"
http://astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2
[ASTRAIL-D43] ASTRail Deliverable D4.3 "Validation Report"
http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
[Bmethod] Butler, M., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L.F. and Voisin, L.,
2020, September. The first twenty-five years of industrial use of the B-method. In International
Conference on Formal Methods for Industrial Critical Systems (pp. 189-209). Springer, Cham.
[CADP] Fernandez, J.C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R. and Sighireanu, M.,
1996, July. CADP a protocol validation and verification toolbox. In International Conference on
Computer Aided Verification (pp. 437-440). Springer, Berlin, Heidelberg.
[CENELEC EN50159] CENELEC-EN 50159:2018 “Railway applications – Communication, signalling
and processing systems - Safety related electronic systems for signalling”.
[EPL] http://www.eclipse.org/org/documents/epl-v10.html
[ERA] European Union Agency for Railways https://www.era.europa.eu/
[EULYNX] The Eulynx project site. https://eulynx.eu/
[EVB] Event-B.org Website http://www.event-b.org/
[FORMALMIND] https://www.formalmind.com/
[FSKR29] Fecher H., Schönborn J., Kyas M., de Roever WP. (2005) 29 “New Unclarities in the
Semantics of UML 2.0 State Machines” In: Lau KK., Banach R. (eds) Formal Methods and Software
Engineering. ICFEM 2005. Lecture Notes in Computer Science, vol 3785. Springer, Berlin,
Heidelberg https://doi.org/10.1007/11576280_5
[GRA] Graphviz - Graph Visualization Software, https://www.graphviz.org/
[ICSE2020] Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H. and Fantechi, A., 2020, June.
Comparing formal tools for system design: a judgment study. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (pp. 62-74).
[MAAP2015] Shift2Rail Multi-Annual Action Plan 2015 https://shift2rail.org/wp-
content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
[MAAP2017] Shift2Rail Multi-Annual Action Plan – Executive View - Part A (2017)
https://shift2rail.org/wp-content/uploads/2018/04/Maap_2018_FINAL_2.pdf
[MAAP2019] Shift2Rail Multi-Annual Action Plan – Part B (2019) https://shift2rail.org/wp-
content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-Part-B-20.5.2019.pdf
[MBSD] Krogstie, J., 2012. Model-based development and evolution of information systems: A
Quality Approach. Springer Science & Business Media.
[OMG-Alf] OMG “Action Language for Foundational UML (Alf)”
https://www.omg.org/spec/ALF/1.1
[OMG-Alf-Spec] OMG “Alf Specification” https://www.omg.org/spec/ALF/1.1/PDF
[OMG-fUML1] OMG “Semantics of a Foundational Subset for Executable UML Models (fUML)”

4SECURail – GA 881775 45 | 85

https://www.omg.org/spec/FUML/1.4
[OMG-PSSM] OMG "Precise Semantics of UML State Machines (PSSM)”, May 2019
https://www.omg.org/spec/PSSM/1.0
[OMG-SysML] Object Management Group, "SysML 1.6 Specification", November 2019.
http://www.omg.org/spec/SysML/1.6/
[OMG-UML] Object Management Group "Unified Modelling Language"
https://www.omg.org/spec/UML/About-UML/
[PlantUML] PlantUML website, https://www.plantuml.com (also https://www.planttext.com)
[PROB] ProB website, https://www3.hhu.de/stups/prob/
[PROB-licensing] https://www3.hhu.de/stups/prob/index.php/ProB_for_Event-B
[PTC-Alstom] https://www.omg.org/mda/mda_files/PTC_Alstom.pdf
[PTC-Windchill] PTC “Windchill Modeler SySim” https://www.ptc.com/en/products/plm/plm-
products/windchill/modeler/sysim
[SG30] Anthony J.H. Simos, Ian Graham, “30 Things that go wrong in object modelling with UML
1.3.” In: Behavioral Specifications of Businesses and Systems. The Springer International Series in
Engineering and Computer Science, vol 523. Springer, Boston, MA https://doi.org/10.1007/978-1-
4615-5229-1_17
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/uml30things.pdf
[SPARX] SPARX Systems Enterprise Architect https://sparxsystems.com/products/ea/index.html
[SPARXCaseStudy] “SparxSystems CE: Belgian Railway relies on Enterprise Architect”,
https://community.sparxsystems.com/case-studies/1189-snfc4ea
[SUB-039] UNISIG - “FIS for the RBC/RBC Handover“- SUBSET-039 - 17-12-2015 (Issue 3.2.0)
[SUB-098] UNISIG - “RBC/RBC Safe Communication Interface” - SUBSET-098 - 21-05-2007
[UIC] European Union Agency for Railways https://uic.org/
[UMC1] KandISTI project website http://fmt.isti.cnr.it/kandisti
[UMC2] UMC project website http://fmt.isti.cnr.it/umc
[UMLReview] https://umltoolreviews.com/review-sparx-ea-uml/
[UMLSurv] Ozkaya, M. and Erata, F., 2020. A survey on the practical use of UML for different
software architecture viewpoints. Information and Software Technology, 121, p.106275.
[UNISIG] UNISIG is an industrial consortium factsheet http://www.ertms.net/wp-
content/uploads/2014/09/ERTMS_Factsheet_8_UNISIG.pdf
[WHATISUML] Visual paradigm, “What is Unified Modeling Language (UML)”?
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
[X2R2D51] X2Rail project, Deliverable D5.1 “Formal Methods (Taxonomy and Survey), Proposed
Methods and Applications” https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-
4dd3-ae01-2bada34596b8
[X2RAIL2] X2Rail2 project website https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
[ZenodoWP2] http://doi.org/10.5281/zenodo.4280773

https://www3.hhu.de/stups/prob/index.php/ProB_for_Event-B
https://doi.org/10.1007/978-1-4615-5229-1_17
https://doi.org/10.1007/978-1-4615-5229-1_17
https://sparxsystems.com/products/ea/index.html
https://umltoolreviews.com/review-sparx-ea-uml/

4SECURail – GA 881775 46 | 85

 Appendix A – More details on Sparx Modelling

In this section the Sparx modelling phase is detailed.

8.1 Simulation of Executable State Machines in Sparx EA

In Sparx EA, Executable State Machines are artifacts used to compose several separate state
machines and make them interact using simple send primitives. They are used to perform
simulations of interacting state machines.
 To do that, source code is automatically generated from such models, that is then
executed/debugged. It is possible to generate source code in JavaScript, Java, C, C++ and C#.
The source code also contains the implementation of the behavioural engine of State Diagrams,
as for example the pool of events for each state machine, the dispatching method and so on.

Templates for code generation are provided and can be customized to specific needs. Inspecting
the engine of State diagrams allows crucially to disambiguate the semantics choices left free by
UML and fUML State Diagrams ISO standard [OMG-fUML1][OMG-PSSM]. In particular, the order
of event dispatching, the strategy for solving conflicting transitions, the scheduling for dispatching
among state machines.

Once the code is generated, it is possible to debug it visually, using facilities that connect the
source code with the graphical diagrams, that are then animated and seamlessly integrated with
the simulation engine of Sparx. The animation emphasises the current state of each entity
simulated, and a simulation output console prints all relevant events that occur, thus constructing
a trace of simulation.
Under the hood a program (in Java in our case) is being debugged, thus it is also possible to use
breakpoints into the source code to perform standard debugging, inspecting the call stack to see
which method is currently executed, as well as the current thread. More importantly, the values
of variables of each state machine can be inspected at each step of simulation.

It is possible to interact with the state machine graphically, by clicking on one of the triggers that
are available in the Simulation events window. Once a trigger is sent, the state machines animate
and change the state according to that specific event.
It is also possible to interact with the state machines via console, typing instructions like send event
to machine, used to send an event to a specific machine. Such instructions can also be put into a
script to be automatized.
The simulation has a speed that can be set. If the speed is set to zero, the simulation will pause
after one Run-To-Completion step of all state machines. If the speed is greater than zero, the
simulation will pause only when an external trigger from the user is needed, otherwise it will
continue its execution at the specified speed.

Breakpoints can also be used as markers for start and stop the recording of simulation. From this
simulation recording, it is possible to extract a sequence diagram showing how the various objects

4SECURail – GA 881775 47 | 85

invoke each other's method.
By focussing on a single state machine, it is also possible to use the standard simulation engine
provided by Sparx Enterprise Architect. In this case, the standard simulation will not generate
executable code but will interpret the state machine. Simulations can be interpreted or manual.
In the manual simulation, the user decides which transitions to fire. Interpreted simulation
interacts using simulation events.

Concerning how suppliers can exploit this framework, thanks to Sparx Enterprise Architect the
informal specification becomes an executable artifact that can be directly imported by the
suppliers into their development process. This will facilitate the task of validating the correctness
of the suppliers’ implementations with respect to the IM’ specifications. Indeed, suppliers shall
link the provided specification to lower layers of implementation using tracing, so embedding the
specification into their whole development process and combining it with specifications of other
components/layers of architecture. Model-based Testing can also be used for testing whether the
specific implementation adheres to the requirements expressed by the specification. The
specification itself has already been formally verified by the IM against informal requirements.
Other functionalities that can be exploited regard the automatic generation of documentation,
and requirements traceability into the model. All these functionalities are available in Sparx
Enterprise Architect.

8.2 From UMC model to Sparx Executable State Machine

UMC supports a subset of UML State Machine Diagrams, polished from syntactic sugar notation,
and each construct can be mapped one-to-one to a construct in Sparx EA, as explained below.
It becomes possible to tie up rigorous state-of-the-art formal verification of state machine
diagrams, as currently provided by academic and industrial tools, with all facilities provided by an
industrial MBSD tool like Sparx EA.
The mapping from UMC model to Sparx Executable State Machine is almost straightforward. The
following adopted restrictions on the model are exploited to keep the notation light and as much
independent as possible from UML technicalities. Note that many of the following constructs are
syntactical sugar that can be expressed using the adopted lighter notation:

• no entry, exit, do behaviour is present in the states of the model,

• interaction happens only using signals, and no operation calls are used,

• only one-to-one interactions are used, i.e., no signals broadcast,

• conflicts in enabled transitions are removed from the portion of UMC model that is to

be mapped to Sparx, and are only used for modelling the external environment,

• no timing behaviour is present, elapsing of time is explicated using a TICK event,

• no internal and local transitions are used,

• no hierarchical states are used,

• no history, fork, join and other syntactic sugar nodes are used.

4SECURail – GA 881775 48 | 85

The following rules are applied to mechanically translate a UMC specification into an Executable
Machine Specification.

1. Each class in UMC corresponds to a class in Sparx EA.

2. Attributes of a class in UMC are mapped to attributes of the corresponding class in Sparx

EA.

3. Each Object in UMC, with its variables’ instantiation, is mapped into a Property of an

Executable State Machine (i.e., an instantiation of class), to where the values of the

attributes can be instantiated.

4. Both UMC and Sparx EA classes have a relation “has-a” with other classes, in such a way

that every object has a reference to other objects to whom it is interacting with.

5. Each class in UMC is specified as a state machine. Similarly, in Sparx EA a classifier

behaviour will be assigned to each class in the form of a state machine.

6. States of a machine in UMC are in one-to-one correspondence with states of a machine in

Sparx EA, comprehending also composed states.

7. Transitions of a machine in UMC are in one-to-one correspondence with transitions of a

machine in Sparx EA.

8. Signals that are attributes of each class in UMC are mapped to global trigger events in the

Sparx model, accessible by each state machine. These events are of type Signal and the

specification is a signal sig that has one attribute arg that will be used for value passing.

Indeed, in this first Demonstrator release it only suffices to pass one argument.

9. Triggers, guards, and effects of each transition are in one-to-one correspondence in both

formalisms, with the only exception of sending signals and value passing, as explained

below.

10. In UMC the sending of a signal with parameters is performed using the instruction

Object.Signal(value)

where Object is the object argument, Signal is the signal invoked in that object, and

value is the value to be passed as an argument.

In an Executable State Machine, Properties are connected by connectors typed with the

relation “has-a” coming from the class diagram. Each end of the connector identifies the

partner of the communication.

A send operation is performed with the macro

%SEND_EVENT("TRIGGER.sig(value)",CONTEXT_REF(RECIPIENT))%;

4SECURail – GA 881775 49 | 85

where TRIGGER corresponds to Signal in UMC, and RECIPIENT corresponds to

Object in UMC. RECIPIENT is the identifier provided in the corresponding connector

end of the Executable State Machine.

In case values of signals must be accessed inside the guard or effect of a transition, in

UMC this can be done with the instruction

Signal[index]

where Signal is again the received signal, and index is a natural number indexing

the argument. If, for example, only one argument is passed then Signal[0] will read

that argument (at index 0).

In Sparx EA this is done with the instruction

signal.parameterValues.get("arg")

where arg is the name of the attribute of the signal. We also note that this syntax is

specific to Java code generation as used in the Demonstrator.

Starting from the model mapped from UMC, some further syntactic transformation will be
performed in the Sparx EA model, without affecting the semantics correspondence with the UMC
model.
A further Boolean attribute will be used as a configuration parameter. This parameter is unfolded
in two different classes in UMC, one class corresponding to Boolean value true and the other

class corresponding to false.
The Sparx documentation reports, for each transition, the corresponding transition of the UMC
model.

Semantics of Sparx Executable State Machines and UMC models

The semantics aspects left unspecified in UML State Machine ISO standard (e.g., events occurrence
order) that are present in the model, are validated to be the behaviourally equivalent in both Sparx
EA and UMC models (e.g., events occur in a first-come first-served fashion). Other unspecified
aspects of UML State Diagrams are simply avoided in the Sparx EA model (e.g., internal events are
always deterministic), whilst are only restricted to non-determinism in the environment in UMC
(e.g., uncertainty in wireless communications), thus making the semantics of the state machine
diagrams unambiguous and behaviourally equivalent in both Sparx EA and UMC for what concerns
the software artifacts.

4SECURail – GA 881775 50 | 85

Indeed, in Sparx EA it is possible to inspect and review the code generated by an Executable State
Machine, and in particular the UML engine, to disambiguate the semantics choices left open by
the UML standard. The composition of state machines in EA allows each state machine to have its
own pool of events, as specified by the UML standard. The code generated though is single
threaded. As such, there is no concurrency between state machines, and their scheduling is fixed.
Each state machine must complete its Run-To-Completion cycle before another machine can start
its own, and the dispatching order among various state machines is fixed.
On the other hand, UMC overapproximate this behaviour by allowing all orders of scheduling. It
also interleaves non-atomic Run-To-Completions of different state machines. As such, the
semantics of UMC includes the semantics of Sparx Executable State Machines, as well as all
semantics obtained by changing the scheduling order.
If a safety property (nothing bad ever happens) will be verified to hold in the UMC model (and its
mapping to ProB), then the property will also hold for the Sparx model.
We note that, the solution adopted by Sparx is not standard and each UML compliant tool can
implement its own scheduling/dispatching policies, its own choice strategy. Different state
machines could concurrently execute their own Run-To-Completion cycle, or if a scheduler is
imposed, then the order of scheduling is left free by the standard.

Concerning how events are ordered in each pool of events, both UMC and Sparx EA use lists for
implementing the pool of events and the dispatching of events, with a first-in-first-out policy.
Concerning strategies to solve conflicting transitions, no conflicts in enabled transitions are
present in the model that will be mapped in Sparx EA (the CSL in this deliverable), thus there is no
need to specify the choice strategy for conflicting transitions. Moreover, such choice is left open
in UMC, thus overapproximating again all possible behaviours obtained by fixing a specific choice
strategy.
The effects of each transition contain source code, Java code in our case. The effects will be limited
to only use code for performing arithmetic operations on variables, sending signals and reading
values as described above.
These restrictions on Sparx models are necessary to disambiguate the semi-formal semantics and
proceed in the external formal verification using model checking.

8.3 UML Diagrams of the Case Study

In this first release of the Demonstrator, we only mapped in Sparx EA the Communication
Supervision Layer modelled in UMC, whilst the Safe Application Intermediate sub-layer will be
mapped in the final release and are now present as stubs.
Instead, the other levels that will be present in UMC specification, that are the RBC-USER and Euro
radio, will not be mapped in Sparx EA as they are not part of the requirements of the case study.

Indeed, whilst in Sparx EA interactive simulation is performed, with the human user acting as
environment, in model checking tools the environment (i.e., RBC-USER, Euro radio) must also be
modelled to automatize the verification. We note that for Euro radio model we intend the various
threats in wireless communications that the SAI will protect against, but not the protection against

4SECURail – GA 881775 51 | 85

masquerading and corruption, that is assumed to hold.

8.4 The Class Diagram

In UML and object-oriented modelling, class diagrams are used to depict the static structure of a
system, showing its classes, their attributes, operations, and the relations with other classes.
As stated above, in this first release, only the CSL will be modelled whilst RBC-User and SAI are
present as stubs. As such, each of these entities is represented as a class.
As stated previously, we will identify the initiator RBC and the called RBC using a parametric
configuration, using a Boolean attribute initiator, that is present in both SAI and CSL class, as those
are the classes affected by the attribute.
The requirements of the case study also model the presence of the following time thresholds:

• The maximum time allowed before the initiator CSL reissues a connection request to the

SAI. This attribute is called max_connect_timer, whilst another attribute

connect_timer is used to accumulate the time passed since the last connection

request.

• The maximum time allowed before the CSL sends a Life sign to the other CSL, because no

messages have been sent so far. This threshold is called max_send_timer, and the

corresponding accumulator attribute is called send_timer and is reset every time a

message is sent by the CSL.

• The maximum time in which a message must be received by the CSL, called

max_receive_timer, and the corresponding accumulator is called receive_timer

and is reset every time a message is received from the underlying SAI.

The accumulator variables are depicted as private (prefixed by -), because they do not take
part in the overall configuration. The other attributes are public (prefixed by +).
Finally, the CSL class has an association relation of type “has a” [OMG-UML] with its
corresponding SAI and RBC_USER, because messages will be sent to them by the CSL and thus
it has a reference to them. Both relations are depicted as arrows, and are labelled with the
name of the relation, and identifying also the target of the arrow with a label.
We stress again that in the current release, neither the SAI nor the RBC_USER will ever send
signals to the CSL, because such signals will be sent interactively by the human user so
mimicking the environment.
The class diagram is depicted in Figure 8.

8.5 The Executable State Machine

The Executable State Machine artifact (see Figure 9) contains Properties, that are instances of
classes in the class diagram. There are two instantiations of each class: one for the initiator RBC
and one for the called RBC. Each property initialises the public attributes of its class. The relevant

4SECURail – GA 881775 52 | 85

attribute is initiator, whilst the other depends on the specific simulation at hand. In particular:

• The initiator RBC is represented by three properties called I_RBC_USER of class

RBC_USER, I_CSL of class CSL, and I_SAI of class SAI. Both I_CSL and I_SAI

have attribute initiator set to true (to enhance readability, depicted in blue).

• The called RBC is represented by three properties called C_RBC_USER of class

RBC_USER, C_CSL of class CSL, and C_SAI of class SAI. Both C_CSL and C_SAI

have attribute initiator set to false (to enhance readability, depicted in blue).

The various properties of the Executable State Machine are connected using Connectors. Such
connectors will be typed using the relations presented in the class diagram, and the type is
visible in the Executable State Machine artifact, that is depicted below.
It is possible to see that each CSL will refer to its RBC_USER using the context reference
“RBC_USER” as depicted in the end of the corresponding connector.
Similarly, each CSL will refer to its SAI using the context reference “SAI” as depicted in the end
of the corresponding connector.

8.6 The State Machines

A classifier behaviour is used to assign a state machine to each class, representing the behaviour
of that class. We start by describing the Communication Supervision Layer state machine. This
state machine has been obtained through the mapping described previously.
Firstly, transitions depicted in red are belonging to the initiator, whilst those depicted in blue are
belonging to the called.
This is indeed enforced by a guard [this.initiator==true] for the initiator and
[this.initiator==false] for the called.
Each SEND_EVENT primitive declares the context reference as declared in the class diagram and

executable state machine.
Other than that, the state machine is a straightforward mapping from the UMC state machine
described in the document and is depicted in Figure 7.

The state machines for the RBC_USER and SAI are only used for receiving the messages sent by
the CSL and are used as a stub for the context reference (see Figure 15 and Figure 16). To avoid
depiction of arrows internal transitions are used, but there is no semantics difference in using
external transition since there is no entry/exit/do behaviour in each state. Moreover, we recall
that such state machines are not part of the specification and are just used as stubs to perform
interactive simulation with the CSL.

4SECURail – GA 881775 53 | 85

Figure 15 : RBC_USER State Machine Stub

Figure 16 : SAI State Machine Stub

4SECURail – GA 881775 54 | 85

 Appendix B - Annotated CSL Requirements and Mapping

This Appendix provides a mapping from the requirements of the case study to the State diagram
model that has been developed.

For each requirement, the rule (i.e., the transition) modelling such requirement is reported.
Additionally, we report remarks further clarifying the requirements. Finally, for each requirement
we report issues that have been found through the (semi)-formal modelling phase. The
identification of such issues during the first phase of requirements modelling represents an
improvement over manual check of each requirement, thus showing benefits of modelling phase.
The later these issues are discovered, the more the cost needed to amend them.

Once the model has been made, the evaluation has been structured according to the criteria
below. Note that some issues are easy to find even without a modelling phase (e.g., multiple
requirements) whilst others can really benefit from the construction of a model (e.g., ambiguity
issues).

• Ambiguity: A requirement is considered ambiguous if several interpretations can be given to it, giving

rise to different models with different behaviours, hindering interoperability.

• Inconsistency: A requirement may be in contradiction with another requirement or it could provide

misleading information.

• Incomplete: The modelling phase may discover corner cases where the behaviour to be modelled is not

completely covered by requirements.

• Redundancy: A requirement is considered redundant if it contains information already described by

other requirements. Such redundancy increases the complexity of the requirement document, making

the model less manageable and increasing the possibility of errors.

• Irrelevant: A requirement is irrelevant if it specifies a part of the system that is not supposed to be

covered by this set of requirements. An irrelevant requirement unnecessarily augments the complexity

of the requirements document.

• Multiple: A requirement may contain a conjunction of different requirements that should be listed

individually.

4SECURail – GA 881775 55 | 85

REQ_001 If configured as initiator, when switched on (communication in state NOCOMMS),
the CSL is responsible to send to underlying Layers the command for the
establishment of a safe connection with the partner RBC, and to command re-
establishment of safe connection when it is considered lost (communication in state
NOCOMMS).
--

Rules: R6_ICSL
--

Issues:
Redundancy: this rule is a duplication of REQ_012.
Ambiguity: It is not clear if the SAI_CONNECT.request should be sent *immediately*
as soon at initiator CSL is switched on, and *immediately* as soon as it returns to
the NOCOMMS state, or if some delay is allowed (is there any allowed maximum
delay?).
Multiple

Remarks:
In the model the request is sent at the beginning of the next cycle.
The CSL remains in state NOCOMMS until a safe connection has been established.
While in state NOCOMMS, if a SAI_CONNECT.request has already been sent, it is not
sent again until the connection timeout is expired.

REQ_002 After sending the command for the establishment of the connection, a timer shall
be started by the initiator. If the timer expires before the connection is established,
a new connection request shall be generated.
 --
Rules: R6_ICSL, R7_ICSL, R8_ICSL
Issues:
Multiple
 --
Remarks: A connection is considered established when the CSL receives from SAI a
SAI_CONNECT.indication.
The "command for the establishment of the connection" corresponds to the sending
of a SAI_CONNECT.request.

4SECURail – GA 881775 56 | 85

REQ_003 If configured as called, the CSL shall wait for report from underlying Layers that safe
connection is established.
 --
Rules: R7_CCSL
Issues: no issues have been found.
 --
Remarks: This requirement generalises what stated by REQ_014.
With respect to REQ_014 this requirement is supposed to cover also the case a new
connection confirmation when already in the COMMS state.
A connection is considered established when the CSL receives from SAI
a SAI_CONNECT.indication (REQ_024).
What to do when SAI_CONNECT.indication is received is specified by REQ_008,
REQ_009, and REQ_011.

REQ_004 The CSL shall discard any message either from User functions or from partner CSL
before a confirmation of successful clock offset estimation (TTS option) or EC
initialisation has been received from SAI sublayer.
 --
Rules: R1_ICSL, R4_ICSL, R1_CCSL, R4_CCSL
Issues:
Irrelevant: there is no need to refer to the specific SAI options for initialising the
safe connection (i.e., TTS or EC).
 --
Remarks: The CSL shall discard any message either from User functions or from
partner CSL when in state NOCOMMS.
The completion of the safe connection initialisation, i.e., the establishing a safe
connection is signalled by a SAI_CONNECT.indication (REQ_024).
The loss of the safe connection (and return to the NOCOMMS state) is described by
REQ_007 and REQ_015.

4SECURail – GA 881775 57 | 85

REQ_005 The CSL shall forward a received User message to RBC User functions only if all checks
specified in supervision functions (REQ_006-REQ_011) are passed.
--

Rules: R13_ICSL, R13_CCSL
--

Issues:
Ambiguity: there is no disambiguation between User messages received from
partner RBC User or received from own RBC User.
Irrelevant: Checks in supervision functions are about establishing or closing a
connection, and this is a requirement about SAI to send such SAI_DATA indication
only when all checks specified in supervision functions 10.2 are passed.
Redundant: This requirement is redundant with REQ_017.
 --
Remarks:
When in state COMMS, the CSL forwards all the received User message to RBC User
functions (when receiving from SAI the corresponding SAI_DATA indication).

REQ_006 Loss of safe connection shall be detected by the CSL reading reports from the
underlying SFM (SAI_DISCONNECT.indication).
--

Rules: R16_ICSL, R16_CCSL, R1_ICSL, R1_CCSL
--

Issues:
Inconsistency: Loss of safe connection shall also be detected without reading reports
of underlying SFM, i.e., by timeout.
 --
Remarks: The SAI_DISCONNECT.indication are considered the CSL only in state
COMMS. In state NOCOMMS such reports are discarded.

REQ_007 If a report from underlying Layers is received that safe connection is lost, the CSL shall
consider the communication in state NOCOMMS.

Rules: R16_ICSL, R16_CCSL
--

Issues: no issues have been found
 --
Remarks: The CSL when receiving a SAI_DISCONNECT.indication moves from COMMS
to NOCOMMS.
Further effects are related to the timers mentioned in REQ_008, REQ_009.

4SECURail – GA 881775 58 | 85

REQ_008 TTS option: after reception of report from SAI that the clock offset procedure has
been completed, the CSL shall ensure that a message is sent to the partner RBC at
the expiration of a configurable transmit time interval (reset at the sending of any
message). If no User message needs to be sent, CSL is responsible to send a life sign
message (see Figure 4);
EC option: After reception of report from SAI that the EC initialisation procedure has
been completed, the sending of messages is scheduled cyclically every (configurable)
TC. If no request to send messages from User application is pending, a life sign is sent
by CSL. If requests are pending, only one message per cycle is sent.
--

Rules: R8_ICSL, R10_ICSL, R11_ICSL, R12_ICSL, R16_ICSL, R17_ICSL,
R8_CCSL, R9_CCSL, R10_CCSL, R11_CCSL, R12_CCSL, R16_CCSL, R17_CCSL
--

Issues:
Irrelevant: The reference to SAI criteria (TTS or EC) user for initialising the connection
is not relevant for the CSL.
Ambiguity: For the case EC, it is not specified which of the pending messages is
selected for being sent.
Multiple
 --
Remarks:
Life signs and user messages are sent only when CSL is in state COMMS.
The send time interval is set and reset by CSL each time a new safe connection has
been established, (i.e., a SAI_CONNECT.indication is received - REQ_024).
After the CSL sends a life-sign message to SAI, it is responsibility of SAI to immediately
forward it (TTS option) or to bufferise it and sending it at the appropriate EC cycle,
but this is part of the requirements on the SAI behaviour.
The send timer is reset and stopped when moving from COMMS to NOCOMMS.

REQ_009 After reception of report from SAI that the clock offset procedure or EC initialisation
has been completed, the condition where no valid messages are received within a
configurable time shall be recognised by the CSL. This is achieved by means of a
configurable receive timer (started at the reception of report from SAI on completion
of initialisations and reset at the reception of any message); if no message (User or
life sign) is received within such configurable receive time interval, the
communication shall be considered in state NOCOMMS.
 --
Rules: R8_ICSL, R11_ICSL, R12_ICSL, R13_ICSL, R14_ICSL, R16_ICSL, R17_ICSL,
R8_CCSL, R9_CCSL, R11_CCSL, R12_CCSL, R13_CCSL, R14_CCSL, R16_CCSL,
R17_CCSL
--

4SECURail – GA 881775 59 | 85

Issues:
Irrelevant: The reference to SAI criteria (TTS or EC) user for initialising the connection
is not relevant for CSL.
Multiple
 --
Remarks: The receive time interval is set and reset by CSL each time a new safe
connection has been established, (i.e., a SAI_CONNECT.indication is received -
REQ_024).
Further effects of the expiration of the receive timer are stated in REQ_015.
The receive timer is reset and stopped when moving from COMMS to NOCOMMS.

REQ_010 When communication is in state NOCOMMS, the CSL shall not accept/forward
messages neither from its own RBC User functions nor from partner RBC; when
switching to NOCOMMS, if the safe connection is still active, the CSL shall send a
termination order (SAI_DISCONNECT.request).

Note: when informed that the communication is in state NOCOMMS, the User
functions will terminate all transactions.
--
Rules: R1_ICSL, R4_ICSL, R17_ICSL, R1_CCSL, R4_CCSL, R17_CCSL
--

Issues:
Irrelevant: The note attached to REQ_010 does not specify any CSL behavior and is
considered as an INFO.
Redundant: The same behavior stated by this requirement is stated in REQ_015.
Inconsistency: With respect to the wordings "if the safe connection is still active," the
CSL does not need to have direct access to the current status of the SAI safe
connection. The SAI_DISCONNECT.request must be sent only when moving to
NOCOMM because of the expiration of the receive timer. In the other case, when CSL
moves to NOCOMM because of DISCONNECT notification received from SAI, there is
no need to send back to SAI the SAI_DISCONNECT.request.
Multiple
 --
Remarks:
Notice that, in principle, in the case of called CSL, at the SAI level the safe connection
might have been already returned to active even if no indication has already arrived.

REQ_011 CSL can switch the communication from state NOCOMMs to state COMMS only when
underlying Layers confirm the re-establishment of a safe connection.

4SECURail – GA 881775 60 | 85

Note: communication in state COMMS is communicated to User functions, that will
be able to restart management of transactions.
 --
Rules: R8_ICSL, R8_CCSL
--

Issues:
Ambiguity: The first part of the Note (notification to RBC_User) is covered REQ_019.
Irrelevant: The second part of the node (management of transactions) is not related
to the CSL behaviour.
Multiple
 --
Remarks: The confirmation of the establishment of the safe connection occurs when
a SAI_CONNECT.confirm (initiator case) or a SAI_CONNECT.indication (called case) is
received.
Further effects of this event are specified in REQ_008 and REQ_009, REQ_019.

REQ_012 If configured as initiator, at start-up, and when loss of safe connection is detected,
the CSL shall send safe connection init order to SFM (SAI_CONNECT.request).
 --

Rules: R6_ICSL
 --
Issues:
Redundant: The required behaviour is a duplication of what already required by
REQ_001.
 --
Remarks: The "safe connection init order" of this rule (also called "command for the
establishment of the connection" in REQ_001 and REQ_002) corresponds to the
sending of a SAI_CONNECT.request.

REQ_013 If configured as initiator, at start-up, and when loss of safe connection is detected,
the CSL shall wait for reception of safe connection established confirmation from SFM
(SAI_CONNECT.confirm).
 --
Rules: R6_ICSL, R8_ICSL
--

Issues:
Multiple
Remarks: What to do when a SAI_CONNECT.confirm is received is specified by
REQ_011, REQ_008, REQ_009, REQ_011 and REQ_019.

4SECURail – GA 881775 61 | 85

REQ_014 If configured as called, at start-up, and when loss of safe connection is detected, the
CSL shall wait for reception of safe connection established confirmation from SFM
(SAI_CONNECT.indication).
 --
Rules: R7_CCSL, R8_CCSL
--

Issues:
Redundant: The required behaviour is a duplication of what already required by
REQ_003.
Multiple
 --
Remarks: This requirement repeats what said in REQ_003, in the particular cases of
start-up and loss of safe connection.
What to do when SAI_CONNECT.indication is received is specified by REQ_008,
REQ_009, REQ_011 and REQ_019.

REQ_015 In case loss of communication is detected due to no valid messages received within a
configurable time, the CSL shall send a safe connection termination order to SFM
(SAI_DISCONNECT.request).
 --
Rules: R17_ICSL, R17_CCSL
--

Issues:
Redundant: The same behaviour is requested with more complex wording in
REQ_010.
 --
Remarks: Further effects of this event are stated in REQ_009.

REQ_016 While the safe communication is active (state COMMS), the CSL is responsible of
sending User messages received from RBC User functions to partner RBC.
 --
Rules: R10_ICSL, R10_CCSL
--

Issues:
Irrelevant: The forwarding occurs when the CSL is in state COMMS, with no relation
with the current SAI safe connection state.

4SECURail – GA 881775 62 | 85

REQ_017 While the safe communication is active (state COMMS), the CSL is responsible of
checking User messages received from partner RBC and forwarding (if checks are
passed, see 7.2) to RBC User functions.
 --
Rules: R13_ICSL , R13_CCSL
--

Issues:
Redundant: This is a duplication of REQ_005.
Irrelevant: The forwarding occurs when the CSL is in state COMMS, with no relation
with the current SAI safe connection state.
Multiple

REQ_018 The CSL is responsible of reading reports from SFM.
 --
Rules: R2_ICSL, R3_ICSL, R8_ICS, R15_ICSL, R16_ICSL,
 R2_CCSL, R3_CCSL, R8_CCSL, R9_CCSL, R15_CCS, R16_CCSL
--

Issues:
Redundant: The meaning and required effect of reading reports from SAI is defined
by the other requirements.
Incomplete: No requirements state the effect of reading SAI Error Reports.
 --
Remarks:
In state NOCOMMS all SAI reports are discarded with the exception of
SAI_CONNECT.indication (called CSL) or SAI_CONNECT_confirmation (calling CSL).

REQ_019 The CSL is responsible of sending reports to RBC User functions about state of
communication (COMMS/NOCOMMS)
 --
Rules: R8_ICSL, R16_ICSL, R17_ICSL, R8_CCSL, R9_CCSL, R16_CCSL, R17_CCSL
--

Issues:
Redundant: This requirement partly overlaps with the note inside REQ_011.
Inconsistency: Reports are not sent to the user when in state NOCOMMS.
 --
Remarks: Reports to RBC User functions about state of communication are sent each
time CSL moves from COMMS to NOCOMMS and from NOCOMMS to COMMS.
In the case of called CSL, report on new connection is sent even without state change
(COMMS).

4SECURail – GA 881775 63 | 85

The following requirements do not mandate any additional CSL behaviour, but they map logical
events to specific interface signals (e.g., SAI_DATA.request).
This mapping is partially provided by the previous requirements.
They should have the role of info and summary of the exchanged messages, notifications, orders,
reports, between the system components.

REQ_020 CSL shall receive from User functions the messages to be forwarded to peer RBC User
when in state COMMS.
 --
Rules: not applicable
--

Issues:
Redundant with REQ_016.

REQ_021 CSL shall forward to User functions the forwarding of messages received from
communication partner.

Rules: not applicable
--

Issues:
Redundant: with REQ_017.

REQ_022 CSL shall send to User functions the reports on loss of communication (missing life
sign - state NOCOMMS).
--

Rules: not applicable
--

Issues:
Redundant: this requirement is a sub-case of REQ_019.

REQ_023 CSL shall send to User functions the reports on state of safe connection state change
(COMMS/NOCOMMS).
--

Rules: not applicable
--

Issues:
Redundant: this requirement is a sub-case of REQ_019.

REQ_024 • SAI_CONNECT.request shall be used by initiator CSL to command the establishment
of a safe connection
• SAI_CONNECT.indication shall be used by called SAI to notify to the CSL the
connection establishment request
• SAI_CONNECT.response shall be used by called CSL to accept the connection
request.
• SAI_CONNECT.confirm shall be used by the initiator SAI entity to inform the
CSL about the successful establishment of the safe connection.
--

4SECURail – GA 881775 64 | 85

Rules: not applicable
--

Issues
Redundant: first bullet with REQ_012, second bullet with REQ_014, fourth bullet with
REQ_013.
Irrelevant: the third bullet is not useful for the modelling phase.
Multiple

REQ_025 • SAI_DATA.request shall be used by CSL to transmit data to the peer entity.
• SAI_DATA.indication shall be used to indicate to the CSL that data have been
received successfully from the peer entity.
--

Rules: R10_ICSL,R12_ICSL,R13_ICSL, R10_CCSL,R12_CCSL, R13_CCSL,R14_CCSL
--

Issues
Multiple

REQ_026 • SAI_DISCONNECT.request shall be used by the CSL to enforce a release of the safe
connection.
• SAI_DISCONNECT.indication shall be used to inform the CSL about a safe connection
release.
--

Rules: R16_ICSL,R16_CCSL
--

Issues
Redundant: first bullet with REQ_015.
Ambiguity: other requirements mention loss of safe connection.
Multiple

REQ_027 SAI Error Report shall be sent from SAI to CSL in case of errors detection by SAI
(deletion, resequencing, delay, repetition).
--

Rules: not applicable
--

Issues:
Irrelevant: This requirement is related to SAI.

4SECURail – GA 881775 65 | 85

REVERSE MAPPING FROM MODEL RULES TO REQUIREMENTS

R1_ICSL REQ_004, REQ_006, REQ_010,

R2_ICSL REQ_018,

R3_ICSL REQ_018,

R4_ICSL REQ_004, REQ_010,

R6_ICSL REQ_001, REQ_002, REQ_013,

R7_ICSL REQ_002,

R8_ICSL REQ_002, REQ_008, REQ_009, REQ_011, REQ_013, REQ_018, REQ_019,

R10_ICSL REQ_008, REQ_016, REQ_025

R11_ICSL REQ_008, REQ_009,

R12_ICSL REQ_008, REQ_009, REQ_012, REQ_025

R13_ICSL REQ_005, REQ_009, REQ_017, REQ_025

R14_ICSL REQ_009, REQ_025

R15_ICSL REQ_018,

R16_ICSL REQ_006, REQ_007, REQ_008, REQ_009, REQ_018, REQ_019, REQ_026

R17_ICSL REQ_008, REQ_009, REQ_010, REQ_015, REQ_019,

R1_CCSL REQ_004, REQ_006, REQ_010,

R2_CCSL REQ_018,

R3_CCSL REQ_018,

R4_CCSL REQ_004, REQ_010,

R7_CCSL REQ_003, REQ_014,

R8_CCSL REQ_008, REQ_009, REQ_014, REQ_018, REQ_019,

R9_CCSL REQ_008, REQ_009, REQ_011, REQ_018, REQ_019,

R10_CCSL REQ_008, REQ_016, REQ_025

R11_CCSL REQ_008, REQ_009,

R12_CCSL REQ_008, REQ_009, REQ_025

R13_CCSL REQ_005, REQ_009, REQ_017, REQ_025

R14_CCSL REQ_009, REQ_025

R15_CCSL REQ_018,

R16_CCSL REQ_006, REQ_007, REQ_008, REQ_009, REQ_018, REQ_019, REQ_026

R17_CCSL REQ_008, REQ_009, REQ_010, REQ_015, REQ_019,

4SECURail – GA 881775 66 | 85

 Appendix C - UMC encoding of I_CSL

Class I_CSL is

Signals

 SAI_CONNECT_confirm;

 SAI_DISCONNECT_indication;

 SAI_Error_report;

 SAI_DATA_indication(nrbc_msg);

 RBC_User_Data_request(nrbc_msg);

 --

 icsl_tick;

 -- SAI CONNECTIONS ARE AUTONUMOUS, not requsted by RBC_User

 -- OUTGOING signals

 -- SAI_CONNECT_request;

 -- SAI_DISCONNECT_request;

 -- SAI_DATA_request(nrbc_msg);

 -- RBC_User_Connect_indication;

 -- RBC_User_Disconnect_indication;

 -- RBC_User_Data_indication(nrbc_msg);

Vars

 RBC_User:obj;

 SAI:obj;

 receive_timer := 0;

 send_timer := 0;

 max_receive_timer := 2; -- CONFIGURATION PARAM

 max_send_timer := 1; -- CONFIGURATION PARAM

 max_connect_timer := 3; -- CONFIGURATION PARAM

 connect_timer := 3; -- SAME VALUE of max_connect_timer

 connecting: bool := False;

Behaviour

-- when disconnetted ignore NRBC_MSGs and SAI_Notifications,

R1_ICSL_discard_userdata:

 NOCOMMS -> NOCOMMS

 {RBC_User_Data_request(nrbc_msg) }

R2_ICSL_discard_disconnectindication:

 NOCOMMS -> NOCOMMS

 {SAI_DISCONNECT_indication }

R3_ICSL_discard_errorreport:

 NOCOMMS -> NOCOMMS

 {SAI_Error_report}

R4_ICSL_discard_dataindication:

 NOCOMMS -> NOCOMMS

 {SAI_DATA_indication(nrbc_msg)}

4SECURail – GA 881775 67 | 85

-- establishing connections

-- when disconnected issue new SAI connection request

--

R6_ICSL_Timer_okicsl_ISAI_connectrequest:

 NOCOMMS -> NOCOMMS

 { icsl_tick [connect_timer = max_connect_timer] /

 connect_timer := 0;

 _Timer.ok_icsl;

 SAI.SAI_CONNECT_request; }

-- when connecting handle clock cycles

-- and ignore all other events but connection confirmations

R7_ICSL_Timer_okicsl:

 NOCOMMS -> NOCOMMS

 {icsl_tick [connect_timer < max_connect_timer] /

 _Timer.ok_icsl;

 connect_timer := connect_timer +1}

-- when connecting handle connection confirmation

--

R8_ICSL_IRBC_rbcuserconnectindication:

 NOCOMMS -> COMMS

 { SAI_CONNECT_confirm /

 RBC_User.RBC_User_Connect_indication;

 connect_timer := max_connect_timer;

 receive_timer := 0;

 send_timer := 0; }

 -- handling active connections

-- when connected forward RBC_User NRBC_MSGs

--

R10_ICSL_ISAI_saidatarequest:

 COMMS -> COMMS

 { RBC_User_Data_request(nrbc_msg) /

 send_timer := 0;

 SAI.SAI_DATA_request(nrbc_msg); }

-- when connected, in no send or receive timers are expired, adjust timers

--

R11_ICSL_Timer_okicsl:

 COMMS -> COMMS

 { icsl_tick [(receive_timer < max_receive_timer)

 and (send_timer < max_send_timer)] /

 _Timer.ok_icsl;

 send_timer := send_timer +1;

 receive_timer := receive_timer+1; }

-- when connected, if the receive timer is not expired but send timer is expired,

-- send lifesign

R12_ICSL_Timer_okicsl_ISAI_saidatarequest:

 COMMS -> COMMS

 { icsl_tick [(receive_timer < max_receive_timer)

4SECURail – GA 881775 68 | 85

 and (send_timer = max_send_timer)] /

 _Timer.ok_icsl;

 send_timer := 0;

 receive_timer := receive_timer+1;

 SAI.SAI_DATA_request([LifeSign,0,0,0,0]) }

 -- when connected, is msg received from sai,forward to user and

 -- reset receive timer;

R13_ICSL_IRBC_rbcuserdataindication:

 COMMS -> COMMS

 {SAI_DATA_indication(nrbc_msg)

 [nrbc_msg[0] /= LifeSign] /

 receive_timer := 0;

 RBC_User.RBC_User_Data_indication(nrbc_msg);

 }

-- when connected, if lifesign received from sai, reset receive timer;

--

R14_ICSL_handle_lifesign:

 COMMS -> COMMS

 {SAI_DATA_indication(nrbc_msg)

 [nrbc_msg[0] = LifeSign] /

 receive_timer := 0;

 }

-- when connected, ignore SAI_Error_report

--

R15_ICSL_IRBC_rbcusererrorindication:

 COMMS -> COMMS

 {SAI_Error_report }

-- when connected, disconnect and forward notification when notified by SAI

-- (and clear timers)

--

R16_ICSL_IRBC_rbcuserdisconnectindication:

 COMMS -> NOCOMMS

 {SAI_DISCONNECT_indication /

 RBC_User.RBC_User_Disconnect_indication;

 receive_timer := 0;

 send_timer := 0 }

-- when connected, if receive timer expires,disconnect, notify RBC_User and

-- request SAI termination

--

R17_ICSL_Timer_okicsl_IRBC_rbcuserdisconnectindication_ISAI_saidisconnectrequest:

 COMMS -> NOCOMMS

 { icsl_tick [receive_timer = max_receive_timer] /

 _Timer.ok_icsl;

 RBC_User.RBC_User_Disconnect_indication;

 SAI.SAI_DISCONNECT_request;

 receive_timer := 0;

 send_timer := 0; }

end I_CSL;

The automatically generated graphical layout for this component is shown in Figure 5.

4SECURail – GA 881775 69 | 85

 Appendix D - ProB encoding of I_CSL

MACHINE HANDOVER

SETS

 CSL_SIGNALS =

 {SAI_CONNECT_confirm, // only ISAI

 SAI_CONNECT_indication, // only CSAI

 SAI_DISCONNECT_indication,

 SAI_Error_report,

 SAI_DATA_indication, // +arg

 //

 RBC_User_Data_request, // +arg

 icsl_tick,

 ccsl_tick};

 ...

 CSL_STATES =

 {NOCOMMS,

 COMMS};

 ...

CONSTANTS

 ...

 // I_CSL

 LifeSign,

 icsl_max_receive_timer,

 icsl_max_send_timer,

 icsl_max_connect_timer,

 ...

PROPERTIES

 LifeSign = 1 &

 ...

 // I_CSL

 icsl_max_receive_timer = 3 &

 icsl_max_send_timer = 1 &

 icsl_max_connect_timer = 4 &

 ...

VARIABLES

 // I_CSL

 icsl_buff,

 icsl_databuff,

 ICSL_STATUS,

 icsl_receive_timer,

 icsl_send_timer,

 icsl_connect_timer,

 ...

INVARIANT

 // I_CSL

 icsl_buff: seq(CSL_SIGNALS) &

 icsl_databuff: seq(0..5) &

 ICSL_STATUS: CSL_STATES &

 icsl_receive_timer: 0..10 &

 icsl_send_timer: 0..10 &

4SECURail – GA 881775 70 | 85

 icsl_connect_timer: 0..20 &

 ...

INITIALISATION

 // I_CSL

 icsl_buff := [];

 icsl_databuff := [];

 ICSL_STATUS := NOCOMMS;

 icsl_receive_timer := 0;

 icsl_send_timer := 0;

 icsl_connect_timer := icsl_max_connect_timer;

 ...

OPERATIONS

///

///

// ICSL

///

///

// ---

// when disconnetted ignore NRBC_MSGs and SAI_Notifications,

// ---

R1_ICSL_discard_userdata =

PRE

 ICSL_STATUS = NOCOMMS &

 icsl_buff /= [] &

 first(icsl_buff) = RBC_User_Data_request

THEN

 ICSL_STATUS := NOCOMMS;

 //

 icsl_buff := tail(icsl_buff);

 icsl_databuff := tail(icsl_databuff)

END;

R2_ICSL_discard_disconnectindication =

PRE

 ICSL_STATUS = NOCOMMS &

 icsl_buff /= [] &

 first(icsl_buff) = SAI_DISCONNECT_indication

THEN

 ICSL_STATUS := NOCOMMS;

 //

 icsl_buff := tail(icsl_buff)

END;

R3_ICSL_discard_errorreport =

PRE

 ICSL_STATUS = NOCOMMS &

 icsl_buff /= [] &

 first(icsl_buff) = SAI_Error_report

THEN

 ICSL_STATUS := NOCOMMS;

 //

 icsl_buff := tail(icsl_buff)

END;

R4_ICSL_discard_dataindication =

PRE

 ICSL_STATUS = NOCOMMS &

4SECURail – GA 881775 71 | 85

 icsl_buff /= [] &

 first(icsl_buff) = SAI_DATA_indication

THEN

 ICSL_STATUS := NOCOMMS;

 //

 icsl_buff := tail(icsl_buff);

 icsl_databuff := tail(icsl_databuff)

END;

// ---

// establishing connections

// ---

// when disconnected issue new SAI connection request

//

R6_ICSL_Timer_okicsl_ISAI_connectrequest =

PRE

 ICSL_STATUS = NOCOMMS &

 icsl_connect_timer = icsl_max_connect_timer &

 icsl_buff /= [] &

 first(icsl_buff) = icsl_tick

THEN

 ICSL_STATUS := NOCOMMS;

 //

 icsl_connect_timer := 0;

 timer_buff := timer_buff <- ok_icsl;

 isai_buff := isai_buff <- SAI_CONNECT_request;

 //

 icsl_buff := tail(icsl_buff)

END;

// when connecting handle clock cycles

// and ignore all other events but connection confirmations

R7_ICSL_Timer_okicsl =

PRE

 ICSL_STATUS = NOCOMMS &

 icsl_buff /= [] &

 icsl_connect_timer < icsl_max_connect_timer &

 first(icsl_buff) = icsl_tick &

 icsl_connect_timer < icsl_max_connect_timer

THEN

 ICSL_STATUS := NOCOMMS;

 //

 timer_buff := timer_buff <- ok_icsl;

 icsl_connect_timer := icsl_connect_timer + 1;

 //

 icsl_buff := tail(icsl_buff)

END;

// when connecting handle connection confirmation

//

R8_ICSL_IRBC_rbcuserconnectindication =

PRE

 ICSL_STATUS = NOCOMMS &

 icsl_buff /= [] &

 first(icsl_buff) = SAI_CONNECT_confirm

THEN

 ICSL_STATUS :=COMMS;

 //

 icsl_connect_timer := icsl_max_connect_timer;

 icsl_receive_timer := 0;

4SECURail – GA 881775 72 | 85

 icsl_send_timer := 0;

 irbc_buff := irbc_buff <- RBC_User_Connect_indication;

 //

 icsl_buff := tail(icsl_buff)

END;

//--------------------------------

//-- handling active connections

//--------------------------------

// -- when connected forward User NRBC_MSGs

// --

R10_ICSL_ISAI_saidatarequest =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = RBC_User_Data_request

THEN

 ICSL_STATUS :=COMMS;

 //

 icsl_send_timer := 0;

 isai_buff := isai_buff <- SAI_DATA_request;

 isai_databuff := isai_databuff <- first(icsl_databuff);

 //

 icsl_buff := tail(icsl_buff);

 icsl_databuff := tail(icsl_databuff)

END;

// -- when connected, in no send or receive timers are expired, adjust timers

//

R11_ICSL_Timer_okicsl =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = icsl_tick &

 icsl_receive_timer < icsl_max_receive_timer &

 icsl_send_timer < icsl_max_send_timer

THEN

 ICSL_STATUS :=COMMS;

 //

 timer_buff := timer_buff <- ok_icsl;

 icsl_send_timer := icsl_send_timer + 1;

 icsl_receive_timer := icsl_receive_timer+1;

 //

 icsl_buff := tail(icsl_buff)

END;

// when connected, if the receive timer is not expired but send timer is expired,

// send lifesign

R12_ICSL_Timer_okicsl_ISAI_saidatarequest =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = icsl_tick &

 icsl_receive_timer < icsl_max_receive_timer &

 icsl_send_timer = icsl_max_send_timer

THEN

 ICSL_STATUS :=COMMS;

 //

 timer_buff := timer_buff <- ok_icsl;

 icsl_send_timer := 0;

4SECURail – GA 881775 73 | 85

 icsl_receive_timer := icsl_receive_timer+1;

 isai_buff := isai_buff <- SAI_DATA_request;

 isai_databuff := isai_databuff <- LifeSign;

 //

 icsl_buff := tail(icsl_buff)

END;

// -- when connected, is msg received from sai,forward to user and

// -- reset receive timer;

//

R13_ICSL_IRBC_rbcuserdataindication =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = SAI_DATA_indication &

 first(icsl_databuff) /= LifeSign

THEN

 ICSL_STATUS :=COMMS;

 //

 icsl_receive_timer := 0;

 irbc_buff := irbc_buff <- RBC_User_Data_indication;

 irbc_databuff := irbc_databuff <- first(icsl_databuff);

 //

 icsl_buff := tail(icsl_buff);

 icsl_databuff := tail(icsl_databuff)

END;

R14_ICSL_handle_lifesign =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = SAI_DATA_indication &

 first(icsl_databuff) = LifeSign

THEN

 ICSL_STATUS :=COMMS;

 //

 icsl_receive_timer := 0;

 //

 icsl_buff := tail(icsl_buff);

 icsl_databuff := tail(icsl_databuff)

END;

// when connected, forward SAI msg notifications

//

R15_ICSL_IRBC_rbcusererrorindication =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = SAI_Error_report

THEN

 ICSL_STATUS :=COMMS;

 //

 icsl_buff := tail(icsl_buff)

END;

// when connected, disconnect and forward notification when notified by SAI

//

R16_ICSL_IRBC_rbcuserdisconnectindication =

PRE

 ICSL_STATUS =COMMS &

4SECURail – GA 881775 74 | 85

 icsl_buff /= [] &

 first(icsl_buff) = SAI_DISCONNECT_indication

THEN

 ICSL_STATUS := NOCOMMS;

 //

 irbc_buff := irbc_buff <- RBC_User_Disconnect_indication;

 icsl_receive_timer := 0;

 icsl_send_timer := 0;

 //

 icsl_buff := tail(icsl_buff)

END;

// when connected, if receive timer expires,disconnect, notify User and

// request SAI termination

//

R17_ICSL_Timer_okicsl_IRBC_rbcuserdisconnectindication_ISAI_saidisconnectrequest =

PRE

 ICSL_STATUS =COMMS &

 icsl_buff /= [] &

 first(icsl_buff) = icsl_tick &

 icsl_receive_timer = icsl_max_receive_timer

THEN

 ICSL_STATUS := NOCOMMS;

 //

 timer_buff := timer_buff <- ok_icsl;

 irbc_buff := irbc_buff <- RBC_User_Disconnect_indication;

 isai_buff := isai_buff <- SAI_DISCONNECT_request;

 icsl_receive_timer := 0;

 icsl_send_timer := 0;

 //

 icsl_buff := tail(icsl_buff)

END;

 ...

 ...

END

4SECURail – GA 881775 75 | 85

 Appendix E - Sparx Model Report – CSL

CSL
Class in package 'Package1'

The Communication Supervision Layer class.

ELEMENTS OWNED BY CSL

 CSL : StateMachine

ATTRIBUTES

 connect_timer : int Private

Accumulating time since last SAI_CONNECT_REQUEST.

[Is static True. Containment is Not Specified.]

 initiator : boolean Public

The attribute initiator is used to distinguish the initiator SAI from the called SAI

[Is static True. Containment is Not Specified.]

 max_connect_timer : int Public

This attribute represents the maximum amount of time that CSL waits after the last connection request issued to the SAI,

before issuing a new one.
[Is static True. Containment is Not Specified.]

 max_receive_timer : int Public

The maximum amount of time the CSL waits for a message from SAI before closing the connection.

[Is static True. Containment is Not Specified.]

 max_send_timer : int Public

The maximum amount of time in which the CSL sends a message to underlying layer SAI. When this threshold is reached,

the CSL will issue a LifeSign message.
[Is static True. Containment is Not Specified.]

 receive_timer : int Private = 0

Accumulating time since last message received from SAI.

[Is static True. Containment is Not Specified.]

4SECURail – GA 881775 76 | 85

 send_timer : int Private = 0

Accumulating time since last message.

[Is static True. Containment is Not Specified.]

ASSOCIATIONS

 Association (direction: Source -> Destination) CSL2RBC_USER

Each CSL has a reference to its own RBC_USER for sending signals

Source: Public (Class) CSL

Target: Public RBC_USER (Class) RBC_USER

 Association (direction: Source -> Destination) CSL2SAI

Each CSL has a reference to its own SAI for sending signals

Source: Public (Class) CSL

Target: Public SAI (Class) SAI

CSL
StateMachine owned by 'CSL', in package 'Package1'

The CSL state machine

ELEMENTS OWNED BY CSL

 COMMS : State

 NOCOMMS : State

 Initial : Initial State

CSL diagram
StateMachine diagram in package 'Package1'

The CSL state machine

4SECURail – GA 881775 77 | 85

3. CSL

COMMS
State owned by 'CSL', in package 'Package1'

The CSL state machine COMMS state, where the connection is established

OUTGOING BEHAVIORAL RELATIONSHIPS

 Transition from COMMS to NOCOMMS
Effect: %SEND_EVENT("RBC_USER_DISCONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;
this.receive_timer=0;
this.send_timer=0;

Triggers:
 SAI_DISCONNECT_INDICATION Signal

Mapping to UMC rules:
R16_ICSL_IRBC_rbcuserdisconnectindication
R16_CCSL_IRBC_rbcuserdisconnectindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Effect: this.send_timer=0;
%SEND_EVENT("SAI_DATA_REQUEST.sig("+signal.parameterValues.get("arg")+")",CONTEXT_REF(SAI))%;

4SECURail – GA 881775 78 | 85

Triggers:
 RBC_USER_DATA_REQUEST Signal sig

Mapping to UMC rules:
R10_ICSL_ISAI_saidatarequest
R10_CCSL_CSAI_saidatarequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Effect: this.receive_timer = 0;
if (signal.parameterValues.get("arg") !="LifeSign") {
 %SEND_EVENT("RBC_USER_DATA_INDICATION.sig("+signal.parameterValues.get("arg")+")",CONTEXT_R

EF(RBC_USER))%;
}

Triggers:
 SAI_DATA_INDICATION Signal sig

Mapping to UMC rules:
R13_ICSL_IRBC_rbcuserdataindication
R14_ICSL_handle_lifesign
R13_CCSL_CRBC_rbcuserdataindication
R14_CCSL_handle_lifesign

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Guard: this.receive_timer<this.max_receive_timer && this.send_timer==this.max_send_timer
Effect: this.send_timer = 0;
this.receive_timer = this.receive_timer+1;

%SEND_EVENT("SAI_DATA_REQUEST.sig(LifeSign)",CONTEXT_REF(SAI))%;

Triggers:
 TICK Signal

Mapping to UMC rules:
R12_ICSL_Timer_okicsl_ISAI_saidatarequest
R12_CCSL_Timer_okccsl_CSAI_saidatarequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to NOCOMMS
Guard: this.receive_timer==this.max_receive_timer
Effect: %SEND_EVENT("RBC_USER_DISCONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;
%SEND_EVENT("SAI_DISCONNECT_REQUEST",CONTEXT_REF(SAI))%;
this.receive_timer=0;
this.send_timer=0;

Triggers:
 TICK Signal

Mapping to UMC rules:

4SECURail – GA 881775 79 | 85

R17_ICSL_Timer_okicsl_IRBC_rbcuserdisconnectindication_ISAI_saidisconnectrequest
R17_CCSL_Timer_okccsl_CRBC_rbcuserdisconnectindication_CSAI_saidisconnectrequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Guard: this.initiator==false
Effect: this.receive_timer=0;
this.send_timer=0;
%SEND_EVENT("RBC_USER_CONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;

Triggers:
 SAI_CONNECT_INDICATION Signal

Mapping to UMC rules:
R9_CCSL_CRBC_rbcuserconnectindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS

Triggers:
 SAI_ERROR_REPORT Signal

Mapping to UMC rules:
R15_ICSL_IRBC_rbcusererrorindication
R15_CCSL_CRBC_rbcusererrorindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Guard: this.receive_timer < this.max_receive_timer && this.send_timer<this.max_send_timer
Effect: this.send_timer = this.send_timer+ 1;
this.receive_timer = this.receive_timer+1;

Triggers:
 TICK Signal

Mapping to UMC rules:
R11_ICSL_Timer_okicsl
R11_CCSL_Timer_okccsl

Mapping to Requirements:
(see mapping from UMC rules to requirements)

INCOMING BEHAVIORAL RELATIONSHIPS

 Transition from COMMS to COMMS
Effect: this.send_timer=0;
%SEND_EVENT("SAI_DATA_REQUEST.sig("+signal.parameterValues.get("arg")+")",CONTEXT_REF(SAI))%;

4SECURail – GA 881775 80 | 85

Triggers:
 RBC_USER_DATA_REQUEST Signal sig

Mapping to UMC rules:
R10_ICSL_ISAI_saidatarequest
R10_CCSL_CSAI_saidatarequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Effect: this.receive_timer = 0;
if (signal.parameterValues.get("arg") !="LifeSign") {
 %SEND_EVENT("RBC_USER_DATA_INDICATION.sig("+signal.parameterValues.get("arg")+")",CONTEXT_R

EF(RBC_USER))%;
}

Triggers:
 SAI_DATA_INDICATION Signal sig

Mapping to UMC rules:
R13_ICSL_IRBC_rbcuserdataindication
R14_ICSL_handle_lifesign
R13_CCSL_CRBC_rbcuserdataindication
R14_CCSL_handle_lifesign

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Guard: this.receive_timer<this.max_receive_timer && this.send_timer==this.max_send_timer
Effect: this.send_timer = 0;
this.receive_timer = this.receive_timer+1;

%SEND_EVENT("SAI_DATA_REQUEST.sig(LifeSign)",CONTEXT_REF(SAI))%;

Triggers:
 TICK Signal

Mapping to UMC rules:
R12_ICSL_Timer_okicsl_ISAI_saidatarequest
R12_CCSL_Timer_okccsl_CSAI_saidatarequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Guard: this.initiator==false
Effect: this.receive_timer=0;
this.send_timer=0;
%SEND_EVENT("RBC_USER_CONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;

Triggers:
 SAI_CONNECT_INDICATION Signal

Mapping to UMC rules:
R9_CCSL_CRBC_rbcuserconnectindication

4SECURail – GA 881775 81 | 85

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to COMMS
Guard: this.initiator==true
Effect: this.connect_timer=this.max_connect_timer;

%SEND_EVENT("RBC_USER_CONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;

Triggers:
 SAI_CONNECT_CONFIRM Signal

Mapping to UMC rules:
R8_ICSL_IRBC_rbcuserconnectindication
Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to COMMS
Guard: this.initiator==false
Effect: %SEND_EVENT("RBC_USER_CONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;

Triggers:
 SAI_CONNECT_INDICATION Signal

Mapping to UMC rules:
R8_CCSL_CRBC_rbcuserconnectindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS

Triggers:
 SAI_ERROR_REPORT Signal

Mapping to UMC rules:
R15_ICSL_IRBC_rbcusererrorindication
R15_CCSL_CRBC_rbcusererrorindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to COMMS
Guard: this.receive_timer < this.max_receive_timer && this.send_timer<this.max_send_timer
Effect: this.send_timer = this.send_timer+ 1;
this.receive_timer = this.receive_timer+1;

Triggers:
 TICK Signal

Mapping to UMC rules:
R11_ICSL_Timer_okicsl
R11_CCSL_Timer_okccsl

4SECURail – GA 881775 82 | 85

Mapping to Requirements:
(see mapping from UMC rules to requirements)

NOCOMMS
State owned by 'CSL', in package 'Package1'

The CSL state machine NOCOMMS state, where the connection is not established

OUTGOING BEHAVIORAL RELATIONSHIPS

 Transition from NOCOMMS to COMMS
Guard: this.initiator==true
Effect: this.connect_timer=this.max_connect_timer;

%SEND_EVENT("RBC_USER_CONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;

Triggers:
 SAI_CONNECT_CONFIRM Signal

Mapping to UMC rules:
R8_ICSL_IRBC_rbcuserconnectindication
Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to COMMS
Guard: this.initiator==false
Effect: %SEND_EVENT("RBC_USER_CONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;

Triggers:
 SAI_CONNECT_INDICATION Signal

Mapping to UMC rules:
R8_CCSL_CRBC_rbcuserconnectindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS
Guard: this.initiator==false

Triggers:
 TICK Signal

Mapping to UMC rules:
R7_CCSL_Timer_okccsl

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS

4SECURail – GA 881775 83 | 85

Guard: this.initiator==true && this.connect_timer<this.max_connect_timer
Effect: this.connect_timer = this.connect_timer+1;

Triggers:
 TICK Signal

Mapping to UMC rules:
R7_ICSL_Timer_okicsl

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS
Guard: this.initiator==true && this.connect_timer==this.max_connect_timer
Effect: this.connect_timer = 0;

%SEND_EVENT("SAI_CONNECT_REQUEST",CONTEXT_REF(SAI))%;

Triggers:
 TICK Signal

Mapping to UMC rules:
R6_ICSL_Timer_okicsl_ISAI_connectrequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS

Triggers:
 RBC_USER_DATA_REQUEST Signal sig
 SAI_DISCONNECT_INDICATION Signal
 SAI_ERROR_REPORT Signal
 SAI_DATA_INDICATION Signal sig

Mapping to UMC rules:
R1_ICSL_discard_userdata,
R2_ICSL_discard_dsconnectindication,
R3_ICSL_discard_errorreport,
R4_ICSL_discard_dataindication,
R1_CCSL_discard_userdata,
R2_CCSL_discard_dsconnectindication,
R3_CCSL_discard_errorreport,
R4_CCSL_discard_dataindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

INCOMING BEHAVIORAL RELATIONSHIPS

 Transition from COMMS to NOCOMMS
Effect: %SEND_EVENT("RBC_USER_DISCONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;
this.receive_timer=0;
this.send_timer=0;

4SECURail – GA 881775 84 | 85

Triggers:
 SAI_DISCONNECT_INDICATION Signal

Mapping to UMC rules:
R16_ICSL_IRBC_rbcuserdisconnectindication
R16_CCSL_IRBC_rbcuserdisconnectindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from COMMS to NOCOMMS
Guard: this.receive_timer==this.max_receive_timer
Effect: %SEND_EVENT("RBC_USER_DISCONNECT_INDICATION",CONTEXT_REF(RBC_USER))%;
%SEND_EVENT("SAI_DISCONNECT_REQUEST",CONTEXT_REF(SAI))%;
this.receive_timer=0;
this.send_timer=0;

Triggers:
 TICK Signal

Mapping to UMC rules:
R17_ICSL_Timer_okicsl_IRBC_rbcuserdisconnectindication_ISAI_saidisconnectrequest
R17_CCSL_Timer_okccsl_CRBC_rbcuserdisconnectindication_CSAI_saidisconnectrequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from Initial to NOCOMMS
Effect: if (this.initiator) this.connect_timer=this.max_connect_timer;

Initially the connect_timer is reset to max_connect_timer for the initiator CSL, such that the request for connection is

immediate

 Transition from NOCOMMS to NOCOMMS
Guard: this.initiator==false

Triggers:
 TICK Signal

Mapping to UMC rules:
R7_CCSL_Timer_okccsl

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS
Guard: this.initiator==true && this.connect_timer<this.max_connect_timer
Effect: this.connect_timer = this.connect_timer+1;

Triggers:
 TICK Signal

Mapping to UMC rules:
R7_ICSL_Timer_okicsl

4SECURail – GA 881775 85 | 85

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS
Guard: this.initiator==true && this.connect_timer==this.max_connect_timer
Effect: this.connect_timer = 0;

%SEND_EVENT("SAI_CONNECT_REQUEST",CONTEXT_REF(SAI))%;

Triggers:
 TICK Signal

Mapping to UMC rules:
R6_ICSL_Timer_okicsl_ISAI_connectrequest

Mapping to Requirements:
(see mapping from UMC rules to requirements)

 Transition from NOCOMMS to NOCOMMS

Triggers:
 RBC_USER_DATA_REQUEST Signal sig
 SAI_DISCONNECT_INDICATION Signal
 SAI_ERROR_REPORT Signal
 SAI_DATA_INDICATION Signal sig

Mapping to UMC rules:
R1_ICSL_discard_userdata,
R2_ICSL_discard_dsconnectindication,
R3_ICSL_discard_errorreport,
R4_ICSL_discard_dataindication,
R1_CCSL_discard_userdata,
R2_CCSL_discard_dsconnectindication,
R3_CCSL_discard_errorreport,
R4_CCSL_discard_dataindication

Mapping to Requirements:
(see mapping from UMC rules to requirements)

Initial
Initial State owned by 'CSL', in package 'Package1'

The CSL state machine initial state

OUTGOING BEHAVIORAL RELATIONSHIPS

 Transition from Initial to NOCOMMS
Effect: if (this.initiator) this.connect_timer=this.max_connect_timer;

Initially the connect_timer is reset to max_connect_timer for the initiator CSL, such that the request for connection is

immediate

	1 Executive Summary
	2 Abbreviations and acronyms
	3 Background
	4 Objective/Aim
	5 First exercise of the formal development Demonstrator process
	5.1 The structure of the formal development Demonstrator process
	5.1.1 The reference framework
	5.1.2 The choice of the MBSD Sparx Enterprise Architect platform
	5.1.3 The structure of the Demonstrator
	5.1.3.1 The desired and the possible
	5.1.3.2 UMC for prototyping
	5.1.3.3 Sparx Enterprise Architect for Model-based Development
	5.1.3.4 ProB for detailed simulations, analysis, verifications

	5.2 The selected case study
	5.2.1 Task 2.1 initial case study fragment

	5.3 An overview of the modelling phase of the case study
	5.3.1 UMC modelling
	5.3.2 Sparx Enterprise Architect modelling
	5.3.3 ProB modelling

	5.4 Formal Analysis of the initial case study fragment
	5.4.1 The impact of using the UML as a "standard" notation for the description of the composition of State Machines
	5.4.2 Semi-formal analysis
	5.4.3 Formal analysis

	6 Conclusions
	7 References
	8 Appendix A – More details on Sparx Modelling
	9 Appendix B - Annotated CSL Requirements and Mapping
	10 Appendix C - UMC encoding of I_CSL
	11 Appendix D - ProB encoding of I_CSL
	12 Appendix E - Sparx Model Report – CSL

