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Abstract. The goal of the lockdown is to mitigate and if possible prevent the spread
of an epidemic. It consists in reducing social interactions. This is taken into account
by the introduction of a factor of reduction of social interactions q, and by decreasing
the transmission coefficient of the disease accordingly. Evaluating q is a difficult
question and one can ask if it makes sense to compute an average coefficient q for
a given population, in order to make predictions on the basic reproduction rate R0,
the dynamics of the epidemic or the fraction of the population that will have been
infected by the end of the epidemic. On a very simple example, we show that the
computation ofR0 in a heterogeneous population is not reduced to the computation of
an average q but rather to the direct computation of an average coefficient R0. Even
more interesting is the fact that, in a range of data compatible with the Covid-19
outbreak, the size of the epidemic is deeply modified by social heterogeneity, as is the
height of the epidemic peak, while the date at which it is reached mainly depends on
the average R0 coefficient. This paper illustrates more technical results that can be
found in [4], with new numerical computations. It is intended to draw the attention
on the role of heterogeneities in a population in a very simple case, which might be
difficult to apprehend in more realistic but also more complex models.

The model. We consider a compartmental model based on the SEIR equations
(for Susceptible, Exposed, Infected, Recovered) with n categories of susceptible in-
dividuals and a total number of individuals N given by

dSk
dt

= −βk Sk
I

N
,

dE

dt
=

n∑
k=1

βk Sk
I

N
− αE ,

dI

dt
= αE − γ I ,

dR

dt
= γ I .

(1)
We consider this system as a function of t ≥ 0 in terms of the initial data corre-
sponding to the values of S, E, I and R at t = 0. The average incubation period is
1/α, the parameter βk is the product of the average number of contacts per person
and per unit time by the probability of disease transmission in a contact between a
susceptible individual in the group k and any infectious individual, γ is a transition
rate so that 1/γ measures the duration of the infection of an individual (or actu-
ally how long he is infectious and able to contaminate other people before being
isolated), and N is the total population size.

An individual in the group k is characterized by his transmission rate βk. In
simple SEIR models of lockdown, a single group is considered (n = 1) and it
has been proposed for instance in [7] to introduce a factor of reduction of social
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interactions q so that the effect of the lockdown is to reduce the transmission rate
from β1 before lockdown to β1/q after lockdown. Our goal is to study what happens
if there are, after lockdown, n ≥ 2 groups with different factors of reduction of social
interactions qk, so that

βk =
β

qk
,

where β is a fixed, given parameter. We shall speak of social groups and social
heterogeneity because each group has its own transmission rate βk. This rate does
not interfere with the dynamics of the disease once the corresponding individual
is infected. In a period of lockdown, the reduction factor is not the same for
a health worker, a supermarket cashier or an employee working from home by
internet. Actually βk can also be used to take into account other characteristics of
the population, like age groups, which play a role in the risk of becoming infected.
Here we assume that qk determines the initial group of an individual and does not
vary over time. The other coefficients α, β and γ of System (1) are also assumed to
be independent of t. A last point of terminology concerns the notion of individuals.
As we use a compartmental model, we should speak only of the proportion of
individuals in a compartment. Since the total number of individuals N is taken
large, this proportion can be considered as a continuous variable subject to ordinary
differential equations, which is precisely what we do in (1).

Reduction of social interactions and basic reproduction ratio. Let us con-
sider the initial probability distribution among the groups such that, at t = 0,

Sk(0) = pk S(0) where S(0) =

n∑
k=1

Sk(0) .

Notice that pk is a parameter used for the description of the initial datum only.
In a disease free equilibrium corresponding to S = N , it would be very natural to
consider an average factor of reduction of social interactions

q =

n∑
k=1

pk qk

and this is actually what is done implicitly when a single compartment of susceptible
individuals is considered. In that case, the basic reproduction ratio computed for
instance by the next generation matrix method (see [3] and references therein) is
β/(q γ). However, if we apply the next generation matrix method to (1), we found
in [4, Theorem 4.2 (1)] that the basic reproduction ratio is

R0 =

n∑
k=1

pk
βk
γ
. (2)

Although this is a relatively elementary property, there are already important con-
sequences, for instance in the case β

q γ < 1 < R0. While a model with a single
compartment and an average factor of reduction of social interactions predicts the
extinction of the epidemic, a small group with high transmission factor βk, even
if numerically not very large (that is, with pk small), can spread the disease and
trigger an outbreak. This is one of the possible interpretations of the data, which
were suggesting a pattern corresponding to a basic reproduction ratio larger than 1
in the initial stage of the lockdown in France rather than an expected exponential
decay of the number of cases.
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Limitations and choice of the numerical parameters. System (1) is an ex-
tremely simplified model, in which Undetected or asymptomatic cases are not taken
into account, although this seems an important issue in the Covid-19 pandemic. It
is also a model for short term (say of the order of three months) so that the evo-
lution of the structure as well as natural birth and death rates are not taken into
account. If Covid-19 becomes endemic or last longer, it will not be possible to keep
ignoring such issues anymore. Feedback mechanisms and changes in the values of
the parameters due to the evolution of the disease or the changes in social habits
are certainly going to play a role. More important is the fact that the parameters
are fitted on the basis of official data during the very early stage of the disease.

System (1) is homogeneous so that we can simply consider the fractions

sk :=
Sk
N
, s :=

S

N
, e :=

E

N
, i :=

I

N
, r :=

R

N

of the Susceptible, Exposed, Infected and Recovered individuals among the whole
population as a function of the time t ≥ 0. Numerical values are taken from [2]: for
the initial data, at t = 0, we consider a perturbation of the disease free equilibrium
given by sk(0) = pk s(0) and

s(0) = 0.99981 , e(0) = 8.81× 10−5 , i(0) = 1.88× 10−5 , r(0) = 8.04× 10−5 ,
(3)

based on the data of March 15, 2020 in France from [8], and choose in (1)

β = 2.33 , α = 0.25 , γ = 1 , (4)

which gives us a basic reproduction ratio of 2.33 (in the case of a single group).
The reader interested in further details and comparisons is invited to refer to [4],
where the choice of the numerical parameters is discussed in greater details. This
set of initial data and parameters is however not a key issue for our discussion.
Our contribution is focused on understanding the theoretical implications of social
heterogeneity and remains valid for other sets of numerical choices. Numerical
choices (3)-(4) are given only for an illustrative purpose.

In [2], N. Bacaër is able to fit the curve of the number of infected individuals
with a single group and q1 = 1.7, at the beginning of the lockdown. In [4], it is
shown that with two groups, p1 = 98%, p2 = 2%, q1 = 2.35 and q2 = 0.117, we can
recover the same reproduction ratio of 1.37 as in [2]. In order to fix ideas, we take

q1 = 2.4

which corresponds to a reduction of the transmission rate of 1/q1 ≈ 42% in the
group k = 1. We emphasize that we have no empirical basis to determine this
parameter. The idea is to pick for q1 a value larger than 2.33 so that, in presence of a
single group, the epidemic would rapidly extinguish. However, a second group with
a moderate or high transmission coefficient β2 is enough to produce an outbreak
corresponding to a global R0 > 1 and we study how various features of the epidemic
curve depend on β2. See Fig. 1.

From now on, we shall assume in all our numerical results that n = 2 (two
groups) and vary p = p2 (so that p1 = 1− p). Consistently with the idea that the
initial stage of the outbreak is independent of the groups, we take as initial data
s1(0) = (1−p) s(0) and s2(0) = p s(0). We keep p small and take it in the range 1 to
5% in our examples. It is not difficult to understand that the destabilization due to
a small fraction p of the population (the k = 2 group) in the large group (the k = 1
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Figure 1. Numerical values of R0: we take p small but assume
that the individuals in the group k = 2 may have a moderate or
high transmission coefficient β2.

group) in which the epidemic would be under control if it were isolated, is all the
stronger when the basic reproduction ratio (inside the k = 1 group, considered as
isolated) is close to 1: this is the reason why we arbitrarily choose q1 = 2.4. The
case of q2 small (eventually smaller than 1), corresponding to individuals in the
group k = 2 with high transmission rates, is of particular interest.

Our model is overly simplified. More realistic models should describe social
interactions with far more details, address not only lockdown but also mask wearing
and disinfection measures, social-distancing, self-quarantine, various types of stay-
at-home orders and curfews, etc., and also take into account the evolution of the
parameters induced by behavioural changes and economical constraints as studied
for instance in [6].

The epidemic size. The (final) epidemic size ζ is defined as the fraction of indi-
viduals that are affected by the epidemic for large times, here s(0)− s?, where s? is
the fraction which is not infected at the end of the epidemic. Under the condition
that R0 > 1 and 1− s(0) is small, we find that r? = 1 − s? is of the order of the
solution r of

n∑
k=1

e−
βk r

γ + r = 1

(see in [4, Section 3.2 and Theorem 4.2 (1)]). It is also proved in [4, Theorem 4.2 (3)]
that ζ is decreased when n is increased from n = 1 to an arbitrary n ≥ 2 (for our
numerical examples, we take n = 2). See Figs. 2 and 3. In Fig. 3, R0 = 1.37 is
achieved in a single group with q ≈ 1.70 as in [2], which gives an epidemic size
ζ ≈ 49%. The same value R0 = 1.37, which is obtained in two groups with p = 1%,
q1 = 2.4 (and q2 ≈ 0.06), gives an epidemic size ζ ≈ 12%.
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Figure 2. Epidemic size ζ as a function of β2 for p = 0.01,
0.02,. . . 0.05 (blue; n = 2) and p = 1 (red, n = 1). This red curve
corresponds to an outbreak with a basic reproduction ratio β2/γ.
This is however not so instructive as the k = 2 group is a small
proportion of the population, but with high transmission rate.
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Figure 3. Epidemic size ζ as a function of R0 for p = 0.01,
0.02,. . . 0.05 (blue) and p = 1 (red), which corresponds to the case
of a single group. With the same R0 = 1.37, we see that ζ is
drastically decreased.

The epidemic peak. Not only the asymptotics of the epidemic are changed when
replacing the model with n = 1 by a model with n = 2, but also the dynamical
behavior of the solutions. The height of the epidemic peak (defined as the maximum
of infected e + i as function of time) is decreased when n is increased form n = 1
to n ≥ 2: see [4] for a proof. The height and date of the epidemic peak strongly
depend on p. See Figs. 4, 5 and 6. In Fig. 5, for the same value of R0 ≈ 1.5, the
curve t 7→ e(t) + i(t) is represented in red for a single group (this corresponds here
to a factor of reduction of social interactions q ≈ 1.55) and in blue in the case of
two groups (with parameters q1 = 2.4, q2 = 0.2 and p = 0.05).
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Figure 4. Fraction of exposed and infected individuals e + i
as a function of time (in days) for p = 0.01, 0.02,. . . 0.05, with
β2 = 11.65 corresponding to q2 = 0.2.
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Figure 5. A striking effect of the heterogeneity is the flattening
of the curve shown here for R0 ≈ 1.5.

Now, let us describe how the epidemic peak depends on the parameters in our
two groups example. For a given value of β2, larger values of p mean a larger R0,
with a linear dependence given by (2), a larger epidemic size (see Fig. 2), but also a
larger epidemic peak (see Fig. 6). Let us denote by t? the date of the peak and let
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Figure 6. Size (left) and date (right) of the epidemic peak as
function of p in the range 0.27% to 5%. With our choice of the pa-
rameters (q1 = 2.4 and q2 = 0.2), there is no outbreak if p ≤ 0.27%,
because R0 ≤ 1 in that case.

m? := e(t?) + i(t?) = maxt≥0

(
e(t) + i(t)

)
. We observe that p 7→ m?(p) is increasing

with p and t? is non-increasing with R0 for sufficiently large values of R0.
It is also interesting to make comparisons with the same value of R0. In our

model case for n = 2, using (2) and the definition of βk, we can for instance choose
q2 as a function of p to achieve a fixed value of R0 and get

q2 =
β p q1

γ q1R0 − (1− β) p
. (5)

See Fig. 7 for some qualitative results on the dependence of m? and t? in R0, for
various values of p. Although not linear, the size of the epidemic peak is a clearly
increasing function of p in the outbreak regime. It is an empirical but remarkable
fact that, for our set of data, the date of the epidemic peak almost does not depend
on p.
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Figure 7. Left: size of the epidemic peak as a function of R0.
Right: date of the epidemic peak as a function of R0. Plots corre-
spond to p = 0.01, 0.02,. . . 0.05.
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The R0 is not the message. As seen in Fig. 7, R0 does not retain all relevant
information and for a given q1 andR0, one may still vary either p or q2 and eliminate
the other one using (2). Here we shall rely on (5) for a few more plots which show
some additional qualitative features of the epidemic size and peak.
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Figure 8. The epidemic size ζ as a function of p ranging from 0
to 0.05, where q2 is adjusted according to (5) so that R0 is given
and equal to 1.1, 1.2 and 1.7.
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Figure 9. The epidemic curve and the peak strongly depends
on R0. Notice that the scale on the vertical axis is the same in the
three cases corresponding to R0 = 1.1, 1.2 and 1.7, while the time
scale is respectively (0, 200), (0, 400), and (0, 600). On each plot,
the curves correspond to p = 0.01, 0.02,. . . 0.05.
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Discussion. The goal of a lockdown is to reduce the basic reproduction ratio of
the epidemic to a value less than 1 and drive the disease to extinction, or at least
decrease it in such a way that “the curve is flattened”. The efficiency of the lockdown
is achieved by a reduction of social interactions, which is measured (in average) by
a factor q. In this paper we question whether such an average factor makes sense
or not. Beyond the difficult issue of giving realistic values to q, we study some
consequences of social heterogeneities when the population is divided into groups
for which q takes different values.

The basic reproduction ratio R0 has been computed in [4] and is given in (2) as
an average of the basic reproduction ratios for each group (or, equivalently, using
an average transmission rate) and not as a global ratio based on an average q fac-
tor,as it it is implicitly done in many papers in the literature. A small group with
a high transmission rate eventually triggers an outbreak even if the basic repro-
duction ratio of the majority is below 1. This papers focuses on some quantitative
consequences for well chosen numerical examples.

The qualitative properties of the curves in presence of heterogenous groups are
not the same as when considering a single group with the same (averaged) basic
reproduction ratio. The dynamics of the outbreak and its properties, for instance
the height of the epidemic peak er the final epidemic size ζ, are also changed. A
model with only one group and fitting the observed data in the initial phase of
the outbreak will be more pessimistic concerning the epidemic outcomes than a
heterogeneous model. This is even more true after lockdown when social distancing
measures have been enforced, the lockdown being by its nature a source of het-
erogeneity as some individuals are exempted. In terms of public health, this also
underlines the importance of targeting prevention measures on individuals with a
high level of social interactions. After this study has been completed, important
epidemiologic data have been published in [5] which point in the same direction.
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