

G A 8 8 1 7 7 5 P a g e 1 | 61

Deliverable D 2.1
Specification of formal development demonstrator

Project acronym: 4SECURail

Starting date: 01/12/2020

Duration (in months): 24

Call (part) identifier: H2020-S2RJU-2019 / S2R-OC-IP2-01-2019

Grant agreement no: 881775

Due date of deliverable: Month 06 (May 2020)

Actual submission date: 02/06/2020

Responsible/Author: Franco Mazzanti - CNR

Dissemination level: PU

Status: Issued

 Reviewed: YES

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 881775.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 2 | 61

Disclaimer
The information in this document is provided “as is”, and no guarantee or warranty is given that the
information is fit for any particular purpose. The content of this document reflects only the author’s view –
the Joint Undertaking is not responsible for any use that may be made of the information it contains. The
users use the information at their sole risk and liability.
The content of this document does not reflect the official opinion of the Shift2Rail Joint Undertaking (S2R
JU). Responsibility for the information and views expressed in the deliverable lies entirely with the author(s).

Document history

Revision Date Description

0.1 10/05/2020 First Draft under review

0.2 22/05/2020 Second Draft under review

1.0 27/05/2020 Issued

2.0 15/10/2020 New submission changing disclaimers

Report contributors

Name Beneficiary Short Name Details of contribution

Franco Mazzanti
Davide Basile
Alessandro Fantechi
Stefania Gnesi
Alessio Ferrari

CNR Overall contribution to deliverable
structure and context.

Andrea Piattino
Laura Masullo
Daniele Trentini

SIRTI Overall contribution to deliverable
structure and context.

Carlo Vaghi FIT Reviewer

Jeronimo Padilla ARD Reviewer

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 3 | 61

Table of Contents

 Executive Summary 4

 Abbreviations and acronyms 5

 Background 6

 Objective/Aim 7

 Specification of formal development demonstrator 8

5.1 The reference framework 8

5.1.1 The role of formal methods 9

5.1.2 The point of view of Infrastructure Managers 13

5.1.3 The role of Standard(ized) interfaces 15

5.1.4 X2Rail2 complementarity 17

5.2 The overall structure of the demonstrator process 20

5.2.1 The role of UML / SysML 22

5.2.2 The expected output of the demonstrator process 24

5.3 The architecture of the 4SECURail demonstrator 25

5.4 Inputs for the cost-benefit analysis and learning curve evaluation 30

 Conclusions 31

 References 32

 Informative Annexes 37

8.1 List of UML tools 37

8.2 fUML 57

8.3 ProB 59

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 4 | 61

 Executive Summary

The overall goal of the Workstream 1 "Demonstrator Development for the use of Formal Methods
in Railway Environment", spreading on the activities of Tasks 2.1, 2.2, 2.3 2.4 of the 4SecuRail
project is:
- the definition of a "formal methods demonstrator process" (shortly Demonstrator) for the

rigorous construction and analysis of system specifications (from the point of view of
infrastructure managers).

- the application of the Demonstrator process to a railway signalling system case study,
- with the goal of performing a cost benefits analysis and the evaluation of the required learning

curve for the application of this Demonstrator process.

This Deliverable "Specification of formal development demonstrator", describing the result of the
first part of Task 2.1, presents the overall structure of the Demonstrator process and illustrates
the selected choices for its architecture, both in terms of methodologies and tools.
The specified formal development demonstrator will be experimented with its application to a
simple initial case study in the second part of Task 2.1.
The experience gained with this initial experimentation will result in the consolidation of the
definition of the Demonstrator process prototype (reported in the Deliverable D2.2 of Task 2.1
"Formal development demonstrator prototype - 1st release"). The consolidated process will then
be applied in Task 2.3 to the complete case study defined in Task 2.2 and that activity will provide
the reference for the costs-benefits analysis of Task 2.4.

Before the presentation of the overall structure and architecture of the planned formal methods
demonstrator process, three important issues deserve a specific analysis and discussion:
- the clarification of the usefulness of formal methods from the point of view of the Infrastructure

Managers,
- the relation between our demonstrator and other relevant projects like Eulynx and X2Rail2,
- the role that the semi-formal SysML notation should play within our formal methods

demonstrator process.
The choice of which specific MBSE framework will be used for the semi-formal modelling of the
system under design has been deferred to a later stage, when more hands-on experience has been
gained with the various possibilities. Instead, the choice of which verification technique will be
used has converged to the model checking approach as supported by the Even-B methodology
and the ProB framework.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 5 | 61

 Abbreviations and acronyms

Abbreviation / Acronyms Description

ATP Automatic Train Protection

ATS Automatic Train Supervision

BB Building Blocks achievement

ERA European Union Agency for Railways

EULYNX European Initiative Linking Interlocking Subsystems

FM Formal Methods

fUML Foundational Subset for Executable UML Models

IC Innovation Capabilities

IM Infrastructure Managers

IP Innovation Programme

L2TS Doubly Labelled Transition System

LTS Labelled Transition System

MAAP Multi-Annual Action Plan

MBSE Model Based System Engineering

OMG Object Management Group

TD Technology Demonstrator

UIC International Union of Railways

UML Unified Modeling Language

UNISIG Union industry of signalling

WP Work Package

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 6 | 61

 Background

The present document constitutes the Deliverable D2.1 "Specification of formal development
demonstrator" of Task 2.1 "Formal Development demonstrator prototype" of WP2 "Demonstrator
Development for the use of Formal Methods in Railway Environment" of the project 4SECURail
(GA 881775) in the context of the open call S2R-OC-IP2-01-2019, part of the “Annual Work Plan
and Budget 2019”, of the programme H2020-S2RJU-2019.

The challenge to which 4SecuRail is deemed to deal, and its relation with the Shift2Rail Technology
Demonstrator D2.7 "Formal methods and standardisation for smart signalling systems" is well
described in the call S2R-OC-IP2-01-2019, as shown below:

Shift2Rail has identified the use of formal methods and standard interfaces as two key concepts
to enable reducing the time it takes to develop and deliver railway signalling systems, and to
reduce high costs for procurement, development and maintenance. Formal methods are needed
to ensure correct behaviour, interoperability and safety, and standard interfaces are needed to
increase market competition and standardization, reducing long-term life cycle costs.

To widen industry take-up of these key aspects, Shift2Rail plans demonstrating technical and
commercial benefits of formal methods and standard interfaces, applied on select applications.

The industry survey performed in TD2.7 has identified the learning curve and uncertain
cost/benefit ratio as obstacles: the decision to start using formal methods is deemed too risky by
management. Shift2Rail proposes to define and prototype a demonstrator of state-of-the-art
formal methods, including the use of standard interfaces, to address obstacles of learning curve
and lack of clear cost/benefit analysis.

According to [MAAP2015, MAAP2017, MAAP2019] the Shift2Rail Innovation Programme 2 (IP2)
will focus on innovative technologies, systems and applications in the fields of telecommunication,
train separation, supervision, engineering, automation and security with a view to enhancing the
overall performance of all railway market segments.
The Technology Demonstrator TD2.7 aims to contribute to the enabling of two Innovation
Capabilities (IC) of the Shift2Rail Innovation Programme 2 (IP2):

• IC7 "Low Cost Railway"

• IC12 "Rapid and Reliable R&D Delivery"

through the Building Block achievement BB2.7_1 "Formal and semi-formal methods for
requirement capture, design, verification and validation, proposing open standards”.
4SECURail will contribute to the above Building Block achievement with the demonstration and
evaluation of techniques based on formal methods to reduce life-cycle costs and improve the
global reliability of the railway systems.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 7 | 61

 Objective/Aim

This Deliverable D2.1 reports the results of the first part of Task 2.1 "Formal Development
demonstrator prototype" of Work Package WP2 "Demonstrator Development for the use of Formal
Methods in Railway Environment".
The deliverable discusses the preliminary overall framework of the Demonstrator and identifies
the selected choices for its specific architecture.
In the context of the Shift2Rail Multi-Annual Action Plan - Technology Demonstrator TD2.7 the
development of the 4SECURail demonstrator falls within the Research Area "Formal methods and
standardisation" and covers both activities:

- "Demonstrate state-of-the-art formal methods for specification of requirements, automated

design and software code creation"

- "Demonstrate improvements to high-level specification thanks to the use of semi-formal

languages"

FIGURE 1 from the project Grant Agreement, illustrates the workplan, with the expected
deliverables and task interactions, for the Work Package WP2 "Demonstrator Development for the
use of Formal Methods in Railway Environment", in which the activity reported in this deliverable
is embedded.

FIGURE 1 4SECURAIL TIMELINE FOR WP2

The objective of this deliverable is to define the rationale and the choices performed in terms of
structure, methods and tools selection, for the definition of a semi-formal/formal software
development process (Demonstrator) targeted to the construction of clear/rigorous/verifiable
system specifications.
This defined demonstrator process will be exercised in the second part of Task 2.1 for the
specification and analysis of the identified case study fragment. After any possible revision
consequent to the experience gained during this first exercising of the demonstrator, the
consolidated version of the demonstrator will then be used, as part of the activity of Task 2.3
("Experimenting the formal development demonstrator"), for the analysis and verification of the
full case study described in deliverable D2.3.
This final exercising of the consolidated demonstrator will be the basis for the study of the cost-
benefit analysis of the approach and the evaluation of the learning curve for the use of the selected
methodologies and tools that is part of Task 2.4 ("Specification of cost-benefit analysis and
learning curves"), and that will be reported in deliverables D2.4 and D2.6.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 8 | 61

 Specification of formal development demonstrator

The purpose of this first deliverable of Task 2.1 is the description of the overall process that will
be followed for the rigorous construction of system specifications (the formal methods
demonstrator process), together with the suitability criteria for the supporting tools and the
description of the architecture of the demonstrator itself.

In Section 5.1 we clarify four points that play an important role in the correct framing of this effort.
These points come from the constraints defined by the project objectives and by the relation of
the 4SecuRail activity with respect to other complementary Shift2Rail projects. These points are
related to:

- the role of formal methods

- the point of view of Infrastructure Managers

- the role of Standard Interfaces

- the issue of X2Rail2 [X2RAIL2] complementarity.

In Section 5.2 we present the overall structure of the Demonstrator and the criteria for suitability
of supporting tools. Two issues here are considered to deserve a more specific presentation:

- the role of UML/SysML ([OMG-UML], [OMG-SysML]) as standardised notation within the

demonstrator.

- the role of the internally generated formal/semi-formal models with respect to the final

system requirements specification that the demonstrator process is expected to define-

The overall generic structure described in this Section is independent from the specific case study
of signalling system which it will be applied to.

In Section 5.3 we describe the planned architecture of the Demonstrator, like the expected types
of semi-formal and formal models that will be developed during the process, the possible types of
properties that we might be interested to verify and the specific techniques for achieving that.
This planned architecture does not include an experimental validation, as this will result from the
remaining part of the activity of Task 2.1.

In Section 5.4 the kind of input data that will be collected from the experimentation of the
demonstrator process is outlined, as contribution to the activity of Task 2.4 (Costs/Benefits
Analysis).

5.1 The reference framework

In this section, we discuss the main background needed to understand the rest of the deliverable.
In particular, we present fundamental concepts related to formal methods, standard interfaces,
the viewpoint of infrastructure managers and the complementarity issues with the X2Rail2
[X2RAIL2] project. Below, we first outline the role of each topic in the context of the 4SECURail

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 9 | 61

project, and then we discuss each topic in separate sections.

The purpose of this deliverable is the description of a system development process. The focus of
this effort is the exploitation and evaluation of the use of formal and semi-formal methods, with
the goal of improving the quality of the generated artifacts and the reduction of their costs.
For this reason, in Section 5.1.1 we briefly overview what formal methods are and how they might
impact the structure of our system development process.

The specification of the formal development demonstrator is based on the use case developed in
Shift2Rail (X2Rail2) Deliverable D5.1, Section 5.4.1 "Development of Systems with standardized
interfaces" [X2R2-D51]. In particular, with respect to that use case, we focus our effort on the
same subject which is the exploitation of formal and semi-formal methods for the rigorous
definition of system specifications that can be safely passed to multiple alternative developers.
This subject is here summarised as “The point of view of the Infrastructure Managers”.
Section 5.1.2 illustrates in detail this aspect.

The same use case for the adoption of formal/semi-formal methods mentioned in [X2R2-D51]
highlights the role of "standardized interfaces". In particular:

i) Shared, agreed, unique, standard interfaces for any signalling or control system, allows

multiple producers to develop multiple, interoperable, fragments of the overall

infrastructure in a robust and reliable way.

ii) Standard interfaces, described by means of a standardised notation, uniformly reduce the

costs of creating and the difficulties of understanding interfaces specifications.

The role of standardized interfaces is better discussed in Section 5.1.3.

Finally, it is an important project objective to preserve and exploit the complementarity with
respect to other Shift2Rail projects, and in particular X2Rail2. This issue is described in Section
5.1.4.

5.1.1 The role of formal methods

Formal methods refer to mathematically based techniques for the specification, development and
verification of software and hardware systems [CENELEC EN50128].

In the following, when we use the general term formal method, we will implicitly include also semi-
formal methods, i.e., those methods that use languages for which the semantics is not formally
defined but depends on its execution engine. Furthermore, given that, in practice, a formal
method always needs a support tool to be practically applicable, we will use the terms formal
methods and formal tools interchangeably.

Formal methods have been largely experimented in industry for the development of safety-critical
and mission critical products [WOD12]. Notable industrial cases on the usage of formal methods

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 10 | 61

are the Maeslant Kering storm surge barrier control system [TWC01], where both the Z and the
Promela formal notations have been used, and the Paris Metro on-board equipment [BBFM99],
where the B-method has been employed. Transportation in general and railways in particular are
domains in which formal methods have been largely experimented and applied [WOD12].
Research and industrial experiences concerning formal methods applications to railway systems’
development have been published for more than thirty years [FAN13] [BGK18], and scientific
publications in this field are increasing, showing that the interest in formal methods is still raising,
but also indicating that more research is needed for a full industrial uptake of formal methods in
railways.

Despite the quite long story of successful application of formal methods in the railway domain, it
cannot yet be said that a single mature technology has emerged. Indeed, any proposed method
or technique that goes under the umbrella of formal methods varies in its suitability and
applicability to different stages of the signalling system development, and to different subdomains
of railway signalling (interlocking, ATP, ATS, etc.). To this purpose, the ASTRail project [ASTRAIL]
aimed at identifying, on the basis of an analysis of the state of the art, of the past experiences of
the involved partners and on work done in previous projects, the candidate set of formal and semi-
formal techniques that appear as the most adequate to be used in the different phases of the
conception, design and development of railway signalling equipment.

Formal methods aim to guarantee, following some rigorous approach, the desired behaviour of a
given computing system (see [AFPM11]). The notion of specification is central: a specification is a
model of a system that defines its desired behaviour — what it actually should do, as opposed to
how. A specification can vary for its level of abstraction, form the high level of abstraction of the
desired properties of the system, to the more concrete level of an operational description of the
behaviour of the system. In [AFPM11] these two problems are identified:

• the “model validation” problem: How to enforce, at the specification level, the desired

behaviour?

• the “formal relation between specifications and implementations” problem: How to obtain,

from a specification, an implementation with the same behaviour? Or alternatively, given an

implementation, how can it be guaranteed that it has the same behaviour as the

specification?

Different formal methods address these two problems in many different guises. Specifications may
be analysed by animation/simulation, by transformation, or by proving properties.
Implementations may be formally and mechanically derived from specifications in a correct-by-
construction manner, or the former may be guaranteed to be correct with respect to the latter by
different formal verification techniques, and under different formal correctness notions.

Basic Concepts

We introduce below some concepts and notions that characterise the application of formal
methods and tools in the design of software systems that will be used in the following [AFPM11]

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 11 | 61

[OR17].

Model-based development puts a conceptual system model at the centre of the development
process, from requirements engineering, through (model-based) design, to model-based testing -
- which is characterised by test cases derived from models rather than from source code -- and
possibly code generation -- which automatically translates system models to source code.
Consistency among the models used in the various phases is ensured through model
transformation and refinement. Model transformation can be seen as the automatic generation
of a target model from a source model based on a transformation definition.

Refinement concerns the verifiable step-wise transformation of an abstract (high-level) formal
specification into a concrete (low-level) executable program, such that each step increases the
level of detail (e.g., which algorithm or which data type to implement).

Synthesis aims to automatically construct a system or program that is guaranteed to satisfy a given
(high-level) specification.

Type checking offers a means to analyse the well-formedness of a model (or source code) with
respect to its meta-model, which is formally specified as a type system that all models must
conform to. This is a form of static analysis, i.e. check to be performed without executing the
program/model.

Model checking is a technique to automatically and exhaustively verify whether a formal model
of a system satisfies its specification, expressed as properties in a (temporal) logic. With respect
to testing, model checking thus exhaustively verifies all possible behaviours, typically providing a
counterexample in case a property is not satisfied. Affected by the state space explosion problem,
that often jeopardizes its actual verification capabilities, model checking comes with a large variety
of tools and techniques, as well as of notations to represent a system model, developed basing on
different choices of basic principles, techniques and criteria:

● logical notations / algebraic processes / state-machine notations

● state based models (Kripke Structures) / event-based models (LTS) / mixed (L2TS)

● timed vs. untimed models

● probabilistic / statistical / nondeterministic models

● with limited data types (e.g. 1 .. 255) vs. with wide data types (e.g. int, real)

● explicit /symbolic /on-the-fly /bounded

Theorem proving is a deductive approach to prove the correctness of logical formulas by applying
inference rules to them, either interactively or automatically, resulting in a proof script listing the
deductive reasoning (for inspection by humans).

Model checking and theorem proving generally do not scale to huge systems. In such cases,
(interactive) simulation (i.e., a sample path or execution) of the system model's behaviour can still

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 12 | 61

provide valuable insights. Simulation tools can provide prototypes of software applications or
tools, i.e., not yet complete versions of the software program under development, as is common
for other engineering disciplines.

Abstraction and Nondeterminism

Formal models may need to abstract from details that are related to specific implementation
choices or to very specific aspects of the system. Abstract specifications may include
nondeterministic behaviour for modelling possible external interactions or internal choices, or
may abstract away from aspects like time and data introducing further nondeterministic
behaviours.

Depending on the process workflow, an abstract specification can be subsequently refined into a
more detailed one, or a more detailed specification can be abstracted into a less detailed one to
enable verification activities otherwise not possible.
In both cases we might have to deal with the problem of guaranteeing that the properties verified
on the more abstract model are still preserved and satisfied by the more detailed one.

Executable/Simulatable/Verifiable models

For executable model we intend a system description that has the possibility of being executed,
typically by automated code generation.

For simulatable model we mean an abstract system description whose behaviour can be simulated
by a dedicated interpretation tool: a simulation run is typically played on simulation data.

For verifiable model we intend a system description at any level of abstraction on which formal
verification of properties can be run (in reasonable time) by means of dedicated tools.

Typically, these three concepts can be related to different levels of abstraction of the system
description. Simulatable models typically are defined at a higher level of abstraction than
executable ones:

• an executable model behaves deterministically, as programs do; data queries and data

transformations are defined by deterministic executable function;

• in a simulatable model system some details may not be completely defined and may lead to

nondeterministic choices in the system behaviour. This nondeterministic behaviour can

however be tested by automatic random animations or by interactively controlled

animations. Clearly, executable (deterministic) models are also simulatable models;

• verifiable models may exhibit both deterministic and nondeterministic behaviour. In both

cases, verification allows the automatic analysis of the whole system behaviour, and not just

an interactive simulation of it.

All these three classes of models might all find their due place as part of the formal methods

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 13 | 61

demonstrator because each of them allows to get a specific and useful view of the system being
defined.

Test Cases Generation

Formal verification will never be able to fully validate the completeness and correctness of the
specification with respect to intended user requirements. At most, a formal verification will be
able to prove that the specific checked properties are indeed satisfied by the specification design.

Therefore, it makes sense, as part of the demonstrator process, to also include a testing activity
that, starting from an executable/simulatable model of the system, allows to check the adherence
of this model to the requirements, since testing is run at a lower abstraction level w.r.t. formal
verification.

The tests, run in this activity, are derived from the model by means of test case generation
facilities, and can be replicated on the final implementation of the product, to validate it against
the requirements. The generated artifacts (e.g. testing suites) may be of interest also as an aid for
a clearer understanding of the specification.

5.1.2 The point of view of Infrastructure Managers

As required by the project workplan, the project work stream 1 will take as reference the use case
for the application of (semi) formal methods in the development of railways signalling systems
defined in Subsection 5.4.1 "Development of Systems with Standardised Interfaces", of the
deliverable D5.1 [X51] of the Shift2Rail X2Rail2 project.
The use case 5.4.1 deals with the adoption of formal methods from the point of view of the
Infrastructure Managers.

The point of view of an Infrastructure Manager (IM) focuses on the “model validation” problem
(see Sect. 5.1.1), since it has to provide a validated specification of a desired equipment to the
Manufacturers.

In a classical client/developer scenario the common practice is the generation of - usually informal
- system requirements document. This document can then be used by the developer to build an
initial executable specification of the system, and then refine it (possibly using formal or correct-
by-construction methods) into a final product.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 14 | 61

Figure 2 The classical Client-Developer scenario

The scenario in case of railway Infrastructure Managers is slightly different, since the main interest
is on providing the same rigorous/verifiable specification not just to single developers, but to
possibly multiple different developers that should produce equivalent products. This is precisely
the case well described by the X2Rail2 use case selected as our reference, where defining a
standard/rigorous/verifiable specification of the system to be developed becomes the IM
responsibility.

Figure 3 The Client-Multiple Developers scenario

Actually, in the case of railway Infrastructure Managers, the scenario is even more complex. In
fact, the railway infrastructure is constituted by a multitude of subsystems (each one possibly
developed by a different supplier) that must correctly interact among themselves.
In this case the problem of building rigorous/formal/verifiable specifications should extend also to
the verification of the interactions between these components.
Clearly this does not hold only for railway Infrastructure Managers, but it is true also for any other
kind of complex infrastructures (like, e.g. telecommunications).

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 15 | 61

Figure 4 The Client – Multiple Developers scenario within a complex infrastructure

This introduces a further dimension of complexity. For example, safety properties can often be
verified by reasoning at the level of single subsystems (e.g. ensuring that independently from the
possible external interactions no unsafe conditions are even reached), but the same cannot be
said for specific properties related to the composite behaviour of several subsystems (e.g. liveness,
absence of deadlocks, or missing desired execution paths involving the behaviour of several
subsystems).

A special case of these scenarios is when the produced specification takes the role of "standard
specification" supported by international organizations (like UIC[UIC]/ERA[ERA]/UNISIG[UNISIG]),
defined with the aim of creating interoperable railways in the whole Europe (Single European
Railway Area, SERA).

5.1.3 The role of Standard(ized) interfaces

Our reference use case, described in Section 5.4.1 (Development of Systems with Standardised
interfaces) of X2Rail2 D5.1, explicitly cites the EULYNX [EULYNX] methodology as a reference.

5.4.1 Development of Systems with Standardised interfaces
This use case is based on the EULYNX [11] methodology. Historically, infrastructure managers
were supplied with monolithic systems, based on proprietary interfaces. A few years ago, a re-
orientation of the means of production of future systems was initiated entailing purchasing
modular systems. For example, an interlocking system comprises an electronic interlocking, a
command and control system and field elements such as points, signals, and so forth. The
fundamental concept of this new approach is to have these parts supplied separately. This

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 16 | 61

requires standardised interfaces between subsystems and to adjacent systems, to enable
different suppliers to supply compatible modules. This requires high quality specifications, as
suppliers will be working with these blueprints and the infrastructure managers will carry out
the system integration tasks.

Hence, "standardised interface” is intended to be a standard reference to be communicated to
the suppliers by the Infrastructure Managers, with no dependencies on the way in which the
interface is specified or the methodology through which the interface requirements specification
has been generated.

Clearly, in the context of a project like EULYNX, whose purpose is that of rigorously defining all the
interfaces of the Interlocking subsystem with all the other subsystems, it is perfectly reasonable
to adopt a common methodology, language, and set of tools for achieving this purpose. This
introduces the other meaning of "standard interfaces" as system interfaces described with a
standard notation.

The goal of our demonstrator, from the point of view of the exploitation of "standard interfaces"
is therefore twofold: a process exploiting the use of formal methods for the definition of
standardised interfaces (goal: interoperability) described in standard notation (e.g. SysML) (goals:
uniformity, understandability, non-ambiguity).

The EULYNX MBSE methodology is described in the document "EULYNX-Modelling Standard
Eu.Doc.30" [EULYNXdoc30, Section 4], and summarised in Figure 5.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 17 | 61

Figure 5 The EULYNX MBSE approach (Fig 1484 of Eu.Doc.30)

The overall approach being adopted for the Formal Methods Demonstrator, described in the
subsequent Section 5.2, can be seen as a generalisation of the one adopted in EULYNX. The actual
demonstrator specification can still make use of different specific tools, being this choice
dependent on the kind of formal verification techniques that are being considered in the project,
and on the specific project goal of exploiting formal methods for evaluating the costs/benefits of
the chosen approach.
A common aspect which we believe it is important to try to preserve is the baseline adoption of
UML/SysML as semi-formal model driven design methodology. This issue is discussed in more
detail in Section 5.2.1.
A very detailed presentation of the expected benefits from the adoption of standard notations for
standardised signalling interfaces can be found in [EIND].

5.1.4 X2Rail2 complementarity

Task 5.2.1 of the X2Rail2 project also conducted a reasoned survey of the set of formal and
semiformal methods proposed for use in a railway context. Although we are not constrained to
use any of these tools/methodologies, surely this is a point which must be taken into consideration
for the detailed design of our demonstrator. Figure 6 and Figure 7 show the formal and semi-

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 18 | 61

formal methods and tools proposed by X2Rail2.

Figure 6 X2Rail2 Proposed formal methods tools (Table 1 of X2Rail D5.1)

Figure 7 X2Rail2 Proposed semi-formal methods tools (Table 2 of X2Rail D5.1)

We have already mentioned the relevant role of the use case defined in Subsection 5.4.1
"Development of Systems with Standardised Interfaces" of the deliverable D5.1 of the Shift2Rail
X2Rail2 project, which refers to the adoption of formal methods from the point of view of the
Infrastructure Managers.
Figure 8, extracted from the mentioned D5.1 of X2Rail2, shows a possible workflow of the system
development process, based on formal and semi-formal methods, as it might be used by
Infrastructure managers to build rigorous and verifiable specifications (system requirements) to
be delivered to different developers for their development.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 19 | 61

Figure 8 X2Rail2 Use case for formal development of systems with standardised interfaces

Where, in particular, it is described that:

The specification process starts with the system definition based on requirements derived from stakeholder
needs (1) and regulation-based safety properties (2):
The system definition comprises basically the technical system context and the functional system context,
defining the interfaces of the system and the information flows at them.
The system’s use cases – the services the system is expected to perform for its environment – are described by
scenarios which order the defined information flows in time, and thus specify the expected externally
observable input/output behaviour of the system at the upper level of abstraction.
The system definition is described using the Systems Modeling Language (SysML) [10], a semi- formal graphical
modelling language. A detailed description of the methodology to model the system definition is given in the
EULYNX Modelling Standard [12].
With the system definition as basis the risk analysis is carried out (3). An analysis of the different types of
possible hazards is made and hazard-based safety properties derived. They supplement the pre-existing
regulation-based safety properties (4) and are used to adjust the system definition if necessary.
Based on the externally observable input/output behaviour defined in the system definition phase, including
relevant results of the risk analysis, an executable model of the externally observable behaviour is created (5).
The executable model is used for validation (6) of the requirements by simulation (virtual prototype), formal
verification of the safety properties (7) and automated generation of test cases (8).
The semi-formal model is given as part of the tenders to the suppliers (9) which respond with the proof that
the behaviour of their implemented system is a refinement of the specified one (10).

The above generic workflow is clearly well applicable, with the needed variations, also in our case,
and in Section 5.3 “The architecture of the 4SECURail demonstrator" the main differences
between this workflow and our Demonstrator structure are illustrated.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 20 | 61

5.2 The overall structure of the demonstrator process

In this section we describe the overall structure of a demonstrator process aimed at employing
formal methods to support infrastructure manager. The next section will be dedicated to the
specific instantiation of this process in the 4SECURail context.

The overall structure of a generic Software development process targeted to the definition of
rigorous system specifications which exploits the use of formal methods (our Demonstrator) can
be described as in the Figure 9.

Figure 9 Overall generic structure of demonstrator (first case)

First Case (with requirements elicitation). Starting from some input describing the initial I.M.
requirements of the system, we start an agile (in the style of [AGILE]) development phase in which
the requirements are transformed into "formal/executable models". These models are developed
incrementally, and continuously analysed by means of formal verifications, simulations,
animations, and collecting test cases for documentations.

These abstract formal models can also be refined by adding additional details into "refined
executable models" that may help in validating the system behaviour possibly through simulations
and animations.

Once these formal models are sufficiently stable, they represent the base for the generation of
the demonstrator output (the official system requirements specification), in the form of
description of "abstract system requirements", "safety requirements", "detailed system
requirements". The generated system requirements are still likely to be expressed in natural

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 21 | 61

language but enriched with tables and diagrams extracted from the formal/semi-formal models.
The formal/semi-formal models themselves might be made available as complementary
documentation.

From one side, while the generation of multiple, different semi-formal / executable / simulatable
/ formally verifiable models allows to get a deep understanding of the system design from many
points of view and many levels of abstractions, from the other side this multiplicity raises the
problem of keeping these models somewhat "synchronized". E.g. if, for some reason, one of the
models needs to be modified because of the discovery of some defect, the impact of the change
on the other models surely cannot be ignored. This may require the generation and maintenance
of some kind of cross-references between these artifacts, and probably also between these
artifacts of the final "system requirements specification" resulting from the process. The effort
needed for keeping all the different artifacts well synchronised should not be underestimated and
might play a non-trivial role in deciding how many "points of view" to take into account.

Second Case (without requirements elicitation). The whole schema still holds in the case in which
the input of the overall Demonstrator process is not constituted by Draft I.M. Requirements, but
by an already consolidated/official set of system requirements / safety requirements, that should
be the object of more rigorous analysis.

In this case we simply would not have the Requirements Elicitation activity oriented to the
consolidation of the Draft I.M. Requirements, see Figure 10. The difference in the wording
"PROTOTYPING" versus "MODELLING", in this second case, just reflects that if the starting point is
an already consolidated specification, the modelling activities (in terms of tools and methods)
might be somewhat different from the incremental prototyping activity driven by a
rigorous/formal Requirements Elicitation phase.

Figure 10 Overall generic structure of demonstrator (second case)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 22 | 61

Third Case. The same overall schema might also work in the mixed case in which an already
consolidated set of system requirements/safety requirements might have to be
extended/updated by an additional set of new user requirements (somewhat of composition of
the previous two cases). In these cases, the availability of previous formal/executable artifacts
would be of great help for the process.

We consider as already acknowledged (see for example the related Shit2Rail surveys in [X2R2-D51,
ASTRAIL-D41, ASTRAIL-D43]), that there is not a single formal method or tool that can fit all the
possibly desired verification and modelling needs in the railway field. Therefore, the whole
Modelling and Analysis activity is supported at its best by a rich integrated ecosystem of tools and
methodologies, rather than a single monolithic, usually closed, tied to single specific
methodologies, framework. We recognize, however, that at least in the first case, where a
classical V shaped process might be followed covering all the steps from Requirement Elicitation
to Official Requirements Specification generation and verification, a reference modelling
frameworks might actually help in building and maintaining all the documentation related to the
various artifacts being generated.

5.2.1 The role of UML / SysML

UML (Unified Modeling Language) is a standardized modeling language consisting of an integrated
set of graphical diagrams, developed to help system and software developers for specifying,
visualizing, constructing, and documenting the artifacts of software systems [WHATISUML].

UML, in its SysML version, has been adopted also in the EULYNX project within its underlying
methodology for the development of standard interfaces. A detailed analysis of this approach is
well described in [EIND].

Graphical designs do often convey information to the reader with a wider band than just text and
require less effort in the reader for receiving it.
However, a textual representation readable/writeable by humans is equally important for the
simpler way in which it can be produced, shared, translated, modified, and communicated.
We believe that both kinds of representation should be made available, and they should be and
remain in synch.

It is also important for the designer to be able to simulate the UML behavioral models (e.g. state
machines) to have some initial feedback on the correctness of the design with respect to the
intended requirements. Otherwise models risk being precise, but wrong.

A prerequisite for a reasonable introduction of UML as reference notation inside a formal methods
Demonstrator process is that the meaning of the UML designs shall not be ambiguous or uncertain.
Since its origins, this has been recognised as a major problem for some of the behavioural diagrams
of UML like state machines.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 23 | 61

The main recognised problems with this behavioural notation are in fact (see e.g. [FSKR29,
SG30]:

• Uncertainties in the semantics

• Absence of standard action language

• Lots of implementations freedoms

Several studies and proposals have been conducted in the recent years with the goal of associating
a formal semantics to the UML behavioral diagrams (see e.g. [CD2007, BCDRS, L2013]), but none
of these actually succeeded in solving the problems.
An important step forward to overcome this problem has been done by OMG (Object
Management Group) with the standardization of fUML (Foundational Subset for Executable UML
Models). [OMG-fUML1], which is also associated with an official reference implementation [OMG-
fUML2].
This definition of fUML is complemented with the definition of textual syntax for its action
language ("Alf" [OMG-Alf]), and by the definition of the "Precise Semantics of UML Composite
Structure (PSCS)" [OMG-PSCS].

The purpose of this fUML effort is precisely the one of defining an initial subset of UML which is
free from the semantic uncertainties affecting the full standard and that might define a rigorous
Model of Computation for the UML behavioral diagrams.

The remaining limits of this effort is that this fUML definition is still described in natural language,
and that the "reference implementation" (that might play the role of non-ambiguous operational
semantics) is currently being implemented only with respect to activity models [OMG-fUML2]. The
Alf definition itself, when considered in conjunction with the state machine notation, is currently
defined just through an "Informative Annex" [OMG-Alf] with no normative role.
More details on fUML are provided in Annex 8.2.

W.r.t. our overall demonstrator process UML can play three different roles:

- as complementary graphical documentation of specific aspects of the system requirements

definition.

- as a direct notation for the execution and simulation of system models.

- as baseline for translations towards other formal notations supported by strong verification

capabilities.

The use of UML for system design and documentation is supported by an extremely rich set of
tools, partially reported in Annex 8.1. If we are interested in just designing diagrams for
complementing the natural language description of a system, we might find useful to use UML
tools exploiting more immediate and user-friendly textual encoding of the diagrams (like Umple,
textUML, et al., cited in Annex 8.1).

Support for the use of UML for execution/simulation of the system behaviour is much more limited
and constrained to a handful of alternatives, equally reported in Annex 8.1.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 24 | 61

None of the "industry ready" UML tools allows a direct verification of behavioural models; as far
as we know, only a few academic prototypes (e.g. UMC [UMC1, UMC2]) have been developed
precisely to this purpose.
Therefore, we are only left with the possibility of performing the translation from the UML models
into other formal notations supported by verification frameworks.
In the literature there are plenty of papers describing experiences in this kind of translation [see
e.g. [PEML, GMK2012, CFLW, BBJTD2018, F2008, YLWD, NPS2009, BR2010, Y2010, SSB2012,
RBS2019, HKLMPMS, KMR2002, CC2004, BFMMMNV, OD2017, OSG2004, JDJLP] but none of them
seem to have been well supported and integrated inside "industry ready" UML frameworks.

Given the focus of the 4SECURail demonstrator on formal methods, the last described use of UML
(baseline for translations) is probably the one that is more tied to the project goals, even if also
the other two uses (documentation and simulation) may play a relevant role inside the
Demonstrator.

From this point of view our preferred choice would be the use of an even stricter subset of the
fUML state machine diagrams, defining a very simple state machine structure that would allow a
direct translation into the main formalisms adopted by verification and simulation tools, such as
Event-B [EVB] / LNT [GLW2017] / Uppaal [UPPAAL].
Notice that we do not have the goal of defining a subset valid in the general case, but we just
explore this approach in our limited case-study, because we believe that this point of view is worth
a demonstration and experimentation.

We can observe that EULYNX gives a precise information of the specific tools and methodologies
adopted in the project, like

• Atera as action language for behavioral diagrams

• PTC [PTC-Windchill] as a graphical design and animation tool for the specifications.

In our case the criteria for selecting specific UML/SysML tools might possibly lead to a different
choice, that will be based on the following considerations:

• The non-ambiguity and standard-quality of the supported notations,

• The openness of the framework - i.e. how easy it is to import/export/translate the notations

versus other frameworks,

• The usability of the tool user interface,

• The degree of support for nondeterministic aspects in the design and

• The degree and cost of support and training for the clients.

5.2.2 The expected output of the demonstrator process

The set of artifacts in output from the formal methods demonstrator process are represented in

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 25 | 61

our overall generic model by the final "System Requirements Specification". Actually, these
artifacts might be of different nature and with different purposes:

• A rigorous natural language textual description, possibly enriched with standard diagrams

and tables, that may constitute the legal document associated to the specification;

• A simulatable semi-formal system description: this artifact might be considered as a very

useful complement that might be made available to the developers for checking their correct

understanding of the system to be developed;

• Formal verifiable specifications, allowing the developers to possibly exploit these models for

"correct by construction" code generation, and allowing the Infrastructure Managers to

maintain, further verify, and possibly improve the System Specification itself;

• A set of tests generated and successfully applied for the analysis of the various models, that

can provide developers with guidance and early verification for the testing of the ongoing

product development.

5.3 The architecture of the 4SECURail demonstrator

There are four points that directly affect the definition of the architecture of the demonstrator:

• In which way the semi-formal models describing the system requirement specification are

generated for being analysed?

• In which way the simulatable/executable models of the system are generated?

• In which way the formal models of the system are generated and verified?

• In which way the case study selected for the exercising the demonstrator may affect its

architecture?

The following paragraphs give more details on all these aspects.

Specification with standard notations

We believe it is important to adopt as reference inside the demonstrator a standardised
description of systems specification which, considering also the indications coming from the
EULYNX and X2Rail projects, are based on UML/SysML diagrams, and in particular on behavioural
diagrams (state machines and sequence diagrams).

The ideal (imaginary) approach to system specification should rely on an advanced support
framework allowing to generate clear, graphically appealing, rich of content, possibly interactive,
diagrams. Starting from these, interactive simulation to explore the possible nondeterministic
alternatives present in the behaviour would be possible, allowing the formal verification of system
properties.
Unfortunately, this ideal approach is still very far from the current state of the art. In practice, if
we really want to generate clear, graphically appealing, rich of content, diagrams, it is necessary
to make use of specific drawing-oriented tools (e.g. in ASTRail, Graphviz [GRA] has been used for
this purpose) that do not support simulation and verification.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 26 | 61

Instead, diagrams automatically generated by UML/SysML-based frameworks are often of a not
sufficient graphical quality and may not contain all the useful detailed information (e.g. the
abstract events that relate a system transition to one or more system requirements). At the same
time, however, they may be directly used to perform simulation and verification.
The use of UML/SysML-based frameworks allows the progress from the system design to code
generation in a rather smooth way. This usually is of interest of developers but of less interest for
the point of view of I.M.
It is therefore likely, unless more experience comes out from the actual demonstrator
experimentation, that a graphical SysML design is adopted in our demonstrator without any
predetermined relation with specific UML /SysML -based framework.

Frameworks for Executable / Simulatable Modelling

As already described in Section 5.2.1 the UML/SySML state machine descriptions might be
exploited in the demonstrator not only as graphical designs with documentation purposes, or as
basis for translations info formal verifiable notations, but also as simulatable models suitable for
experimenting the actual system behaviour.
This kind of use requires the exploitation of much more complex (to learn, to use, to acquire)
frameworks supporting execution and simulation of composite systems based on interacting
state-machines. The survey on semi-formal tools conducted by X2Rail2 and presented in D5.1 (see
X2Rail Table 2 reported in Section 5.1.4) indicates as possibly recommended frameworks for
system simulation the following ones:

• PTC Integrity Modeler (now Windchill Modeler SySim) [PTC-Windchill]

• Sparx Systems Enterprise Architect [SPARX]

• No Magic Cameo Systems Modeller (now Dassault 3DS Cameo Systems Modeller) [3DS]

It is not sufficient to look at the available online documentation for the various frameworks to
identify the best solution, in the context of our demonstrator, as possibly recommended
frameworks for system simulation.
Therefore, we will defer this choice to the prosecution of Task 2.1, after a hands-on
experimentation of the various possibilities with the selected initial fragment of the chosen case
study.

In the context of the 4SECURail demonstrator the exploitation of a framework allowing to directly
simulate the designed behavioral models in agreement with the official OMG fUML semantics
would be a great contribution because it would allow to ensure that the designed graphical models
actually reflect in a not ambiguous way the expected system behavior.

 Formal Verification by Model Checking

Independently from the kind of tool support for the generation (and possibly simulation) of
UML/SysML state-machine designs, our main goal is to transform these standard UML/SysML
designs into verifiable formal models.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 27 | 61

Theorem proving and Model Checking can probably be considered the two most used approaches
to system verification, also in railway related contexts.
However, Theorem proving, e.g. as supported by Atelier B, seems more fitting a specification
refinement process that guides the correct-by-construction generation of code starting from an
initial formal design. Model checking instead seems more fitting a model-based approach in which
a simulatable design is explored and verified in all its possible evolutions. In 4SECURail we follow
the model checking approach since we are not interested in code generation.

In particular we will take advantage of the experience gained with the ASTRail project (see
[ASTRAIL-D43]), where UML state machine descriptions were translated into EventB state
machines and subsequently analysed and verified by model checking with the ProB tool [PROB].
ProB is an animator and model checker for the B-Method. It allows animation of many B
specifications and can be used to systematically check a specification for a range of errors. ProB is
one of the tools also recommended by X2Rail2 for formal verifications (see X2Rail2 Table 1 in
Section 5.1.4). Some of the reasons for the successful experience of its use in ASTRail project and
to reuse it also in 4SECURail are the following:

• It is a free, open source product whose code is distributed under the EPL v1.0 license

[http://www.eclipse.org/org/documents/epl-v10.html]

• Is actively maintained and commercial support is available from Formal Mind

[http://www.formalmind.com/]

• Runs on Linux, Windows, and MacOS environments

• It has several nice, very usable graphical interfaces, but can also be used from the command

line

• It is well integrated in the B / EventB ecosystem (Rodine, Atelier B, iUML, B Toolkit)

• It allows construction, animation and visualisation of nondeterministic systems

• It allows formal verifications through different techniques like constraint solving, trace

refinement checking, model checking.

There are also known weak points related to its use, which in our case are:

• Does not allow the explicit modelling of multiple mutually interacting state machines. The

only way to achieve that is to merge all the separate machines into a global one.

• EventB state machines are different from UML/SysML state machines. At the current state

of art several proposals of translations from UML to ProB state machines have been made,

but no industry-ready product currently supports that mapping.

• Model checking does not support compositional approaches based on bisimulations which

are congruences with respect to parallel composition operations. In simpler words the

verification approach does not scale when the system is composed by many mutually

interacting asynchronous state-machines.

More details of the ProB tool are reported in Annex 8.3.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 28 | 61

Modelling the behavior of a system through the design of a single state machine has the advantage
that this design can often be translated into the notations supported by formal verification
frameworks with a reasonable effort.
However, if we have to verify properties that depend on the behavior of more interacting
asynchronous systems, the situation becomes more difficult. If the components are not too
complex, or not too many, a possibility is to merge all of them into a unique "global" system
modelled again as a single state machine. If the various system components are too complex, or
too many, this approach risks however incurring in the problem of state explosion.
In this case we can imagine two types of solutions:

• One solution is to constrain the verification to a rich set of scenarios. I.e. not verifying the

system in its complete variability, but only under certain assumptions (like for example,

absence of fatal errors in certain components, only one/two/three trains moving from one

RBC to another, limited presence of communication errors, just to mention some).

• The other solution is to exploit alternative formal notations historically oriented towards the

design and verification of asynchronous interacting systems and supported by specialised

theoretical basis like process algebras (see e.g. [MCRL2, CADP, FDR4]).

We are unable at the current time to evaluate the overall final complexity of the chosen case
study, and if model checking within the ProB framework will be sufficient to verify overall systems
constituted by interacting components. In any case our approach does not prevent the
experimentation with alternative translations towards verifications engines more oriented to the
analysis of "parallel asynchronous systems".

The three aspects described above are summarised in Figure 11.

Figure 11 Execution flow of the demonstrator prototype

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 29 | 61

The case study

The case study to test the formal methods demonstrator proposed by 4SECURail is the RBC/RBC
protocol, as specified by the UNISIG RBC/RBC Handover [SUB-039] and Safe Communication
Interface [SUB-098].
A Handover procedure is needed to manage the interchange of train control supervision between
two neighbouring RBCs. When a train is approaching the end of the area supervised by one
handing over RBC, an exchange of information with the (new) accepting RBC takes place to
manage the transaction of responsibilities. RBC/RBC interface is a typical product where
development processes of different supplier meet, and is therefore an optimal choice to
investigate how natural language specification may create the possibility of diverging
interpretations, leading to interoperability issues. The details of the case study and the rationale
for this choice will be described in Deliverable D2.3 of Task 2.2.
Being UNISIG SUBSET-039 and SUBSET-098 already consolidated standards, the overall structure
of our demonstrator process will reflect the second point of view of those described at the
beginning of Section 5.2 and illustrated in Figure 10, which is the case of formal methods
demonstrator process used for just analysing, verifying, and possibly improving an already existing
standard specification.

With respect to the X2Rail2 workflow shown in Section 5.1.4 - Figure 6 we can say that a Risk
Analysis phase is not needed in our case study because safety threats have been already addressed
into SUBSET-039 and SUBSET-098. Additional safety requirements will be added if required by the
specific modelling of the system.

With respect to the same workflow of Figure 6 also the test generation subphase has a different
flavour, because in our case it is not oriented towards the final validation of the developed
products, but towards the achieving of a further degree of confidence on the correctness of the
generated models, especially w.r.t. those aspects not covered by formal verifications. This test
generation subphase might in fact evolve within the semi-formal SysML simulation framework (if
the selected tools actually support it), that might describe the system at a different level of
abstraction with respect to the verified formal models (e.g. modelling in more detail some data-
related and time-related aspects).

The output, in terms of artifacts, of our demonstrator process will reflect the structure described
in Section 5.2.2.
In our particular architecture, being the input requirements an already stable official UNISIG
standard, we will not need to rewrite it using again a natural language notation, even in the case
the rewriting could appear as more precise or complete. We can however complement it with
annotations, if found useful, and/or enrich it with further artifacts developed with the
demonstrator process, such as SysML models, animatable modes, formal model, test cases, and
the needed cross references among these components.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 30 | 61

5.4 Inputs for the cost-benefit analysis and learning curve evaluation

During the experimentation of our demonstrator process with its application to the selected case
study, both in the second Part of Task 2.1 (initial fragment) and in Task 2.3 (full case study) it will
be important to assess as much data as possible on the costs and cost categories embedded in the
proposed approach.
The goal will not be to record time-related costs for the demonstrator development, but to identify
cost categories which are likely steering the development of a generalised system having the
features of the demonstrator. Costs categories may be preliminarily clustered as:

• costs for acquiring tool licences (either based on the actual costs incurred for licences

necessary for the demonstrator or costs of the full commercial licence for the same tool,

including commercial support and training), or cost of licence for alternative tools with

respect to the ones used in the demonstrator.

• time-related costs for research and development: such costs are dependent on the

estimation of effort (person-days) needed to learn a specific tool and methodology (entailing

the learning curve of FM for the system suppliers), and to the time/effort needed to generate

the animatable SysML specification, to generate the formally verifiable models, to select,

design and perform the verifications of the properties of interest, to maintain the various

model well synchronized.

Before being actually usable for the costs-benefit analysis, this effort data might have to be
adjusted for taking into account the bias resulting from the previous already existing competences
and knowledge of the involved people, and will need to undergo a benchmark with literature
sources.
As a methodological pillar, the cost-benefit analysis will analyse costs and benefits associated to
the exploitation of formal methods, against the baseline scenario, which does not foresee the
adoption of formal methods. The outcome will be the differential of costs and benefits associated
with the generalised adoption of the system described by the demonstrator. The assessment of
baseline costs (either for licences or time-related costs) will be estimated and reported in D2.4.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 31 | 61

 Conclusions

The activity of the formal methods demonstrator process will start with the definition of the SysML
designs describing the UNISIG RBC Handover system selected as case study.
After this point the process will fork, experimenting from one side the inclusion of the designs in
a MBSE framework for subsequent animation and generation of use cases and test cases of
interest, and from the other side experimenting the translation of the SysML design into formal
Event-B state machines for subsequent formal verifications with ProB.
The resulting flow is depicted in Figure 11.

The specific MBSE tool that will be used for SysML simulation will be selected (if at least one found
satisfying all our needs) during the initial experimentation of the demonstrator in Task 2.1 (second
part) that will define the final demonstrator prototype structure (Deliverable D2.2 - November
2020).

The actual contribution of this deliverable goes far beyond the final answer to the question about
"which tools and methods will be actually used by the demonstrator", but it consists also in the
reasoning and the rationale that have led to the selected choices. In particular three important
issues deserved a specific analysis and discussion:

• The clarification of the usefulness of formal methods from the point of view of the

Infrastructure Managers,

• The relations between our demonstrator and other relevant projects like EULYNX and

X2Rail2, and

• The role that the semi-formal SysML notation should play within our formal methods

demonstrator process.

It is important to remark that the 4SECURail Demonstrator does not have the goal of identifying
"the best set of formal methods and tools to be used in a railway context". This investigation has
just the specific goal of conducting an experiment to demonstrate the use of formal methods for
the construction of robust, reliable system requirements specifications, and observing,
extrapolating, and analysing the experience gained from it.

It is also important to remark that the use of formal methods analysed in this project is not the
kind of use that might be done by system developers for the production of correct, robust and
verifiable systems, even if the developers might surely take advantage of the additional level of
rigor in the generated requirements specifications and accompanying artifacts, for a more
immediate understanding and (possibly formal) generation of the product.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 32 | 61

 References

[3DS] 3DS Catia nomagic "Cameo Systems Modeler"
 https://www.nomagic.com/products/cameo-systems-modeler
[AFPM11] Bacelar Almeida J., Frade M. J., Sousa Pinto J. & Melo de Sousa S (2011).
 “An Overview of Formal Methods Tools and Techniques in Rigorous Software
 Development -An Introduction to Program Verification”. Undergraduate Topics in
 Computer Science, Springer, 15--44.
[AGILE] The Agile Alliance https://www.agilealliance.org
[ASTRAIL] ASTRail project. https://projects.shift2rail.org/s2r_ip2_n.aspx?p=ASTRAIL
[ASTRAIL-D41] ASTRail Deliverable D4.1 "Report on Analysis and on Ranking of Formal Methods"
 http://astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2
[ASTRAIL-D43] ASTRail Deliverable D4.3 "Validation Report"
 http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
[BBFM99] Behm, P., Benoit, P., Faivre, A., & Meynadier, J. M. (1999). “METEOR: A successful
 application of B in a large project”. In International Symposium on Formal Methods
 (pp. 369-387) Springer, Berlin, Heidelberg.
[BBJTD2018] Valentin Besnard, Matthias Brun, Frédéric Jouault, Ciprian Teodorov, Philippe
 Dhaussy "Unified LTL Verification and Embedded Execution of UML Models"
 MODELS '18: Proceedings of the 21th ACM/IEEE International Conference on Model
 Driven Engineering Languages and Systems October 2018 Pages 112–122
 https://doi.org/10.1145/3239372.3239395
[BCDRS] Broy M., Crane M.L., Dingel J., Hartman A., Rumpe B., Selic B. (2007)
 "2nd UML 2 Semantics Symposium: Formal Semantics for UML."
 In: Kühne T. (eds) Models in Software Engineering. MODELS 2006.
 Lecture Notes in Computer Science, vol 4364. Springer, Berlin, Heidelberg
 https://link.springer.com/chapter/10.1007/978-3-540-69489-2_39
[BFMMMNV] S. Bernardi, F. Flammini, S. Marrone, N. Mazzocca, J. Merseguer, R. Nardone,
 V. Vittorini “Enabling the usage of UML in the verification of railway systems: The
 DAM-rail approach“ Reliability Engineering and System Safety 120 (2013) 112–126
[BGK18] ter Beek M.H., Gnesi S. and Knapp A. (2018). “Formal methods for transport systems”.
 International Journal on Software Tools for Technology Transfer, Springer, (pp 237—241)
[BR2010] P.Bhaduri, S. Ramesh "Model Checking of Statechart Models Survey and
 Research Directions" https://arxiv.org/pdf/cs/0407038
[CADP] CADP website https://cadp.inria.fr
[CC2004] Chen J., Cui H. “Translation from Adapted UML to Promela for CORBA-Based
 Applications” In: Graf S., Mounier L. (eds) Model Checking Software. SPIN 2004.
 Lecture Notes in Computer Science, vol 2989. Springer, Berlin, Heidelberg
[CD2007] Michelle L. Crane · Juergen Dingel “UML vs. classical vs. Rhapsody statecharts: not all
 models are created equal” Softw Syst Model (2007) 6:415–435
 doi: 10.1007/s10270-006-0042-8
[CENELEC EN50128] EN 50128:2011 “Railway applications – Communication, signalling and
 processing systems – Software for railway control and protection systems”. CENELEC
 CLC/TC 9X standard, 2011-06.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www.nomagic.com/products/cameo-systems-modeler
https://www.agilealliance.org/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=ASTRAIL
http://astrail.eu/download.aspx?id=bb46b81b-a5bf-4036-9018-cc6e7d91e2c2
http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
https://doi.org/10.1145/3239372.3239395
https://link.springer.com/chapter/10.1007/978-3-540-69489-2_39
https://arxiv.org/pdf/cs/0407038
https://cadp.inria.fr/

G A 8 8 1 7 7 5 P a g e 33 | 61

[CFLW] Caltais G., Leitner-Fischer F., Leue S., Weiser J. “SysML to NuSMV Model
 Transformation via Object-Orientation". In: Berger C., Mousavi M., Wisniewski R. (eds)
 Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2016. Lecture Notes in
 Computer Science, vol 10107.
[DBLM2002] V. Del Bianco, L. Lavazza and M. Mauri, "Model checking UML specifications of real
 time software," Eighth IEEE International Conference on Engineering of Complex
 Computer Systems, 2002. Proceedings., Greenbelt, MD, USA, 2002, pp. 203-212,
 doi: 10.1109/ICECCS.2002.1181513.
[EIND] Bui, N. L. (2017). “An analysis of the benefits of EULYNX-style requirements modeling for
 ProRail”. Eindhoven: Technische Universiteit Eindhoven.
 https://research.tue.nl/en/publications/an-analysis-of-the-benefits-of-eulynx-style-
requirements-modeling

[ERA] European Union Agency for Railways https://www.era.europa.eu/
[EULYNX] The Eulynls project site. https://eulynx.eu/
[EULYNXdoc30] EULYNX-Modelling Standard Eu.Doc.30 v3.0 (0.A)
[EVB] Event-B.org Website http://www.event-b.org/
[F2008] Critical Software S.A. (slides) “Model-Checking and Validating UML Models: Current
 Capabilities and Limitations” ESA Workshop on Avionics Data, Control and Software
 Systems (ADCSS)
 https://distrinet.cs.kuleuven.be/projects/evolve/public/publications/02_01_Faria.pdf
[FAN13] Fantechi, A. “Twenty-five years of formal methods and railways: what next?”
 In International Conference on Software Engineering and Formal Methods (pp. 167-183).
 Springer, Cham.
[FDR4] FDR4 The CSP Refinement Checker website https://cocotec.io/fdr/index.html
[FSKR29] Fecher H., Schönborn J., Kyas M., de Roever WP. (2005) 29 “New Unclarities in the
 Semantics of UML 2.0 State Machines” In: Lau KK., Banach R. (eds) Formal Methods and
 Software Engineering. ICFEM 2005. Lecture Notes in Computer Science, vol 3785.
 Springer, Berlin, Heidelberg
 https://doi.org/10.1007/11576280_5
 https://www.researchgate.net/publication/220744129_29
[GLW2017] Hubert Garavel, Frédéric Lang, and Wendelin Serwe "From LOTOS to LNT"
 in ModelEd, TestEd, TrustEd - Essays Dedicated to Ed Brinksma on the Occasion of His 60th
 Birthday, volume 10500 of Lecture Notes in Computer Science, pages 3-26, October 2017
 ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Garavel-Lang-Serwe-17.pdf
[GMK2012] Grumberg O., Meller Y., Yorav K. (2012) “Applying Software Model Checking
 Techniques for Behavioral UML Models" In: Giannakopoulou D., Méry D. (eds) FM 2012:
 Formal Methods. FM 2012. Lecture Notes in Computer Science, vol 7436. Springer, Berlin,
 Heidelberg
[GRA] Graphviz - Graph Visualization Software, https://www.graphviz.org/
[HKLMPMS] Hvid Hansen H., Ketema J., Luttik B., Mousavi M., van de Pol J., dos Santos O.M.
 "Automated Verification of Executable UML Models". In: Aichernig B.K., de Boer F.S.,
 Bonsangue M.M. (eds) Formal Methods for Components and Objects. FMCO 2010. Lecture
 Notes in Computer Science, vol 6957. Springer, Berlin, Heidelberg
[JDJLP] Toni Jussila1, Jori Dubrovin2, Tommi Junttila2, Timo Latvala3, and Ivan Porres4

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://research.tue.nl/en/publications/an-analysis-of-the-benefits-of-eulynx-style-requirements-modeling
https://research.tue.nl/en/publications/an-analysis-of-the-benefits-of-eulynx-style-requirements-modeling
https://www.era.europa.eu/
https://eulynx.eu/
http://www.event-b.org/
https://distrinet.cs.kuleuven.be/projects/evolve/public/publications/02_01_Faria.pdf
https://cocotec.io/fdr/index.html
https://doi.org/10.1007/11576280_5
https://www.researchgate.net/publication/220744129_29
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/Garavel-Lang-Serwe-17.pdf
https://www.graphviz.org/

G A 8 8 1 7 7 5 P a g e 34 | 61

 "Model Checking Dynamic and Hierarchical UML State Machines"
 3rd Workshop on Model Design and Validation (MoDeVa 2006), Genova, Italy, 2006
[KMR2020] Knapp A., Merz S., Rauh C. (2002) “Model Checking Timed UML State Machines and
 Collaborations" In: Damm W., Olderog E.R. (eds) Formal Techniques in Real-Time and
 Fault-Tolerant Systems. FTRTFT 2002. Lecture Notes in Computer Science, vol 2469.
 Springer, Berlin, Heidelberg
[L2013] Liu S. et al. (2013) “A Formal Semantics for Complete UML State Machines with
 Communications" In: Johnsen E.B., Petre L. (eds) Integrated Formal Methods. IFM 2013.
 Lecture Notes in Computer Science, vol 7940. Springer, Berlin, Heidelberg
 https://link.springer.com/chapter/10.1007/978-3-642-38613-8_23
[MAAP2015] Shift2Rail Multi-Annual Action Plan 2015
 https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-
MAAP.pdf
[MAAP2017] Shift2Rail Multi-Annual Action Plan –Executive View - Part A (2017)
 https://shift2rail.org/wp-content/uploads/2018/04/Maap_2018_FINAL_2.pdf
[MAAP2019] Shift2Rail Multi-Annual Action Plan – Part B (2019)
https://shift2rail.org/wp-content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-
Part-B-20.5.2019.pdf

[MCRL2] mCRL2 website https://www.mcrl2.org/
[NPS2009] Artur Niewiadomski, Wojciech Penczek, Maciej Szreter "A New Approach to Model
 Checking of UML State Machines" Fundamenta Informaticae 93 (2009) 289–303 289
 DOI 10.3233/FI-2009-103
[OD2017] Raquel Oliveira and Jürgen Dingel. "Supporting Model Refinement with Equivalence
 Checking in the Context of Model-Driven Engineering with UML-RT". Proceedings of the
 14th Workshop on Model Engineering, Verification and Validation (MoDeVVa 2017),
 Austin, Texas, USA, pages 307-314, CEUR, September 2017.
 http://ceur-ws.org/Vol-2019/modevva_2.pdf
[OMG-SysML] Object Management Group, "SysML 1.6 Specification", November 2019.
 http://www.omg.org/spec/SysML/1.6/
[OMG-UML] Object Management Group "Unified Modelling Language"
 https://www.omg.org/spec/UML/About-UML/
[OMG-fUML1] OMG “Semantics of a Foundational Subset for Executable UML Models (fUML)”
 https://www.omg.org/spec/FUML/1.4
[OMG-fUML2]] Modeldriven, ”The fUML Reference Implementation”
 https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md

[OMG-Alf] OMG “Action Language for Foundational UML (Alf)”
 https://www.omg.org/spec/ALF/1.1
[OMG-Alf-Spec] OMG “Alf Specification” https://www.omg.org/spec/ALF/1.1/PDF
[OMG-PSCS] Object Management Group "Precise Semantics of UML Composite Structure
 (PSCS)" https://www.omg.org/spec/PSCS/1.2
[OR17] O'Regan G. (2017). “Concise Guide to Formal Methods - Theory, Fundamentals and
 Industry Applications", Undergraduate Topics in Computer Science, Springer.
[OSG2004] Ober I., Graf S., Ober I. “Validation of UML Models via a Mapping to
 Communicating Extended Timed Automata" In: Graf S., Mounier L. (eds) Model Checking

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://link.springer.com/chapter/10.1007/978-3-642-38613-8_23
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2013/07/S2R-JU-GB_Decision-N-15-2015-MAAP.pdf
https://shift2rail.org/wp-content/uploads/2018/04/Maap_2018_FINAL_2.pdf
https://shift2rail.org/wp-content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-Part-B-20.5.2019.pdf
https://shift2rail.org/wp-content/uploads/2019/05/Draft-Shift2Rail-Multi-Annual-Action-Plan-Part-B-20.5.2019.pdf
https://www.mcrl2.org/
http://ceur-ws.org/Vol-2019/modevva_2.pdf
http://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/FUML/1.4
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md
https://www.omg.org/spec/ALF/1.1
https://www.omg.org/spec/PSCS/1.2
https://www.omg.org/spec/PSCS/1.2

G A 8 8 1 7 7 5 P a g e 35 | 61

 Software. SPIN 2004. Lecture Notes in Computer Science, vol 2989. Springer, Berlin,
 Heidelberg
[PEML] Jean-François Pétin, Dominique Evrot, Gérard Morel, Pascal Lamy "Combining SysML and
 formal models for safety requirements verification"
 https://hal.archives-ouvertes.fr/hal-00533311/document
[PROB] ProB website, https://www3.hhu.de/stups/prob/
[PTC-Windchill] PTC “Windchill Modeler SySim”
 https://www.ptc.com/en/products/plm/plm-products/windchill/modeler/sysim
[RBS2019] Abdul Rasheeq, Randolf Berglehner, and Colin Snook "Formal Specification of Railway
 Signalling System in SysML and UML-B", in RSSRail 2019 DOI: 10.13140/RG.2.2.21925.45288
[SG30] Anthony J.H. Simos, Ian Graham, “30 Things that go wrong in object modelling with UML
 1.3.” In: Behavioral Specifications of Businesses and Systems. The Springer
 International Series in Engineering and Computer Science, vol 523. Springer, Boston, MA
 https://doi.org/10.1007/978-1-4615-5229-1_17
 http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/uml30things.pdf
[SPARX] SPARX Systems Enterprise Architect https://sparxsystems.com/products/ea/index.html
[SSB2012] Snook C., Savicks V., Butler M. (2011) "Verification of UML Models by Translation to
 UML-B". In: Aichernig B.K., de Boer F.S., Bonsangue M.M. (eds) Formal Methods for
 Components and Objects. FMCO 2010. Lecture Notes in Computer Science, vol 6957.
 Springer, Berlin, Heidelberg
[SUB-039] UNISIG - “FIS for the RBC/RBC Handover“ - SUBSET-039 - 17-12-2015 (Issue 3.2.0)
[SUB-098] UNISIG - “RBC/RBC Safe Communication Interface” - SUBSET-098 - 21-05-2007
[TWC01] Tretmans, J., Wijbrans, K., Chaudron, M.R.W. (2001). “Software Engineering with
 Formal Methods: The Development of a Storm Surge Barrier Control System Revisiting
 Seven Myths of Formal Methods”. Formal Methods in System Design, 19(2): 195-215.
[UIC] European Union Agency for Railways https://uic.org/
[UMC1] KandISTI project website http://fmt.isti.cnr.it/kandisti
[UMC2] UMC project website http://fmt.isti.cnr.it/umc
[UNISIG] UNISIG is an industrial consortium factsheet
 http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_8_UNISIG.pdf
[UPPAAL] UPPAAL Web site http://www.uppaal.org/
[WHATISUML] Visual paradigm, “What is Unified Modeling Language (UML)”?
 https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
[WOD12] Woodcock, J., Larsen, P.G., Bicarregui, J., & Fitzgerald, J. (2009). “Formal methods:
 Practice and experience”. ACM Computing Surveys, 41(4): 1-36..
[X2RAIL2] ASTRail project website https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
[X2R2-D51] X2Rail project, Deliverable D5.1 ”Formal Methods (Taxonomy and Survey), Proposed
 Methods and Applications”
 https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8
[Y2010] S. J. Zhang and Y. Liu, "An Automatic Approach to Model Checking UML State
 Machines,"2010 Fourth International Conference on Secure Software Integration and
 Reliability Improvement Companion, Singapore, 2010, pp. 1-6,
 doi: 10.1109/SSIRI-C.2010.11.
[YLWD] W. L. Yeung, K. R. P. H. Leung, Ji Wang and Wei Dong, "Improvements towards

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://hal.archives-ouvertes.fr/hal-00533311/document
https://www3.hhu.de/stups/prob/
https://www.ptc.com/en/products/plm/plm-products/windchill/modeler/sysim
https://doi.org/10.1007/978-1-4615-5229-1_17
http://staffwww.dcs.shef.ac.uk/people/A.Simons/research/papers/uml30things.pdf
https://sparxsystems.com/products/ea/index.html
https://uic.org/
http://fmt.isti.cnr.it/kandisti
http://fmt.isti.cnr.it/umc
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_8_UNISIG.pdf
http://www.uppaal.org/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8

G A 8 8 1 7 7 5 P a g e 36 | 61

 formalizing UML state diagrams in CSP," 12th Asia-Pacific Software Engineering
 Conference (APSEC'05), Taipei, Taiwan, 2005, pp. 7 pp.-, doi: 10.1109/APSEC.2005.70.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 37 | 61

 Informative Annexes

8.1 List of UML tools
The following (not exhaustive) list of UML tools, as it appears on Wikipedia,
(https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools), has just the purpose
of giving an indication on how complex and heterogeneous is the ecosystem of UML tools. It is
definitely out-of-scope for the project to make an overall survey on this aspect, or to identify which
of these tools fits at best or demonstrator needs. This list, however, gives an overview of the high
degree of freedom that is currently available.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

G A 8 8 1 7 7 5 P a g e 38 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 39 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 40 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 41 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 42 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 43 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 44 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 45 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 46 | 61

The site “Modelling Languages” (https://modeling-languages.com) describes in a well structured
way the available resources and studies related to Modelling Languages. One of these resources
is a “curated list of UML tools” (https://modeling-languages.com/text-uml-tools-complete-list/).
The category “Textual UML tools” and “Executable UML tools” are of particular interest for our
purposes.

from: https://modeling-languages.com/list-of-executable-uml-tools/

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://modeling-languages.com/
https://modeling-languages.com/text-uml-tools-complete-list/

G A 8 8 1 7 7 5 P a g e 47 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 48 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 49 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 50 | 61

From: https://modeling-languages.com/text-uml-tools-complete-list/

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://modeling-languages.com/text-uml-tools-complete-list/

G A 8 8 1 7 7 5 P a g e 51 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 52 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 53 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 54 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 55 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 56 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 57 | 61

8.2 fUML

Extracts from: https://www.omg.org/spec/FUML/1.4 (December 2018).

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 58 | 61

Extracts from:
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md

 (April 2020)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md

G A 8 8 1 7 7 5 P a g e 59 | 61

8.3 ProB
from: https://www3.hhu.de/stups/prob/
 https://www3.hhu.de/stups/handbook/prob2/prob_handbook.pdf

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www3.hhu.de/stups/prob/
https://www3.hhu.de/stups/handbook/prob2/prob_handbook.pdf

G A 8 8 1 7 7 5 P a g e 60 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

G A 8 8 1 7 7 5 P a g e 61 | 61

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

