** P .
oo (4SECURail
‘ - . LR European Union Funding a’

for Research & Innovation

Deliverable D 2.1
Specification of formal development demonstrator

Project acronym: 4SECURail

Starting date: 01/12/2020

Duration (in months): 24

Call (part) identifier: H2020-S2RJU-2019 / S2R-0OC-IP2-01-2019
Grant agreement no: 881775

Due date of deliverable: Month 06 (May 2020)

Actual submission date: 02/06/2020

Responsible/Author: Franco Mazzanti - CNR

Dissemination level: PU

Status: Issued

Reviewed: YES

it oRa s This project has received funding from the European Union’s Horizon 2020
Ha research and innovation programme under Grant Agreement No 881775.

GA 881775 Page 1|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail R v s (4SECURail

Document history
Revision Date Description
0.1 10/05/2020 First Draft under review
0.2 22/05/2020 Second Draft under review
1.0 27/05/2020 Issued
2.0 15/10/2020 New submission changing disclaimers

Report contributors

Name Beneficiary Short Name Details of contribution
Franco Mazzanti CNR Overall contribution to deliverable
Davide Basile structure and context.

Alessandro Fantechi
Stefania Gnesi
Alessio Ferrari

Andrea Piattino SIRTI Overall contribution to deliverable
Laura Masullo structure and context.
Daniele Trentini
Carlo Vaghi FIT Reviewer
Jeronimo Padilla ARD Reviewer
Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s view —
the Joint Undertaking is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.

The content of this document does not reflect the official opinion of the Shift2Rail Joint Undertaking (S2R
JU). Responsibility for the information and views expressed in the deliverable lies entirely with the author(s).

GA 881775 Page 2|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Table of Contents

1 Executive Summary
2 Abbreviations and acronyms
3 Background
4 Objective/Aim
5 Specification of formal development demonstrator
5.1 The reference framework
5.1.1 The role of formal methods
5.1.2 The point of view of Infrastructure Managers
5.1.3 The role of Standard(ized) interfaces
5.1.4 X2Rail2 complementarity
5.2 The overall structure of the demonstrator process
5.2.1 The role of UML / SysML
5.2.2 The expected output of the demonstrator process
5.3 The architecture of the 4SECURail demonstrator
5.4 Inputs for the cost-benefit analysis and learning curve evaluation
6 Conclusions
7 References
8 Informative Annexes

8.1 List of UML tools

8.2 fuML
8.3 ProB
GA 881775

Page 3|61

@hift Rail R v s (4SECURail

O 00 00 N oo un b

13
15
17
20
22
24
25
30
31
32
37
37
57
59

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

1 Executive Summary

The overall goal of the Workstream 1 "Demonstrator Development for the use of Formal Methods
in Railway Environment", spreading on the activities of Tasks 2.1, 2.2, 2.3 2.4 of the 4SecuRail
project is:

- the definition of a "formal methods demonstrator process" (shortly Demonstrator) for the
rigorous construction and analysis of system specifications (from the point of view of
infrastructure managers).

- the application of the Demonstrator process to a railway signalling system case study,

- with the goal of performing a cost benefits analysis and the evaluation of the required learning
curve for the application of this Demonstrator process.

This Deliverable "Specification of formal development demonstrator", describing the result of the
first part of Task 2.1, presents the overall structure of the Demonstrator process and illustrates
the selected choices for its architecture, both in terms of methodologies and tools.

The specified formal development demonstrator will be experimented with its application to a
simple initial case study in the second part of Task 2.1.

The experience gained with this initial experimentation will result in the consolidation of the
definition of the Demonstrator process prototype (reported in the Deliverable D2.2 of Task 2.1
"Formal development demonstrator prototype - 1st release"). The consolidated process will then
be applied in Task 2.3 to the complete case study defined in Task 2.2 and that activity will provide
the reference for the costs-benefits analysis of Task 2.4.

Before the presentation of the overall structure and architecture of the planned formal methods

demonstrator process, three important issues deserve a specific analysis and discussion:

- the clarification of the usefulness of formal methods from the point of view of the Infrastructure
Managers,

- the relation between our demonstrator and other relevant projects like Eulynx and X2Rail2,

- the role that the semi-formal SysML notation should play within our formal methods
demonstrator process.

The choice of which specific MBSE framework will be used for the semi-formal modelling of the

system under design has been deferred to a later stage, when more hands-on experience has been

gained with the various possibilities. Instead, the choice of which verification technique will be

used has converged to the model checking approach as supported by the Even-B methodology

and the ProB framework.

GA 881775 Page 4|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

C‘ Shift Rail

*
*
*

** P P
* Horizon 2020 :4SECUR I
.t European Union Funding a’

for Research & Innovation

2 Abbreviations and acronyms

Abbreviation / Acronyms Description
ATP Automatic Train Protection
ATS Automatic Train Supervision
BB Building Blocks achievement
ERA European Union Agency for Railways
EULYNX European Initiative Linking Interlocking Subsystems
FM Formal Methods
fuML Foundational Subset for Executable UML Models
IC Innovation Capabilities
IM Infrastructure Managers
IP Innovation Programme
L2TS Doubly Labelled Transition System
LTS Labelled Transition System
MAAP Multi-Annual Action Plan
MBSE Model Based System Engineering
OMG Object Management Group
TD Technology Demonstrator
uIC International Union of Railways
UML Unified Modeling Language
UNISIG Union industry of signalling
WP Work Package
GA 881775 Page 5|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

3 Background

The present document constitutes the Deliverable D2.1 "Specification of formal development
demonstrator" of Task 2.1 "Formal Development demonstrator prototype" of WP2 "Demonstrator
Development for the use of Formal Methods in Railway Environment" of the project 4SECURAail
(GA 881775) in the context of the open call S2R-OC-1P2-01-2019, part of the “Annual Work Plan
and Budget 2019”, of the programme H2020-S2RJU-2019.

The challenge to which 4SecuRail is deemed to deal, and its relation with the Shift2Rail Technology
Demonstrator D2.7 "Formal methods and standardisation for smart signalling systems" is well
described in the call S2R-OC-1P2-01-2019, as shown below:

Shift2Rail has identified the use of formal methods and standard interfaces as two key concepts
to enable reducing the time it takes to develop and deliver railway signalling systems, and to
reduce high costs for procurement, development and maintenance. Formal methods are needed
to ensure correct behaviour, interoperability and safety, and standard interfaces are needed to
increase market competition and standardization, reducing long-term life cycle costs.

To widen industry take-up of these key aspects, Shift2Rail plans demonstrating technical and
commercial benefits of formal methods and standard interfaces, applied on select applications.

The industry survey performed in TD2.7 has identified the learning curve and uncertain
cost/benefit ratio as obstacles: the decision to start using formal methods is deemed too risky by
management. Shift2Rail proposes to define and prototype a demonstrator of state-of-the-art
formal methods, including the use of standard interfaces, to address obstacles of learning curve
and lack of clear cost/benefit analysis.

According to [MAAP2015, MAAP2017, MAAP2019] the Shift2Rail Innovation Programme 2 (IP2)
will focus on innovative technologies, systems and applications in the fields of telecommunication,
train separation, supervision, engineering, automation and security with a view to enhancing the
overall performance of all railway market segments.
The Technology Demonstrator TD2.7 aims to contribute to the enabling of two Innovation
Capabilities (IC) of the Shift2Rail Innovation Programme 2 (IP2):

e |IC7 "Low Cost Railway"

e |C12 "Rapid and Reliable R&D Delivery"

through the Building Block achievement BB2.7_1 "Formal and semi-formal methods for
requirement capture, design, verification and validation, proposing open standards”.

4SECURail will contribute to the above Building Block achievement with the demonstration and
evaluation of techniques based on formal methods to reduce life-cycle costs and improve the
global reliability of the railway systems.

GA 881775 Page 6|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

4 Objective/Aim

This Deliverable D2.1 reports the results of the first part of Task 2.1 "Formal Development
demonstrator prototype" of Work Package WP2 "Demonstrator Development for the use of Formal
Methods in Railway Environment".

The deliverable discusses the preliminary overall framework of the Demonstrator and identifies
the selected choices for its specific architecture.

In the context of the Shift2Rail Multi-Annual Action Plan - Technology Demonstrator TD2.7 the
development of the 4SECURail demonstrator falls within the Research Area "Formal methods and
standardisation" and covers both activities:

"Demonstrate state-of-the-art formal methods for specification of requirements, automated
design and software code creation”

"Demonstrate improvements to high-level specification thanks to the use of semi-formal
languages"

Ficure 1 from the project Grant Agreement, illustrates the workplan, with the expected
deliverables and task interactions, for the Work Package WP2 "Demonstrator Development for the
use of Formal Methods in Railway Environment", in which the activity reported in this deliverable
is embedded.

WP2 meli
Demonstrator Development for the use of Ti inoe

Formal Methods in Railway Environment | M1 | M2 | M3 | M4 | M5 [M6 | M7 | M8 | M9 |M10|M11[M12|M13 |M14 [M15 [M16 |M17 M18|M19| M20| M21| M22| M23|M24

T2.1 Formal development demonstrator
prototype

T2.2 Requirements definition of railway
signalling subsytem

T2.3 Experimenting the formal methods
demonstrator

T2.4 Specification of cost/befit analysis
and learning curves

FIGURE 1 4SECURAIL TIMELINE FOR WP2

The objective of this deliverable is to define the rationale and the choices performed in terms of
structure, methods and tools selection, for the definition of a semi-formal/formal software
development process (Demonstrator) targeted to the construction of clear/rigorous/verifiable
system specifications.

This defined demonstrator process will be exercised in the second part of Task 2.1 for the
specification and analysis of the identified case study fragment. After any possible revision
consequent to the experience gained during this first exercising of the demonstrator, the
consolidated version of the demonstrator will then be used, as part of the activity of Task 2.3
("Experimenting the formal development demonstrator"), for the analysis and verification of the
full case study described in deliverable D2.3.

This final exercising of the consolidated demonstrator will be the basis for the study of the cost-
benefit analysis of the approach and the evaluation of the learning curve for the use of the selected
methodologies and tools that is part of Task 2.4 ("Specification of cost-benefit analysis and
learning curves"), and that will be reported in deliverables D2.4 and D2.6.

GA 881775 Page 7|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

5 Specification of formal development demonstrator

The purpose of this first deliverable of Task 2.1 is the description of the overall process that will
be followed for the rigorous construction of system specifications (the formal methods
demonstrator process), together with the suitability criteria for the supporting tools and the
description of the architecture of the demonstrator itself.

In Section 5.1 we clarify four points that play an important role in the correct framing of this effort.
These points come from the constraints defined by the project objectives and by the relation of
the 4SecuRail activity with respect to other complementary Shift2Rail projects. These points are
related to:

- the role of formal methods

- the point of view of Infrastructure Managers

- the role of Standard Interfaces

- the issue of X2Rail2 [X2RAIL2] complementarity.

In Section 5.2 we present the overall structure of the Demonstrator and the criteria for suitability
of supporting tools. Two issues here are considered to deserve a more specific presentation:

- the role of UML/SysML ([OMG-UML], [OMG-SysML]) as standardised notation within the
demonstrator.

- the role of the internally generated formal/semi-formal models with respect to the final
system requirements specification that the demonstrator process is expected to define-

The overall generic structure described in this Section is independent from the specific case study
of signalling system which it will be applied to.

In Section 5.3 we describe the planned architecture of the Demonstrator, like the expected types
of semi-formal and formal models that will be developed during the process, the possible types of
properties that we might be interested to verify and the specific techniques for achieving that.
This planned architecture does not include an experimental validation, as this will result from the
remaining part of the activity of Task 2.1.

In Section 5.4 the kind of input data that will be collected from the experimentation of the
demonstrator process is outlined, as contribution to the activity of Task 2.4 (Costs/Benefits
Analysis).

5.1 The reference framework

In this section, we discuss the main background needed to understand the rest of the deliverable.
In particular, we present fundamental concepts related to formal methods, standard interfaces,
the viewpoint of infrastructure managers and the complementarity issues with the X2Rail2
[X2RAIL2] project. Below, we first outline the role of each topic in the context of the 4SECURail

GA 881775 Page 8|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

project, and then we discuss each topic in separate sections.

The purpose of this deliverable is the description of a system development process. The focus of
this effort is the exploitation and evaluation of the use of formal and semi-formal methods, with
the goal of improving the quality of the generated artifacts and the reduction of their costs.

For this reason, in Section 5.1.1 we briefly overview what formal methods are and how they might
impact the structure of our system development process.

The specification of the formal development demonstrator is based on the use case developed in
Shift2Rail (X2Rail2) Deliverable D5.1, Section 5.4.1 "Development of Systems with standardized
interfaces" [X2R2-D51]. In particular, with respect to that use case, we focus our effort on the
same subject which is the exploitation of formal and semi-formal methods for the rigorous
definition of system specifications that can be safely passed to multiple alternative developers.
This subject is here summarised as “The point of view of the Infrastructure Managers”.

Section 5.1.2 illustrates in detail this aspect.

The same use case for the adoption of formal/semi-formal methods mentioned in [X2R2-D51]
highlights the role of "standardized interfaces". In particular:

i) Shared, agreed, unique, standard interfaces for any signalling or control system, allows

multiple producers to develop multiple, interoperable, fragments of the overall
infrastructure in a robust and reliable way.
ii) Standard interfaces, described by means of a standardised notation, uniformly reduce the

costs of creating and the difficulties of understanding interfaces specifications.

The role of standardized interfaces is better discussed in Section 5.1.3.

Finally, it is an important project objective to preserve and exploit the complementarity with
respect to other Shift2Rail projects, and in particular X2Rail2. This issue is described in Section
5.1.4.

5.1.1 The role of formal methods

Formal methods refer to mathematically based techniques for the specification, development and
verification of software and hardware systems [CENELEC EN50128].

In the following, when we use the general term formal method, we will implicitly include also semi-
formal methods, i.e., those methods that use languages for which the semantics is not formally
defined but depends on its execution engine. Furthermore, given that, in practice, a formal
method always needs a support tool to be practically applicable, we will use the terms formal
methods and formal tools interchangeably.

Formal methods have been largely experimented in industry for the development of safety-critical
and mission critical products [WOD12]. Notable industrial cases on the usage of formal methods

GA 881775 Page 961

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

are the Maeslant Kering storm surge barrier control system [TWCO01], where both the Z and the
Promela formal notations have been used, and the Paris Metro on-board equipment [BBFM99],
where the B-method has been employed. Transportation in general and railways in particular are
domains in which formal methods have been largely experimented and applied [WOD12].
Research and industrial experiences concerning formal methods applications to railway systems’
development have been published for more than thirty years [FAN13] [BGK18], and scientific
publications in this field are increasing, showing that the interest in formal methods is still raising,
but also indicating that more research is needed for a full industrial uptake of formal methods in
railways.

Despite the quite long story of successful application of formal methods in the railway domain, it
cannot yet be said that a single mature technology has emerged. Indeed, any proposed method
or technique that goes under the umbrella of formal methods varies in its suitability and
applicability to different stages of the signalling system development, and to different subdomains
of railway signalling (interlocking, ATP, ATS, etc.). To this purpose, the ASTRail project [ASTRAIL]
aimed at identifying, on the basis of an analysis of the state of the art, of the past experiences of
the involved partners and on work done in previous projects, the candidate set of formal and semi-
formal techniques that appear as the most adequate to be used in the different phases of the
conception, design and development of railway signalling equipment.

Formal methods aim to guarantee, following some rigorous approach, the desired behaviour of a
given computing system (see [AFPM11]). The notion of specification is central: a specification is a
model of a system that defines its desired behaviour — what it actually should do, as opposed to
how. A specification can vary for its level of abstraction, form the high level of abstraction of the
desired properties of the system, to the more concrete level of an operational description of the
behaviour of the system. In [AFPM11] these two problems are identified:

e the “model validation” problem: How to enforce, at the specification level, the desired
behaviour?

e the “formal relation between specifications and implementations” problem: How to obtain,
from a specification, an implementation with the same behaviour? Or alternatively, given an
implementation, how can it be guaranteed that it has the same behaviour as the
specification?

Different formal methods address these two problems in many different guises. Specifications may
be analysed by animation/simulation, by transformation, or by proving properties.
Implementations may be formally and mechanically derived from specifications in a correct-by-
construction manner, or the former may be guaranteed to be correct with respect to the latter by
different formal verification techniques, and under different formal correctness notions.

Basic Concepts

We introduce below some concepts and notions that characterise the application of formal
methods and tools in the design of software systems that will be used in the following [AFPM11]

GA 881775 Page 10| 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

[OR17].

Model-based development puts a conceptual system model at the centre of the development
process, from requirements engineering, through (model-based) design, to model-based testing -
- which is characterised by test cases derived from models rather than from source code -- and
possibly code generation -- which automatically translates system models to source code.
Consistency among the models used in the various phases is ensured through model
transformation and refinement. Model transformation can be seen as the automatic generation
of a target model from a source model based on a transformation definition.

Refinement concerns the verifiable step-wise transformation of an abstract (high-level) formal
specification into a concrete (low-level) executable program, such that each step increases the
level of detail (e.g., which algorithm or which data type to implement).

Synthesis aims to automatically construct a system or program that is guaranteed to satisfy a given
(high-level) specification.

Type checking offers a means to analyse the well-formedness of a model (or source code) with
respect to its meta-model, which is formally specified as a type system that all models must
conform to. This is a form of static analysis, i.e. check to be performed without executing the
program/model.

Model checking is a technique to automatically and exhaustively verify whether a formal model
of a system satisfies its specification, expressed as properties in a (temporal) logic. With respect
to testing, model checking thus exhaustively verifies all possible behaviours, typically providing a
counterexample in case a property is not satisfied. Affected by the state space explosion problem,
that often jeopardizes its actual verification capabilities, model checking comes with a large variety
of tools and techniques, as well as of notations to represent a system model, developed basing on
different choices of basic principles, techniques and criteria:

logical notations / algebraic processes / state-machine notations

state based models (Kripke Structures) / event-based models (LTS) / mixed (L2TS)
timed vs. untimed models

probabilistic / statistical / nondeterministic models

with limited data types (e.g. 1 .. 255) vs. with wide data types (e.g. int, real)

explicit /symbolic /on-the-fly /bounded

Theorem proving is a deductive approach to prove the correctness of logical formulas by applying
inference rules to them, either interactively or automatically, resulting in a proof script listing the
deductive reasoning (for inspection by humans).

Model checking and theorem proving generally do not scale to huge systems. In such cases,
(interactive) simulation (i.e., a sample path or execution) of the system model's behaviour can still

GA 881775 Page 11|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

provide valuable insights. Simulation tools can provide prototypes of software applications or
tools, i.e., not yet complete versions of the software program under development, as is common
for other engineering disciplines.

Abstraction and Nondeterminism

Formal models may need to abstract from details that are related to specific implementation
choices or to very specific aspects of the system. Abstract specifications may include
nondeterministic behaviour for modelling possible external interactions or internal choices, or
may abstract away from aspects like time and data introducing further nondeterministic
behaviours.

Depending on the process workflow, an abstract specification can be subsequently refined into a
more detailed one, or a more detailed specification can be abstracted into a less detailed one to
enable verification activities otherwise not possible.

In both cases we might have to deal with the problem of guaranteeing that the properties verified
on the more abstract model are still preserved and satisfied by the more detailed one.

Executable/Simulatable/Verifiable models

For executable model we intend a system description that has the possibility of being executed,
typically by automated code generation.

For simulatable model we mean an abstract system description whose behaviour can be simulated
by a dedicated interpretation tool: a simulation run is typically played on simulation data.

For verifiable model we intend a system description at any level of abstraction on which formal
verification of properties can be run (in reasonable time) by means of dedicated tools.

Typically, these three concepts can be related to different levels of abstraction of the system
description. Simulatable models typically are defined at a higher level of abstraction than
executable ones:

e an executable model behaves deterministically, as programs do; data queries and data
transformations are defined by deterministic executable function;

e inasimulatable model system some details may not be completely defined and may lead to
nondeterministic choices in the system behaviour. This nondeterministic behaviour can

however be tested by automatic random animations or by interactively controlled
animations. Clearly, executable (deterministic) models are also simulatable models;

e verifiable models may exhibit both deterministic and nondeterministic behaviour. In both
cases, verification allows the automatic analysis of the whole system behaviour, and not just
an interactive simulation of it.

All these three classes of models might all find their due place as part of the formal methods

GA 881775 Page 12|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

demonstrator because each of them allows to get a specific and useful view of the system being
defined.

Test Cases Generation

Formal verification will never be able to fully validate the completeness and correctness of the
specification with respect to intended user requirements. At most, a formal verification will be
able to prove that the specific checked properties are indeed satisfied by the specification design.

Therefore, it makes sense, as part of the demonstrator process, to also include a testing activity
that, starting from an executable/simulatable model of the system, allows to check the adherence
of this model to the requirements, since testing is run at a lower abstraction level w.r.t. formal
verification.

The tests, run in this activity, are derived from the model by means of test case generation
facilities, and can be replicated on the final implementation of the product, to validate it against
the requirements. The generated artifacts (e.g. testing suites) may be of interest also as an aid for
a clearer understanding of the specification.

5.1.2 The point of view of Infrastructure Managers

As required by the project workplan, the project work stream 1 will take as reference the use case
for the application of (semi) formal methods in the development of railways signalling systems
defined in Subsection 5.4.1 "Development of Systems with Standardised Interfaces", of the
deliverable D5.1 [X51] of the Shift2Rail X2Rail2 project.

The use case 5.4.1 deals with the adoption of formal methods from the point of view of the
Infrastructure Managers.

The point of view of an Infrastructure Manager (IM) focuses on the “model validation” problem
(see Sect. 5.1.1), since it has to provide a validated specification of a desired equipment to the
Manufacturers.

In a classical client/developer scenario the common practice is the generation of - usually informal
- system requirements document. This document can then be used by the developer to build an
initial executable specification of the system, and then refine it (possibly using formal or correct-
by-construction methods) into a final product.

GA 881775 Page 13|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail R v s (4SECURail

Classical
Scenario

Informal

Requirements |!_l_|

Rigorous T

Specification n

[
Product .

Figure 2 The classical Client-Developer scenario

The scenario in case of railway Infrastructure Managers is slightly different, since the main interest
is on providing the same rigorous/verifiable specification not just to single developers, but to
possibly multiple different developers that should produce equivalent products. This is precisely
the case well described by the X2Rail2 use case selected as our reference, where defining a

standard/rigorous/verifiable specification of the system to be developed becomes the IM
responsibility.

.M.
Informal
Requirements [!!l
Rigorous b
Spegcification "

- .
Hi
Products i i

Figure 3 The Client-Multiple Developers scenario

Actually, in the case of railway Infrastructure Managers, the scenario is even more complex. In
fact, the railway infrastructure is constituted by a multitude of subsystems (each one possibly
developed by a different supplier) that must correctly interact among themselves.

In this case the problem of building rigorous/formal/verifiable specifications should extend also to
the verification of the interactions between these components.

Clearly this does not hold only for railway Infrastructure Managers, but it is true also for any other
kind of complex infrastructures (like, e.g. telecommunications).

GA 881775 Page 14|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

Infrastructures are systems of systems

Informal .l .l .l
Reguirements LJ LJ LJ
RBC IXL LX

] f—

l l
T T
L 2L L%

HEVE |
i (R B (BB "

Figure 4 The Client — Multiple Developers scenario within a complex infrastructure

Rigorous, r._.IT

This introduces a further dimension of complexity. For example, safety properties can often be
verified by reasoning at the level of single subsystems (e.g. ensuring that independently from the
possible external interactions no unsafe conditions are even reached), but the same cannot be
said for specific properties related to the composite behaviour of several subsystems (e.g. liveness,
absence of deadlocks, or missing desired execution paths involving the behaviour of several
subsystems).

A special case of these scenarios is when the produced specification takes the role of "standard
specification" supported by international organizations (like UIC[UIC]/ERA[ERA]/UNISIG[UNISIG]),
defined with the aim of creating interoperable railways in the whole Europe (Single European
Railway Area, SERA).

5.1.3 The role of Standard(ized) interfaces

Our reference use case, described in Section 5.4.1 (Development of Systems with Standardised
interfaces) of X2Rail2 D5.1, explicitly cites the EULYNX [EULYNX] methodology as a reference.

5.4.1 Development of Systems with Standardised interfaces

This use case is based on the EULYNX [11] methodology. Historically, infrastructure managers
were supplied with monolithic systems, based on proprietary interfaces. A few years ago, a re-
orientation of the means of production of future systems was initiated entailing purchasing
modular systems. For example, an interlocking system comprises an electronic interlocking, a
command and control system and field elements such as points, signals, and so forth. The
fundamental concept of this new approach is to have these parts supplied separately. This

GA 881775 Page 15|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

requires standardised interfaces between subsystems and to adjacent systems, to enable
different suppliers to supply compatible modules. This requires high quality specifications, as
suppliers will be working with these blueprints and the infrastructure managers will carry out
the system integration tasks.

Hence, "standardised interface” is intended to be a standard reference to be communicated to
the suppliers by the Infrastructure Managers, with no dependencies on the way in which the
interface is specified or the methodology through which the interface requirements specification
has been generated.

Clearly, in the context of a project like EULYNX, whose purpose is that of rigorously defining all the
interfaces of the Interlocking subsystem with all the other subsystems, it is perfectly reasonable
to adopt a common methodology, language, and set of tools for achieving this purpose. This
introduces the other meaning of "standard interfaces" as system interfaces described with a
standard notation.

The goal of our demonstrator, from the point of view of the exploitation of "standard interfaces"
is therefore twofold: a process exploiting the use of formal methods for the definition of
standardised interfaces (goal: interoperability) described in standard notation (e.g. SysML) (goals:
uniformity, understandability, non-ambiguity).

The EULYNX MBSE methodology is described in the document "EULYNX-Modelling Standard
Eu.Doc.30" [EULYNXdoc30, Section 4], and summarised in Figure 5.

GA 881775 Page 16|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail R v s (4SECURail

Problem and solution

Problem
definition

.
.
".-
.
..

Abstract
solution

What the
system does
Design

Specific
solution

How the syst
is constructed

ion Framework
Model Domain MBSE

Red iirements . Knowledge | Process
ystem
specificdtion
pedly 1 o (system model) 1o
*diGT T >
0. e |
9‘...‘?.”.’! _____ -

Modelling Language and Tools

Figure 5 The EULYNX MBSE approach (Fig 1484 of Eu.Doc.30)

The overall approach being adopted for the Formal Methods Demonstrator, described in the
subsequent Section 5.2, can be seen as a generalisation of the one adopted in EULYNX. The actual
demonstrator specification can still make use of different specific tools, being this choice
dependent on the kind of formal verification techniques that are being considered in the project,
and on the specific project goal of exploiting formal methods for evaluating the costs/benefits of
the chosen approach.

A common aspect which we believe it is important to try to preserve is the baseline adoption of
UML/SysML as semi-formal model driven design methodology. This issue is discussed in more
detail in Section 5.2.1.

A very detailed presentation of the expected benefits from the adoption of standard notations for
standardised signalling interfaces can be found in [EIND].

5.1.4 X2Rail2 complementarity

Task 5.2.1 of the X2Rail2 project also conducted a reasoned survey of the set of formal and
semiformal methods proposed for use in a railway context. Although we are not constrained to
use any of these tools/methodologies, surely this is a point which must be taken into consideration
for the detailed design of our demonstrator. Figure 6 and Figure 7 show the formal and semi-

GA 881775 Page 17|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (ASECURail

formal methods and tools proposed by X2Rail2.

Formal Formal
Jaad s Verification | Specification
00 e oa anguage
Free-of- B/Event B . -
charge tools Method Lustre PiSPEC Simulink HLL TLA
Kind2 MC
Rodin | IDE, TP
TLA Toolbox IDE, MC, TP
Commercial | B/Event B " P
ity Method Lustre PiSPEC | Simulink HLL TLA
AtelierB | IDE, TP
Animator,
ProB | mc. Tca Mc
Prover
Certifier MC MC
IDE,
Prover ilock Animator,
MC, TCG
SafeRiver Static Static
Toolkit analyser analyser
SCADE IDE, MC
Simulink IDE, MC
Systerel
Smart Solver MC MG

Figure 6 X2Rail2 Proposed formal methods tools (Table 1 of X2Rail D5.1)

Semi-formal development

Commercial tools UML / SysML
Certified RT Tester TCG
Conformiq Designer TCG

PTC Integrity Modeler IDE, Animator
Rhapsody ATG Add-On TCG

Sparx Systems Enterprise Architect IDE, Animator

No Magic Cameo Systems Modeller IDE, Animator

Figure 7 X2Rail2 Proposed semi-formal methods tools (Table 2 of X2Rail D5.1)

We have already mentioned the relevant role of the use case defined in Subsection 5.4.1
"Development of Systems with Standardised Interfaces" of the deliverable D5.1 of the Shift2Rail
X2Rail2 project, which refers to the adoption of formal methods from the point of view of the
Infrastructure Managers.

Figure 8, extracted from the mentioned D5.1 of X2Rail2, shows a possible workflow of the system
development process, based on formal and semi-formal methods, as it might be used by
Infrastructure managers to build rigorous and verifiable specifications (system requirements) to
be delivered to different developers for their development.

GA 881775 Page 18|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Horizon 2020 -
‘ “ European Union Funding (4SECURa’I
for Research & Innovation

1
Requirements @) >
| = System
—— Definition
(2) 4 L
() Safety 3)
g > Properties %) t
© @ tRisk Analysis
J
Formal (7) verify Q (5)
Verification I
Tool
E bl
x:g:::; © @ generate | roq; Cases]
Simulation Model
Tool (6) validate
9) (10)

Suppliers

[
1
1
'
1
1
'
T e L LR R r TT T Trr e diciaia.
|
|
1
|
|
1
|
1
1

Proof of
behavioural
refinement

(10)

o]

Figure 8 X2Rail2 Use case for formal development of systems with standardised interfaces

Where, in particular, it is described that:

The specification process starts with the system definition based on requirements derived from stakeholder
needs (1) and regulation-based safety properties (2):

The system definition comprises basically the technical system context and the functional system context,
defining the interfaces of the system and the information flows at them.

The system’s use cases — the services the system is expected to perform for its environment — are described by
scenarios which order the defined information flows in time, and thus specify the expected externally
observable input/output behaviour of the system at the upper level of abstraction.

The system definition is described using the Systems Modeling Language (SysML) [10], a semi- formal graphical
modelling language. A detailed description of the methodology to model the system definition is given in the
EULYNX Modelling Standard [12].

With the system definition as basis the risk analysis is carried out (3). An analysis of the different types of
possible hazards is made and hazard-based safety properties derived. They supplement the pre-existing
regulation-based safety properties (4) and are used to adjust the system definition if necessary.

Based on the externally observable input/output behaviour defined in the system definition phase, including
relevant results of the risk analysis, an executable model of the externally observable behaviour is created (5).
The executable model is used for validation (6) of the requirements by simulation (virtual prototype), formal
verification of the safety properties (7) and automated generation of test cases (8).

The semi-formal model is given as part of the tenders to the suppliers (9) which respond with the proof that
the behaviour of their implemented system is a refinement of the specified one (10).

The above generic workflow is clearly well applicable, with the needed variations, also in our case,

and in Section 5.3 “The architecture of the 4SECURail demonstrator" the main differences
between this workflow and our Demonstrator structure are illustrated.

GA 881775 Page 19|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

5.2 The overall structure of the demonstrator process

In this section we describe the overall structure of a demonstrator process aimed at employing
formal methods to support infrastructure manager. The next section will be dedicated to the
specific instantiation of this process in the 4SECURail context.

The overall structure of a generic Software development process targeted to the definition of
rigorous system specifications which exploits the use of formal methods (our Demonstrator) can
be described as in the Figure 9.

DRAFT I.M. REQUIREMENTS

Requirements Elicitation

Model based
test case generation

Formal Verifications PROTOTYPING
AND ANALYSIS

Simulation/Animation

Formal/executable models

SYSTEM REQUIREMENTS SPECIFICATION

Safety requirements

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Detailed system
...................... reguirements

Figure 9 Overall generic structure of demonstrator (first case)

First Case (with requirements elicitation). Starting from some input describing the initial .M.
requirements of the system, we start an agile (in the style of [AGILE]) development phase in which
the requirements are transformed into "formal/executable models". These models are developed
incrementally, and continuously analysed by means of formal verifications, simulations,
animations, and collecting test cases for documentations.

These abstract formal models can also be refined by adding additional details into "refined
executable models" that may help in validating the system behaviour possibly through simulations
and animations.

Once these formal models are sufficiently stable, they represent the base for the generation of
the demonstrator output (the official system requirements specification), in the form of
description of "abstract system requirements", "safety requirements", "detailed system
requirements"”. The generated system requirements are still likely to be expressed in natural

GA 881775 Page 20|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

language but enriched with tables and diagrams extracted from the formal/semi-formal models.
The formal/semi-formal models themselves might be made available as complementary
documentation.

From one side, while the generation of multiple, different semi-formal / executable / simulatable
/ formally verifiable models allows to get a deep understanding of the system design from many
points of view and many levels of abstractions, from the other side this multiplicity raises the
problem of keeping these models somewhat "synchronized". E.g. if, for some reason, one of the
models needs to be modified because of the discovery of some defect, the impact of the change
on the other models surely cannot be ignored. This may require the generation and maintenance
of some kind of cross-references between these artifacts, and probably also between these
artifacts of the final "system requirements specification" resulting from the process. The effort
needed for keeping all the different artifacts well synchronised should not be underestimated and
might play a non-trivial role in deciding how many "points of view" to take into account.

Second Case (without requirements elicitation). The whole schema still holds in the case in which
the input of the overall Demonstrator process is not constituted by Draft I.M. Requirements, but
by an already consolidated/official set of system requirements / safety requirements, that should
be the object of more rigorous analysis.

In this case we simply would not have the Requirements Elicitation activity oriented to the
consolidation of the Draft .M. Requirements, see Figure 10. The difference in the wording
"PROTOTYPING" versus "MODELLING", in this second case, just reflects that if the starting point is
an already consolidated specification, the modelling activities (in terms of tools and methods)
might be somewhat different from the incremental prototyping activity driven by a
rigorous/formal Requirements Elicitation phase.

Model based
test case generation

Formal Verifications MODELLING
AND ANALYSIS

Simulation/Animation

Formal/executable models

SYSTEM REQUIREMENTS SPECIFICATION

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Detailed system Safety requirements

requirements requirements

Figure 10 Overall generic structure of demonstrator (second case)

GA 881775 Page 21|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

Third Case. The same overall schema might also work in the mixed case in which an already
consolidated set of system requirements/safety requirements might have to be
extended/updated by an additional set of new user requirements (somewhat of composition of
the previous two cases). In these cases, the availability of previous formal/executable artifacts
would be of great help for the process.

We consider as already acknowledged (see for example the related Shit2Rail surveys in [X2R2-D51,
ASTRAIL-D41, ASTRAIL-D43]), that there is not a single formal method or tool that can fit all the
possibly desired verification and modelling needs in the railway field. Therefore, the whole
Modelling and Analysis activity is supported at its best by a rich integrated ecosystem of tools and
methodologies, rather than a single monolithic, usually closed, tied to single specific
methodologies, framework. We recognize, however, that at least in the first case, where a
classical V shaped process might be followed covering all the steps from Requirement Elicitation
to Official Requirements Specification generation and verification, a reference modelling
frameworks might actually help in building and maintaining all the documentation related to the
various artifacts being generated.

5.2.1 The role of UML / SysML

UML (Unified Modeling Language) is a standardized modeling language consisting of an integrated
set of graphical diagrams, developed to help system and software developers for specifying,
visualizing, constructing, and documenting the artifacts of software systems [WHATISUML].

UML, in its SysML version, has been adopted also in the EULYNX project within its underlying
methodology for the development of standard interfaces. A detailed analysis of this approach is
well described in [EIND].

Graphical designs do often convey information to the reader with a wider band than just text and
require less effort in the reader for receiving it.

However, a textual representation readable/writeable by humans is equally important for the
simpler way in which it can be produced, shared, translated, modified, and communicated.

We believe that both kinds of representation should be made available, and they should be and
remain in synch.

It is also important for the designer to be able to simulate the UML behavioral models (e.g. state
machines) to have some initial feedback on the correctness of the design with respect to the
intended requirements. Otherwise models risk being precise, but wrong.

A prerequisite for a reasonable introduction of UML as reference notation inside a formal methods
Demonstrator process is that the meaning of the UML designs shall not be ambiguous or uncertain.
Since its origins, this has been recognised as a major problem for some of the behavioural diagrams
of UML like state machines.

GA 881775 Page 22|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

The main recognised problems with this behavioural notation are in fact (see e.g. [FSKR29,
SG30]:

e Uncertainties in the semantics
e Absence of standard action language
e Lots of implementations freedoms

Several studies and proposals have been conducted in the recent years with the goal of associating
a formal semantics to the UML behavioral diagrams (see e.g. [CD2007, BCDRS, L2013]), but none
of these actually succeeded in solving the problems.

An important step forward to overcome this problem has been done by OMG (Object
Management Group) with the standardization of fUML (Foundational Subset for Executable UML
Models). [OMG-fUML1], which is also associated with an official reference implementation [OMG-
fuML2].

This definition of fUML is complemented with the definition of textual syntax for its action
language ("Alf' [OMG-AIf]), and by the definition of the "Precise Semantics of UML Composite
Structure (PSCS)" [OMG-PSCS].

The purpose of this fUML effort is precisely the one of defining an initial subset of UML which is
free from the semantic uncertainties affecting the full standard and that might define a rigorous
Model of Computation for the UML behavioral diagrams.

The remaining limits of this effort is that this fUML definition is still described in natural language,
and that the "reference implementation" (that might play the role of non-ambiguous operational
semantics) is currently being implemented only with respect to activity models [OMG-fUML2]. The
Alf definition itself, when considered in conjunction with the state machine notation, is currently
defined just through an "Informative Annex" [OMG-AIf] with no normative role.

More details on fUML are provided in Annex 8.2.

W.r.t. our overall demonstrator process UML can play three different roles:
- as complementary graphical documentation of specific aspects of the system requirements
definition.
- as adirect notation for the execution and simulation of system models.
- as baseline for translations towards other formal notations supported by strong verification

capabilities.

The use of UML for system design and documentation is supported by an extremely rich set of
tools, partially reported in Annex 8.1. If we are interested in just designing diagrams for
complementing the natural language description of a system, we might find useful to use UML
tools exploiting more immediate and user-friendly textual encoding of the diagrams (like Umple,
textUML, et al., cited in Annex 8.1).

Support for the use of UML for execution/simulation of the system behaviour is much more limited
and constrained to a handful of alternatives, equally reported in Annex 8.1.

GA 881775 Page 23|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

None of the "industry ready" UML tools allows a direct verification of behavioural models; as far
as we know, only a few academic prototypes (e.g. UMC [UMC1, UMC2]) have been developed
precisely to this purpose.

Therefore, we are only left with the possibility of performing the translation from the UML models
into other formal notations supported by verification frameworks.

In the literature there are plenty of papers describing experiences in this kind of translation [see
e.g. [PEML, GMK2012, CFLW, BBJTD2018, F2008, YLWD, NPS2009, BR2010, Y2010, SSB2012,
RBS2019, HKLMPMS, KMR2002, CC2004, BFMMMNYV, 0D2017, 0SG2004, JDJLP] but none of them
seem to have been well supported and integrated inside "industry ready" UML frameworks.

Given the focus of the 4SECURail demonstrator on formal methods, the last described use of UML
(baseline for translations) is probably the one that is more tied to the project goals, even if also
the other two uses (documentation and simulation) may play a relevant role inside the
Demonstrator.

From this point of view our preferred choice would be the use of an even stricter subset of the
fUML state machine diagrams, defining a very simple state machine structure that would allow a
direct translation into the main formalisms adopted by verification and simulation tools, such as
Event-B [EVB] / LNT [GLW2017] / Uppaal [UPPAAL].

Notice that we do not have the goal of defining a subset valid in the general case, but we just
explore this approach in our limited case-study, because we believe that this point of view is worth
a demonstration and experimentation.

We can observe that EULYNX gives a precise information of the specific tools and methodologies
adopted in the project, like

e Atera as action language for behavioral diagrams
e PTC [PTC-Windchill] as a graphical design and animation tool for the specifications.

In our case the criteria for selecting specific UML/SysML tools might possibly lead to a different
choice, that will be based on the following considerations:

e The non-ambiguity and standard-quality of the supported notations,
e The openness of the framework - i.e. how easy it is to import/export/translate the notations
versus other frameworks,

The usability of the tool user interface,

The degree of support for nondeterministic aspects in the design and

The degree and cost of support and training for the clients.

5.2.2 The expected output of the demonstrator process

The set of artifacts in output from the formal methods demonstrator process are represented in

GA 881775 Page 24|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

our overall generic model by the final "System Requirements Specification". Actually, these
artifacts might be of different nature and with different purposes:

e A rigorous natural language textual description, possibly enriched with standard diagrams

and tables, that may constitute the legal document associated to the specification;

e A simulatable semi-formal system description: this artifact might be considered as a very
useful complement that might be made available to the developers for checking their correct
understanding of the system to be developed,;

e Formal verifiable specifications, allowing the developers to possibly exploit these models for
"correct by construction" code generation, and allowing the Infrastructure Managers to
maintain, further verify, and possibly improve the System Specification itself;

e A set of tests generated and successfully applied for the analysis of the various models, that
can provide developers with guidance and early verification for the testing of the ongoing
product development.

5.3 The architecture of the 4SECURail demonstrator

There are four points that directly affect the definition of the architecture of the demonstrator:

e In which way the semi-formal models describing the system requirement specification are
generated for being analysed?

e In which way the simulatable/executable models of the system are generated?

e In which way the formal models of the system are generated and verified?

e In which way the case study selected for the exercising the demonstrator may affect its
architecture?

The following paragraphs give more details on all these aspects.

Specification with standard notations

We believe it is important to adopt as reference inside the demonstrator a standardised
description of systems specification which, considering also the indications coming from the
EULYNX and X2Rail projects, are based on UML/SysML diagrams, and in particular on behavioural
diagrams (state machines and sequence diagrams).

The ideal (imaginary) approach to system specification should rely on an advanced support
framework allowing to generate clear, graphically appealing, rich of content, possibly interactive,
diagrams. Starting from these, interactive simulation to explore the possible nondeterministic
alternatives present in the behaviour would be possible, allowing the formal verification of system
properties.

Unfortunately, this ideal approach is still very far from the current state of the art. In practice, if
we really want to generate clear, graphically appealing, rich of content, diagrams, it is necessary
to make use of specific drawing-oriented tools (e.g. in ASTRail, Graphviz [GRA] has been used for
this purpose) that do not support simulation and verification.

GA 881775 Page 25|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

Instead, diagrams automatically generated by UML/SysML-based frameworks are often of a not
sufficient graphical quality and may not contain all the useful detailed information (e.g. the
abstract events that relate a system transition to one or more system requirements). At the same
time, however, they may be directly used to perform simulation and verification.

The use of UML/SysML-based frameworks allows the progress from the system design to code
generation in a rather smooth way. This usually is of interest of developers but of less interest for
the point of view of I.M.

It is therefore likely, unless more experience comes out from the actual demonstrator
experimentation, that a graphical SysML design is adopted in our demonstrator without any
predetermined relation with specific UML /SysML -based framework.

Frameworks for Executable / Simulatable Modelling

As already described in Section 5.2.1 the UML/SySML state machine descriptions might be
exploited in the demonstrator not only as graphical designs with documentation purposes, or as
basis for translations info formal verifiable notations, but also as simulatable models suitable for
experimenting the actual system behaviour.
This kind of use requires the exploitation of much more complex (to learn, to use, to acquire)
frameworks supporting execution and simulation of composite systems based on interacting
state-machines. The survey on semi-formal tools conducted by X2Rail2 and presented in D5.1 (see
X2Rail Table 2 reported in Section 5.1.4) indicates as possibly recommended frameworks for
system simulation the following ones:

e PTC Integrity Modeler (now Windchill Modeler SySim) [PTC-Windchill]

e Sparx Systems Enterprise Architect [SPARX]

e No Magic Cameo Systems Modeller (now Dassault 3DS Cameo Systems Modeller) [3DS]

It is not sufficient to look at the available online documentation for the various frameworks to
identify the best solution, in the context of our demonstrator, as possibly recommended
frameworks for system simulation.

Therefore, we will defer this choice to the prosecution of Task 2.1, after a hands-on
experimentation of the various possibilities with the selected initial fragment of the chosen case
study.

In the context of the 4SECURail demonstrator the exploitation of a framework allowing to directly
simulate the designed behavioral models in agreement with the official OMG fUML semantics
would be a great contribution because it would allow to ensure that the designed graphical models
actually reflect in a not ambiguous way the expected system behavior.

Formal Verification by Model Checking

Independently from the kind of tool support for the generation (and possibly simulation) of
UML/SysML state-machine designs, our main goal is to transform these standard UML/SysML
designs into verifiable formal models.

GA 881775 Page 26|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

Theorem proving and Model Checking can probably be considered the two most used approaches
to system verification, also in railway related contexts.

However, Theorem proving, e.g. as supported by Atelier B, seems more fitting a specification
refinement process that guides the correct-by-construction generation of code starting from an
initial formal design. Model checking instead seems more fitting a model-based approach in which
a simulatable design is explored and verified in all its possible evolutions. In 4SECURail we follow
the model checking approach since we are not interested in code generation.

In particular we will take advantage of the experience gained with the ASTRail project (see
[ASTRAIL-D43]), where UML state machine descriptions were translated into EventB state
machines and subsequently analysed and verified by model checking with the ProB tool [PROB].
ProB is an animator and model checker for the B-Method. It allows animation of many B
specifications and can be used to systematically check a specification for a range of errors. ProB is
one of the tools also recommended by X2Rail2 for formal verifications (see X2Rail2 Table 1 in
Section 5.1.4). Some of the reasons for the successful experience of its use in ASTRail project and
to reuse it also in 4SECURail are the following:

e It is a free, open source product whose code is distributed under the EPL v1.0 license
[http://www.eclipse.org/org/documents/epl-v10.html]

e Is actively maintained and commercial support is available from Formal Mind
[http://www.formalmind.com/]

e Runs on Linux, Windows, and MacQOS environments

e It has several nice, very usable graphical interfaces, but can also be used from the command
line

e It is well integrated in the B / EventB ecosystem (Rodine, Atelier B, iUML, B Toolkit)

e It allows construction, animation and visualisation of nondeterministic systems

e It allows formal verifications through different techniques like constraint solving, trace
refinement checking, model checking.

There are also known weak points related to its use, which in our case are:

e Does not allow the explicit modelling of multiple mutually interacting state machines. The
only way to achieve that is to merge all the separate machines into a global one.

e EventB state machines are different from UML/SysML state machines. At the current state
of art several proposals of translations from UML to ProB state machines have been made,
but no industry-ready product currently supports that mapping.

e Model checking does not support compositional approaches based on bisimulations which
are congruences with respect to parallel composition operations. In simpler words the
verification approach does not scale when the system is composed by many mutually
interacting asynchronous state-machines.

More details of the ProB tool are reported in Annex 8.3.

GA 881775 Page 27|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

Modelling the behavior of a system through the design of a single state machine has the advantage
that this design can often be translated into the notations supported by formal verification
frameworks with a reasonable effort.

However, if we have to verify properties that depend on the behavior of more interacting
asynchronous systems, the situation becomes more difficult. If the components are not too
complex, or not too many, a possibility is to merge all of them into a unique "global" system
modelled again as a single state machine. If the various system components are too complex, or
too many, this approach risks however incurring in the problem of state explosion.

In this case we can imagine two types of solutions:

e One solution is to constrain the verification to a rich set of scenarios. l.e. not verifying the
system in its complete variability, but only under certain assumptions (like for example,
absence of fatal errors in certain components, only one/two/three trains moving from one
RBC to another, limited presence of communication errors, just to mention some).

e The other solution is to exploit alternative formal notations historically oriented towards the
design and verification of asynchronous interacting systems and supported by specialised
theoretical basis like process algebras (see e.g. [MCRL2, CADP, FDR4]).

We are unable at the current time to evaluate the overall final complexity of the chosen case
study, and if model checking within the ProB framework will be sufficient to verify overall systems
constituted by interacting components. In any case our approach does not prevent the
experimentation with alternative translations towards verifications engines more oriented to the
analysis of "parallel asynchronous systems".

The three aspects described above are summarised in Figure 11.

Graphical SysML State Machines

SysML state machines Event-B state machine
execution/simulation simulation/verification

- 3DS Cameo System Modeler?
- PTC Sysim Modeler?

- Sparx Enterprise Architect?
- Papyrus?

Figure 11 Execution flow of the demonstrator prototype

GA 881775 Page 28|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

The case study

The case study to test the formal methods demonstrator proposed by 4SECURail is the RBC/RBC
protocol, as specified by the UNISIG RBC/RBC Handover [SUB-039] and Safe Communication
Interface [SUB-098].

A Handover procedure is needed to manage the interchange of train control supervision between
two neighbouring RBCs. When a train is approaching the end of the area supervised by one
handing over RBC, an exchange of information with the (new) accepting RBC takes place to
manage the transaction of responsibilities. RBC/RBC interface is a typical product where
development processes of different supplier meet, and is therefore an optimal choice to
investigate how natural language specification may create the possibility of diverging
interpretations, leading to interoperability issues. The details of the case study and the rationale
for this choice will be described in Deliverable D2.3 of Task 2.2.

Being UNISIG SUBSET-039 and SUBSET-098 already consolidated standards, the overall structure
of our demonstrator process will reflect the second point of view of those described at the
beginning of Section 5.2 and illustrated in Figure 10, which is the case of formal methods
demonstrator process used for just analysing, verifying, and possibly improving an already existing
standard specification.

With respect to the X2Rail2 workflow shown in Section 5.1.4 - Figure 6 we can say that a Risk
Analysis phase is not needed in our case study because safety threats have been already addressed
into SUBSET-039 and SUBSET-098. Additional safety requirements will be added if required by the
specific modelling of the system.

With respect to the same workflow of Figure 6 also the test generation subphase has a different
flavour, because in our case it is not oriented towards the final validation of the developed
products, but towards the achieving of a further degree of confidence on the correctness of the
generated models, especially w.r.t. those aspects not covered by formal verifications. This test
generation subphase might in fact evolve within the semi-formal SysML simulation framework (if
the selected tools actually support it), that might describe the system at a different level of
abstraction with respect to the verified formal models (e.g. modelling in more detail some data-
related and time-related aspects).

The output, in terms of artifacts, of our demonstrator process will reflect the structure described
in Section 5.2.2.

In our particular architecture, being the input requirements an already stable official UNISIG
standard, we will not need to rewrite it using again a natural language notation, even in the case
the rewriting could appear as more precise or complete. We can however complement it with
annotations, if found useful, and/or enrich it with further artifacts developed with the
demonstrator process, such as SysML models, animatable modes, formal model, test cases, and
the needed cross references among these components.

GA 881775 Page 29|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

5.4 Inputs for the cost-benefit analysis and learning curve evaluation

During the experimentation of our demonstrator process with its application to the selected case
study, both in the second Part of Task 2.1 (initial fragment) and in Task 2.3 (full case study) it will
be important to assess as much data as possible on the costs and cost categories embedded in the
proposed approach.

The goal will not be to record time-related costs for the demonstrator development, but to identify
cost categories which are likely steering the development of a generalised system having the
features of the demonstrator. Costs categories may be preliminarily clustered as:

® costs for acquiring tool licences (either based on the actual costs incurred for licences
necessary for the demonstrator or costs of the full commercial licence for the same tool,
including commercial support and training), or cost of licence for alternative tools with
respect to the ones used in the demonstrator.

® time-related costs for research and development: such costs are dependent on the
estimation of effort (person-days) needed to learn a specific tool and methodology (entailing
the learning curve of FM for the system suppliers), and to the time/effort needed to generate
the animatable SysML specification, to generate the formally verifiable models, to select,
design and perform the verifications of the properties of interest, to maintain the various
model well synchronized.

Before being actually usable for the costs-benefit analysis, this effort data might have to be
adjusted for taking into account the bias resulting from the previous already existing competences
and knowledge of the involved people, and will need to undergo a benchmark with literature
sources.

As a methodological pillar, the cost-benefit analysis will analyse costs and benefits associated to
the exploitation of formal methods, against the baseline scenario, which does not foresee the
adoption of formal methods. The outcome will be the differential of costs and benefits associated
with the generalised adoption of the system described by the demonstrator. The assessment of
baseline costs (either for licences or time-related costs) will be estimated and reported in D2.4.

GA 881775 Page 30|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

6 Conclusions

The activity of the formal methods demonstrator process will start with the definition of the SysML
designs describing the UNISIG RBC Handover system selected as case study.

After this point the process will fork, experimenting from one side the inclusion of the designs in
a MBSE framework for subsequent animation and generation of use cases and test cases of
interest, and from the other side experimenting the translation of the SysML design into formal
Event-B state machines for subsequent formal verifications with ProB.

The resulting flow is depicted in Figure 11.

The specific MBSE tool that will be used for SysML simulation will be selected (if at least one found
satisfying all our needs) during the initial experimentation of the demonstrator in Task 2.1 (second
part) that will define the final demonstrator prototype structure (Deliverable D2.2 - November
2020).

The actual contribution of this deliverable goes far beyond the final answer to the question about
"which tools and methods will be actually used by the demonstrator", but it consists also in the
reasoning and the rationale that have led to the selected choices. In particular three important
issues deserved a specific analysis and discussion:

e The clarification of the usefulness of formal methods from the point of view of the
Infrastructure Managers,

e The relations between our demonstrator and other relevant projects like EULYNX and
X2Rail2, and

e The role that the semi-formal SysML notation should play within our formal methods
demonstrator process.

It is important to remark that the 4SECURail Demonstrator does not have the goal of identifying
"the best set of formal methods and tools to be used in a railway context". This investigation has
just the specific goal of conducting an experiment to demonstrate the use of formal methods for
the construction of robust, reliable system requirements specifications, and observing,
extrapolating, and analysing the experience gained from it.

It is also important to remark that the use of formal methods analysed in this project is not the
kind of use that might be done by system developers for the production of correct, robust and
verifiable systems, even if the developers might surely take advantage of the additional level of
rigor in the generated requirements specifications and accompanying artifacts, for a more
immediate understanding and (possibly formal) generation of the product.

GA 881775 Page 31|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail R v s (4SECURail

7 References

[3DS] 3DS Catia nomagic "Cameo Systems Modeler"
https://www.nomagic.com/products/cameo-systems-modeler

[AFPM11] Bacelar Almeida J., Frade M. J., Sousa Pinto J. & Melo de Sousa S (2011).
“An Overview of Formal Methods Tools and Techniques in Rigorous Software
Development -An Introduction to Program Verification”. Undergraduate Topics in
Computer Science, Springer, 15--44.

[AGILE] The Agile Alliance https://www.agilealliance.org

[ASTRAIL] ASTRail project. https://projects.shift2rail.org/s2r ip2 n.aspx?p=ASTRAIL

[ASTRAIL-D41] ASTRail Deliverable D4.1 "Report on Analysis and on Ranking of Formal Methods"
http://astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2

[ASTRAIL-D43] ASTRail Deliverable D4.3 "Validation Report"
http://astrail.eu/download.aspx?id=d7aelebf-52b4-4bde-b25e-ae251fd906df

[BBFM99] Behm, P., Benoit, P., Faivre, A., & Meynadier, J. M. (1999). “METEOR: A successful
application of B in a large project”. In International Symposium on Formal Methods
(pp. 369-387) Springer, Berlin, Heidelberg.

[BBJTD2018] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, Philippe
Dhaussy "Unified LTL Verification and Embedded Execution of UML Models"
MODELS '18: Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems October 2018 Pages 112—-122
https://doi.org/10.1145/3239372.3239395

[BCDRS] Broy M., Crane M.L., Dingel J., Hartman A., Rumpe B., Selic B. (2007)
"2nd UML 2 Semantics Symposium: Formal Semantics for UML."
In: Kiihne T. (eds) Models in Software Engineering. MODELS 2006.
Lecture Notes in Computer Science, vol 4364. Springer, Berlin, Heidelberg
https://link.springer.com/chapter/10.1007/978-3-540-69489-2 39

[BFMMMNV] S. Bernardi, F. Flammini, S. Marrone, N. Mazzocca, J. Merseguer, R. Nardone,
V. Vittorini “Enabling the usage of UML in the verification of railway systems: The
DAM-rail approach” Reliability Engineering and System Safety 120 (2013) 112-126

[BGK18] ter Beek M.H., Gnesi S. and Knapp A. (2018). “Formal methods for transport systems”.
International Journal on Software Tools for Technology Transfer, Springer, (pp 237—241)

[BR2010] P.Bhaduri, S. Ramesh "Model Checking of Statechart Models Survey and
Research Directions" https://arxiv.org/pdf/cs/0407038

[CADP] CADP website https://cadp.inria.fr

[CC2004] Chen J., Cui H. “Translation from Adapted UML to Promela for CORBA-Based
Applications” In: Graf S., Mounier L. (eds) Model Checking Software. SPIN 2004.
Lecture Notes in Computer Science, vol 2989. Springer, Berlin, Heidelberg

[CD2007] Michelle L. Crane - Juergen Dingel “UML vs. classical vs. Rhapsody statecharts: not all
models are created equal” Softw Syst Model (2007) 6:415-435
doi: 10.1007/s10270-006-0042-8

[CENELEC EN50128] EN 50128:2011 “Railway applications — Communication, signalling and
processing systems — Software for railway control and protection systems”. CENELEC
CLC/TC 9X standard, 2011-06.

GA 881775 Page 32|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www.nomagic.com/products/cameo-systems-modeler
https://www.agilealliance.org/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=ASTRAIL
http://astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2
http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
https://doi.org/10.1145/3239372.3239395
https://link.springer.com/chapter/10.1007/978-3-540-69489-2_39
https://arxiv.org/pdf/cs/0407038
https://cadp.inria.fr/

@hift Rail R v s (4SECURail

[CFLW] Caltais G., Leitner-Fischer F., Leue S., Weiser J. “SysML to NuSMV Model
Transformation via Object-Orientation". In: Berger C., Mousavi M., Wisniewski R. (eds)
Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2016. Lecture Notes in
Computer Science, vol 10107.

[DBLM2002] V. Del Bianco, L. Lavazza and M. Mauri, "Model checking UML specifications of real
time software," Eighth IEEE International Conference on Engineering of Complex
Computer Systems, 2002. Proceedings., Greenbelt, MD, USA, 2002, pp. 203-212,
doi: 10.1109/ICECCS.2002.1181513.

[EIND] Bui, N. L. (2017). “An analysis of the benefits of EULYNX-style requirements modeling for
ProRail”. Eindhoven: Technische Universiteit Eindhoven.
https://research.tue.nl/en/publications/an-analysis-of-the-benefits-of-eulynx-style-

requirements-modeling

[ERA] European Union Agency for Railways https://www.era.europa.eu/

[EULYNX] The Eulynls project site. https://eulynx.eu/

[EULYNXdoc30] EULYNX-Modelling Standard Eu.Doc.30 v3.0 (0.A)

[EVB] Event-B.org Website http://www.event-b.org/

[F2008] Critical Software S.A. (slides) “Model-Checking and Validating UML Models: Current
Capabilities and Limitations” ESA Workshop on Avionics Data, Control and Software
Systems (ADCSS)
https://distrinet.cs.kuleuven.be/projects/evolve/public/publications/02 01 Faria.pdf

[FAN13] Fantechi, A. “Twenty-five years of formal methods and railways: what next?”

In International Conference on Software Engineering and Formal Methods (pp. 167-183).
Springer, Cham.

[FDR4] FDR4 The CSP Refinement Checker website https://cocotec.io/fdr/index.html

[FSKR29] Fecher H., Schonborn J., Kyas M., de Roever WP. (2005) 29 “New Unclarities in the
Semantics of UML 2.0 State Machines” In: Lau KK., Banach R. (eds) Formal Methods and
Software Engineering. ICFEM 2005. Lecture Notes in Computer Science, vol 3785.
Springer, Berlin, Heidelberg
https://doi.org/10.1007/11576280 5
https://www.researchgate.net/publication/220744129 29

[GLW2017] Hubert Garavel, Frédéric Lang, and Wendelin Serwe "From LOTOS to LNT"
in ModelEd, TestEd, TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th
Birthday, volume 10500 of Lecture Notes in Computer Science, pages 3-26, October 2017
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Garavel-Lang-Serwe-17.pdf

[GMK2012] Grumberg O., Meller Y., Yorav K. (2012) “Applying Software Model Checking
Techniques for Behavioral UML Models" In: Giannakopoulou D., Méry D. (eds) FM 2012:
Formal Methods. FM 2012. Lecture Notes in Computer Science, vol 7436. Springer, Berlin,
Heidelberg

[GRA] Graphviz - Graph Visualization Software, https://www.graphviz.org/

[HKLMPMS] Hvid Hansen H., Ketema J., Luttik B., Mousavi M., van de Pol J., dos Santos O.M.
"Automated Verification of Executable UML Models". In: Aichernig B.K., de Boer F.S,,
Bonsangue M.M. (eds) Formal Methods for Components and Objects. FMCO 2010. Lecture
Notes in Computer Science, vol 6957. Springer, Berlin, Heidelberg

[JDJLP] Toni Jussilal, Jori Dubrovin2, Tommi Junttila2, Timo Latvala3, and Ivan Porres4

GA 881775 Page 33|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://research.tue.nl/en/publications/an-analysis-of-the-benefits-of-eulynx-style-requirements-modeling
https://research.tue.nl/en/publications/an-analysis-of-the-benefits-of-eulynx-style-requirements-modeling
https://www.era.europa.eu/
https://eulynx.eu/
http://www.event-b.org/
https://distrinet.cs.kuleuven.be/projects/evolve/public/publications/02_01_Faria.pdf
https://cocotec.io/fdr/index.html
https://doi.org/10.1007/11576280_5
https://www.researchgate.net/publication/220744129_29
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Garavel-Lang-Serwe-17.pdf
https://www.graphviz.org/

@hift Rail R v s (4SECURail

"Model Checking Dynamic and Hierarchical UML State Machines"
3rd Workshop on Model Design and Validation (MoDeVa 2006), Genova, Italy, 2006

[KMR2020] Knapp A., Merz S., Rauh C. (2002) “Model Checking Timed UML State Machines and
Collaborations" In: Damm W., Olderog E.R. (eds) Formal Techniques in Real-Time and
Fault-Tolerant Systems. FTRTFT 2002. Lecture Notes in Computer Science, vol 2469.
Springer, Berlin, Heidelberg

[L2013] Liu S. et al. (2013) “A Formal Semantics for Complete UML State Machines with
Communications" In: Johnsen E.B., Petre L. (eds) Integrated Formal Methods. IFM 2013.
Lecture Notes in Computer Science, vol 7940. Springer, Berlin, Heidelberg
https://link.springer.com/chapter/10.1007/978-3-642-38613-8 23

[MAAP2015] Shift2Rail Multi-Annual Action Plan 2015
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB Decision-N-15-2015-

MAAP.pdf

[MAAP2017] Shift2Rail Multi-Annual Action Plan —Executive View - Part A (2017)
https://shift2rail.org/wp-content/uploads/2018/04/Maap 2018 FINAL 2.pdf

[MAAP2019] Shift2Rail Multi-Annual Action Plan — Part B (2019)

https://shift2rail.org/wp-content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-

Part-B-20.5.2019.pdf

[MCRL2] mCRL2 website https://www.mcrl2.org/

[NPS2009] Artur Niewiadomski, Wojciech Penczek, Maciej Szreter "A New Approach to Model
Checking of UML State Machines" Fundamenta Informaticae 93 (2009) 289—-303 289
DOI 10.3233/FI-2009-103

[OD2017] Raquel Oliveira and Jirgen Dingel. "Supporting Model Refinement with Equivalence
Checking in the Context of Model-Driven Engineering with UML-RT". Proceedings of the
14th Workshop on Model Engineering, Verification and Validation (MoDeVVa 2017),
Austin, Texas, USA, pages 307-314, CEUR, September 2017.
http://ceur-ws.org/Vol-2019/modevva 2.pdf

[OMG-SysML] Object Management Group, "SysML 1.6 Specification”, November 2019.
http://www.omg.org/spec/SysML/1.6/

[OMG-UML] Object Management Group "Unified Modelling Language"
https://www.omg.org/spec/UML/About-UML/

[OMG-fUML1] OMG “Semantics of a Foundational Subset for Executable UML Models (fUML)”
https://www.omg.org/spec/FUML/1.4

[OMG-fUML2]] Modeldriven, “The fUML Reference Implementation”
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md

[OMG-AIf] OMG “Action Language for Foundational UML (Alf)”
https://www.omg.org/spec/ALF/1.1

[OMG-AIf-Spec] OMG “Alf Specification” https://www.omg.org/spec/ALF/1.1/PDF

[OMG-PSCS] Object Management Group "Precise Semantics of UML Composite Structure
(PSCS)" https://www.omg.org/spec/PSCS/1.2

[OR17] O'Regan G. (2017). “Concise Guide to Formal Methods - Theory, Fundamentals and
Industry Applications", Undergraduate Topics in Computer Science, Springer.

[0SG2004] Ober I., Graf S., Ober I. “Validation of UML Models via a Mapping to
Communicating Extended Timed Automata" In: Graf S., Mounier L. (eds) Model Checking

GA 881775 Page 34|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://link.springer.com/chapter/10.1007/978-3-642-38613-8_23
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2018/04/Maap_2018_FINAL_2.pdf
https://shift2rail.org/wp-content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-Part-B-20.5.2019.pdf
https://shift2rail.org/wp-content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-Part-B-20.5.2019.pdf
https://www.mcrl2.org/
http://ceur-ws.org/Vol-2019/modevva_2.pdf
http://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/FUML/1.4
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md
https://www.omg.org/spec/ALF/1.1
https://www.omg.org/spec/PSCS/1.2
https://www.omg.org/spec/PSCS/1.2

@hift Rail R v s (4SECURail

Software. SPIN 2004. Lecture Notes in Computer Science, vol 2989. Springer, Berlin,
Heidelberg

[PEML] Jean-Frangois Pétin, Dominique Evrot, Gérard Morel, Pascal Lamy "Combining SysML and
formal models for safety requirements verification"
https://hal.archives-ouvertes.fr/hal-00533311/document

[PROB] ProB website, https://www3.hhu.de/stups/prob/

[PTC-Windchill] PTC “Windchill Modeler SySim”
https://www.ptc.com/en/products/plm/plm-products/windchill/modeler/sysim

[RBS2019] Abdul Rasheeq, Randolf Berglehner, and Colin Snook "Formal Specification of Railway
Signalling System in SysML and UML-B", in RSSRail 2019 DOI: 10.13140/RG.2.2.21925.45288

[SG30] Anthony J.H. Simos, lan Graham, “30 Things that go wrong in object modelling with UML
1.3.” In: Behavioral Specifications of Businesses and Systems. The Springer
International Series in Engineering and Computer Science, vol 523. Springer, Boston, MA
https://doi.org/10.1007/978-1-4615-5229-1 17
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/uml|30things.pdf

[SPARX] SPARX Systems Enterprise Architect https://sparxsystems.com/products/ea/index.html

[SSB2012] Snook C., Savicks V., Butler M. (2011) "Verification of UML Models by Translation to
UML-B". In: Aichernig B.K., de Boer F.S., Bonsangue M.M. (eds) Formal Methods for
Components and Objects. FMCO 2010. Lecture Notes in Computer Science, vol 6957.
Springer, Berlin, Heidelberg

[SUB-039] UNISIG - “FIS for the RBC/RBC Handover” - SUBSET-039 - 17-12-2015 (Issue 3.2.0)

[SUB-098] UNISIG - “RBC/RBC Safe Communication Interface” - SUBSET-098 - 21-05-2007

[TWCO01] Tretmans, J., Wijbrans, K., Chaudron, M.R.W. (2001). “Software Engineering with
Formal Methods: The Development of a Storm Surge Barrier Control System Revisiting
Seven Myths of Formal Methods”. Formal Methods in System Design, 19(2): 195-215.

[UIC] European Union Agency for Railways https://uic.org/

[UMC1] KandISTI project website http://fmt.isti.cnr.it/kandisti

[UMC2] UMC project website http://fmt.isti.cnr.it/umc

[UNISIG] UNISIG is an industrial consortium factsheet
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS Factsheet 8 UNISIG.pdf

[UPPAAL] UPPAAL Web site http://www.uppaal.org/

[WHATISUML] Visual paradigm, “What is Unified Modeling Language (UML)"?
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

[WOD12] Woodcock, J., Larsen, P.G., Bicarregui, J., & Fitzgerald, J. (2009). “Formal methods:
Practice and experience”. ACM Computing Surveys, 41(4): 1-36..

[X2RAIL2] ASTRail project website https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-2

[X2R2-D51] X2Rail project, Deliverable D5.1 ”“Formal Methods (Taxonomy and Survey), Proposed
Methods and Applications”
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8

[Y2010] S. J. Zhang and Y. Liu, "An Automatic Approach to Model Checking UML State
Machines,"2010 Fourth International Conference on Secure Software Integration and
Reliability Improvement Companion, Singapore, 2010, pp. 1-6,
doi: 10.1109/SSIRI-C.2010.11.

[YLWD] W. L. Yeung, K. R. P. H. Leung, Ji Wang and Wei Dong, "Improvements towards

GA 881775 Page 35|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://hal.archives-ouvertes.fr/hal-00533311/document
https://www3.hhu.de/stups/prob/
https://www.ptc.com/en/products/plm/plm-products/windchill/modeler/sysim
https://doi.org/10.1007/978-1-4615-5229-1_17
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/uml30things.pdf
https://sparxsystems.com/products/ea/index.html
https://uic.org/
http://fmt.isti.cnr.it/kandisti
http://fmt.isti.cnr.it/umc
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_8_UNISIG.pdf
http://www.uppaal.org/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8

@hift Rail B (4SECURail

formalizing UML state diagrams in CSP," 12th Asia-Pacific Software Engineering
Conference (APSEC'05), Taipei, Taiwan, 2005, pp. 7 pp.-, doi: 10.1109/APSEC.2005.70.

GA 881775 Page 36|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

8 Informative Annexes

8.1 List of UML tools

The following (not exhaustive) list of UML tools, as it appears on Wikipedia,
(https://en.wikipedia.org/wiki/List of Unified Modeling Language tools), has just the purpose
of giving an indication on how complex and heterogeneous is the ecosystem of UML tools. It is
definitely out-of-scope for the project to make an overall survey on this aspect, or to identify which
of these tools fits at best or demonstrator needs. This list, however, gives an overview of the high
degree of freedom that is currently available.

Name %+ Creator ¢ | Platform/0S ¢ First public % st stable * Open % Software license ¢ Programming +
release release source language used
. Cross-platform Java, C++ (as
ArgoUML Tigris.org 1998-04 2011-12-15[1 Yes EPL
(Java) module)

Commercial. Free
Cross-platform

Astah Change Vision, Inc. (Java) 2009-10-19 2019-01-30 No education edition, Java
subscription model
Obeo, INRIA
Cross-platform
ATL Free software (Java) Unknown 2010-06-23 Yes EPL Java
community
Borland C -platfol
orian Borland G Unknown | 2008 No Commercial Do
Together (Java)
Free from v7.0,
C ial starting f C tand J
BOUML Bruno Pagés Cross-platform | 2005-02-26 | 2020-03-01 No ommercial starting from | C++/Qtand Java
v5.0 up to v6.12,GPL ("plug-out”)
before v5.002]
c Nulab Windows 7+, October 2010 | Julv 2018 No Commercial, Free edition HTMLS
aceo ! Mac OS X e “’r available
CaseComplete Serlio Software Windows 2004 2013-04 No Commercial C#
G D Windows,
onGepIDIaW | oS Odessa — 1993 2010 (v9) No Commercial D
PRO macOS
Alexander
. Cross-platform
Dia Larsson/GNOME 20047 2012-07-05 Yes GPL C
) (GTK+)
Office
Eclipse UML2 Cross-platfol
o Eclipse Foundation | = oo Pro™ | 5007 2018-12-03 Yes |EPL? Java
Toolst?! (Java)
Edraw Max Edrawsoft Windows, Linux, | 5004 2015-03 No Commercial Cet
macOS
Windows
Enterpri rts Li
mierprise Spanx Systems (supports Linux | 2019-03-06 Ne | Commercial C+
Architect and macOS
installation)
Name %+ Creator 4 | Platform/0S ¢ First public % st stable % Open % Software license # Programming +
release release source language used

GA 881775 Page 37|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

C‘ Shift Rail

Horizon 2020
European Union Funding
for Research & Innovation

(4SECURail

Chrome, Safari, TRET
Gliffy Gliffy Firefox, Internet | 2006-08-01 2015-01 (v. 5.1) Commercial, Free trial JavaSeriot
Explorer 8+ vascip
) Cross-platform
JDeveloper Oracle Corporation Wava) Unknown Unknown Freeware Java
i c ial / F HTMLS5 and
ommerci ree an
Lucidchart Lucid Software macOS, Linux, 2008-12 2014-10-07 i ! i
i (educational) JavaScript
Solaris
) . Cross-platform)
MagicDraw No Magic (ave) 1998 2017-02-20 (v18.5) Commercial Java
Microsoft Visio Microsoft Windows 1992 2016 (v16.0) Commercial Unknown
Community & Express
Microsoft Visual editions: Registerware;
Studio sy Microsoft Windows 1997-02 2016-06-27 Enterprise, Professional | C++, C#
Il
& Others editions:
Trialware
) Modeliosoft Windows, Linux, .
Modelio 2009 2019-11-04 (4.0.0) Yes GPL and Commercial Java
(SOFTEAM Group) | macOS
MyEclipse Genuitec Windows, Linux | 2003 Unknown - Commercial Java
Windows,
MNClass Balazs Tihanyi macO$S, Linux, 2006-10-15 2011-06-06 Yes GPL C#
Unix
Windows,
NetBeans[®] Oracle Corporation | macOS, Linux, 1996 2013-02-21 Yes CDDL or GPL2 Java
Unix
Open) Cross-platform
Grandite 2002-02 2008-11-04 Yes GPL Java
ModelSphere {Java)
Commissariat &)
P s I'Energie Atomique e 2013-06-27 | 2018-12 Yes EPL Java
u X -
apyr Tie Alomiq macO$ (Java)
Atos Origin
Cross-platform
PlantUML Arnaud Roques T 1899-04-30 2019-09-22 Yes GPL Java
VY
Poseidon for Cross-platform)
Gentleware Unknown 2009 Commercial Java
UML {Java)
PowerDesigner | Sybase Windows 1989 2018 Commercial Unknown
PragmaDev Windows, Linux,)
o PragmaDev ! % 9002 2018-02-07 Free, Commercial Python, C, C++
Studio os X
LS Insoft Oy Windows 1896 2013-10-19 Commercial CiC++
Madeller
2019-04-23 (8.4.
Rational ot
. IBM Windows, Linux | 1996 - 2019-12-15 (8.4 Commercial G, C++, Java, Ada
apsody Interim Fix 2)
Rational R Wind , Linux,
onal Rose IBM "Tr (olth S Unknown Unknown IBM EULA Unknown
XDE Unix
Rational
Software 1BM Windows, Linux | Early 1990s 2015-09-18 IBM EULA Java/C++
Architect
Name % Creator 4 | Platform/0S $ o s Latest stable 4+ i % Software license # Programming 4+
release release source language used
GA 881775 Page 38|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

C‘ Shift Rail

Horizon 2020
European Union Funding
for Research & Innovation

(4SECURail

Rational
Software 1BM Windows, Linux | 2004-10-13 | 2008-09 IBM EULA Unown
Modeler
Rational Systern
3 1BM Windows Unknown 2013-03-15 Commercial Unknown
Architect
Windows, Commercial, Free
Reactive Blocks | Bitreactive _ 2011-11-13 | 2016-09-16 e e Java
macOS, Linux Community Edition
RISE RISE to Bloome Windows (NET) | 2008 2010-09-03 Freeware c#
Software ! (:NET) reew
Software Id Windows (NE c ial, F
1610835 | busan Rodina Vindows (NET). | 5006-08-08181 | 2020-01-20 OMMEICIE, FIBeWA® | oy
Madeler Linux (Mono) for non-commercial use
Windows,
StarUML MKLab e 2005-11-01 | 2018-08-17 Commercial Delphi
macOS, Linux
el B e 2006-09-09 | 2019-12-18 Yes | GPL C++, KDE
Modeller Windows
Windows,
UML Designer | Obeo _ 2012 2019-01-29 Yes | EPL Java, Sirius
macOS5, Linux
Windows,
UMLet The UMLet Team . 2005-11-0571 | 2018-08-05[] Yes GPL Java
macOS, Linux
Java, C#, Visual
UModel Altova Windows 2006-05 2019-109 Commercial -
Umal University of Ottawa | 0= PRHO™: | 008 2018-02-19 Yes | MIT Licens Rt
pe Iversity W2 | Java/Eclipse & € Javascript
Visual Paradigm | Visual Paradigm Intl | Cross-platform Commercial, Free
2002-06-20 | 2018-11-28 e, e Java, G+
for UML Ltd. (Java) Community Edition
WhiteStarUML | janszpilewski Windows 7-10 | 2011-12-18 | 2017-05-141] GPL2 Delphi
Windows,
yEd yWorks GmbH macOS, Linux, Unknown 2019-03-18010 Free Java
Unix
First publi Latest stabl 0 P i
Name Creator Platform / 0S publie ¢ pen Software license rogramming
release release source language used
GA 881775 Page 39|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Horizon 2020

- European Union Funding
for Research & Innovation

(4SECURail

C‘ Shift>Rail

Features |edit)

Can be i rated
Name & UML2 ¢ MDA & XMI =+ an be Infograted Details :
with
Integration with
Reqtify t abili
ity race_ ity Dedicated to modeling and
tool. Model simulator K T
i) testing of communicating
integrated with any
FMI 2.0 supporting systems. Based on ITU-T
. Z.109 UML profile, SDL-
tool. Generated code
AR Yas e Partial can be integrated on AT, SDL. The model can
Studio es J be simulated and can be
the following RTOS: e to model chedki
VxWorks, FreeRTOS, :axp;) Eul temti E—
ools. Full tes
ThraaddX, GliX, OSE environment ii - rated
Delta, OSE epsilon, on ‘I‘I‘Cnl':e;
uITRON 3, ulTRON 4, ’
Nucleus, posix, win32.
J oth
AroUML C++, C#, Java, l;:z(e:rwith Urknown Closely follows the UML
g PHP4, PHPS, Ruby guag standard
plugins)
Can transform UML & EMF
models into other models.
It b itory of
Available from the asa repf)m o
.) transformations called ZOO
Unknawn Unknown Eclipse M2M project about & larae sef of
(Model to Model). g8 sel
comman industrial
concerns and educational
labs.
Ecli nd MS
Java 6, C++, CORBA Unknawn clipse &
VS.NET 2005
UML 2. Solid code
C++, Java, PHP, IDL, | C++, Java, PHP, roundtrip, fast. Extensible
BOUML e Unkr
Yes = Yes ves Python, MySQL MySQL e through "plug-outs" written
in C++ or Java
Google Drive, Google
Dacs, Typetalk,
Adobe Creative
C Unk Unknow Unknow Unk
acoo Yes nknown n Yes n nknown Cloud, Slack,
Atlassian Confluence,
Dropbox, Visio, Box.
Lai R Can be integrated
nguages n
Name UML 2 MDA XM Tem ineered Detail:
plates gow engineel with 3
languages
GA 881775 Page 40|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

C‘ Shift>Rail

European Union Funding

- Horizon 2020

for Research & Innovation

(4SECURail

Provides management and
editing of use cases, their
flow of events, and
CaseComplete Unknown | Unknown Export Unknown Unknown Unknawn Unknawn i
referenced requirements.
Supports use case and
activity diagrams.
Included Python
script codegen.py
‘export filter' to
Python, C++,
JavaScript, Pascal,
DI Java, PHP; external Uses Python as scripting
ia
tools add Ada, G, language
PHPS5, Auby,
shapefile, C#, SQL
(Sybase, Postgres,
Oracle, DB/2, M5-
SaL, MySaL, ...)
J Ecli
Eclipse UML2 o Yes Yes % Java (or Eclipse a'.r_x;(‘.‘tor == = e WYLACT
Tools es es project supported?) proj clipse en iagram types.
supported?)
UML 2.5, SysML, BPMN,
SoaML, SOMF, WSDL,
XSD, ArchiMate.
ActionScript, C, C#, ActionScript, G, Frameworks: UPDM,
C++, Delphi, Java, R Zachman, TOGAF.
C#, C++, Delphi,
Supports MDA | PHF, Python, Visual Java. PHP: Forward and Reverse
Era—— templates and | Basic, Visual Basic Pylhl:)n \r'i:.;ual ST Engineering for code and
Mh_t‘:m Yes Yes Yes | Code NETDDLEB, | [F O S SMS_ Database. Model Driven
i ic, Visu io
Generation XML Schema, Ada, Basic .NET. DDL Integrated Development
template WVHDL, Verilog, oo Edit/Build/Debug) f
mplates L, Verilog, XML Schema, { uild/Debug) for
WSDL, BPEL, Corba WSDL Java, .Net, PHF & GNU
IDL compilers. Simulates
Activity, State Machine,
Sequence and BPMN
diagrams.
Gooal : Has libraries of shapes for:
. oog © 8pps, 9 | umL class, sequence,
Gliffy Yes Unknown | Unknown Yes Unknown Unknown drive, JIRA, .
activity, use case and
Confluence
more.
Google Drive, Google
. Apps, JIRA,
Lucidchart Unknown Unknown Unknown Unknown Unknown Unknown)
Confluence, Jive, and
Box.
Lan R Can be integrated
guages n
Nai umL 2 MDA XMl Tem, ineered Detail
me plates gow engineel with s
languages
GA 881775 Page 41|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail O v s (4SECURail

UML 2.3, Full round-trip
support for Java, C++, C#,

Java, G++, C#, CIL, | Java, G++, G#, CL (MSIL) and CORBA
. CORBA IDL, DDL, CIL, COREA IDL, | Eclipse, EMF, IDL, Report generator from
MagicDraw Yes Yes Yes Yes)
EJB, XML Schema, DDL, EJB, XML MNetBeans template in RTF, HTML,
WSDL Schema, WSDL XML, ODT, ODS, ODP,
and Text (DOCX, XLSX,
PPTX since 16.8).
Microsoft Visio Plugin Unknawn Flugin Plugin Unknown Unknown Unknown

Full UML2, BPMNZ2,
ArchiMate3.
Documentation generation
in HTML.Extensions
providing documentation
. Java, Ci+, C#, XSD, . generation in Open XML
Modelio Yes Yes Yes Yes Java, G++, G# Eclipse, EMF format, support for TOGAF,
WSDL, SQL

SysML, SoaML, Hibernate,
OMG MARTE standard.
Support of model
fragments for
collaboration. Support of
design patterns.

MyEclipse Unknown | Unknown Unknawn Unknown Unknawn Unknown Unknown
MNClass Unknown | Unknown Unknaown Unknown C#, Java C#, Java Unknawn
Has to be installed as a
MetBeans Unknown Unknown Unknown Unknown Java Java Unknown plug in to enable the UML
maodeling.
o Supports data, business-
en
: No Unknown Unknown Yes Java, SQL Java Unknawn process and UML
MaodelSphere)
modeling
Ada 2005, C/C++, "
Papyrus Yes Unknown Yes Unknown K Unknown Eclipse
Java addins

Creates diagrams using
Chrome, Word, Open

Office, Google Docs,
C#, grails, Java, | J2EE Servlet, JQuery,

simple text language.
Sequence, use case,
class, activity, component,

PlantUML Yes Unknown Export Unknown Unknown Lua, PHP, Sublime, Eclipse,)
) state, object, and Ul mock
SqlALchemy NetBeans, IntelliJ,)
diagrams are supported.
LaTeX, Emacs,) -
o e 111 Outputs images in PNG or
oxygen, etc.
= SVG format.
Poseidon for Commercial version of
Yes Unknown Unknown Unknown Unknown Unknown Unknown
uUmL ArgoUML
Reverse .
Languages . Can be integrated .
Name umL 2 MDA XMI Templates engineered . Details
generated with
languages

GA 881775 Page 42|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

C‘ Shift Rail

PowerDesigner Yes
Prosa UML

Yes
Madeller
Hational

Yes
Rhapsody

Rational Rose

No
XDE
Rational
Software Yes
Architect
Hational
Software Yes
Madeler
Rational
System No
Architect
Reactive

Yes
Blocks

Name UML 2

GA 881775

Yes Yes
Open
Yes i
modelbase
Yes Yes
Unknown Unknown
Yes Yes
Yes Unknown
Unknown Export
No Yes
MDA XMl

Yes

Yes

Yes

Unknown

Unknown

Unknown

Unknown

Templates

Horizon 2020

European Union Funding
for Research & Innovation

Java, C#, VB .NET

G++ Java, G#, SQL
DDL and SQL
queries

G++, G, Java, Ada,

Corba, Customizable

for other languages

Unknown

Java, C#, C++, EJB,

WSDL, XS0, DL,
saL

Unknown

C++, Java, WSDL

Java

Languages
generated

Unknown

C++ Java and C#
class headers
are synchronized
between
diagrams and
code in real-time

C++, C, Java,
Ada,
Customizable for
other languages

Unknawn

Java, C++, .NET

Unknawn

C++, Java,
WSDL

Unknawn

Reverse

(4SECURail

Eclipse

Programmer's
workbenches,
documentation tools,
version control
systems

Visual Studio, Eclipse,

TcSE, WindRiver,
Green Hills, QNX,
Linux, Mathworks
Simulink, DOORS,
customizable for
others

Unknown

Eclipse

Eclipse

Unknawn

Eclipse

Can be integrated

engineered
languages

with

Data-modeling, business-
process modeling - round
trip engineering

Supports following UML
diagrams: Use case
diagram, Sequence
diagram, Collaboration
diagram, Class diagram,
Statechart diagram,
Activity diagram,
Component diagram,
Deployment diagram and
Package diagram

Targets real-time or
embedded systems and
software using industry
standard languages {UML,
SysML, AUTOSAR,
DoDAF, MODAF, UPDM,
DDS), full production-
quality code generation
{structural, behavioral,
functional), simulation,
maodel based testing,
integration with numerous
real time operating
systems and IDE's

Code generation from
Activity Diagrams for
J25E, OSGi, Kura, and
ESF, unit testing via JUnit,
supports formal analysis
and state space simulation

Details

Page 43|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Software Ideas
Modeler

StarUML

Umbrello UML
Modeller

UML Designer

UMLet

UModel

Umple

Name

C‘ Shift Rail

Yes

Yes

Yes(12]

Yes

No

Yes

Class,
State,
Composite
Structure
only

umL 2

GA 881775

SRR Horizon 2020
* European Union Funding
for Research & Innovation

ActionScript, C++,
C#, Delphi, Java,
JavaScript, PHP,
Python, Ruby, SQL
DDL, VB.NET, VBB,
XSD

Yes

Yes Java,C#,C++

C++, Java, Perl, PHP,
Unknown

Python ... 16

Any kind of
languages as it is
compatible with code

Unknown generator tools like

Eclipse
UMLGenerators or
Acceleo

No Unknown

Java, C#, Visual
Basic

Yes

Java, C++, SQL,

Yes Alloy, NuSMV, yUML,

USE

Languages

Templates
generated

C++, C#,
VB.NET, Java,
Object Pascal,
PHP, Ruby

Java,C++,C#

Code Generator

and Reverse
Engineer

C++, IDL,
Pascal/Delphi,
Ada, Python,

Java; import XMI,

RoseMDL

Any kind of
languages
supported by
Eclipse UML
Generators

Unknown

Java, G#, Visual

Basic
Java
Reverse
engineered
languages

(4SECURail

Unknown

JavaScript, Node.js

KDE

Eclipse

Eclipse

Eclipse, Visual Studio

Command-line tools,
Embeddable in web
pages, Eclipse

Can be integrated

with

UML, BPMN, SysML,
ArchiMate, JSD, Data Flow
Diagram, Flowchart,
Robustness Diagram,
CRC, ERD, Mixed
Diagram, HTA, Ul, Venn,
Behavior Tree, Structure
Chart, Decision Table,
Roadmap, Computer
MNetwork Diagram, Layer
Diagram, Web Page
Diagram, Grafcet, custom
diagrams

Plug-in architecture:
JavaScript, HTMLS,
MNode.js

Open source under EPL
license, based on Eclipse,
EMF, Sirius

Also supports business
process modeling, SysML,
and database modeling

Input or export can be by
diagram or Umple textual
form, separation of
concerns (aspects, traits,
mixins), embeds action
code in Java and other
languages, written in itself,
documentation generation,
plugin architecture for
generators

Details

Page 44|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Visual

Paradigm for Yes

UmML

WhiteStarUML Yes

yEd Unknown
Name umL 2

GA 881775

C‘ Shift Rail

Unknown

Yes

No

MDA

Commercial
version

Impaort

MNol13l

XM

Unknown

Yes

Unknown

Templates

Horizon 2020

European Union Funding
for Research & Innovation

Java, C#, C++, PHP,
Ada, Action Script (all
only in commercial
version)

Java 1.5,C#,C++,
s5QL

Linknawn

Languages
generated

Java, G#

(binary), C++, Eclipse, NetBeans,
PHP {all only in IntelliJ and Visual
commercial Studio

version)

Java 1.5,C#,C++,

Unknown
saL
Unknawr Unknawn
Reverse
) Can be integrated
engineered)
with

languages

(4SECURail

UML 2.4.1, SysML, BPMN,
SoaML, SOMF, WSDL,
XSD, ArchiMate.
Frameworks: UPDM,
Zachman, TOGAF.
Forward and Reverse
Engineering for code and
Database. Model Driven
Integrated Development
{Edit/Build/Debug) for Java
and .Net. Simulates
Activity, State Machine,
Sequence and BPMN
diagrams. {only in
commercial version)

WhiteStarUml is a fork of
StarUML with an intent to
revive its Delphi code base
by updating code to recent
Delphi editions, reducing
dependence on third party
components and fixing
bugs and adding new
features.

Details

Page 45|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hiftZRai[B (ASECURail

The site “Modelling Languages” (https://modeling-languages.com) describes in a well structured
way the available resources and studies related to Modelling Languages. One of these resources
is a “curated list of UML tools” (https://modeling-languages.com/text-uml-tools-complete-list/).
The category “Textual UML tools” and “Executable UML tools” are of particular interest for our
purposes.

Curated list of UML tools - 2019 edition

There are literally hundred of UML tools. So, no way to even try to look for any complete comparison
among them. Instead, I'l aim to give you links to the most relevant tools (at least in my opinion) grouped in
a number of different categories. | also maintain a twitter list of UML / modeling tools that could be useful
in your search.

But before we start, let me give you my advice when choosing a UMLZ2 tool: think carefully what you need
the tool forl. There is no one size fits all UML tool. A UML tool with strong code generation capabilities may
not offer a good collaborative modeling environment or be too strict to be used for drawing

some informal models during the early stages of the development process.

After this word of caution, let's start with our lists of UML tools (remember that if you feel overwhelmed
and want some UML pro help, you can always check our consulting services).

There is no one-size-fits-all UMLZ tool. Think carefully about what you need
T P T,'—\,'—\l fﬁ |I.—|.|’_\ﬁ -uDr.T-—:I-;—\ 1 mreEe . eraraten ook s -—~I o7 Y andd T —
[Nz 100 1O = ooumentgnen s, Code d._._”]._; aton i 24ar :;,' L ':1\3'_\] HI 4Anc nen

faTat
AT

< for a tool that excels at that cuck o Tweer W

Contents [hide]

My top five all-purpose UML toals
Textual UML tools

Executable UML tools

Online UML tools

Eclipse UML tools

Free and Open source UML tools

UML tools for Python

from: https://modeling-languages.com/list-of-executable-uml-tools/

GA 881775 Page 46|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://modeling-languages.com/
https://modeling-languages.com/text-uml-tools-complete-list/

C‘ Shift Rail

=

software system.

RSN Horizon 2020 : -
European Union Funding 4SECURa’I

for Research & Innovation

Executable UML is getting increasingly popular {(again) in part thanks to

the push of the new Executable UML standards (fuml and Alf} now
available. Executable UML aims at defining UML models with a
behavioral specification precise enough to be effectively executed. In its

purest state, Executable UML eliminates the need to program at all the

Ready to give Executable UML a try? Here we collected all the executable tools we are aware of

(thanks Ed for doubling the length of the lists with your suggestions!, others please jump in as

well). For each tool we provide the name and URL, whether the tool is free, commercial or

whatever and if the tool supports the recent Executable UML standards or its own kind of

executable UML.

Reference implementations

MName

fUML Ref. Implementation

(execution engine)

Alf reference

implementation

License Comments

Reference implementation that can assist in

Open

evaluating vendor implementations conformance
source

with the specification.
Open open source implementation of the Alf language. It
source compiles Alf source text to fUML

fUML / Alf-based tools

Tools based on the fUML/AIf standards (in a broad sense, also including tools that derive from

the initial action languages available in older UML specifications).

Name

Cameo Simulation
Toolkit

Moka/Papyrus UML

GA 881775

License

Commercial

EPL

Comments

Model execution framewaork based on OMG fUML and
W3C SCXML standards. Offered as an extension of
MagicDraw

Moka is a Papyrus module for execution of UML models,

which natively includes an execution engine complying
with fUML. More info here

Page 47|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

C‘ Shift Rail

IBM Rational
Software Architect
Simulation Toolkit

Pépulo

Cassandra

IBM Rational
Rhapsody

Commercial

LPGLY3

Commercial

Commercial

gg:ti)zpoenarf cl)Jchi)on Funding (45 E CUR ai '

for Research & Innovation

Offers state machine, interaction model and activity
model execution through automatic generation of Java
code. They support UML Action Language (kind of
precursor of FUML/AIT) but plan to move their action
language to Alf conformance (though | don't see this
happening)

Pépulo is an extensible UML model debugger, which
interprets the UML action language (not clear whether
Alf or the one in previous UML versions) and that can be
customised for executing profiled (i.e. extended) UML
models

It supports almost complete OCL and UML Action
Semantics, and more: simulation of use case models,
GUI modelling, behaviour inheritance, temporal
operations, rule sets as well as persistence and (nested)
transactions

Offers state machine and activity diagram execution in
UML and SysML models through automatic generation
of Java/C++/C/C#/Add code.

Other Executable UML tools

There are quite a few interesting initiatives providing executable UML engines / tools (even if

they may not be adhering to the OMG standards)

GA 881775

Page 48|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

gg:cijzpoelg cl)Jznci)on Funding (45 E CUR ai '

for Research & Innovation

o Shift Rail

Open source evolution of the well-known EridgePoint
tool, the original tool from Shlear and Mellor's, xtUML is

XtUML EPL now becoming one of the leaders in this space and
improving its integration within the Eclipse and Eclipse
Modeling space

Open executable UML metamodel and API hub around
which a combination of free and proprietary
) . development tools may be contributed. Learn more
milJML LPGL3 license
about the project here. The project itself seems
discontinued but the authors continue working on this

field, see modelint/td=

Rapid Application Development from textual UML models
Cloudfier Free trial (see TextUML) including static and dynamic (action-
based) specifications

Ab Abstract Solutions is a new incarnation of the company
stract
. Commercial previously known as Kennedy-Carter, also deriving from
Solutions xUML o
the original proposals for Executable UML.

Lightweight UML modeling tool for designing and
implementing real-time embedded applications based on
the QP state machine frameworks. Generates compact

QM freeware o _ _)
and efficient C or C++ code suitable for single-chip
microcontrollers. Extended notation for internal state
transitions
Command line tool for code-generation from UML state
)) machines, especially targeting resource limited
Sinelabore Commercial)) o
embedded real-time and high-availability systems. It has
simulation, tracing and test-case generation capabilities.
EM/OS _) o .
_) Fully operational business applications, all tiers {Java)
Enterprise Commercial, .
created from single, annotated, UML based model;
Model partly Open)) o
) standard compliance desired, currently difficult due to
Operation Source) _
. ahstraction level differences
services

GA 881775 Page 49|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

gg:ti)zpoenarfcljji?on Funding (4SECURaiI

for Research & Innovation

C‘ Shift Rail

Matrix Free trial featuring full automatic code generation and interactive

Abstract modeling language and Model Compiler

Simulator. See also this intro

tUML stands for textual, executable and translatable
UML. txtUML models can be run, debugged and tested

DtUML Open Source) , , ,
using the standard Java runtime environments,It includes
a compiler for C++
Umple is a modeling tool and programming language
Umple Open Source family to enable what they call Model-Oriented

Programming. Read more

Older tools (now discontinued)

Name License Comments

LieberLieber _ Offers both state machine and activity model execution.
Commercial)))

AM|USE 2.0 Integrated in Sparx Enterprise Architect

Eclipse Implementation of Action Language for

Apache .))
e-Alf U 3.0 Foundational UML using: Eclipse UMLZ xtext Acceleo
icense 2.
ATL. No activity in the last months
TOPCASED Model _ ,
.) EPL This tool has been merged into Papyrus (see above).
Simulation
Loh GNU Lesser A high level programming and modeling language for
ohr
GPL creating executable models of software systems
) UML tool capable of execute behavior and generate a
UML Almighty Open source _
Web prototype to execute that behavior,
Pathfinder PathMATE transforms (executable) platform
Solutions Commercial independent models to "efficient, high-performance”
PathMATE code.

From: https://modeling-languages.com/text-uml-tools-complete-list/

GA 881775 Page 50|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://modeling-languages.com/text-uml-tools-complete-list/

ot Horizon 2020 s
@hiftZRai[B (4SECURail

Textual UML tools

Sometimes old plain text triumphs over nice cool graphics. If you think graphical UML editors are too slow
or cumbersome, there are plenty of textual UML tools available (and some of them rather successful).

All textual UML tools offer some kind of (maostly) simple language to describe your UML class, sequence,
activity ... diagrams. You can use this textual UML description to store and compare your models but you
can still visualize teh resulting diagram since all of them are able to automatically display the
corresponding graphical UML diagram from its textual description.

Wanna know more? see our complete list of textual modeling tools.

Text to UML tools - Fastest way to create your
models

by Jordi Cabot | Dec 28, 2018 | tools, UML and OCL | 6 comments

< ZenUml - A Text to Sequence Diagram Convertor O

Jierrnnaranann AramEnsnnnn G

ff 1. Change " course” to "C
/i 2. Change line #17 to Co | Student | | Seminar ‘ ‘ course | | EventBus |
{3 k T T T T 1

4 H b H

B R e

£/ 3. Rename " EventBus® to
5|/ Remove all the code a

g ! enroll{Seminar) '-;'
& /f 5. Have fun! I

7 jjeeressrrsasaarasnsennens enroll{attudent) ,

| 4 :
a H getCourses H
9 /{ Student is the initial p :

10 Student.enroll(Seminar) {
11| /f Call a method of anoth

LS -

Atextual UML tool supports the use of textual notations/languages to describe UML models and
automatically renders the corresponding graphical UNML diagram from that textual description (a few tools
also target other kinds modeling languages, like ER or BPMN, and we mention them here as well, but they
are the exception).

The textual UML tools market is one of the fastest growing segment in the UML tools market
(based on my own perception of visitors' interest). Together with online modeling tools, they are the go-to
option for all people looking for some kind of lightweight solution to draw some models. In fact, since
most textual UML tools have an online editor, they are a jackpot for occasional modelers.

But why are text-to-UML tools so popular? The short answer is that textual modeling tools have a very
low barrier to entry. The fact that UML models are stored as text simplifies their integration with a
variety of tools (like version control systems) that programmers already use in their everyday work so
there's no need to learn/buy/install additional tools. And programmers typically feel more comfortable
with textual languages than with graphical ones. Both aspects represent a huge boost for the
adoption of these tools.

GA 881775 Page 51|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Xl Horizon 2020 4
@hiftzRai[B (4SECURail

still, as you'll see in the list below, features, expressiveness, and robustness of such tools are rather
limited in most cases. That's why | was saying that these tools are more of an option for quick and dirty
model sketches (for documentation or blueprints for early design discussions) more than a serious and
deep modeling activity. | wonder if this typical usage scenario is what discourages company to (barely)
offer any kind of commercial solution for this market.

Complete list of online tools to render LML models from a faw ines of text

CLICK TO TWEET '

Let's see our complete list of text to UML tools. | tried to include all tools I'm aware of. If you think yours is
missing please leave a comment and I'll add it. Note that I'm listing here end-user modeling tools. If you're
looking for (JavaScript) libraries that help you to create your own modeling editor, go here.

Most promising UML textual modeling tools

In no particular order, these are the tools you should check first when looking for a quick and easy way to
draw some UML diagrams. As long as you are interested in drawing class diagrams, sequence diagrams or
use case diagrams you’'ll find several options. A couple also support state machines. Coverage of other

kinds of UML diagrams is rather poor.

PlantUML

PlantUML is the most well-known UML tool in this category with millions of UML rendered. We have
covered it in-depth in this interview with his creator but, in short, it supports all impaortant UML
diagrams (class, use case, activity, sequence, component, deployment and ohject diagrams but, to me, the
strong point of this tool is the variety of scenarios in which can be used. There's a huge ecosystem of tool
around PlantUML to render textual UML diagrams anywhere you want.

PlantText UML Editor embeds PlantUML in a live online editor.

@startuml m Eob
Alice -> Bob: Authentication Request

Bob --> Alice: Authentication Response

]
© Authentication Request

1

!

Alice -> Bob: Another authentication Request ’ };
Alice <-- Bob: another authentication Response VA b

uthentication Response i

@enduml g LN RS el |

] 1

' Another authentication Request !

>

)
| ¢ 2nother authentication Response |

Alice Bab

Simple PlantUML Sequence diagram

GA 881775 Page 52|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

ot Horizon 2020 s
<‘ Shift Rail B (4SECURail

yUML

yUML is an online service for creating class and use case diagrams, with activity diagrams and state
machines anounced to come soon. It's makes it really easy for you to: Embed UML diagrams in blogs,
emails and wikis, post UML diagrams in forums and blog comments, use directly within your web basec

bug tracking tool or copy and paste UML diagrams into M5 Word documents and Powerpoint
presentations.

The service can be called from your blog or web page (with the textual description as part of the URL) tc
automatically display the image when accessing it. As paid options, you can use your own namespace fi

the images or even install it on your own host. Several integrations with third-party tools are also
available.

Nomnoml

The nomnoml web application is a simple editor with a live preview. It is purely client side and changes are
saved to the browser’s /ocalStorage, so your diagram should be here the next time (but no guarantees).

You can also the nomnoml standalone javascript library to render diagrams on your own web page. Find
the source code on GitHub.

[Pirate|eyeCount: Int|raid();pillage()|
[beard]--[parrot]

[beard]-:>[foul mouth] ‘ 83
Mor
) 3 7
; X
{<abstr Pirate

sctoMarauder]<:--[Pirate]
8. .7[mischief]
{ i eyeCount: Int
[Joliyness]->{Pirate]
oSk raid|
Sl n-ug)on 1:
«>[singing] plunder @
*[rum|tastiness: Intiswig()) m
>[singing) 7z
{singing]c->[rum] I ¥
stortyst]->
[plunder]-> s 0.7
[wore loot]->[st) m singing
[more loot] no ->[cendre])

raSailor] « [vusecosesshiver me;tinbers) rum
tastinesy; Int @
swigl)
nomnomi live editor
TextUML

TextUML Toolkit is an open-source IDE for UML to create models at the same speed you write code,
therefore, offering increased modeling productivity. TextUML is compatible with all tools that
support Eclipse UMLZ models. TextUML offers all features you like in your favorite IDE: instant validatic

syntax highlighting, outline view, textual comparison and live graphical visualization of your model as ¢
diagrams

The TextUML Toolkit can be used both as a set of plug-ins for the Eclipse IDE, and as a part of a multi-
tenant server-side application - as seen in Cloudfier.

While the last version dates from 2015, it remains a go-to tool for textual modeling within the Eclipse
community.

GA 881775 Page 53|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

C‘ Shift>Rail

UML Graph

Horizon 2020
European Union Funding
for Research & Innovation

(4SECURail

UML Graph automatically renders class and sequence diagrams. For the class diagrams, it uses a Java-

based syntax complemented with javadoc tags. Running the UmlGraph doclet on the specification will

generate a Graphviz diagram specification. For sequence diagrams, UMLGraph uses a different approach
(and this is one aspect | don't like about the tool, you are basically working with two different tools here).

Pic macros are used to define objects and method invocations. Then, the pic2plot program processes the

macros to generate PNGs and other graphics formats. LightUML integrates UMLGraph in Eclipse.

UMLGraph in GitHub.

class Person {
String Name;
}

class Employee extends Person {}

class Client extends Person {}

Define the objects
object(0,"0:Toolkit™);
placeholder_object(P);
step();

Activation and I

active(0);
message(0,0,"callbackloop()");
create_message(0,P,"p:Peer”);
message(0,P, "handleExpose()”);
active(P);
return_ressage(P,0,"");
inactive(P);
destroy_message(0,P);
inactive(0);

Complete the lifeline of O
step();
complete(0);

UMLGraph example

Umple

Umple can also be used as a textual modeling tool for UML even it is aimed at a slightly different purpose
Umple merges the concepts of programming and modeling by adding modeling abstractions directly into
programming languages. Currently, Umple supports Java, PHP and Ruby as base languages. It adds UML
attributes, associations and state machines to these languages. Read our post on Umple for more details
on the history and background of Umple.

Line=68 | Create Bookmarkable URL URL for AccessControl example

1/ uML class disgram in Umplo represonting a system for

i fF R, .

3. I aecasnito facies § TE“"‘“’E’% sw .
3 lcode : | Ink X
1 namespace access_comrol; i k Addl fﬂ:‘ﬁx 101 pacent first_ memv String X
B - ”:".’;;"’ last_name : String X
7 gaud Fn(llll\q’_fyp« l password : String X
‘,' o other_detalls : String x
1 f.ode Brm -~ A4 Moyp -
1 description { Menu, ord,
1 key (gde)(s e < gcam.e—- wld Integer X
13 3 opbox |access_count : Integer x 9-1
14 |name © String x & Role
15 [{Ffunctional Ares [|
1 Chass FunctionalArea DRAW {description : String X lcode : l
17 ‘ |other_details : String X R s
15 String code; @ Class ‘ Add More 1~ Add More -
19 0.1 parent -- * FunctionalAres child; N
20 mbuen { Hv Finance } £ Assocation [

) A Generalzation o1
:/,l: II:WM“;{EF\HMEOMLAW-: B Delese QFMYM J W
% 1 " ¥oh Undo code : String X - Add More --
:)' FunctionalArea - * Facility; _&qm__‘
50 class Facility !

Intege | oen

G 0. lh(l!(ymae ERATS

n! DOCess_court,]
§ Inkager || [Saea code al| |

UmpleOnline model editor
GA 881775 Page 54|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Xl Horizon 2020 4
@hiftZRai[B (4SECURail

ZenUML

ZenUML is one of the latest tools to enter the market. Read why the author believed that ZenUML was
needed when there were already so many other textual tools for UML sequence diagrams. In short,
creating sequence diagrams with ZenUML is really fast even for complex diagrams.

< ZenUml - A Text to Sequence Diagram Gonvertor © CHROME EXTENSION

T T

. Change "“course” to "C
. Change line w17 to (o
. Rename "EventBus® to
. Remove all the code a
Have fun!

9 // student is the imftial p
18 Student.enroll(Seninar) {
11 // Call a method of anoth

ZenUML editor for sequence diagrams

Chart Mage

Chart Mage enables the creation of flowcharts and sequence diagrams. As we describe here in more
detail, the main feature of Chart Mage is its autocomplete functionality that makes a reasonable guess
what you're going to write next based on the typical UML syntax and the partial model you've created s
far.

((Terminal)) ->> Process

1
2 Process ->> Decision? Terminal
3 Decision? - No ->> then this

4 Decision? - Yes ->> then t|

Process
Nlo YTs
then this thent

Chart Mage in action: from text to flowcharts and UML sequence diagrams

GA 881775 Page 55|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

Al orizon 2020 5
@hiftZRai[R e e, (4SECURail

USE

USE: UML-based Specification Environment is a system for the specification and validation of information
systems based on a subset of the Unified Modeling Language (UML) and the Object Constraint Language
(OCL). As such, its goal is not simply to visualize the models but to help designers check the quality of their
specifications. For instance, given a UML model you can ask USE to create and display a valid instantiation

of that model to make sure the model definition is consistent.

GA 881775 Page 56|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

8.2 fUML

Extracts from:

C‘ Shift Rail

?Srrtijzpoenai%i?on Funding (4SECURaiI

for Research & Innovation

https://www.omg.org/spec/FUML/1.4 (December 2018).

What is fUML?

fUML is a subset of the standard Unified Modeling Language (UML) for which there are
standard, precise execution semantics. This subset includes the typical structural
modeling constructs of UML, such as classes, associations, data types and enumerations.
But it also includes the ability to model behavior using UML activities, which are composed

Like UML, fUML is standardized by the Object Management Group (OMG), which
maintains the fUML specification (which is formally known as the "Semantics of a
Foundational Subset for Executable UML Models"). There is also a standard textual
surface syntax for fUML call the Action Language for fUML (Alf), which is particularly

useful for defining detailed behaviors in the context of an fUML model, and which has its
own reference implementation.

What is the fUML Reference Implementation?

This is a complete open source implementation of fUML. It consists of two parts.

« The fUML Execution Engine executes an in-memory representation of fUML models.
The implementation for the engine is directly generated from the normative syntactic
and semantic models for fUML.

= The XM/l Loader reads a fUML model from a file in the standard XML Metadata
Interchange (XMI) 2.1, 2.4.1 or 2.5 formats for UML and loads it into memory. The
loader also reads the standard Foundational Model Library model file and resolves
normative user model references to library elements.

The reference implementation was initially developed as part of a Lockheed Martin
Corporation funded project with Model Driven Solutions in 2008, and has been maintained
by Model Driven Solutions as part of its modeldriven.org open source community since
then. The objectives for this reference implementation are to encourage UML tool vendors
to implement the fUML standard in their tools and to provide a reference that can assist in
evaluating vendor implementation conformance with the specification.

GA 881775

Page 57|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

AL Horizon 2020 S
@hiftZRai[B (ASECURail

Are there other implementations of fUML?

A number of other implementations of fUML are now available, associated with various
previously existing UML tools. These include at least the following:

« The Cameo Simulation Toolkit for MagicDraw from No Magic.

« The Moka module for the open-source Papyrus tool from Eclipse.
Extracts from:

https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md
(April 2020)

org.modeldriven:fuml Browse [l

FUML Reference Implementation

This open source software is a reference implementation, consisting of software and related files, for the OMG specification
called the Semantics of a Foundational Subset for Executable UML Models (fUML). The reference implementation is intended
to implement the execution semantics of UML activity models, accepting an XMl file from a conformant UML model as its inpu
and providing an execution trace of the selected activity model(s) as its output. The core execution engine, which is directly
generated from the normative syntactic and semantic models for fUML, may also be used as a library implementation of fUML
in other software.

Licenses FUML Reference Implementation License
Home page http:/fuml.modeldriven.org
Source code https://github.com/ModelDriven/fUML-Reference-Implementation

Developers Ed Seidewitz <ed-s@modeldriven.com>
Scott Cinnamond <scinnamond@gmail.com>

Version Updated

1.4.3 25-Apr-2020

GA 881775 Page 58|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md

’!-E'Sll"ti)zpoenarf%ﬂci)on Funding (4SECURaiI

for Research & Innovation

C‘ Shift Rail

8.3 ProB

from: https://www3.hhu.de/stups/prob/
https://www3.hhu.de/stups/handbook/prob2/prob handbook.pdf

& Pro BX'1

COMPONENTS ~ DOCUMENTATION -~ DOWNLOAD BUGS LINKS TEAM

What is ProB?

ProB is an animator and model checker for the B-Method. It allows animation of many B
specifications, and can be used to systematically check a specification for a range of
errors. The constraint-solving capabilities of ProB can also be used for model finding,

deadlock checking and test-case generation.

Content of this manual

Animation and Visualisation with ProB:

* |nstallation

e Current Limitations

* General Presentation (tcl/tk)
e Graphical Viewer

* Graphical Visualization

e State Space Visualization

GA 881775 Page 59|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www3.hhu.de/stups/prob/
https://www3.hhu.de/stups/handbook/prob2/prob_handbook.pdf

@hift Rail B (4SECURail

Validation with ProB:

+ Consistency Checking (Finding Invariant Violations using the Model Checker)
» Constraint Based Checking

Refinement Checking

LTL Model Checking

Bounded Model Checking (BMC*)

Symbolic Model Checking

o Comparing the various ProB Validation Methods

* Well-Definedness Checking

-

Other Interfaces to ProB:

¢ Using the Command-Line Version of ProB
s ProB2 JavaFX User Interface

ProB and Other Tools:

* Using ProB with Atelier B

« Using TLC for B Specifications
® Using ProB with KODKOD

¢ Using ProB with Z3

o Editors for ProB

ProB for Other Languages:

e Using C5P-M in ProB

» Checking CSP Assertions

» Using ProB for Event-B and Rodin

« Using ProB for Event-B with the theory plug-in

* Using ProZ for Animation and Model Checking of Z Specifications
» Using ProB for TLA Specifications

= Using ProB for Alloy Specifications

» Using ProB with Promela and other languages

GA 881775 Page 60|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

@hift Rail B (4SECURail

Advanced Features of ProB:

Symmetry Reduction

Parallel Execution of ProB
Recursively Defined Functions
Mempoization for Functions
Operation Calls in Expressions
External Functions

* Debugging

+ Common Subexpression Elimination
o Test Case Generation

« State Space Coverage Analyses

o Generating Documents with ProB and Latex

-

]

L]

FAQ, Tips and Troubleshootings:

* FAQ

e Setting ProB Preferences

* Troubleshooting

» Tips: Writing Models for ProB

» Tips: Common B Idioms (let, if-then-else,...)
+ Summary of B Syntax

GA 881775 Page 61|61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

