
Kinodynamic Planning for an Energy-Efficient Autonomous

Ornithopter

Fabio Rodŕıguez1 José-Miguel Dı́az-Báñez2,∗ Ernesto Sanchez-Laulhe1

Jesús Capitán1 Ańıbal Ollero1 ∗†‡

December 1, 2021

Abstract

This paper presents a novel algorithm to plan energy-
efficient trajectories for autonomous ornithopters. In
general, trajectory optimization is quite a relevant
problem for practical applications with Unmanned
Aerial Vehicles (UAVs). Even though the problem
has been well studied for fixed and rotatory-wing
vehicles, there are far fewer works exploring it for
flapping-wing UAVs, like ornithopters. These are of
interest for many applications where long-flight en-
durance, but also hovering capabilities, are required.
We propose an efficient approach to plan ornithopter
trajectories that minimize energy consumption by
combining gliding and flapping maneuvers. Our algo-
rithm builds a tree of dynamically feasible trajecto-
ries and it applies heuristic search for efficient online
planning, using reference curves to guide the search
and prune states. We present computational experi-
ments to analyze and tune the key parameters, as well
as a comparison against a recent alternative proba-
bilistic planner, showing best performance. Finally,
we demonstrate how our algorithm can be used for
planning perching maneuvers online.

Keywords: Trajectory optimization, ornithopter,
motion planning, nonlinear dynamics.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are spreading
quite fast for many applications due to their ver-
satility and autonomy. However, they present two
main barriers to reach a wider range of applications:
(i) flight endurance; and (ii) safety during interac-

∗1GRVC Robotics Lab, University of Seville,
Spain. frodriguex@us.es, jcapitan@us.es,
esanchezlaulhe@us.es, aollero@us.es
†2Departamento de Matemática Aplicada II, University of

Seville, Spain. dbanez@us.es
‡∗Corresponding author

tions with people and objects in the environment.
For instance, flight endurance is essential in appli-
cations like long-range inspection of infrastructures
(e.g., power lines). Conventional multi-rotor UAVs
do not achieve competitive flight times for those sce-
narios; and the use of fixed-wing UAVs does not solve
the problem completely either, as capabilities for Ver-
tical Take-Off and Landing (VTOL) and hovering in-
place are required for accurate inspections.

Additionally, most of the aforementioned platforms
are not safe enough to interact with people, due to
their powerful rotor systems, their blades and the
hard materials of their airframes. In order to cope
with both issues, endurance and safety, bio-inspired
UAVs, like flapping-wing vehicles or ornithopters, are
of interest Grauer & Hubbard (2010); Q.-V. Nguyen
& Chan (2018); de Croon et al. (2009); Arabagi et
al. (2012). These try to imitate birds flying, as birds
can travel long distances efficiently. Thus, the main
objective of the GRIFFIN project 1, which is the
one inspiring this work, is the design of bio-inspired
flapping-wing UAVs that are able not only to fly but
also to perch in order to interact with the environ-
ment through manipulation.

A key aspect for the development of these or-
nithopters is to make them able to combine effi-
ciently gliding and flapping phases, as birds do. Glid-
ing allows the UAV to save energy and extend its
flight endurance, but flapping is still necessary to in-
crease altitude and to perform perching operations.
Therefore, during the trajectory planning process, or-
nithopters should consider when to transition opti-
mally between flapping and gliding, in order to save
as much energy as possible.

In general, planning optimal trajectories for au-
tonomous ornithopters is a complicated problem.
First, these types of vehicles present nonlinear and
complex dynamics that need to be taken into account

1GRIFFIN is an Advanced Grant of the European Research
Council (https://griffin-erc-advanced-grant.eu).

1

This is a preprint of: Rodríguez, F., Díaz-Báñez, J. M., Sanchez-Laulhe, E., Capitán, J., & Ollero, A. (2021).
Kinodynamic planning for an energy-efficient autonomous ornithopter. Computers & Industrial Engineering,

107814

Figure 1: View of our ornithopter prototype.

when computing feasible trajectories. Second, the
state space should include the vehicle’s position, ve-
locities and attitude, which are relevant for gliding
and perching operations. Due to these complexities,
there is a need for model-based but efficient methods
that allow us to compute optimal trajectories with
real-time performance. Some works use numerical
methods for model-based trajectory planning Posa et
al. (2014); Hoff et al. (2019). For instance, numerical
solutions of the Navier-Stokes equations have been
used Paranjape et al. (2012), but they are too ex-
pensive computationally for a real-time implementa-
tion. Other approaches use probabilistic motion plan-
ners Webb & van den Berg (2013); Karaman & Fraz-
zoli (2010) integrating kinodynamic constraints or
evolutionary algorithms Menezes & Kabamba (2016)
but, again, tractable models are necessary not to ex-
ceed computational requirements.

Contrary to other related work, in this paper, we
propose a novel optimization algorithm for energy-
efficient trajectory planning with an autonomous or-
nithopter. Our approach can be used for online plan-
ning and it is based on the following novel strategy.
Instead of generating nodes in a random way, we only
consider a small set of selected waypoints, following
two prescripts to prune states: (1) the optimal path
lives into a specific space corridor and, (2) we can pre-
vent redundancy by grouping the nodes and selecting
one witness per group. This strategy allows us to
tune the parameters of the pruning stage depending
on the particular application and hence, it is a more
efficient and accurate problem-specific approach.

We envision the use of flapping-wing UAVs for
tasks like surveillance or inspection due to their abil-
ity to perform long-endurance flights. Therefore,
our main objective is to compute online trajecto-
ries that minimize the energy consumption of the or-
nithopter. Those trajectories have to comply with

the ornithopter dynamics, being thus flyable. Then,
we assume the existence of lower-level algorithms to
control the ornithopter tracking the computed trajec-
tory. For example, control laws for stable longitudinal
and lateral flight with actual flapping-wing UAVs in
perching operations have been proposed Paranjape et
al. (2013).

We compute a tree of dynamically feasible trajec-
tories by using a nonlinear model for the ornithopter
motion and applying segmented tail angles and flap-
ping frequencies. The two flight modes of the or-
nithopter, i.e., flapping and gliding, are modeled with
different aerodynamic coefficients, which implies a
more complex nonlinear model that depends on the
flight mode. Then, we run a heuristic tree search
pursuing optimal solutions. In order to achieve on-
line planning, the computational complexity is alle-
viated twofold: (i) we propose an ornithopter model
with simplified dynamics, to make it computation-
ally tractable; and (ii) some pruning operations to
reduce the tree search space and keep it bounded.
Even though we use in this paper a 2D model that
constraints the ornithopter movement to a longitu-
dinal plane, our algorithm is general and could be
applied to 3D trajectory planning given a proper or-
nithopter model. Moreover, our heuristic solver finds
approximate solutions with minimal energy consump-
tion, but we also demonstrate the efficacy of those
trajectories regarding final target state achievement.

In summary, our main contributions are the follow-
ing:

• We propose a dynamic model for the 2D mo-
tion of our prototype ornithopter (see Figure 1).
The model is nonlinear and complex, combin-
ing the aerodynamic behavior from both gliding
and flapping phases. Nonetheless, we show how
the model is computationally tractable for online
trajectory planning.

• We contribute a new tree-based algorithm for
the computation of trajectories that minimize
energy consumption and that comply with the
ornithopter’s dynamics. Gliding and flapping
operations are integrated for efficient trajectory
planning.

• Our algorithm can compute online approximated
solutions by means of fast heuristic operations
that prune the tree.

• We design energy-efficient curves for the or-
nithopter to create corridors around them that
guide the search procedure. The advantage is
twofold: these corridors allow us to bound the

2

tree search space, hence improving the algo-
rithm’s efficiency; but at the same time, the so-
lutions’ quality is degraded as less as possible,
as we assume the optimal solution to lie within
those energy-efficient corridors.

• We run extensive computational experiments to
analyze our algorithm and tune its key parame-
ters. Moreover, we demonstrate its performance
in comparison with another relevant approach
from the literature and show a special case study
for planning perching maneuvers.

The remainder of the paper is organized as follows:
Section 2 surveys the related work; Section 3 intro-
duces our trajectory planning problem; Section 4 de-
scribes the dynamic model for our ornithopter; Sec-
tion 5 details our algorithm for trajectory planning;
Section 6 presents computational experiments to se-
lect the values of the parameters; Section 7 shows ex-
perimental results to better assess the performance
of our algorithm; and Section 8 discusses our results
and explores future work.

2 Related Work

In the literature, there have been different at-
tempts to design flapping-wing UAVs. Many of
these works Chirarattananon et al. (2014); Sihite &
Ramezani (2020); Qin et al. (2014) develop new aero-
dynamic models and specific controllers to operate
the vehicles. In some cases, the design of the flap-
ping mechanism is optimized to achieve more effi-
cient trajectories. Other similar works focus more on
controllers for specific maneuvers, like diving Rose
et al. (2016) or perching Maldonado et al. (2020).
Even though the aforementioned works address the
problem of designing and controlling non-linear dy-
namic models for flapping-wing UAVs, most of them
do not concentrate on efficient trajectory planning for
medium distance flights, which is our goal.

Generally speaking, motion planning for UAVs is
a different problem to ours but somehow related. In
the literature, the terms motion planning and path
planning are usually employed indistinctly to refer to
the same problem: given a robot in a workspace with
obstacles, find a collision-free path from an initial to
a goal configuration.

Many methods for motion planning make use of the
differential flatness of multicopter systems to gener-
ate optimal, continuous-time trajectories represented
as polynomials Mellinger & Kumar (2011); Mueller et
al. (2015); Oleynikova et al. (2016). It can be assured
that those trajectories are dynamically feasible given

simplified multicopter dynamics. Others Brescianini
& D’Andrea (2018); Paranjape et al. (2015) use mo-
tion primitives to discretize the UAV state space into
a connected graph. Then, standard graph search al-
gorithms like A* can be used to find efficient solutions
through the graph. However, the common assump-
tions made by the previous works do not hold for
flapping-wing UAVs, where nonlinear, complex dy-
namics are of utter importance when planning trajec-
tories. Therefore, instead of exploring motion plan-
ning approaches more tailored to collision avoidance,
we focus on trajectory optimization methods able to
take into account nonlinear dynamics in a computa-
tionally tractable manner.

In general, the trajectory optimization problem for
UAVs consists of finding the sequence of control in-
puts that minimizes a certain cost index, such as the
energy consumption or the flight time; but fulfilling
at the same time constraints on the vehicle dynam-
ics. Thus, trajectory planners use the UAV motion
equations (typically differential equations) to provide
as output time-indexed variables such as positions,
velocities and accelerations. A survey on trajectory
optimization for UAVs can be found in Coutinho et
al. (2018).

A common approach for UAV trajectory plan-
ning are the numerical methods. These meth-
ods can be classified into direct and indirect meth-
ods. Direct methods rely on discretizing an infinite-
dimensional optimization problem into a finite-
dimensional problem, to apply then nonlinear pro-
gramming solvers Posa et al. (2014). Indirect meth-
ods do the opposite, they first determine the opti-
mal control necessary conditions for the problem, and
then use a discretization method to solve the resulting
equations Betts (2010). For instance, Dietl & Garcia
(2013) propose a discrete-time optimization method
(with fixed time-step) for ornithopter trajectory op-
timization, where the objective is minimizing trav-
elled distance. Another discrete numerical framework
for solving constrained optimization problems using
gradient-based methods is presented in Wang et al.
(2017). The technique is applied to energetically op-
timal flapping using frequency and pitching/heaving
trajectories as optimization parameters. A longitu-
dinal model for the dynamics of a bat-like prototype
has also been proposed recently Hoff et al. (2019).
The authors use that model with direct collocation
to plan dynamically feasible trajectories in simulation
and to track them with their actual prototype. The
objective is reducing the control efforts by minimizing
accelerations. The main concern with these numeri-
cal methods is that they can face computational and
convergence issues for highly nonlinear problems, as

3

the one addressed in this paper. This makes them
less suitable for online trajectory planning.

An alternative approach to the numerical meth-
ods are the probabilistic planners, like the Probabilis-
tic Road-Maps (PRM) or the Rapidly-exploring Ran-
dom Trees (RRT). These algorithms are able to tackle
high-dimensional planning problems in a reasonable
computation time by increasingly sampling the state
space. Besides, they are probabilistically complete,
i.e., they converge to a solution (if it exists) with a
probability tending to 1. There are also versions like
RRT* Karaman & Frazzoli (2011) that achieve opti-
mal solutions in the same asymptotically manner.

Algorithms based on RRT* build a tree by con-
necting the samples from the state space through op-
timal trajectories (i.e., solving the two-point bound-
ary value problem). However, computing feasible tra-
jectories for kinodynamic systems is an issue. Some
works have extended RRT* focusing on simple spe-
cific instances of kinodynamic systems Karaman &
Frazzoli (2010). In Webb & van den Berg (2013),
for example, they propose a kinodynamic RRT* that
can cope with any system with controllable linear dy-
namics. They even apply the algorithm to nonlinear
dynamics through linearization, but without conver-
gence guarantees.

Other probabilistic methods deal with nonlinear
systems more specifically. For instance, connecting
tree nodes using trajectories based on splines that
are optimized via a nonlinear program solver Stone-
man & Lampariello (2014). Conversely, there exists
the alternative of using exclusively control sampling
to handle dynamic constraints, rather than resort-
ing to a numerical two-point boundary value prob-
lem solver. This approach is followed by the vari-
ants Stable-Sparse RRT* Li et al. (2016) and AO-
RRT Hauser & Zhou (2016). Convergence is not
proven for any of these RRT* modifications. More-
over, the aforementioned probabilistic planners try
to be generic solvers. Contrary to that, we pro-
pose problem-specific heuristics that allow us to guide
more quickly the search of energy-efficient trajecto-
ries for an ornithopter. It is should be note that al-
though there are also metaheuristic algorithms Bous-
said et al. (2013); Dokeroglu et al. (2019); Hussain
et al. (2019), they are designed to solve a wide range
of hard optimization problems with minor adapta-
tion. Our problem is very specific from an engineer-
ing point of view, and we need to integrate complex
and non-linear dynamics, which makes it hard to find
a general metaheuristic that works properly.

In summary, most trajectory planning methods re-
lated to our application fit into one of the presented
categories. Trajectory planning methods based on

motion primitives can yield trajectories dynamically
feasible, but they do not address non-linear mod-
els properly. Exact numerical methods for trajec-
tory optimization can cope with complex, non-linear
models, but they present computational issues that
make them not recommendable for online planning.
Last, probabilistic planners can be adequate to tackle
generic high-dimensional problems with competitive
computational cost. This is why we selected this al-
ternative for comparison with our application-specific
planner.

3 Problem Description

In this section, we introduce the optimization prob-
lem addressed in this paper, which aims to plan tra-
jectories with an autonomous ornithopter, as well as
the main assumptions we made.

We assume that we have an autonomous or-
nithopter with a known model of its dynamics. Then,
we are interested in planning optimal trajectories to
navigate the ornithopter from an initial to a target
state. The goal is to compute the sequence of control
actions that produces a trajectory connecting the two
given states that: (i) is dynamically feasible; and (ii)
minimizes the total energy consumed by the aircraft.
This is done by combining flapping and gliding ma-
neuvers. Moreover, we assume that the UAV is flying
in an open space and, hence, we do not consider col-
lisions with obstacles.

More specifically, let us define the states and con-
trol maneuvers for our problem:

Definition 3.1. (Flight state) A flight state s =
(x, z, u, w, θ, q) describes an ornithopter configuration
in a given instant of time, where x and z are the posi-
tional values in the plane XZ of the Earth reference
frame, u and w are velocity components in the body
reference frame, θ is the pitch angle and q is the pitch
angular velocity.

Definition 3.2. (Flight maneuver) A flight maneu-
ver is a control action performed by the ornithopter
during its flight at a given flight state. We consider
two degrees of freedom to define the flight maneuvers:
tail deflection, determined by the deflection angle δ
(up and down); and wing flapping, determined by the
flapping frequency f (including a zero value for glid-
ing).

According to the previous definitions, a trajectory
consists of a sequence of interleaved flight states and
flight maneuvers. Our trajectory planning problem
is constrained to a 2D movement (XZ plane), as we

4

use a longitudinal motion model for the ornithopter 2.
In particular, we define the Earth reference frame
as a global frame with the Z axis (pointing down-
wards) representing the ornithopter altitude and the
X axis its longitudinal motion. We also define a body
reference frame attached to the ornithopter with Xb

pointing forward and Zb downwards. Both reference
frames, together with the state and control variables,
are depicted in Figure 2. Finally, we make some ad-
ditional assumptions to simplify the ornithopter dy-
namics and derive its model: (i) we use the hypothesis
of punctual mass; (ii) we assume small flapping am-
plitudes and thin airfoils to model aerodynamics; and
(iii) we consider the aerodynamics centers to be in a
fixed position, as movements are of small amplitude.

4 Ornithopter Dynamic Model

We describe in this section a motion model based on
the one defined in Mart́ın-Alcántara et al. (2019), and
specifically developed for bio-inspired, flapping-wing
UAVs. The model is used to describe the longitudinal
motion of our ornithopter prototype.

4.1 Non-dimensional Newton-Euler
equations

The Newton–Euler equations describe the combined
translation and rotational dynamics of a rigid body,
considering all existing forces. For a flapping-wing
UAV as the one in Figure 2, the equations can be
described as follows:

2Mdu

dt
= U2

b [(CL + ΛCLt) sinα

+ (CT − CD − Li− ΛCDt) cosα]

− sin θ − 2Mqw (1)

2Mdw

dt
= U2

b [−(CL + ΛCLt) cosα

+ (CT − CD − Li− ΛCDt) sinα]

+ cos θ + 2Mqu (2)

1

χU2
b

dq

dt
= CL cos(α)− (CT − CD) sin(α)

+ LΛ[CLt cos(α) + CDt sin(α)]

−RHL[CL sin(α) + (CT − CD) cos(α)] (3)

dθ

dt
= q, (4)

2Note that our trajectory planning method could be applied
to 3D as long as there were a complete 3D motion model for
the ornithopter.

Figure 2: Schematics of the ornithopter with the
forces acting on it. Axis XZ represents the Earth
frame, axis X ′Z ′ a translation of the Earth frame,
and axis XbZb the body frame.

where α is the angle of attack, defined as α =
arctan(w/u), and Ub =

√
u2 + w2 the velocity mod-

ule. M, χ, Λ, L and RHL are characteristic non-
dimensional parameters of the UAV. These param-
eters are obtained by scaling the variables with the
characteristic speed, length and time:

Uc =

√
2mg

ρS
, Lc =

c

2
, tc =

√
ρSc2

8mg
, (5)

where m is the mass of the UAV, ρ the air density, S
the wing surface, c the mean aerodynamic chord and
g the gravity acceleration.

Figure 2 shows the forces acting on the vehicle,
as well as the representative variables and reference
frames used. In particular, L, T and D represent
the lift, thrust and drag forces due to the wings; Lt
and Dt the lift and drag from the tail; and Db the
drag due to the body friction. All these forces are
considered in Equations (1)-(4) by means of the non-
dimensional aerodynamic coefficients: CL, CT and
CD for the wing, CLt and CDt for the tail, and Li
for the body. Li = Sb

S CDb is the Lighthill’s number,
with Sb the body surface and CDb its friction drag
coefficient. Section 4.2 explains how to compute the
rest of coefficients for the aerodynamic forces of the
wing and the tail.

4.2 Aerodynamic models

First, let us concentrate on the computation of the lift
and thrust forces from the wings. Our model consid-
ers two modes of flight for the ornithopter: flapping
and gliding; and the computation of the aerodynamic
coefficients differs from one to another. In both cases,
we make approximations assuming very thin airfoils.
For gliding, the Prandtl’s lifting line theory, combined

5

with unsteady aerodynamic terms, is used. For flap-
ping, the Theodorsen solution Theodorsen (1935) de-
fines the lift given a wing movement with the form
h(t) = h0 cos (2πft)/2, being h the vertical position
of the reference wing chord during the flapping move-
ment and h0 the movement amplitude. In order to
model the existing thrust (only existing in the flap-
ping mode), we use the Garrick coefficient Garrick
(1936) corrected by Fernandez-Feria (2016, 2017).
Moreover, we consider finite wing effects by mak-
ing aspect ratio corrections based on Ayancik et al.
(2019), which leads to:

CLglide
= 2π

[
α+

(
1.5α̇− 2lw

c q

Ub

)]
A

A+ 2
(6)

CLflap
= 2π{(kh0) [G(k) cos 2πft

+ F (k) sin (2πft)] + α} A
A+ 2

+ πk2h0 cos (2πft)
A

A+ 1
(7)

CTflap
= 4 (kh0)

2
sin (2πft)[F1(k) cos (2πft)

−G1(k) sin (2πft)]
A

A+ 2
− αCLflap

, (8)

where A is the aspect ratio of the wing, given by
A = b2/S, being b the wingspan and S the sur-
face. lw is the distance between the center of gravity
and the aerodynamic center of the wing, being pos-
itive when the center of gravity is behind the wing.
k = 2πf/Ub is the reduced frequency, F (k) and G(k)
are the real and imaginary parts of the Theodorsen’s
function C(k), and F1(k) and G1(k) are the real
and imaginary parts of the function C1(k) defined
in Fernandez-Feria (2016).

Regarding the lift force generated by the tail,
as our bio-inspired design leads to triangular sur-
faces Thomas (1993), we use an approximation for
delta wings:

CLt
=
πAt

2

[
(1−εα)α+δ+

(
1.5α̇− 2lt

c q

Ub

)]
, (9)

where δ is the deflection angle of the tail, εα models
the interference caused by the wing, and At and lt
are, respectively, the aspect ratio of the tail and the
distance between the center of gravity and the aero-
dynamic center of the wing, being defined in the same
manner as it was for the wing. In order to consider
near stall effects, we saturate all the lift coefficients
(CL and CLt

) for angles greater than 10o for the wing
and 25o for the tail.

Finally, we model the drags from the wings and
the tail, CD and CDt, as the addition of the constant
friction drags, CD0 and CD0t, and the induced drags,
provided by:

CDi
=

C2
L

πA
, CDit

=
C2
Lt

πAt
. (10)

5 Ornithopter Segmentation-
based Planning Approach

In this section, we present our method to solve the
problem stated in Section 3, i.e., how to plan optimal
trajectories for an ornithopter that are both dynam-
ically feasible and energy-efficient. As discussed in
Section 2, there exist in the literature numerical op-
timization solvers that can deal with nonlinear sys-
tems. They obtain dynamically feasible trajectories
by discretizing and integrating the model dynamics,
but they can suffer from computational complexity
and convergence issues for highly nonlinear models.
Graph-based approaches are an alternative where a
graph with discrete, connected states is built in order
to search for optimal trajectories. In particular, prob-
abilistic planners sample the state space increasingly
to build these graphs Karaman & Frazzoli (2011). If
the objective is to generate trajectories that are dy-
namically feasible, the method must ensure that the
sampled states are reachable, which can be complex
for nonlinear systems.

In this paper, we propose a novel graph-based ap-
proach that builds a tree to search for energy-efficient
trajectories. Instead of taking random samples from
the state space, we segment the ornithopter’s actions
and we integrate its dynamics to generate and con-
nect feasible states, which can later become nodes
of the tree. We name our algorithm OSPA, which
stands for Ornithopter Segmentation-based Planning
Approach.

The general idea is as follows. In our approach,
we consider a discrete set M with the possible flight
maneuvers for the ornithopter. Then, given a fixed
time step ts and an initial state, we generate a dis-
crete set of reachable flight states by integrating the
ornithopter dynamics for time ts and for each maneu-
ver in M . Doing this iteratively, we build a tree T
whose vertices (or nodes) are flight states, and each
edge has associated the corresponding maneuver to
navigate from one state (node) to the next one. Each
edge has also associated the energy consumed by the
corresponding transition maneuver between its ver-
tices. We store at each node the energy consumption
needed to reach it from its predecessor state. The

6

final goal is to find a path τ through the tree T that
connects the initial and target states and that min-
imizes the total energy required by the ornithopter.
Figure 3 illustrates an example on how to segment the
trajectory of an ornithopter and the resulting flight
states. A landing operation is achieved by a maneu-
ver with flapping involved, preceded by two different
maneuvers where the ornithopter is only gliding.

0 50 100 150 200 250
100

80

60

40

20

0 Tree edges
Actual trajectory
Flight states

x(m)

z
(
m
)

Figure 3: Segmentation of the ornithopter motion
for a landing trajectory. Top view, sequence of flight
states followed by a real bird. Bottom view, trajec-
tory computed by our method, with three consecutive
maneuvers along 250 meters, before landing. The tra-
jectory connects the flight states by integrating the
dynamic model.

Algorithm 1 provides an overview of the procedure
followed by OSPA. The algorithm receives as input:

• the initial and final states s0 and sf , respectively;

• the discrete set of maneuvers M ;

• the time step ts;

• the pruning parameters kd and kw.

The set M is generated by combining a discrete set of
flapping frequencies with a discrete set of tail angles,
i.e., M = D × F = {(δ, f) | δ ∈ D ∧ f ∈ F}. The
initial state is inserted as the tree’s root. Then, at
each iteration, all leaf states are expanded with all
possible maneuvers. Given a state si, a flight maneu-
ver defined by a tail angle δ and a frequency f , and a

time step ts, the function ODE(si, δ, f, ts) integrates
the equations stated in Section 4 for time ts, to pro-
duce a flight state that becomes a new node of the
tree. The states that are eventually inserted into the
tree are selected according to two pruning procedures
that will be detailed in Section 5.1.

Algorithm 1: OSPA

Input : (s0, sf ,M, ts, kd, kw)
Output: τ∗

1 tree← Tree()

2 tree.root← s0
3 leaves← GetLeaves(tree)
4 corridor ← GetCorridor(s0,sf)
5 while leaves.length > 0 do
6 states← List()

7 for si in leaves do
8 for (δ, f) in M do
9 s′ ← ODE(si, δ, f, ts)

10 if GetDist(corridor, s′) ≤ kd and
s′.x ≤ sf .x then

11 s′.parent← si
12 states.Add(s′)

13 end

14 end
15 partitions← GetPartitions(states,kw)
16 for c in partitions do
17 s∗ ← GetOptimalState(c)
18 si ← s∗.parent
19 si.AddChild(s∗)

20 end
21 leaves← GetLeaves(tree)

22 end
23 τ∗ ← SearchOptimalPath(tree, sf)
24 return τ∗

We assume that the ornithopter has forward mo-
tion in the XZ plane, so the method generates states
with increasing X-axis values from one time step to
the following. The tree computation ends when all
reached states have greater X-axis value than the fi-
nal state sf . In that case, the optimal sequence of
maneuvers is returned and the algorithm terminates.
This is done by the function SearchOptimalPath(),
that computes the tree path τ∗ with minimum en-
ergy consumption. The last node of the solution τ∗

is chosen as the one with lowest energy consumption
among those within a tolerance distance (set by the
user) around sf .

Figure 4 illustrates how Algorithm 1 works with 3
maneuvers (|M | = 3) and 2 witness nodes (kw = 2).
Crosses represent the pruned nodes and dots the re-
maining nodes in the tree. The red line is the solution

7

s0
A

B

sf

Figure 4: Graphical representation of the procedure
followed by OSPA to create the tree and search for
optimal trajectories.

trajectory output by OSPA, given the initial and final
states, s0 and sf ; while the dashed blue lines indicate
the corridor around the reference curve. An entire it-
eration of Algorithm 1 is demonstrated in the gray
rectangle. First, the nodes within the rectangle are
generated from the nodes A and B, by using using an
ODE integrator applying each of the 3 maneuvers,
and pruning those nodes out of the corridor (lines 6
to 14 of Algorithm 1). Second, two (kw) partitions
are created with the remaining nodes (line 15 of Al-
gorithm 1). Third, for each partition a witness node
with the best energy cost (the one within a circle) is
kept in the tree and the others pruned (lines 16 to 20
of Algorithm 1). Then, another iteration of the algo-
rithm would be performed. The whole algorithm fin-
ishes when a node falls within a target region around
the final state (dashed square), and the optimal tra-
jectory (red path) is returned (line 23 of Algorithm
1).

Now let us show a small numerical example
using the data corresponding to the trajec-
tory depicted in Figure 3. In that example,
the input of the algorithm is the following:
s0 = (0m, 0m, 4.26m/s, 0m/s, 0◦, 0◦/s),
sf = (250m, 95m, 0 m/s, 0 m/s, 0◦, 0◦/s),
ts = 12s, kd = 15m, kw = 20, and as set of
possible maneuvers M , the one in Table 5. Af-
ter running OSPA, the output is a sequence of
interleaved flight states and flight maneuvers.
Specifically, the three selected maneuvers (δ, f)
are: {(−2◦, 0Hz), (−1◦, 0Hz), (0◦, 0.16Hz)}.
Then, the pseudo-optimal trajectory to be fol-
lowed by the ornithopter is computed by inte-
grating its dynamic model for each time step,
using the control inputs of each corresponding

flight maneuver. The (x, z) waypoints in me-
ters for this numerical example (see Figure 3) are:
{(0, 0), (90.65, 12.94), (145.57, 69.27), (249.99, 96.31)}.
In terms of precision, note that the ornithopter would
end up at a 1.31 m distance from the target state
with this solution.

OSPA searches for optimal trajectories in terms of
energy and, hence, whenever a new node is added,
the algorithm computes and stores the accumulated
energy at that node. In order to model the energy
consumed by the ornithopter performing a certain
maneuver for a time step ts, we use the following
formula:

E = ts(Kaerof
3 + cr). (11)

The first term represents the dominant energy
consumption, which is due to the flapping wings.
It has been empirically proven that this consump-
tion is proportional to the cube of the flapping fre-
quency T. A. Nguyen et al. (2016), with a constant
coefficient Kaero that depends on several physical
characteristics of the ornithopter, such as the wings’
profile, their inertia and their movement amplitude.
However, as modelling all those effects precisely is
complicated, we opted for estimating the value of
Kaero empirically 3. The second term models the
residual energy consumption cr when the ornithopter
is not flapping, mainly due to the onboard electron-
ics. While gliding, we measured empirically that, for
our ornithopter, the cost of moving the tail was neg-
ligible compared to the average consumption of the
electronics. Therefore, we consider the cost cr con-
stant 4. As expected, it is important to note that
Equation 11 indicates that the main energy consump-
tion is produced by the flapping maneuvers. While
gliding, the energy efficiency is just related with the
temporal length of the maneuver.

Finally, let us analyze the size of the tree T gener-
ated by our method. If we have |M | = |D|× |F | = m
different maneuvers that can be selected at each it-
eration, the whole tree construction without pruning
operations takes O(hrm) time, where h is the tree
height 5 and r is the average time needed by the in-
tegrator ODE(). Note that the height h depends on
the time step ts: the smaller ts, the larger the tree
will be to reach the final state. OSPA can achieve
energy-efficient trajectories if we take values of the
time step short enough and we use enough number of

3All the experiments in this paper used a value Kaero =
2.5 W/Hz3, obtained empirically for our ornithopter proto-
type.

4We estimated empirically an upper bound of cr = 5W .
5The height of T is the maximum distance (number of

edges) from the root to any node in T .

8

maneuvers. However, the computational complexity
increases exponentially with the number of maneu-
vers, and a more reduced set of states may be enough
to achieve competitive approximate solutions to the
final state. Therefore, in the next section we propose
two pruning procedures which alleviate the computa-
tional cost of the algorithm and that yield an efficient
planner for short and medium distance flights.

5.1 Tree reduction

s0 sf

(a) Example of an exhaustive tree T considering 4 ma-
neuvers. Nodes are represented as positional values in
the XZ plane.

s0 sf

kd

(b) Tree T ′ after applying to T the pruning operation
based on a limited corridor. kd is the width or clearance
of the corridor.

s0 sf

(c) Tree T ′′ after applying to T ′ the pruning operation
based on clustering. kw = 5 is the upper bound on the
number of considered partitions at each step (the last
layer of leaves is not pruned).

Figure 5: Overview of the pruning operations in the
OSPA planner.

OSPA includes two specific procedures to reduce
the tree size and speed up the algorithm. First, we
reduce the original tree T to a pruned tree T ′ that
only keeps nodes whose position is close to a hypo-
thetical optimal trajectory P∗. This pruning opera-

tion relies on the idea that the tree T ′ will produce
optimal solutions similar to those in T , as long as the
pruned nodes are not in the vicinity of P∗. In princi-
ple, this optimal trajectory is unknown, but we pro-
pose a parametric curve to estimate P∗ that acts as
guide in the tree pruning. Second, considering many
states that are very close in the tree may lead to a
redundant calculation of similar trajectories. This
fact motivates our second procedure to reduce fur-
ther the tree size, where we obtain a new tree T ′′ by
creating partitions with the nodes in T ′, and keeping
only a witness node for each partition. Note that our
pruning procedures assume that there is an optimal
trajectory P∗ which presents a robust clearance, that
is, the nodes in T ′′ are enough to compute a near op-
timal trajectory. We support this assumption on the
experimental study of Section 6.

Figure 5 shows an example of an original tree T
and the effect of applying our pruning operations to
obtain the trees T ′ and T ′′. Note that some of the
leaves in T ′′ are still irrelevant flight states for a suit-
able solution, since they are far away from the final
state. Thus, OSPA only considers for the selection
of the last state those within a desired tolerance dis-
tance to the target. In the following, we elaborate on
our two pruning operations to perform the incremen-
tal construction of T ′′.

5.1.1 First pruning operation: the corridor

The first procedure to prune the tree consists of im-
posing physical constraints on the admissible trajec-
tories. We speed up the operations in the algorithm
avoiding pathological states that would be unlikely.
More precisely, we define a corridor region C connect-
ing the initial and final states, and we only consider
tree nodes within that corridor, discarding those out
of the corridor. The key idea is building C in such a
manner that the (unknown) optimal trajectory P∗ is
likely to lie within that corridor.

We generate the corridor C as follows. First, we
take a parametric curve on the XZ plane that con-
nects the initial and final states, and we adjust its
parameters so that the curve is likely to resemble the
optimal trajectory P∗. Let this reference curve be
denoted as P̂∗, then C is defined as the region of
points in the XZ plane whose minimum Euclidean
distance to P̂∗ is not greater than a parameter kd.
The tree T ′ results from pruning all the nodes in the
original T that fall outside C. Figure 5b illustrates an
example for a line segment P̂∗ connecting the initial
and final states. The functions GetCorridor() and
GetDist() in Algorithm 1 compute the corridor C
and the minimum Euclidean distance of a flight state

9

to P̂∗, respectively.

Recall that the optimal P∗ is unknown and that
we are interested in computing a fairly reasonable es-
timation P̂∗, so that OSPA finds solutions that are
close to the optimum. An option to learn those curves
would be a totally bio-inspired approach, i.e., ob-
serving bird flights in order to borrow the type of
curves they follow; as they are assumed to be energy-
efficient. This would require gathering large datasets
which are not easy to obtain in general, so we fol-
lowed a different empirical strategy to design our ref-
erence curves. Particularly, we ran extensive com-
putational experiments in different situations, using
complete trees computed by OSPA without pruning
in order to search for trajectories with the lowest en-
ergy consumption. We observed that trigonometric
curves were well suited to these optimal trajectories.
Therefore, we build our reference curve P̂∗ as a spe-
cial type of trigonometric curve that connects the ini-
tial and final states, and we assume that it is a fairly
good approximation of the actual optimal trajectory.
The procedure to compute and adjust these reference
curves is further detailed in Section 6.2.

5.1.2 Second pruning operation: witness
states

The second procedure to prune the tree focuses on
preventing redundancy in order to improve further
the time complexity, but without significantly de-
grading the solution quality. The idea is the follow-
ing. Note that at each tree expansion step, the neigh-
boring nodes generate M new flight states each, and
some of them may be similar. Indeed, the density
of close states will grow as the tree height increases
(see example in Figure 5a). Therefore, we implement
a simple partitioning technique to group close nodes
and select only the best ones. At each iteration of the
tree building process, we partition the new leaf nodes
into kw disjoint subsets. Since the nodes at the same
tree level present more significant differences in the
vertical coordinate than in the horizontal one, the z
coordinate is used to order the leaves and split them
into kw equally separated sets. This is done by the
function GetPartitions() in Algorithm 1. As all
the nodes in each partition will represent close flight
states, we keep alive only a witness node for each
partition, throwing away the rest. Since we search
for energy efficiency, the selected witness nodes are
those with the minimum accumulated energy (func-
tion GetOptimalState() in Algorithm 1). Figure 5c
illustrates an example of this pruning operation.

Finally, note that this witness pruning operation
alleviates considerably the computational complexity

Parameter Interval

δ [−6, 0]◦

f [0, 6] Hz
ts [8, 20] s
kd [10, 25] m
kw [10, 40]

Table 1: Used intervals for the parameter values in
the tuning experiments.

of OSPA, as the number of inserted leaf nodes at each
iteration of Algorithm 1 is bounded. More specifi-
cally, the original computation time to build the tree,
O(hrm), is reduced to O(hkwm(r+log (kwm)), which
is almost linear in the number of maneuvers. The sec-
ond term in the time complexity is due to the leaves
ordering in z performed by GetPartitions().

5.2 Planning in dynamic scenarios

OSPA can be used for trajectory planning in dynamic
scenarios, recomputing trajectories online as the envi-
ronment changes. For example, the approach can be
easily modified to face collision avoidance. The idea
is to integrate some procedure for collision checking
within the planner. More specifically, in line 10 of Al-
gorithm 1, assuming a map representation of the en-
vironment with the existing obstacles, we could add a
new condition to avoid the generation of nodes within
a fixed distance from the obstacles. In cases where
the obstacles overlap the entire corridor, its width
could be increased to ensure a solution. In this pa-
per, we have not explored these options for collision
avoidance, as we consider it out of the scope and we
leave it for future work.

6 Selection of Parameters

In this section, we describe a series of computational
experiments to analyze the effects of the key parame-
ters in OSPA. We aim to obtain the most appropriate
values for: the time step ts, the reference curve P̂∗,
the set of maneuvers M , the threshold kd to com-
pute the corridor C, and the parameter kw to create
partitions. All experiments were run with a version
of OSPA coded in Python 3.7 6 on a CPU with a
1.60 GHz processor and 8 GB RAM. We used the
odeint module from the SciPy library for numerical
integration.

6The code is available at https://github.com/fragnarxx/

kinodynamic-planning.

10

https://github.com/fragnarxx/kinodynamic-planning
https://github.com/fragnarxx/kinodynamic-planning

Table 1 shows the used parameter intervals for all
experiments. We consider a discrete set M of ma-
neuvers that results from the combination of 7 tail
angles uniformly selected between the bounds in Ta-
ble 1 and the frequency values {0, 4, 5, 6} Hz, hence
|M | = 28. These frequency values were empirically
selected to provide positive net thrust and consider
the mechanical engine limitations of our ornithopter
prototype. The interval for the tail deflections was
selected to ensure that the ornithopter flies without
reaching aerodynamic stall, which would not be in-
teresting in general flight conditions.

M Λ L RHL χ
6.85 0.278 −15.5 1.92 0.0132

CD0
CD0t

A At Li
0.018 0.021 4.44 2.35 0.0051

Table 2: Values for the dimensionless characteristic
parameters of the ornithopter.

Uc Lc tc
4.26 m/s 0.135 m 0.0317 s

Table 3: Values for the characteristic dimensions.

In all experiments, we used the physical properties
of our actual prototype in Figure 1 to determine the
parameters of the dynamic model from Section 4. Ta-
ble 2 depicts the characteristic dimensionless param-
eters, while Table 3 shows the characteristic dimen-
sions of the problem. Finally, we built the same set of
80 scenarios for all experiments, with the ornithopter
starting at (0, 0) position in the XZ plane, and 0◦ for
the initial and final pitch angles. The final state po-
sitions are taken from a uniform grid within the rect-
angle R = {(x, z) : 200 ≤ x ≤ 250,−20 ≤ z ≤ 100}.
Recall that positive and negative values for z mean
descending and ascending, respectively.

6.1 Time step

The first critical parameter in OSPA is the time step
ts, as it affects the computation time, as well as the
quality of the solution. In order to select an adequate
value for this parameter, we ran OSPA at the 80 ex-
perimental instances using the set of maneuvers M
and varying the value of ts. Figure 6 shows the aver-
age results as ts increases. We consider three metrics:
the computation time to plan a trajectory, the total
energy E consumed throughout the trajectory, and
the accuracy ∆, defined as the Euclidean distance

8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1 Time
Accuracy
Energy

Time steps (s)

Figure 6: Performance results varying the time step
ts. Average values over 80 experiments are shown
for the computation time, the accuracy with respect
to the target state (∆) and the solution energy (E).
The values are scaled to the [0, 1] interval.

between the last node of the trajectory and the tar-
get7. As expected, smaller values of ts yield a larger
computation time but a higher accuracy, decreasing
the error with respect to the target. According to this
trend, we selected a value of ts = 12 s as a trade-off
solution, since it favors energy consumption but, at
the same time, produces acceptable accuracy values.

6.2 Reference curve

In this section we describe the empirical process to
design the reference curve P̂∗ in the planner. Re-
call that this curve is used to define a corridor C that
guides the tree search. As we prune all the states with
distance greater than kd from the reference curve, we
should select a curve that is as close as possible to
the typical waypoints in optimal trajectories. For
that, we ran the 80 experiments obtaining optimal
trajectories using OSPA with ts = 12 s and the set
of maneuvers M , without pruning operations. We
obtained these optimal trajectories using exhaustive
trees containing an exponential number of reachable
states, so we believe that they represent a good ap-
proximation of the optimal solution of the continuous
problem. This computation is expensive to be per-
formed online, but we ran it offline to have a good
reference of the optimal behavior of our ornithopter,
energetically speaking.

As a first option, we attempted a simple straight
line connecting the origin and the target point. Then,
we measured the Maximum Error (ME) and the Root
Squared Mean Error (RSME) between the waypoints

7Recall that the nodes are vectors including positions, an-
gles and velocities.

11

k =12 md

sf

s0

0 50 100 150 200

60

50

40

30

20

10

0

−10 Reference curve
Corridor

x(m)

z(
m)

k =12 md

sf

s0

0 50 100 150 200

10

0

−10

−20

−30

−40

−50

−60 Reference curve
Corridor

x(m)

z(
m)

Figure 7: Examples of the reference curve for two
cases with the ornithopter descending (top) and as-
cending (bottom). The corresponding corridor C is
also shown for kd = 12.

obtained in the trajectories computed by OSPA and
the straight line, obtaining the average values 15.40m
and 9.24 m, respectively. However, we observed
in our results that trigonometric curves were well
suited to the generated trajectories in the experi-
ments. Therefore, we built our reference curve P̂∗ as
a scaled cosine connecting the initial and final states.
The formula for this curve depends on the distance
between the initial (x0, z0) and final (xf , zf) posi-
tions. Provided that xd = xf − x0 and zd = zf − z0,
the formula for the proposed reference curve is:

P̂∗(x) =
1

2

[
zd + zdcos

(
π +

πx

|xd|

)]
. (12)

Figure 7 depicts examples of this reference curve
and the corresponding corridors, resembling typical
optimal trajectories obtained with our ornithopter
model. Moreover, we computed the ME and RMSE
metrics for our 80 experiments, obtaining the average
values 15.30 m and 8.92 m, respectively. As expected,
we determine that our trigonometric choice of refer-
ence curve is also closer to the optimal trajectories in
the experiments than straight lines, and we use it in
the remaining experiments.

ξ∗ |Mr| ∆ E (W)

0 28 = |M | 0.49± 0.06 3979± 343
0.01 23 0.51± 0.07 3693± 298
0.02 17 0.53± 0.07 3393± 317
0.03 10 1.31± 0.08 2268± 254

Table 4: Results with different sets of maneuvers.
Average values and deviations over 80 simulations are
shown for the accuracy (∆) and the energy (E).

6.3 Study of maneuvers

We have already defined an initial set of maneuvers
(|M | = 28) that make sense from the physical point
of view of the ornithopter to plan trajectories. How-
ever, as it was explained in Section 5, the number
of maneuvers highly affects the computation time of
OSPA. Therefore, we present in this section a statis-
tical analysis to find out which maneuvers are really
more useful, with the purpose of further reducing the
final set. For this study, according to our previous
time step analysis, we fixed ts = 12 s. Then, we ran
OSPA (without pruning operations) at the 80 scenar-
ios to find optimal trajectories. We can compute the
occurrence rate of a maneuver as follows:

ξ(mi) = ni/|n∗|, (13)

where ni is the number of times that maneuver mi

was selected in any of the optimal solutions, and n∗ is
the total count of maneuvers in all the optimal solu-
tions. Larger values of ξ indicate that the maneuver
is commonly used, while lower values correspond to
rarely used maneuvers. Therefore, we select our re-
duced set of maneuvers Mr by defining a threshold
value ξ∗ and removing the maneuvers with a lower oc-
currence rate, i.e., Mr = {mi : mi ∈M, ξ(mi) ≥ ξ∗}.

We tested different values of ξ∗ to create the sub-
set Mr, and we solved again the 80 scenarios with
each resulting Mr. Table 4 depicts average results
for the accuracy and the energy as ξ∗ increases. The
computation time is not included because it is not
representative (the experiment uses the whole set of
maneuversM without pruning operations and, hence,
it is not efficient). According to the results, we took
ξ∗ = 0.02, as it offers a fairly good trade-off, con-
siderably reducing the set of maneuvers without a
great degradation in terms of energy and accuracy.
Table 5 shows the final subset Mr of maneuvers, ob-
tained with the selected threshold ξ∗ = 0.02. From
now on, we will consider this set Mr of maneuvers in
all the experiments.

12

ξ δ (◦) f (Hz)

0.111 −2 0
0.109 0 4
0.077 0 5
0.076 −3 0
0.074 −6 0
0.072 −5 0
0.057 −4 0
0.053 −1 0
0.053 0 6
0.045 −2 6
0.026 −3 5
0.026 0 0
0.025 −4 4
0.023 −5 4
0.022 −3 4
0.021 −6 4
0.021 −4 5

Table 5: Occurrence rate for all the maneuvers in-
cluded in the selected subset Mr, obtained with a
threshold ξ∗ = 0.02.

6.4 Parameters kd and kw

Given the adjusted values for the time step, the refer-
ence curve and the set of maneuvers, we can tune the
parameters kd and kw for the pruning operations. We
studied the performance of our algorithm varying the
values of these two key parameters. For that, we ran
OSPA in the 80 scenarios, using the maneuvers in the
set Mr, the reference curve in Equation 12 and a time
step ts = 12 s. Then, we analyzed the average values
for the metrics: accuracy ∆, energy consumption and
computation time.

Table 6 depicts the average results of our experi-
ment for some representative values of the parame-
ters. We tested more values within the intervals in
Table 1 but we got the same trend, so they are not in-
cluded here for the sake of brevity. As expected, the
larger the values of kd and kw, the more node states
are explored, and the better the quality of the solu-
tions is, both in terms of energy and accuracy. The
computation time also increases though. Depending
on the acceptable level of accuracy and the available
time budget for OSPA for a given application, differ-
ent values of kd and kw could be selected.

6.5 Multi-resolution approach

Finally, we performed another computational exper-
iment of interest to test a multi-resolution approach.
OSPA builds a tree generating new states by inte-

kd, kw ∆ E (W) Time (s)

10, 15 0.95± 0.06 4400± 495 137± 8
15, 25 1.53± 0.07 4092± 424 239± 14
20, 20 0.56± 0.08 4270± 436 295± 18
25, 35 0.52± 0.08 4590± 447 443± 16

Table 6: Average results and deviations for some rep-
resentative values of kd (in meters) and kw. Accuracy,
energy and computation time are included.

Steps ∆ E (W) Time (s)

T1 1.53± 0.07 4092± 424 239± 14
T2 2.01± 0.15 3962± 439 3150± 86
T3 2.22± 0.16 3927± 434 7427± 243

Table 7: Average results and deviations over 80 sim-
ulations for the multi-resolution approach with dif-
ferent sets of time steps.

grating the system with different maneuvers during
a fixed time step ts. However, as we have already
discussed, this parameter can be key in different as-
pects. Thus, we also tested a multi-resolution ap-
proach, consisting of using a set of several possible
values for the time step instead of a fixed one, i.e.,
ts ∈ T = {t1, . . . , tn}. At each leaf node, new nodes
are generated for each maneuver using all the time
steps in T , hence increasing the branching factor and
the computation time, but also the searching space
granularity.

We ran an experiment with the 80 scenarios, us-
ing the reference curve in Equation 12 and the re-
duced set of maneuvers Mr. We set the pruning pa-
rameters to kd = 15 m, kw = 25, since these val-
ues offer a good trade-off in terms of solution quality
and computation time, according to Table 6. The
multi-resolution approach was tested with three sets
of time step values: T1 = {12s}, T2 = {11s, 13s},
and T3 = {10s, 12s, 14s}. Table 7 shows the av-
erage results for the accuracy, the energy and the
computation time. Based on these results, we con-
clude that multiple time step values can improve the
energy value with a slight degradation in the accu-
racy ∆. However, the improvement in the solution
quality is not that significant in comparison with the
outstanding increase in the computation time, which
made us discard this multi-resolution approach.

7 Experimental Evaluation

This section shows some experimental results to as-
sess the performance of OSPA. The problem at hand

13

is very specific from an engineering point of view,
and we need to integrate complex and non-linear dy-
namics, so it is difficult to find a general metaheuris-
tic that works. In contrast, we have compared our
algorithm with methods focused on trajectory opti-
mization problems. First, we compare OSPA with a
competitive probabilistic planner from the literature.
Then, we depict the results of a special case study to
illustrate how OSPA can also be applied to plan in
real time ornithopter trajectories for perching.

7.1 Comparison with a sampling ap-
proach

We believe that the probabilistic planning approaches
are the most suitable alternative in the state of the art
to tackle online trajectory planning for ornithopters.
In particular, we have selected the recently published
method AO-RRT Hauser & Zhou (2016), which is, to
the best of our knowledge, one of the most competi-
tive in the literature. They propose a meta-algorithm
that can integrate any feasible kinodynamic planner
as a subroutine, and they outperform other sampling-
based planners of the state of the art. Another in-
teresting comparison would have been against purely
numerical methods (direct and indirect) providing
optimal solutions for trajectory optimization (as ex-
plained in Section 2). However, we have tried a couple
of these methods 8 for non-linear control optimization
in our problem, and the computation times were pro-
hibitive to obtain practical results, due to the highly
nonlinear dynamic model of our ornithopter.

AO-RRT is an approach to adapt the RRT* prob-
abilistic planner Li et al. (2016) to cope with non-
linear dynamics constraints. As the classical RRT*,
AO-RRT receives as input an initial state and it sam-
ples the state space randomly, in order to generate a
dynamically feasible tree that eventually will reach
the vicinity of the target state. The strategy consists
of generating multiple states by integrating numer-
ically the nonlinear system dynamics, using control
inputs that are randomly selected. The algorithm
stops when a computation time limit is reached and
it takes as solution the path toward the target state
that minimizes a given objective function. In par-
ticular, we adapted the original AO-RRT 9 to use
our ornithopter model and the energy consumption
as cost function. Moreover, we included a modifi-
cation to sample the control inputs from a discrete
set. Otherwise, if we let the algorithm select the fre-

8We have used the Forces Pro Zanelli et al. (2017) and
ACADO toolkits Houska et al. (2011).

9We have used the open-source Python implementation pro-
vided by the authors.

quency values uniformly within the interval [0, 6] Hz,
the theoretical probability to pick f = 0 is zero. This
would preclude us from performing gliding maneu-
vers, significantly increasing the energy consumption.
Therefore, we made the algorithm select the control
frequencies and tail angles randomly from the discrete
set M .

We created a set of 324 simulated scenarios to com-
pare the two approaches. For each simulation, we
took (x0, z0) = (0, 0) as the position of the initial
state and we selected a target state uniformly within
the intervals x ∈ [130, 250] m and z ∈ [−20, 100] m.
Regarding the target tolerance, we defined a square
of 6-meters side centered at the chosen target point
as the region to consider the goal as reached. The
selected parameters for OSPA were ts = 12 s, kd =
10 m, kw = 15 (to achieve computation times below
200 s) and Mr as the set of maneuvers. For AO-
RRT, we fixed the maximum computation time to
200 s, and we checked that OSPA was able to run
each of the simulated scenarios within a time lower
than 200 s. Another relevant parameter for AO-RRT
was the time step between two consecutive control
actions, because we realized that it affected the re-
sults significantly. We tested different values in our
comparison to make it fairer.

We use two metrics to evaluate the methods: the
average energy consumption of the solution trajec-
tory over all the scenarios; and the precision rate,
which is the percentage of cases where a feasible solu-
tion was found within the 6-squared-meter tolerance
region. Figure 8 shows the output of one of the simu-
lated experiments for AO-RRT and OSPA, including
the obtained solutions and the sampled waypoints
in the trees. The figure depicts the advantages of
the search strategy in OSPA: AO-RRT samples ran-
dom states that are more uniformly distributed in the
space, while in OSPA, thanks to the reference curve,
the states are more concentrated around the opti-
mal solution. Figure 9 depicts the resulting metrics
for the complete comparison. As expected, AO-RRT
presents results that are degrading in terms of energy
consumption and precision as the time step value in-
creases. It can also be seen that the precision rate
of OSPA is always greater, and that OSPA achieves
more efficient trajectories in terms of energy. Thus,
OSPA outperforms the state-of-the-art AO-RRT al-
gorithm for ornithopter trajectory optimization.

7.2 A case study: landing for perching

OSPA is thought for ornithopter navigation in short
and medium distance flights, and it aims to optimize
the energy consumption during the operation. For

14

0 50 100 150 200
120

100

80

60

40

20

0

x(m)

z
(
m
)

(a) AO-RRT

0 50 100 150 200

60

50

40

30

20

10

0

x(m)

z
(
m
)

(b) OSPA

Figure 8: Sampled waypoints in the tree (grey) and
solution (blue) for an example experiment. The
square denotes the tolerance region around the target
state.

AO-RRT(1) AO-RRT(3) AO-RRT(5) AO-RRT(7) AO-RRT(9)AO-RRT(12) OSPA(12)
0

500

1000

1500

2000

2500

3000

3500

4000

4500

E
 (

W
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Energy
Precision

Figure 9: Comparison of the energy and the precision
between OSPA and AO-RRT for different time step
values (in parentheses).

those scenarios, we can compute a trajectory online
and then use nonlinear controllers at a high rate for
trajectory following. Now, we show a particular case
study to demonstrate how OSPA can also be used for
landing maneuvers when the ornithopter is going to
perch.

A perching maneuver was studied analytically in
Crowther (2000), consisting of two phases: a gliding
phase (almost horizontal in this case) and a rapid
pitch up to a high angle of attack. The example in
Figure 3 shows various stages of this type of maneu-
ver. Perching maneuvers require computing trajecto-
ries quite fast, as the ornithopter has no much time
for reaction. Also, it is more relevant to land closer
to the target rather than to reduce the energy cost,
as perching requires high accuracy, particularly if the
available area for landing is small. Therefore, in this
experiment, we measure the Euclidean distance to
the target state considering only the ornithopter po-
sition, as the velocity and the attitude may be more
sensitive and they could be adjusted by lower-level
attitude controllers at a high rate.

We created a set of experiments to test the trajec-
tories computed by OSPA to land at a certain spot.
Typically, the initial and target positions should
be relatively close and the altitude be descendant.
Therefore, we set the ornithopter initially at the ori-
gin of coordinates with a zero pitch, and the target
point at a 10-meter longitudinal distance with a z
coordinate ranging between 2 and 5 m. Recall that
positive z values mean descending.

Since we pursue lower computation times when
planning perching trajectories, we refined the set of
maneuvers to be considered by OSPA. We experi-
mentally selected a new reduced set of maneuvers for
perching Mp, specially focusing on those with par-
ticular interest for that particular operation. To do
this, we ran our set of experiments and we selected
Mp following the same procedure as in Section 6.3. In
particular, we used a probability threshold ξ∗ = 0.03,
and we obtained the reduced set Mp shown in Table
8. It can be seen that most of these maneuvers involve
gliding, as it was demonstrated in Cory & Tedrake
(2008) for optimized perching maneuvers.

We set OSPA parameters to ts = 1 s, kd = 2 m
and kw = 4. Table 9 shows the results for the per-
formed experiments. It is important to remark that,
in all the cases, the planning time is around 1 s, and
the error distance with respect to the target, below
0.05 m. Interestingly, the optimal strategy yielded by
OSPA was similar to the profile showed in Figure 3,
i.e., a gliding phase followed by a pitch up with maxi-
mum upward elevation deflection. This indicates that
OSPA can be a valid approach in practice to compute

15

ξ δ (◦) f (Hz)

0.079 −1 0
0.107 −2 0
0.122 −3 0
0.081 −4 0
0.090 −5 0
0.093 −6 0
0.115 0 4
0.057 0 5
0.033 0 6

Table 8: Used maneuvers for perching planning. This
set Mp was obtained with a threshold ξ∗ = 0.03.

zf (m) Error (m) Time (s)

2 0.049 1.09
2.5 0.005 1.08
3 0.021 0.98

3.5 0.008 1.10
4 0.042 1.08

4.5 0.017 1.11
5 0.033 0.95

Table 9: Results for perching experiments using
OSPA. The final point is located 10 meters away in
longitudinal distance, and at different altitudes zf .
The error distance to the target position and the com-
putational time are shown.

trajectories to approach a landing area where the or-
nithopter wants to perch.

8 Discussion and Future Work

This paper proposed OSPA, a new algorithm for kin-
odynamic planning of trajectories for autonomous or-
nithopters. The method is able to compute energy-
efficient trajectories in an online fashion, combining
gliding and flapping maneuvers. OSPA builds trees
dynamically feasible and it runs pruning operations
to efficiently plan trajectories. This paradigm can
be applied to any dynamic model (we used a nonlin-
ear aerodynamic model for ornithopters) and differ-
ent flight types. We have demonstrated a proper per-
formance of the algorithm for medium distance flights
of up to 250 m, but also for planning short landing
trajectories of up to 10 m. The computation time is
suitable for online trajectory planning, achieving so-
lutions for short flights in less than 1 s. Moreover, our
experimental results have showed that OSPA outper-
forms alternative probabilistic kinodynamic planners
both in cost (total energy) and accuracy (distance

to the target). An open-source implementation of
OSPA and our benchmarks are available online 10.
Notice that our current implementation is written in
Python, so there is still room for improvement with
more efficient languages like C.

As future work, we foresee some potential exten-
sions for OSPA that we discuss in the following.

Improving the reference curve: One of the main
aspects that affects the performance of the heuristic
search in OSPA is the reference curve, as the algo-
rithm relies on having a good approximation of op-
timal curves to guide the search. We have proposed
curves computed empirically, but an open mathemat-
ical problem is to calculate the theoretical reference
curve that minimizes the energy consumption for a
given model. With a better estimation of that opti-
mal energy curve, the parameters kd and kw could be
reduced to compute pseudo-optimal trajectories more
efficiently.

Planning in 3D: In this paper, we have considered
2D trajectories for the ornithopter. However, OSPA
is not limited to that. As long as there is available a
dynamic model for the 3D motion of the ornithopter,
OSPA could be used to plan 3D trajectories. As it is
done in 2D, that 3D model would be used by OSPA
to generate the tree nodes. The reference curves to
prune the tree should also be adapted to 3D using a
similar heuristic procedure as the one used in the 2D
version. Planning 3D trajectories is particularly use-
ful for settings where the wind effects on lateral dis-
placement cannot be neglected, and it could be tack-
led by considering curvature-constrained trajectories
as in Al-Sabban et al. (2013); Zhang et al. (2014).

Machine learning methods: These days methods
for trajectory planning based on machine learning
are spreading fast. Even though there are some
works that present data from real bird flights Nagy
et al. (2010), these data are used to investigate the
influence that a given bird has on its fellow flock
members. However, high-resolution spatio-temporal
data from individuals moving between two known lo-
cations are scarce, which makes it difficult to im-
itate bird trajectories with ornithopters. In this
sense, OSPA may be helpful to generate artificial
bio-inspired datasets with pseudo-optimal trajecto-
ries, which could be used for training alternative ma-
chine learning methods.

Experiments with a real ornithopter: Finally, we
plan to use OSPA to compute trajectories on board
our real ornithopter prototype within the framework
of the GRIFFIN project. For that, we will combine
the planner with nonlinear controllers for flight sta-

10https://github.com/fragnarxx/kinodynamic-planning

16

https://github.com/fragnarxx/kinodynamic-planning

bilization and trajectory following.

Acknowledgement. This project has received
funding from the European Research Council Ad-
vanced Grant GRIFFIN (Action 788247), the Euro-
pean Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant
agreement No 734922 (CONNECT) and the Spanish
Ministry of Economy and Competitiveness (GALGO,
MTM2016-76272-R AEI/FEDER,UE).

References

Al-Sabban, W. H., Gonzalez, L. F., & Smith, R. N.
(2013). Wind-energy based path planning for
unmanned aerial vehicles using markov decision
processes. In IEEE International Conference on
Robotics and Automation (pp. 784–789).

Arabagi, V., Hines, L., & Sitti, M. (2012). Design and
manufacturing of a controllable miniature flapping
wing robotic platform. The International Journal
of Robotics Research, 31 (6), 785-800. doi: 10.1177/
0278364911434368

Ayancik, F., Zhong, Q., Quinn, D. B., Brandes, A.,
Bart-Smith, H., & Moored, K. W. (2019). Scal-
ing laws for the propulsive performance of three-
dimensional pitching propulsors. Journal of Fluid
Mechanics, 871 , 1117–1138. doi: 10.1017/jfm.2019
.334

Betts, J. T. (2010). Practical methods for optimal
control and estimation using nonlinear program-
ming. SIAM.

Boussaid, I., Lepagnot, J., & Siarry, P. (2013). A
survey on optimization metaheuristics. Informa-
tion Sciences, 237 , 82-117. doi: https://doi.org/
10.1016/j.ins.2013.02.041

Brescianini, D., & D’Andrea, R. (2018, June). Com-
putationally efficient trajectory generation for fully
actuated multirotor vehicles. IEEE Transactions
on Robotics, 34 (3), 555-571. doi: 10.1109/TRO
.2018.2813373

Chirarattananon, P., Ma, K. Y., & Wood, R. J.
(2014). Single-loop control and trajectory follow-
ing of a flapping-wing microrobot. In IEEE In-
ternational Conference on Robotics and Automa-
tion (ICRA) (p. 37-44). doi: 10.1109/ICRA.2014
.6906587

Cory, R., & Tedrake, R. (2008). Experiments in fixed-
wing UAV perching. In AIAA Guidance, Naviga-
tion and Control Conference and Exhibit (p. 7256).

Coutinho, W. P., Battarra, M., & Fliege, J. (2018).
The unmanned aerial vehicle routing and trajec-
tory optimisation problem, a taxonomic review.
Computers & Industrial Engineering , 120 , 116–
128.

Crowther, W. (2000). Perched landing and take-
off for fixed wing UAVs. In NATO symposium on
unmanned vehicles for aerial, ground, and naval
military operations (pp. 9–13).

de Croon, G., de Clercq, K., Ruijsink, R., Remes, B.,
& de Wagter, C. (2009). Design, aerodynamics,
and vision-based control of the delfly. International
Journal of Micro Air Vehicles, 1 (2), 71-97. doi:
10.1260/175682909789498288

Dietl, J. M., & Garcia, E. (2013). Ornithopter op-
timal trajectory control. Aerospace Science and
Technology , 26 (1), 192 - 199. doi: https://doi.org/
10.1016/j.ast.2012.04.003

Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar,
A. (2019). A survey on new generation metaheuris-
tic algorithms. Computers & Industrial Engineer-
ing , 137 , 106040. doi: https://doi.org/10.1016/
j.cie.2019.106040

Fernandez-Feria, R. (2016). Linearized propulsion
theory of flapping airfoils revisited. Physical Re-
view Fluids, 1 (8), 084502.

Fernandez-Feria, R. (2017). Note on optimum propul-
sion of heaving and pitching airfoils from linear po-
tential theory. Journal of Fluid Mechanics, 826 ,
781-796.

Garrick, I. E. (1936). Propulsion of a flapping and os-
cillating airfoil. Technical Report TR 567, NACA.

Grauer, J., & Hubbard, J. (2010). Modeling of or-
nithopter flight dynamics for state estimation and
control. In Proceedings of the American Control
Conference (p. 524-529). doi: 10.1109/ACC.2010
.5530874

Hauser, K., & Zhou, Y. (2016, December). Asymp-
totically optimal planning by feasible kinodynamic
planning in a state-cost space. IEEE Transac-
tions on Robotics, 32 (6), 1431–1443. doi: 10.1109/
TRO.2016.2602363

Hoff, J., Syed, J., Ramezani, A., & Hutchinson, S.
(2019). Trajectory planning for a bat-like flap-
ping wing robot. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS)
(p. 6800-6805). doi: 10.1109/IROS40897.2019
.8968450

17

Houska, B., Ferreau, H., & Diehl, M. (2011). ACADO
Toolkit – An Open Source Framework for Auto-
matic Control and Dynamic Optimization. Optimal
Control Applications and Methods, 32 (3), 298–312.
doi: https://doi.org/10.1002/oca.939

Hussain, K., Salleh, M. M., Cheng, S., & Shi, Y.
(2019). Metaheuristic research: a comprehen-
sive survey. Artificial Intelligence Review , 52 (4),
2191-2233. doi: https://doi.org/10.1007/s10462
-017-9605-z

Karaman, S., & Frazzoli, E. (2010). Optimal
kinodynamic motion planning using incremental
sampling-based methods. In IEEE Conference on
Decision and Control (CDC) (p. 7681-7687). doi:
10.1109/CDC.2010.5717430

Karaman, S., & Frazzoli, E. (2011). Sampling-based
algorithms for optimal motion planning. The Inter-
national Journal of Robotics Research, 30 (7), 846-
894. doi: 10.1177/0278364911406761

Li, Y., Littlefield, Z., & Bekris, K. E. (2016).
Asymptotically optimal sampling-based kinody-
namic planning. The International Journal of
Robotics Research, 35 (5), 528-564. doi: 10.1177/
0278364915614386

Maldonado, F. J., Acosta, J. A., Tormo-Barbero,
J., Grau, P., Guzman, M. M., & Ollero, A.
(2020). Adaptive nonlinear control for perching
of a bioinspired ornithopter. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems (IROS) (p. 1385-1390). doi: 10.1109/
IROS45743.2020.9341793

Mart́ın-Alcántara, A., Grau, P., Fernandez-Feria, R.,
& Ollero, A. (2019). A simple model for gliding
and low-amplitude flapping flight of a bio-inspired
UAV. In International Conference on Unmanned
Aircraft Systems (ICUAS) (p. 729-737). doi: 10
.1109/ICUAS.2019.8798233

Mellinger, D., & Kumar, V. (2011). Minimum snap
trajectory generation and control for quadrotors.
In IEEE International Conference on Robotics and
Automation (ICRA) (p. 2520-2525). doi: 10.1109/
ICRA.2011.5980409

Menezes, A. A., & Kabamba, P. T. (2016). Efficient
and resilient micro air vehicle flapping wing gait
evolution for hover and trajectory control. Engi-
neering Applications of Artificial Intelligence, 54 ,
1 - 16. doi: https://doi.org/10.1016/j.engappai
.2016.05.001

Mueller, M. W., Hehn, M., & D’Andrea, R. (2015,
Dec). A computationally efficient motion primi-
tive for quadrocopter trajectory generation. IEEE
Transactions on Robotics, 31 (6), 1294-1310. doi:
10.1109/TRO.2015.2479878

Nagy, M., Akos, Z., Biro, D., & Vicsek, T. (2010).
Hierarchical group dynamics in pigeon flocks. Na-
ture, 464 , 890-893. doi: 10.1038/nature08891

Nguyen, Q.-V., & Chan, W. L. (2018). Devel-
opment and flight performance of a biologically-
inspired tailless flapping-wing micro air vehicle
with wing stroke plane modulation. Bioinspira-
tion & Biomimetics, 14 (1), 016015. doi: 10.1088/
1748-3190/aaefa0

Nguyen, T. A., Phan, H. V., Au, T. K. L., & Park,
H. C. (2016). Experimental study on thrust
and power of flapping-wing system based on rack-
pinion mechanism. Bioinspiration & Biomimet-
ics, 11 (4), 046001. doi: 10.1088/1748-3190/11/
4/046001

Oleynikova, H., Burri, M., Taylor, Z., Nieto, J., Sieg-
wart, R., & Galceran, E. (2016). Continuous-time
trajectory optimization for online UAV replanning.
In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (p. 5332-5339).
doi: 10.1109/IROS.2016.7759784

Paranjape, A. A., Chung, S., & Kim, J. (2013).
Novel dihedral-based control of flapping-wing air-
craft with application to perching. IEEE Transac-
tions on Robotics, 29 (5), 1071-1084. doi: 10.1109/
TRO.2013.2268947

Paranjape, A. A., Dorothy, M. R., Chung, S.-J., &
Lee, K.-D. (2012). A flight mechanics-centric re-
view of bird-scale flapping flight. International
Journal of Aeronautical and Space Sciences, 13 (3),
267–281.

Paranjape, A. A., Meier, K. C., Shi, X., Chung, S.-J.,
& Hutchinson, S. (2015). Motion primitives and 3D
path planning for fast flight through a forest. The
International Journal of Robotics Research, 34 (3),
357-377. doi: 10.1177/0278364914558017

Posa, M., Cantu, C., & Tedrake, R. (2014). A direct
method for trajectory optimization of rigid bod-
ies through contact. The International Journal of
Robotics Research, 33 (1), 69–81.

Qin, Y., Cheng, B., & Deng, X. (2014). Trajec-
tory optimization of flapping wings modeled as
a three degree-of-freedoms oscillation system. In

18

IEEE/RSJ International Conference on Intelligent
Robots and Systems (p. 3193-3200). doi: 10.1109/
IROS.2014.6943005

Rose, C. J., Mahmoudieh, P., & Fearing, R. S. (2016).
Modeling and control of an ornithopter for diving.
In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (p. 957-964). doi:
10.1109/IROS.2016.7759165

Sihite, E., & Ramezani, A. (2020). Enforcing non-
holonomic constraints in aerobat, a roosting flap-
ping wing model. In IEEE Conference on De-
cision and Control (CDC) (p. 5321-5327). doi:
10.1109/CDC42340.2020.9304158

Stoneman, S., & Lampariello, R. (2014). Embedding
nonlinear optimization in RRT* for optimal kin-
odynamic planning. In IEEE Conference on De-
cision and Control (p. 3737-3744). doi: 10.1109/
CDC.2014.7039971

Theodorsen, T. (1935). General theory of aero-
dynamic instability and the mechanism of flutter.
Technical Report TR 496, NACA.

Thomas, A. L. (1993). On the aerodynamics of
birds’ tails. Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences,
340 (1294), 361-380.

Wang, J., Zahr, M. J., & Persson, P.-O. (2017). Ener-
getically optimal flapping flight via a fully discrete
adjoint method with explicit treatment of flapping
frequency. In AIAA Computational Fluid Dynam-
ics Conference. doi: 10.2514/6.2017-4412

Webb, D. J., & van den Berg, J. (2013). Kinodynamic
RRT*: Asymptotically optimal motion planning
for robots with linear dynamics. In IEEE Inter-
national Conference on Robotics and Automation
(ICRA) (p. 5054-5061). doi: 10.1109/ICRA.2013
.6631299

Zanelli, A., Domahidi, A., Jerez, J., & Morari, M.
(2017). FORCES NLP: an efficient implementa-
tion of interior-point methods for multistage non-
linear nonconvex programs. International Jour-
nal of Control , 13-29. doi: 10.1080/00207179.2017
.1316017

Zhang, X., Chen, J., Xin, B., & Peng, Z. (2014). A
memetic algorithm for path planning of curvature-
constrained UAVs performing surveillance of mul-
tiple ground targets. Chinese Journal of Aeronau-
tics, 27 (3), 622–633.

19

	Introduction
	Related Work
	Problem Description
	Ornithopter Dynamic Model
	Non-dimensional Newton-Euler equations
	Aerodynamic models

	Ornithopter Segmentation-based Planning Approach
	Tree reduction
	First pruning operation: the corridor
	Second pruning operation: witness states

	 Planning in dynamic scenarios

	Selection of Parameters
	Time step
	Reference curve
	Study of maneuvers
	Parameters kd and kw
	Multi-resolution approach

	Experimental Evaluation
	Comparison with a sampling approach
	A case study: landing for perching

	Discussion and Future Work

