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1. COAT in a ‘nutshell’

The Climate Ecological Observatory for Arctic
Tundra (COAT) is a response to urgent international
calls for the establishment of scientifically robust
observation systems enabling long-term and real-
time detection, documentation, understanding and
predictions of climate impacts on Arctic tundra
ecosystems (Christensen et al. 2020). COAT aims
to be a fully ecosystem-based, long-term, adaptive
monitoring programme, based on a food-web
approach (Ims et al. 2013; Ims and Yoccoz 2017;
Appendix 1). The focus is on two Norwegian Arctic
regions, the low-Arctic Varanger peninsula and high-
Arctic Svalbard, that provide pertinent contrasts
in ecosystem complexity, climatic conditions
and management regimes. COAT Svalbard is an
essential component of the Svalbard Integrated
Arctic Earth Observing System (SIOS) and serves
to optimise and integrate the ecosystem-based
terrestrial monitoring.

UPDATE

In 2016, COAT Svalbard started to implement
research infrastructure related to data collection,
field logistics and data management solutions. To
cover the range of existing variation in climatic and
management contexts, the data sampling systems
are geographically distributed over Svalbard. Seven
full-scale operational weather stations form the
core infrastructure, essential for quantifying key
climatic variables along a coast-inland gradient
(Appendix 2). In addition, 32 herbivore exclosures,
networks of camera traps and acoustic sensors,
telemetric devices on animals, drones, and networks
of small instruments that log climate parameters
at the ground level have been established (Figure
1). The COAT programme is now entering the
operational phase of the long-term ecosystem-
based monitoring.

2. Current status and trends in the Svalbard terrestrial

ecosystem

In 2021, the first operational assessment of the
ecological condition of Norwegian Arctic tundra
ecosystems was conducted by a scientific panel,
using core long-term monitoring data from
COAT Svalbard and MOSJ (www.mosj.no) and
the methodology for Panel-based Assessment of
Ecosystem Condition (PAEC; Jepsen et al. 2020). The
assessment was based on analyses of 34 datasets,
supporting 24 indicators unique to the terrestrial
ecosystem in Svalbard (Appendix 3).

2.1. Climate characteristics and
ecological implications

The Arctic tundra is one of Earth’s largest terrestrial
biomes, comprising all terrestrial ecosystems north
of the continuous boreal forest. Here, temperatures
are rising three times faster than the global average
(IPCC, 2021). Since 1971, annual air temperature
has increased 3-5°C in all seasons, with the largest
increase in winter and the smallest in summer

(Hanssen-Bauer et al. 2019). Current winters are
characterised by fewer extreme cold days (Nordli
et al. 2020) and more frequent mild days with
precipitation falling as rain (Figure 2A). Climatic
delineation of the Arctic bioclimatic subzones is
based on July temperatures, as July temperature
is a key characteristic of the plant growing season
(Figure 2B). Changes in mean July temperature
in Svalbard indicate that climatically, most of the
Svalbard tundra has shifted by an entire bioclimatic
sub-zone (Pedersen et al. 2021c). The bio-climatic
zones are moving eastward in accordance with
transport of atmospheric heat and moisture
from the Icelandic low and the warm West
Spitsbergen current (Hanssen-Bauer et al. 2019).
Climatic change in these zones is expected to be
accompanied by significant alteration of ecosystems
and focal components with knock-on effects on
function, structure and productivity (IPCC, 2021).
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Figure 1: The Climate-ecological Observatory for Arctic Tundra (COAT) builds on and expands the existing monitoring
in Svalbard to become fully ecosystem-based. COAT Svalbard is an essential component of the Svalbard Integrated
Arctic Earth Observing System (SIOS) and serves to optimise and integrate the ecosystem-based terrestrial monitoring.
Currently, COAT Svalbard has implemented research infrastructure in two focal study regions in A) Nordenskiold Land and
B) Braggerhalvaya. In both these regions there are also existing long time-series on focal ecosystem components like the
Arctic fox, geese, Svalbard reindeer and Svalbard rock ptarmigan. (Map: Anders Skoglund, NPI)
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For the past 60 years, the measured annual
precipitation at the four long-term Norwegian
full-scale operational weather stations (Bjgrnaya,
Hopen, Svalbard Airport, and Ny-Alesund) in
the Svalbard region has increased by 30%-45%
(Fgrland et al. 2020, Figure 2C). Higher winter
temperatures cause more frequent episodes of
winter rain (Figure 2D), resulting in a regime shift
in winter climate (Peeters et al. 2019). The spatial
extent and thickness of basal ice increased strongly
with the amount of winter rain (Peeters et al.
2019). However, considerable spatial variation
exists, particularly along the coast-inland gradient.
Increased frequency of rain-on-snow, resulting in
basal ground ice formation, has negative impacts on
population growth rates of the resident herbivore
species (Hansen et al. 2013). Basal ground ice
damages vegetation (Milner et al. 2016) and
prevents herbivores from accessing food. Increased
winter mortality of reindeer, in turn, positively
affects food availability for the Arctic fox (Vulpes
lagopus) and subsequent reproduction (Nater
et al. 2021). However, it is still unclear whether
increasing temperatures will result in winters so
mild that forage access is generally improved for
herbivores (due to snow melting), rather than
blocking access to foraging grounds (due to ground
ice formation).

Hydrological characteristics are changing due to
increased precipitation and snowmelt patterns (see
Gallet et al. 2019 for a review). The annual average
surface run-off has increased by more than a third,
mainly due to increased glacier melt and increased
winter precipitation. This may increase glacial
lake outburst floods as well as affecting erosion
intensity and sediment supply to rivers (Hanssen-
Bauer et al. 2019). The snow season has decreased
by approximately 20 days since the middle of the
last century and this trend is expected to continue,
resulting in shifts in spring and winter onset
(Hanssen-Bauer et al. 2019; Figure 2E). Snow cover
duration is decreasing everywhere in Svalbard,
but most rapidly in the middle-Arctic tundra zone
(Pedersen et al. 2021¢).

UPDATE

Changes in season length have a range of
implications for food web interactions. An extended
growing and grazing season may have a positive
effect on reproduction and habitat suitability for
herbivores (Albon et al. 2017; Layton-Matthews
et al. 2019). Furthermore, patterns of snow melt
determine e.g. the extent and intensity of tundra
disturbance caused by pink-footed goose (Anser
brachyrhynchus) when grubbing for below-ground
food items in early spring (Anderson et al. 2016)
and the subsequent breeding success of migratory
geese species (Jensen et al. 2014; Lameris et al.
2019).

The permafrost is thawing, altering landscape
structure (Isaksen et al. 2016). Increased air
temperatures and precipitation result in an increase
in the thickness of the active soil layer above the
permafrost in high-Arctic Svalbard (Etzelmdller et
al. 2020; Hanssen-Bauer et al. 2019). This is also
associated with an increase in the annual and
seasonal temperature in the permafrost as well
as the near-surface soils within the active layer
(Etzelmdller et al. 2020) (Figure 2F). These changes
can cause structural instabilities in slopes and in the
ground as well as altering hydrology and vegetation,
especially where permafrost layers are embedded
in sediments (Hanssen-Bauer et al. 2019).

Sea ice decline is pronounced in Svalbard and
the Barents Sea area (Onarheim et al. 2018).
The loss and earlier retreat of sea ice in spring
has implications for the terrestrial ecosystem. In
spring, the sea ice has on average retreated two
weeks earlier per decade since 1979 (Laidre et
al. 2015). Whereas presence of abundant sea ice
near the coast during the growing season favours
local control of tundra productivity by sea ice, very
likely through sea breeze (cold air advection from
ice-covered ocean onto adjacent land during the
growing season), the large-scale atmospheric and
sea surface dynamics (captured by the NAO index)
might reflect co-variability of sea ice and tundra
productivity (Macias-Fauria et al. 2017). Sea ice loss
reduces the possibilities for the Arctic fox to hunt
and scavenge on this substrate (Fuglei and Tarroux
2019) and constrains reindeer dispersal (Pedersen
et al. 2021b).
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Figure 2: A) Number of winter melt days (daily mean temperature >0°C) per year for Svalbard archipelago, B) modelled
annual mean July temperature (°C), C) modelled annual mean precipitation (mm), D) fraction of solid precipitation in Ny-
Alesund and Svalbard Lufthavn during 1969-2018 (modified from Farland et al. 2020), E) modelled number of days with
snow cover per year and F) trends in depth (cm) of the active layer in Adventdalen in central Spitsbergen (www.mosj.no).
Trend lines indicate the estimated linear rate of change and shading indicates +2SE (modified from Pedersen et al. 2021b).
Data for figure A-C and E are based on 1x1 km gridded datasets derived from downscaling of atmospheric reanalyses
(Sval-lmp dataset 1961-2017; @stby et al. 2017). The trend line (A-C, E) displays the rate of change (+2SE) if the indicator
value is assumed to be constant (solid grey and dashed) in the climatic reference period and NOT assumed to be constant
(dotted; A-C and E) in the climatic reference period, but equal to the predicted regression line for the period 1961-1990.
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2.2. Primary productivity

Primary productivity can be quantified as e.g.
phenology or maximum productivity during
the summer season. The recent assessment of
ecosystem condition in the Norwegian Arctic
tundra found a trend towards an earlier start
of the growing season and increased maximum
productivity, measured with satellite imagery
between 2000-2019 (Pedersen et al. 2021c¢). There
is, however, considerable spatial heterogeneity
in the observed patterns. Accordingly, current
changes in primary productivity still have limited
impact on the ecological condition of the tundra
ecosystem.

A recent pan-Arctic study found that reproductive
phenology responds stronger to experimental
warming than vegetative phenology (Collins et
al. 2021). Flowering, end of flowering and seed
dispersal all advanced with a moderate experimental
warming, and the vegetation greened earlier and
senesced later, resulting in a prolonged growing
season. The average advances in leaf green-up and
reproductive phenology were 0.7-2.9 days and
delay in leaf senescence 0.8 days. These results
highlight the importance of combining satellite-
based data, typically only available at coarse
temporal and spatial resolution, with detailed field
studies to better understand drivers of the observed
heterogeneity and to enhance the interpretation
of changes in primary productivity in a food web
context. This is critical, as herbivore populations are
expected to be impacted by an altered timing of the
phenological states (e.g. Lameris et al. 2019).

New satellite data, such as the Sentinel-2 mission,
are expected to resolve the challenges of spatial
and temporal resolution. Cloud coverage, however,
remains an issue even with the frequent passages
of the Sentinel satellites over Svalbard. Moreover,
the linkage between ground observations and
Sentinel-2 based estimates of growing season
start are not uniform across the tundra habitats
(Karlsen et al. 2021). There is a need to investigate
several aspects of the different satellite time
series to improve data quality and enhance
comparison between the current MODIS time

UPDATE

series and the emerging Sentinel-2 data. Field-
based validation is required to understand what
implications the satellite-observed changes have
for nutrient content, compositional change and
phenology of the tundra vegetation. To improve our
understanding of changes in primary productivity
and its implications for the food web, the COAT
Svalbard vegetation work makes use of herbivore
exclosures, monitoring at 57 field stations, imagery
acquired with drones and satellites, and analysis of
plant and soil nutrient contents (Ravolainen et al.
2020).

2.3. Changes in higher trophic levels
and overall trends in monitoring

targets

The Svalbard tundra ecosystem has undergone
rapid and substantial changes in abiotic conditions,
particularly increasing temperatures, longer and
warmer growing seasons, shorter snow-cover
seasons, and thawing of permafrost. The biotic
implications of these changes are still mostly limited,
and mainly evident in ecosystem characteristics
(e.g., landscape-ecological patterns and biological
diversity) and indicators (e.g., Arctic endemic
species and plant communities) with strong causal
links to climate (Appendix 4).

Currently, the abundance of monitored vertebrate
populations appears to be stable or increasing
(reindeer, ptarmigan, fox and geese; Fauteux
et al. 2021; Hansen et al. 2019b; Johnson et al.
2020; Layton-Matthews et al. 2020; Marolla
et al. 2021; Nater et al. 2021) (Figure 3). There
could be several reasons for this. The monitored
herbivores include resident and migratory species
that are at the northern edge of their distribution
range. They are adapted to harsh conditions,
including food limitations and extreme cold, but
show considerable plasticity. Thus, longer growing
seasons would reduce food constraints and allow
for better body condition, leading to increased
reproduction (Albon et al. 2017; Loe et al. 2021).
While stochastic perturbations in the form of large-
scale rain-on-snow (ROS) events and resultant
basal ice continue to affect annual variability in
population growth rates of many species, their
impacts may be at least partially alleviated by
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Figure 3: Time-series of the abundances of four key vertebrate species. A) Population size of Svalbard reindeer (modified
from Pedersen et al. 2021¢). B. Population size of Svalbard pink-footed goose and barnacle goose (modified from Pedersen
etal. 2021¢). C. Arctic fox dens with pups (modified from Layton-Matthews et al. 2020; Pedersen et al. 2021c). D) Number
of ptarmigan males per square kilometer (modified from Marolla et al. 2021).

improved summer conditions. Indeed, while severe
winter weather events can have drastic short-term
consequences, Hansen et al. (2019a) documented
that they may have a stabilising effect on reindeer
population dynamics in the long run. Tundra
plants respond immediately to warming summer
temperatures by increasing growth (Van der Wal
and Stien 2014), and both reindeer and geese can
have local effects on plant biomass and modify the
tundra vegetation communities (Ravolainen et al.
2020). Consequently, changes in their abundance,
interacting with climate warming, are expected
to have ‘knock-on effects’ on the composition,
structure and productivity of the Svalbard
vegetation communities.

The observed shift in bioclimatic zonation towards
a low-Arctic zone provides suitable growing
conditions for a higher diversity of plants and

the potential for establishment of new functional
groups (e.g., shrubs). Such changes in plant
communities are not yet apparent. This may be due
to long time-lags in vegetation community-level
responses to climate. However, there is presently
a lack of long-term monitoring data suitable for
documenting slow community-level vegetation
transitions (Ravolainen et al. 2020). This represents
a major gap in our capacity to assess climate
change impacts on tundra vegetation, including the
cascading effects on food web dynamics and overall
ecosystem functioning. COAT aims to fill this gap by
establishing the required long-term monitoring and
model-based analyses for disentangling changes in
key food web processes (e.g., Ims and Yoccoz 2017;
Ravolainen et al. 2020). This will provide a solid
foundation for a better understanding of climate
change impacts on the ecological condition of high-
Arctic tundra ecosystems.

SESS Report 2021 - The State of Environmental Science in Svalbard



UPDATE

3. Unanswered questions, challenges and recommendations

for the future

Long-term ecosystem-based monitoring is crucial
to (1) establish how anthropogenic pressures affect
the ecosystem, and to (2) assess the effectiveness
of management actions (Christensen et al. 2020;
Ims and Yoccoz 2017). Key success criteria are
co-location of measurements at ecologically
relevant spatial and temporal scales, harmonised
and standardised methods, and procedures for data
integration from observations and experiments to
models of causal relations (Ims and Yoccoz 2017;
Musche et al. 2019). For the long-term running of
the ecosystem-based monitoring, we recommend
the following:

Climatic drivers of ecosystem change: The
ecosystem implications of a rapidly warming climate
are central and a generally important arena for
interdisciplinary research. COAT Svalbard scientists
have quantified climate effects on central state
variables in the monitoring modules (summarised
in Pedersen et al. 2021a, Table 4). For example,
ptarmigan population dynamics are mainly affected
by increased winter temperature (Appendix 5;
Marolla et al. 2021), while reindeer body mass and
subsequent reproduction are driven by ROS events
and the onset of snow in autumn (Loe et al. 2021).
Further identification of such driver-response
relationships ought to be given high priority.

COAT Svalbard has established observational
time series of snow properties. However, the
understanding of ecosystem impacts of changing
snow conditions requires snow modelling products
that provide accurate, spatially distributed and
time-evolving datasets of snow properties. This can
be acquired through the data-model fusion system
that merges available observational datasets
on snow properties with state-of-the-art, high-

resolution (1- to 500-metre scale), physically based
snow models.

New methods and technologies: Ecosystem
monitoring has entered an era where new
technologies allow for automatic measurements
that are spatially and temporally more extensive
and have higher resolution than traditional manual
measurements. Such ground (automatic sensors)
and remotely (drones, satellites) based technologies
should be optimised to improve the scope of field
measurements (see examples in Kleiven et al.
2021; Molle et al. 2021). There is a substantial
effort involved in consolidating sensor-based data
to ecosystem processes occurring on the ground.
New developments should also include analytical
tools (algorithms) to improve the assimilation and
processing of large amounts of raw sensor data
to operative ecological state variables, as well as
refined statistical models that can be used for more
robust causal inferences and short-term predictions
based on such state variables.

Interface with end-users and cooperation: It is
COAT'’s ambition to be highly relevant to policy
makers and managers. Given the prospects of
climate change, Arctic ecosystems are likely to be
transformed beyond scientists’ current abilities
to make predictions and managers’ capacity to
implement mitigation and adaptation strategies.
This grand challenge requires more sincere
efforts to develop structured interfaces between
monitoring-based ecosystem science and end-
users than are presently implemented within COAT
Svalbard (Ims and Yoccoz 2017: see Pedersen et al.
2021a, Table 4, for an overview and Henden et al.
2020 for an example).
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4. Data availability

The COAT data management system is a crucial
part of the research infrastructure. COAT's data
portal (https:/data.coat.no/) builds on international
metadata standards (DCAT, schema.org-structured
data and ISO 19115/CSW) compatible with SIOS’s
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Appendix 1: The Svalbard terrestrial food web and the COAT
monitoring modules

Glaucous gull Arctic fox

Carrion K] Passerine and shore birds

A N

Ptarmigan Reindeer

Insects

Mosses Grasses and sedges Salix

—3» Direct linkage
Arctic fox

= = ¥ Indirect linkage Zoonoses
(via generalist predator)

Ptarmigan Ungulates Goose
Dry-mesic plant Generalist predators Mesic-wet plant
communities communities

Moss tundra
Meadow plant

The terrestrial food web in Svalbard (upper panel) is represented with (lower panel) five biotic and one cross-cutting climate
monitoring module (not shown here). For a detailed description of the Svalbard terrestrial tundra ecosystem, see Box 1 in
Pedersen et al. (2020)! and Descamps et al. (2017)2.

1 Pedersen A@, Jepsen JU, Paulsen IMG et al (2021c) Norwegian Arctic tundra: a panel-based assessment of ecosystem condition. Report
Series 153. Norwegian Polar Institute, Tromsa

2 Descamps S, Aars J, Fuglei E, et al (2017) Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway. Glob Change
Biol 23:490-502. https:/doi.org/10.1111/gcb.13381
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Appendix 2: COAT Climate monitoring network

The climate module covers the main climatic
variables that are expected to act as drivers on
ecosystem components, i.e. air and soil temperature,
precipitation, wind direction and speed, snow cover
and depth, air humidity, radiation, basal ice cover,
and timing of snowmelt.

Full-scale operational weather stations are a
core infrastructure in COAT’s climate monitoring
network. They cover an important ecological
gradient from the coast to inland valleys. Along
with the weather stations, a network of ground
temperature loggers was established to measure
both temperature and soil moisture along
elevational gradients, at module stations and in a

network around selected weather stations.

The data from the COAT stations are also essential
to calibrate spatial and temporal snow models
(see Liston and Elder 2006° for an example), as
the cryosphere has a key role in determining the
dynamics of the Svalbard tundra ecosystem (e.g.
Hansen et al. 2013 Stien et al. 2012%).

The weather stations are ‘hot-spots’ for potential
co-location and expansion of measurements to
cover a wider range of variables related to both
the biosphere and the cryosphere. Data from the
weather stations can be downloaded from www.
seklima.met.no/observations/.

Photos: Ketil Isaksen

3 Liston GE, Elder K (2006) A meterological distribution system for high resolution terrestrial modelling (MicroMet). J. Hydrometeor 7: 217-

234. https:/doi.org/10.1175/JHM486.1

4 Hansen BB, Grgtan V, Aanes R et al (2013) Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic.

Science 339:313-315. https:/doi.org/10.1126/science.1226766

5 Stien A, Ims RA, Albon SD et al (2012) Congruent responses to weather variability in high Arctic herbivores. Biol Lett 8:1002-1005. https:/

doi.org/10.1098/rsbl.2012.0764
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Appendix 3: Biotic and abiotic indicators for each of the seven
ecosystem characteristics addressed in the assessment of Arctic

tundra in Svalbard

The reference condition, relative to which all
assessments of current ecosystem condition should
be made, is defined as ‘an intact ecosystem state’,
which is characterised by the maintenance of
the fundamental ecosystem structures, functions
and productivity. The majority of indicators were

Primary productivity

derived from COAT, with support from SIOS, and
the Environmental Monitoring of Jan Mayen and
Svalbard (MOSJ) programme, dedicated specifically
to the monitoring of Norwegian Arctic tundra
ecosystems. See section 5 and Tables in Pedersen
et al. (2021¢)° for associated information.

Maximum vegetation productivity

Start of growing season

levels

Biomass between trophic

Maximum vegetation productivity
versus Svalbard reindeer

Maximum vegetation productivity
versus geese

Herbivorous vertebrates versus
Arctic fox

Functional groups within
trophic levels

Herbivorous vertebrates

Functionally important
species and biophysical
structures

Pink-footed goose abundance

Barnacle goose abundance

Svalbard reindeer abundance

Svalbard reindeer mortality rate

Svalbard reindeer calf rate

Arctic fox abundance

Landscape-ecological
patterns

Bioclimatic subzones

Wilderness areas

Biological diversity

Svalbard rock ptarmigan breeding
abundance

Abiotic factors

Days with extreme cold

Winter melt days

Degree days

Growing degree days

Annual mean temperature

July mean temperature

Annual precipitation

Permafrost

Snow cover duration

6 Pedersen A@, Jepsen JU, Paulsen IMG et al (2021¢) Norwegian Arctic tundra: a panel-based assessment of ecosystem condition. Report

Series 153. Norwegian Polar Institute, Tromsg
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Appendix 4: Key conclusions from the assessment of ecological
condition of Norwegian Arctic tundra

e Norwegian Arctic tundra ecosystems have since
the climatic reference period (1961-1990)
undergone rapid and substantial changes in
the abiotic conditions manifested particularly
as increasing surface temperatures, longer and
warmer growing seasons, shortening of the
snow-covered season, and increasing permafrost
temperatures.

e The biotic implications of these changes are still
mostly limited, and mainly evident in ecosystem
characteristics (Landscape-ecological patterns
and biological diversity) and indicators (e.g.
Bioclimatic subzones, Arctic and endemic
species, Plant communities) with strong causal
links to climate.

Reports can be downloaded at:

e The scientific panel concludes that Norwegian
Arctic tundra ecosystems are overall in a
good ecological condition, with fundamental
structures and functions still maintained, despite
substantial abiotic changes. However, some
biotic ecosystem characteristics show deviations
from the reference condition, while others are
presently on significant change trajectories,
which should be considered a warning of more
extensive, incipient ecosystem changes. Of the
two sub-ecosystems assessed, the low-Arctic
tundra in Finnmark shows more pronounced and
consistent deviations in biotic characteristics
than the high-Arctic tundra in Svalbard. In
Finnmark, the Arctic tundra ecosystems are on
a trajectory of losing Arctic endemic species
(Arctic fox and snowy owl) and are bioclimatically
on a trajectory away from low-Arctic subzones
towards boreal subzones.

https:/brage.npolar.no/npolar-xmlui/handle/11250/2754696

https:/brage.npolar.no/npolar-xmlui/handle/11250/2754717
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Appendix 5: lterative model predictions for wildlife populations

impacted by rapid climate change

Marolla et al. (2021)” used MOSJ and COAT long-
term monitoring data of Svalbard rock ptarmigan
and other biotic and abiotic ecosystem state
variables to identify drivers of population dynamics
and to evaluate the ability of state-space models
to predict next-year ptarmigan density. Firstly, they
laid out the hypothesised impacts of the biotic and
abiotic drivers on ptarmigan dynamics and visualised
them through the conceptual COAT model. They
then fitted state-space models to Svalbard rock
ptarmigan monitoring data to 1) quantify the
effects of potential drivers of population dynamics
(explanatory predictions) and 2) assess the ability
of candidate models of increasing complexity to
forecast next-year population density (anticipatory
predictions).

Benefitting from the ecosystem-wide monitoring
data, they were able to attribute a recent increasing
trend in the ptarmigan population to major changes

in winter climate, especially in terms of mean
temperature. As winters become warmer, ptarmigan
appear to benefit from these conditions, likely
because their energy needs for thermoregulation
are reduced. This probably improves their body
condition throughout the winter and thus increases
survival. The strong positive effect of increasing
winter temperature on ptarmigan population
growth currently outweighs the negative impacts of
other manifestations of climate change, e.g., rain-
on-snow events. The ptarmigan population also
appears to compensate for the impact of the main
manageable driver, i.e., current harvest levels.

This study highlights the value of the ecosystem-
wide COAT monitoring in Svalbard and the
application of multi-driver statistical modelling
based on these monitoring data to assess and
forecast the state of Svalbard rock ptarmigan
populations.

7 Marolla F, Henden JA, Fuglei E, Pedersen A@, Itkin M, Ims RA (2021) Iterative model predictions for wildlife populations impacted by rapid
climate change. Global Change Biology, 27(8), 1547-1559. https://doi.org/10.1111/gcb.15518
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