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Abstract 

The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect 

metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host 

circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we 

demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome 

patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial 

species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, 

the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. 

Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin 

and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both 

intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. 

As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the 

temporal organization and functional outcome of host transcriptional and epigenetic programs. 
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Introduction 

The mammalian circadian clock adjusts physiological processes to diurnal environmental variations 

through the coordination of transcriptome oscillations in peripheral tissues. In each individual cell, the 

rhythmic transcriptional program is carried out by a network of core clock transcription factors, 

including period (Per), cryptochrome (Cry), Bmal (Arntl), and Clock, with nuclear receptors of the ROR 

and REV-ERB families stabilizing the core oscillator (Panda and Hogenesch, 2004). These factors control 

rhythmic chromatin dynamics, including rhythmic changes in epigenetic marks at circadian promoters, 

spatial chromosome arrangement, and polymerase activity, thereby determining the fraction of the 

genome undergoing oscillating expression in a tissue-specific manner (Aguilar-Arnal et al., 2013; Koike 

et al., 2012; Perelis et al., 2015; Vollmers et al., 2012). As a result, up to 20 percent of a tissue’s total 

transcriptome and up to 50 percent of all transcripts in the body consist of oscillating elements, which 

determine the diurnal pattern of cellular and organismal activity (Panda et al., 2002; Zhang et al., 2014). 

Cellular metabolism is greatly affected by the activity of the circadian clock, thereby accomodating the 

temporal variation of an organism’s metabolic needs over the course of a day. For instance, the 

rhythmic fluctuations of metabolite levels in a given tissue are driven by the components of the 

molecular clock (Adamovich et al., 2014; Dallmann et al., 2012; Eckel-Mahan et al., 2012; Minami et 

al., 2009). In turn, metabolic products serve as an important input into the circadian clock network, 

thereby creating a bi-directional feedback loop of reciprocal control between cellular metabolic 

activity and the circadian clock (Asher et al., 2008; Nakahata et al., 2008; Nakahata et al., 2009; Ramsey 

et al., 2009; Zwighaft et al., 2015). 

In addition to the circadian variation in the physiology of the host, it was recently discovered that the 

community of bacteria colonizing the mammalian gastrointestinal tract, collectively called the 

intestinal microbiota, undergoes diurnal oscillations in composition and function (Leone et al., 2015; 

Liang et al., 2015; Thaiss et al., 2014; Zarrinpar et al., 2014). These oscillations are controlled by the 

timing of food intake and the composition of the diet (Leone et al., 2015; Thaiss et al., 2015a; Zarrinpar 

et al., 2014). The diurnal interaction between the host and its gut microbiome can affect circadian clock 

activity in different tissues (Leone et al., 2015; Mukherji et al., 2013; Murakami et al., 2016) and is 

particularly critical for metabolic homeostasis of the host, as failure to rhythmically control the 

microbiota results in dysbiosis that promotes obesity and other manifestations of the metabolic 

syndrome (Thaiss et al., 2015b; Voigt et al., 2014; Voigt et al., 2016). However, how the rhythmic 

activity of the microbiota feeds into the circadian clock network both locally in the intestine and 

systemically, and how this concerted host-microbiome oscillation impacts diurnal organ physiology 

remains elusive. 
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In this study, we performed a system-wide analysis of the daily host-microbiota interplay in order to 

determine the functional properties of microbiota oscillations that impact the circadian activity of the 

host. We find that the biogeography and metabolome of the intestinal microbiota, two features that 

substantially influence host physiology, undergo diurnal oscillations. Abrogation of these rhythms by 

antibiotic treatment or in germ-free mice leads to a massive reprogramming of the epigenetic and 

transcriptional landscape in the intestine, including a large-scale de novo generation of oscillating 

histone marks and rhythmically expressed genes. Furthermore, the microbiota metabolome influences 

rhythmic host physiology beyond the intestine, by driving systemic metabolite rhythms and 

programming of transcriptional oscillations in the liver. Thereby, the microbiota impacts the 

homeostatic diurnal variation in hepatic drug detoxification and hepatotoxicity. Together, this work 

identifies several new layers of diurnality at the host-microbiota interface, implicates the microbiome 

as a major source of clock-modifying metabolites, and suggests the microbiome as a regulator of host 

circadian activity. 

 

Results 

The biogeography of the intestinal microbiota undergoes diurnal oscillations 

Since the commensal bacteria most strongly affecting the host are located in proximity to the intestinal 

mucosal surface, we studied the biogeographical aspects of microbiome diurnal rhythmicity, by 

analyzing fluctuations in the abundance, composition, and function of epithelial-adherent commensal 

bacteria in the colon over the course of two days (Figure 1A). All mice were fed ad libitum and housed 

under strict 24-hour dark-light conditions, with lights being kept on for 12 hours (Zeitgeber times (ZT) 

0-12). Scanning electron microscopy (SEM) imaging of proximal colons revealed daily fluctuations in 

the amount of commensals in tight association with the intestinal epithelium (Figures 1B, S1A, and 

S1B, p<10-5, JTK_cycle). To determine the absolute numbers of mucosal-associated bacteria, we 

extensively cleared proximal colons from luminal content to retain only the mucosal niche, and 

confirmed the successful isolation of epithelial-proximal bacteria by detection of mucus-resident 

commensals, including Mucispirillum schaedleri (Robertson et al., 2005). In line with the observations 

made by SEM, the numbers of bacteria colonizing the epithelial niche, as quantified by qPCR of the 

total 16s rDNA pool, underwent marked diurnal changes, with epithelial layer adherence in the dark 

phase being up to 10-fold higher than in the light phase (Figure 1C, p<10-6). We confirmed these results 

by using a sampling frequency of 4 hours (Figure S1C). To assess whether the bacterial composition in 

the mucosal niche likewise underwent temporal fluctuations, we performed 16S rDNA sequencing of 

epithelial-associated communities harvested at different times of the day. Indeed, the global bacterial 
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composition featured marked diurnal oscillations (Figures 1D and 1E), such that the bacterial 

community localized to the intestinal mucosa at any time point was more similar to the one present 

24 hours earlier than to any other time point in between (Figures S1D-S1F). To determine the absolute 

numbers of bacteria colonizing the mucosal niche we then combined 16S sequencing with qPCR 

quantification (Figure S1G). 148 out of 633 detected operational taxonomic units (OTUs) featured 

rhythmic patterns of epithelial adherence (Figure 1F, p<0.05, q<0.1), including Mucispirillum schaedleri 

(Figure 1G), Lactobacillus reuteri (Figure S1H), and Bacteroides acidifaciens (Figure S1I). Together, 

these results suggest that the host mucosa is exposed to diurnally fluctuating numbers and species of 

bacteria over the course of a day. 

 

Host and microbial factors regulate bacterial mucosal-associated oscillations 

To determine the mechanisms driving rhythmic bacterial mucosal localization, we performed 

metagenomic sequencing of the mucosal microbial community every 6 hours over the course of 48 

hours. We first assessed rhythmic changes in the abundance of bacterial KEGG genes in epithelial 

proximity. 404 out of 1552 genes significantly oscillated in their relative abundances, among them 

members of the flagellar gene operons (Figures 1H and 1I, p<0.05, q<0.1). We furthermore assigned 

KEGG modules and pathways to the microbial genes (Figures 2A and S2A). Interestingly we found 

pathways involved in mucus degradation (Figures 1H, 2A, and S2A) and bacterial motility (Figures 1H, 

2A, and S2A) to be among the microbial functions most significantly oscillating in relative abundance, 

as exemplified by bacterial chemotaxis (Figure 2B) and flagellar assembly (Figure S2B). To determine 

the bacterial species driving pathway-level rhythmicity in the mucosal community, we examined those 

OTUs that contributed to oscillating genes within the bacterial chemotaxis and flagellar assembly 

pathways. Notably, the majority of such species belonged to Deferribacteraceae (Tables S1 and S2), a 

bacterial family which itself featured robust oscillations in mucosal abundance (Figure S2C). 

We hypothesized that rhythmic bacterial movement and mucus invasion might contribute to the daily 

fluctuations in commensal inhabitation of the mucosal niche. We therefore performed a time course 

of microbiota imaging by 16S in situ hybridization every 6 hours over the course of two days, using a 

mucus-preserving fixation method and co-staining for Muc2 protein in order to visualize mucus 

production. Expectedly, we found a two-layered mucus structure, the inner of which is largely free of 

bacterial colonization (Figure S2D). Interestingly, the thickness of the mucus layer, as well as the 

degree of microbial penetration into the mucus layer and thus the width of spatial separation between 

the host intestinal epithelium and the commensal bacteria, underwent rhythmic fluctuations (Figures 
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2C, 2D, and S2D). Microbial proximity to the mucosal surface was highest during the dark phase (Figure 

2C, p<10-20), corroborating the results obtained by electron microscopy and 16S qPCR. 

The spatial segregation between epithelial layer and commensal bacteria is maintained by the 

production of mucus and antimicrobial peptides (Hooper et al., 2012; Johansson et al., 2008; Vaishnava 

et al., 2011; Wlodarska et al., 2014). Recently, it was found that mice lacking RegIIIγ feature enhanced 

bacterial colonization in direct proximity to the intestinal epithelium (Loonen et al., 2014; Vaishnava 

et al., 2011). Indeed, we found an impairment of spatial separation between the epithelial layer and 

the microbiota and abrogated diurnal rhythmicity in the number of mucosal-resident bacteria in 

RegIIIγ-deficient mice, as determined by in-situ hybridization (Figures 2E and S2E), 16S qPCR (Figure 

2F), and 16S sequencing (Figure S2F). 

To determine the contribution of the host circadian machinery to the circadian bacterial adherence 

patterns, we utilized Per1/2-/- mice that are devoid of the core molecular clock (Adamovich et al., 2014). 

We noted a marked loss of bacterial adherence oscillations in Per1/2-/- mice, (Figure 2G), indicating 

that host circadian rhythms are indispensable for the maintenance of microbiota biogeographical 

rhythms. To disentangle the dysfunctional molecular clock from abrogated feeding rhythms noted in 

these mice (Neufeld-Cohen et al., 2016), we performed timed-feeding experiments, in which Per1/2-/- 

mice had access to food only during the light phase. Notably, this treatment restored microbiota 

oscillations, both in the amount and composition of the mucosal-resident bacterial community 

(Figures 2H, 2I, S2G, and S2H). These results identify feeding time as a major driver of microbial 

biogeography. In support of this notion, wild-type mice that were fed either only during the dark or 

only during the light period showed phase-reversed microbial attachment rhythms (Figure S2I). 

Together, these results identified several host and microbial factors jointly contributing to diurnal 

variations in epithelial proximity of commensal bacteria, including the host circadian clock through 

regulation of feeding rhythms, RegIIIγ-mediated barrier function, as well as rhythmic bacterial motility 

and mucus degradation. 

 

Microbiota ablation reprograms the intestinal circadian transcriptome 

We next assessed the impact of the diurnally fluctuating microbiome on the intestinal epithelium. To 

this end, we disrupted the bacterial ecosystem by administering broad-spectrum antibiotics and 

assessed the host circadian transcriptional and epigenetic intestinal program (Figure 3A). Expectedly, 

antibiotic treatment abrogated both the number of mucosal-associated bacteria and their oscillatory 

behavior, as determined by 16S qPCR and scanning electron microscopy (Figures 3B, 3C, and S3A). 
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Furthermore, the remaining antibiotic-persistent epithelial-proximal microbiota lost its diurnal 

rhythms in composition (Figures 3D, 3E, S3B, and S3C). 

To determine the impact of microbiota disruption on the rhythmic transcriptome of the host, we 

performed comparative RNA-sequencing of colonic tissue from control and antibiotics-treated mice 

every 6 hours over the course of two light-dark cycles (Figure 3A). We first confirmed the detection of 

known effects of microbiota depletion on colonic transcription by qPCR (Figure S3D). We next 

evaluated host transcript rhythmicity on a global level. Interestingly, while robust circadian oscillations 

were detected in several hundred genes in both control and antibiotics-treated groups, the identity of 

the most significantly oscillating genes was markedly different between the groups, which was 

observed with both 6 hours and 4 hours sampling frequency (Figures 3F-3I and S3E). Behavioral 

rhythms of the host, including feeding rhythmicity, persisted throughout the antibiotic treatment 

(Figures S3F, S3G, and data not shown), ruling out loss of rhythmic food intake as the reason for the 

observed transcriptional reprogramming. Loss and gain of oscillatory host transcripts was unrelated to 

expression levels, since average expression of the affected genes was not influenced by antibiotic 

treatment (Figure S3H), suggesting that transcript oscillation was an independently regulated feature. 

To determine the functionality of lost, gained, and shared transcript oscillations, we assigned KEGG 

pathways to each group of genes. The pathway most significantly enriched among the oscillatory 

transcripts shared between antibiotic treated and control mice was the core circadian clock (p<10-9), 

indicating that the function of the host peripheral clock machinery was not intrinsically dependent on 

the presence of an intact microbiota (Figures 3G and 3J). Transcripts that lost their oscillations in the 

absence of the microbiota mainly belonged to nucleotide metabolism and cell cycle pathways (Figures 

3H and 3K). Most remarkable and unexpected, however, were the functionalities that gained 

rhythmicity upon microbiota depletion, which included major metabolic pathways like pyruvate 

metabolism, glutathione metabolism, and the TCA cycle (Figures 3I and 3L). Interestingly, similar 

pathways were significantly oscillating in the mucosal microbiome under homeostatic conditions 

(Figure S3I), potentially suggesting that upon microbiota depletion, the host may acquire 

compensatory oscillatory programs in functionalities that are normally performed by the microbiota 

in a rhythmic manner. These data indicate that a large set of rhythmic transcripts in the colon is 

influenced by the intestinal microbiota, and that microbiota depletion incites de novo oscillatory 

programs in the host. 

 

Microbiota ablation reprograms circadian chromatin dynamics 
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To gain insight into the mechanisms by which the microbiota influences the programming of colonic 

transcriptome oscillations, we investigated the gene regulatory mechanisms underlying rhythmic 

transcription in intestinal epithelial cells. Clock-driven transcriptome oscillations in the liver are 

accompanied by rhythmic genome-wide remodeling of the chromatin state (Koike et al., 2012; 

Vollmers et al., 2012). We therefore sought to characterize the circadian epigenetic landscape of 

intestinal epithelial cells, and to determine whether the microbiota influences rhythmic chromatin 

remodeling in a genome-wide manner. To this end, we performed a time-course of chromatin 

immunoprecipitation followed by next-generation sequencing (ChIP-seq) profiling on purified 

intestinal epithelial cells every 6 hours over two days (Figure 4A). We assayed several histone 

modifications including trimethylation of histone H3 at lysine 4 (H3K4me3), H3K4me2, and H3K27 

acetylation (H3K27ac) to determine the global landscape of enhancers (distal regions marked by 

H3K4me2), promoters (characterized by the enrichment of H3K4me3) and active transcription, 

indicated by H3K27Ac marks (Figure 4A). 

Given the close association of circadian promoters and rhythmic transcription (Koike et al., 2012; 

Vollmers et al., 2012), we first examined the genome-wide architecture of active promoters. To this 

end, we identified H3K27ac peaks in H3K4me3 regions and assessed rhythmicity over the course of 

two days by JTK_cycle. We found significant oscillations in 525 active promoters (Figure S4A, p<0.05), 

including the loci of the canonical clock genes (Figure S4B). We ruled out false-positive detection of 

stochastic oscillations by comparing rhythmic histone marks to the genomic background of whole-cell 

extracts (Figure S4A). Using this map of genome-wide oscillations in active promoters, we next 

addressed the impact of the microbiome on the temporal organization of the chromatin landscape, by 

performing a ChIP-seq time-course on antibiotics-treated mice (Figure 4A). Remarkably, and in 

agreement with the gene expression data, we found cycling behavior of promoter marks in both 

control and antibiotics groups, but the identity of the oscillating loci was largely distinct (Figures 4B 

and 4C), with 491 promoters losing rhythmicity upon microbiota depletion, but 477 loci developing de 

novo rhythmic behavior (Figure 4C). Among the genes with shared promoter rhythmicity were genes 

associated with the core clock, as exemplified by Dbp (Figures 4D and S4C), while the loss and gain of 

oscillations affected genes across various functional groups (Figures 4E and 4F). The examples of Nr1d1 

(shared oscillation), Mxd1 (lost oscillation), and Cxadr (de novo oscillation) illustrate the association of 

loss and gain of H3K27ac rhythmicity at promoter regions with transcript oscillations (Figure S4D). 

In addition to active promoters, circadian transcription is closely associated with cyclic enhancer 

regions (Koike et al., 2012; Vollmers et al., 2012). We therefore also focused on rhythmic H3K4me2 

peaks and investigated the impact of the microbiota on the diurnal enhancer landscape. As with 

circadian promoters, overall rhythmicity was not affected by microbiota depletion (Figures 4G and 
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S4E). However, the loci of both rhythmic enhancer usage (H3K4me2) and enhancer activity (H3K4me2 

+ H3K27ac) substantially differed between both scenarios, with several hundreds of enhancers losing 

and gaining rhythmicity upon antibiotic treatment (Figures 4H and S4F). When we examined active 

enhancers (H3K27ac oscillations at intergenic and intragenic H3K4me2 loci), we observed a strong 

association of cycling genes with cycling enhancer marks in the antibiotics setting, suggesting that the 

rhythmic behavior of such enhancers becomes active upon changes in the state of microbial 

colonization. Such enhancer activity-driven de novo oscillation was observed, for example, in the 

calcium-binding protein S100a10 (Figures 4I and 4J), while loss of rhythmicity is exemplified by the 

phosphatase Ctdsp2 (Figures 4K and 4L). Malate dehydrogenase (Mdh1) represented a further 

example in which enhancer activity (H3K4me2 + H3K27ac), rather than enhancer usage (H3K4me2 

alone), regulated the activation of oscillating transcription upon microbiota depletion (Figures S4G and 

S4H). Together, these data demonstrate an impact of the microbiota on the architecture of oscillating 

chromatin modifications and suggest that microbial colonization influences rhythmic promoter and 

enhancer activity to drive rhythmic gene expression. 

 

Microbial attachment influences the intestinal circadian transcriptome 

The above antibiotic treatment experiments suggested that the microbiome regulates oscillations in 

the host transcriptome and epigenome, but could not distinguish between the involvement of bacterial 

attachment to the mucosa or its mere presence in the intestine. To differentiate between these two 

possibilities, we mono-colonized germ-free mice with adherent and non-adherent variants of the same 

bacterial species (Figure 5A). We used segmented filamentous bacteria (SFB) indigenous to mice 

(mSFB) or rats (rSFB), previously shown to feature differential adherence to the intestinal epithelium 

(Atarashi et al., 2015). Indeed, mSFB was found in more than 10-fold higher numbers in the mucosal-

proximal layer of mice as compared to rSFB (Figure 5B). Despite these differences in mucosal 

colonization, both types of SFB featured phase-shifted rhythmic patterns of absolute numbers in 

epithelial proximity over the course of 48 hours (Figure 5C). 

This system enabled us to determine the impact of differential rhythmic bacterial attachment of the 

colonic circadian transcriptome in mice mono-colonized with mSFB (featuring a rhythmic mucosal 

abundance), mice mono-colonized with rSFB (featuring a rhythmic yet markedly reduced mucosal 

abundance), and mice lacking RegIIIγ (featuring an abundant but non-rhythmic mucosal microbiome, 

Figure 2F). We compared the identity of oscillating genes in these mice with those featured in either 

antibiotics-treated or control mice (Figure 3F). Notably, the oscillating transcripts of mSFB-mono-

colonized mice were most similar to wild-type controls (Figure 5D) while those of Reg3g-/- mice showed 
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the strongest overlap with those of antibiotics-treated animals, suggesting that rhythmic bacterial 

adherence per se was involved in determining the program of rhythmically expressed genes. Mono-

colonization with rSFB resulted in an intermediate oscillatory program, possibly reflecting its 

combination of reduced adherence yet oscillating microbiome activity (Figure 5D). These alterations 

in rhythmic transcription did not influence oscillations of the core molecular clock, as exemplified by 

Dbp expression (Figure 5E). Apart from the members of the circadian clock, mSFB mono-colonization 

was associated with rhythmic transcription of genes belonging to DNA replication, cell cycle, and 

nucleotide turnover pathways (Figure 5F), similar to control mice harboring a conventional 

microbiome (Figure 3K). Together, these results suggest that rhythmic bacterial adherence drives a 

program of transcriptional oscillations that is altered upon interference with the rhythmic 

biogeography of the microbiota. 

 

Microbiota ablation reprograms the hepatic circadian transcriptome 

We next examined whether the impact of the microbiota on oscillatory programs of the host reaches 

beyond the gastrointestinal tract. To this end, we performed RNA-seq analysis of livers from 

antibiotics-treated or control mice taken at 6 hour intervals over two days and assessed for rhythmicity 

using JTK_cycle (Figure 5G). Similar to what we had observed in the colon, antibiotics-mediated 

microbiota disruption reprogrammed liver transcriptome oscillations (Figures 5H and S5A-C), without 

changing the mean expression levels of the affected genes (Figure S5D). As in the gut, the canonical 

clock components maintained their rhythms (Figures 5I, 5J, S5A, and S5E), as did genes involved in 

hepatic drug metabolism, insulin signaling, and multiple other metabolic functions (Figures 5I and 

S5A). In total, 375 out of 1306 hepatic transcripts cycled only in the control group (p<0.05, q<0.1; 

Figure 5H), including genes involved in oxidative phosphorylation and other catabolic pathways 

(Figures 5K and S5B). For instance, the gene encoding glucose phosphate isomerase-1 (Gpi1) lost 

detectable rhythmicity after antibiotic treatment (Figure 5K). In contrast, 912 transcripts developed 

de novo rhythmicity (p<0.05, q<0.1; Figures 5H and S5C), many of which were involved in amino acid 

metabolism and fatty acid metabolism, including elements of the PPARγ signaling pathway (Figures 5L) 

(Murakami et al., 2016). To corroborate that this transcriptional reprogramming was due to microbiota 

depletion, rather than direct effects of the antibiotics on the liver, we profiled the circadian hepatic 

transcriptome of germ-free mice and compared the results to the profile found in colonized control 

mice and mice treated with broad-spectrum antibiotics. We found a high concordance of oscillating 

transcripts in livers from germ-free mice with those from antibiotics-treated mice, while the overlap 

with non-treated control mice was smaller (Figure S5F). Taken together, these results highlight the 

microbiota as being critical for maintaining the homeostatic rhythmic transcription in the liver. 
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The microbiota programs the hepatic transcriptome through systemic metabolome oscillations 

We next sought to determine the mechanisms by which the gut microbiota distally orchestrates 

hepatic transcriptome oscillations. Metabolism has emerged as a major regulator of the epigenetic 

control of gene expression, and several prominent examples of close interaction between metabolites 

and the circadian clock have been unraveled (Asher and Sassone-Corsi, 2015). To gain insight into 

metabolites as potential mediators of the effect that the microbiota exerts on rhythmic gene 

expression, we first determined the temporal dynamics of the intestinal metabolome by metabolomic 

profiling in wild-type mice every 6 hours over the course of two light-dark cycles (Figure 5G). We 

detected significant oscillations across diverse chemical groups, including lipids, amino acids, 

carbohydrates, vitamins, nucleotides, and xenobiotics (Figures 6A), as exemplified by the carbohydrate 

xylose, the dipeptide valylglutamate, and the histidine derivative ergothioneine (Figures S6A-C). 

Oscillatory behavior was detected along biosynthetic pathways, such as the conversion between the 

polyamine ornithine and the amino acid proline (Figure 6B, p<10-3). In the case of biotin, a bacterial-

derived vitamin with essential functions for host physiology, we noted rhythmicity along the 

biosynthetic pathway (Figure 6C, p<10-5), involving the conversion of 7,8-diaminononanoate to 

dethiobiotin (catalyzed by bioD), and the subsequent production of biotin (catalyzed by bioB). 

Furthermore, rhythmic elements characterized the glycolytic conversion of sucrose to lactate (Figure 

S6D). These results demonstrate that multiple microbiota-derived and -modulated metabolites 

undergo diurnal rhythms, suggesting a potential mechanism by which microbiota metabolism may 

influence the diurnal transcriptional landscape of the host. 

To determine interactions between oscillating intestinal metabolites and systemic host circadian 

activity, we profiled the temporal behavior of serum metabolites over a 48-hour time course (Figure 

5G). We focused on amino acids and polyamines, given their prominent rhythmicity in the lumen of 

the gastrointestinal tract and their known regulatory involvement in the activity of the circadian clock 

(Zwighaft et al., 2015). Notably, we found a high degree of concordance between rhythmicity of a 

particular metabolite in the serum and in the intestinal lumen (R2=0.415, p<10-3; Figure 6D). Some 

metabolites featured phase-shifted oscillations in the serum, as demonstrated for threonine, 

ornithine, proline, and α-aminobutyric acid (Figures 6E and S6E-S6G). To test whether the microbiota 

was involved in the orchestration of this serum rhythmicity of amino acids and polyamines, we profiled 

their diurnal pattern in antibiotics-treated and germ-free mice. Remarkably, absence of the microbiota 

abolished rhythmicity in any of the examined metabolites (Figure 6F). For instance, antibiotics-treated 

and germ-free mice did not show diurnal rhythms in the serum levels of ornithine (Figures 6G and 6H). 

Furthermore, while arrhythmic Per1/2-/- mice did not feature any detectable serum amino acid or 
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polyamine oscillations, restoring microbiota oscillations in these mice by timed feeding reinstated 

metabolite rhythms to the level of wild-type controls (Figures 6F and S6H). This was seen, for instance, 

in ornithine and the biosynthetically related metabolites arginine and proline (Figures 6I, S6I, and S6J). 

To further investigate whether the levels and fluctuations of intestinal amino acids and polyamines 

were causally involved in the reprogramming of hepatic transcript oscillations, we performed a dietary 

intervention in which mice were fed a polyamine-deficient (PD) diet for 4 weeks, followed by serum 

metabolite analysis and RNA-seq of hepatic tissue every 6 hours over two days (Figure 7A). Indeed, PD 

diet abrogated homeostatic circadian oscillations in serum amino acids and polyamines (Figures 7B 

and S7A-S7C). Remarkably, this was accompanied by reprogramming of the hepatic circadian 

transcriptome, including the loss and de-novo gain of several hundreds of rhythmic genes (Figures 7C-

7G). The genes oscillating in mice fed a PD diet showed the highest concordance with those measured 

in antibiotics-treated mice, and to a much lesser extent to non-treated control mice (Figure 7D). 

Together, these results suggest that diet and the gut microbiota are central contributors to the 

maintenance of systemic metabolome rhythms, thereby impacting the programming of the circadian 

hepatic transcriptome. In demonstrating these links between diet, microbiome, circulating 

metabolites, and the liver, we focused as proof-of-concept on amino acids and polyamines, while 

similar impacts by other metabolite families merit further studies. 

 

Microbiota-mediated reprogramming of the circadian transcriptome alters diurnal hepatic 

detoxification 

Finally, we considered the consequences of microbiota-mediated reprogramming of the daily 

sequence of gene expression for the physiological function of the liver. The time of day is known to 

greatly affect hepatic drug metabolism, including the detoxification of acetaminophen (acetyl-para-

aminophenol, APAP) (Kim and Lee, 1998). Additionally, the microbiota has been implicated in APAP 

metabolism (Clayton et al., 2009). We therefore administered APAP at different circadian times (ZT0 

versus ZT12) and assessed APAP-induced hepatotoxicity by the measurement of liver enzyme release 

as well as liver histology. In line with previous reports (Johnson et al., 2014; Kim and Lee, 1998), mice 

featured dramatically exacerbated liver toxicity when APAP was injected at ZT12 as compared to ZT0 

(Figure 7H-7K). This diurnal variation was clock-dependent, as Per1/2-/- mice did not feature 

differential hepatotoxicity between ZT 0 and ZT12 (Figures S7D-S7G). Remarkably, antibiotics-treated 

or germ-free mice lost this diurnal variation in the severity of APAP-induced hepatotoxicity, and 

featured low and comparable levels of liver damage at different times of the day (Figure 7H-7K), 

manifesting as a significantly lower aminotransferase activity, reduced liver necrosis, and improved 
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histopathological score. Together, these results suggest that homeostatic microbiota rhythms and 

microbiota-mediated maintenance of the circadian transcriptome is necessary to maintain normal 

diurnal activity in hepatic drug metabolism. 

 

Discussion 

In this study, we profiled the global landscape of diurnal host-microbiota interactions on the level of 

bacterial biogeography, metagenomic functions, host epigenome, host gene expression, as well as 

intestinal and serum metabolomes. We found that the bacterial microbiome features rhythmic 

patterns of localization and metabolite secretion in the large intestine. These rhythms influence diurnal 

gene expression locally in the intestine and distally in the liver. Surprisingly, ablation of microbiota 

rhythms by antibiotic treatment and in germ-free mice not only leads to a loss of oscillations on the 

chromatin and transcript level, but also concomitantly incites a massive gain of de novo oscillations, 

resulting in a temporal reorganization of metabolic pathways in both intestine and liver.  

These results have numerous important implications. First, our study identifies diurnal rhythmicity as 

an essential component in the regulation of host-microbiota symbiosis. While diurnal rhythms have so 

far been mainly described on the level of bacterial genome abundance (Leone et al., 2015; Liang et al., 

2015; Thaiss et al., 2014; Zarrinpar et al., 2014), we highlight two new elements of microbiota 

oscillatory activity that provide a mechanistic explanation for its functional importance: oscillations in 

microbiota metabolome and biogeographical localization, inducing a homeostatic state in which the 

host is periodically exposed to different bacterial numbers, species, functions, and products at 

different times of the day. If homeostatic colonization is abrogated, as in the case of antibiotic 

treatment, compositional and biogeographical rhythmicity are lost, ultimately resulting in uncoupling 

of the corresponding host rhythmicity. 

Furthermore, our results support the notion that the circadian program of epigenetic and 

transcriptional oscillations driven by peripheral clocks is not independent of environmental signals, but 

integrates these signals into the daily succession of gene regulatory programs. In this study, we identify 

the microbiome as a critical factor regulating the selection of host genes expressed in a rhythmic 

manner. Interestingly, we found that members of the core clock and associated genes oscillate 

independently of microbial influences. Our results therefore suggest a model by which the molecular 

clock as well as the poised promoter and enhancer regions of a large portion of the genome undergo 

self-sustained rhythmicity, while the downstream induction of rhythmicity in large portions of the 

transcriptome depends on the proper interpretation of environmental signals, such as the sensing of 

fluctuating levels of metabolite abundances. As such, the microbiota can be regarded as an 
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endogenous “circadian organizer” (Masri et al., 2016), whose signals are integrated by peripheral 

tissues to affect the temporal organization of genome-wide transcription. 

Finally, our study provides insights into the functional consequences of the microbiome-mediated 

disruption of normal circadian physiology. We show that antibiotic treatment or disruption of circadian 

feeding behavior leads to a multi-faceted disruption of microbiota diurnal rhythmicity, thereby 

generating a temporal de-synchronization of circadian liver functions. The metabolism of APAP by both 

host and microbiota is one such example of a diurnally shifting housekeeping activity, in which the time 

of exposure to an APAP overdose determines the production level of hepatotoxic APAP degradation 

products. This diurnal activity, and its functional consequences during APAP intoxication, is abrogated 

in antibiotic-treated or germ-free mice, highlighting the microbiome as major contributor to the 

chronopharamcology of drugs, environmental xenobiotics, and dietary components. Together, 

understanding of the role of the microbiome in the diurnal adaptation of peripheral organ activity may 

prove instrumental for understanding and treating human conditions associated with disruption of the 

microbiota and the circadian clock. 
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STAR Methods 

 

Key Resources Table 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
anti-H3K4me2 Abcam Cat#ab32356 
anti-H3K4me3 Millipore Cat#07-473 
anti-H3K27ac Abcam Cat#ab4729 
Chemicals, Peptides, and Recombinant Proteins 
Vacomycin Sigma-Aldrich Cat#V1130 
Ampicillin Sigma-Aldrich Cat#A1593 
Kanamycin Sigma-Aldrich Cat#60615 
Metronidazole Sigma-Aldrich Cat#M3761 
Acetaminophen Sigma-Aldrich Cat#A7085 
Deposited Data 
Raw data files for 16S sequencing European nucleotide 

archive (ENA) 
PRJEB16726 

Raw data files for metagenomic sequencing European nucleotide 
archive (ENA) 

PRJEB16726 

Raw data files for RNA sequencing European nucleotide 
archive (ENA) 

PRJEB16726 

Experimental Models: Organisms/Strains 
C57Bl/6JOlaHsd Harlan Cat#705 
B6.129-Reg3gtm1.1Lvh/J Jackson Laboratories Cat#017480 
Per1/2 Gad Asher (Weizmann 

Institute) 
(Adamovich et al., 
2014) 

Sequence-Based Reagents 
111-967F-PP: CNACGCGAAGAACCTTANC IDT 16S qPCR 

112-967F-UC3: ATACGCGARGAACCTTACC IDT 16S qPCR 

113-967F-AQ: CTAACCGANGAACCTYACC IDT 16S qPCR 

114-967F-S: CAACGCGMARAACCTTACC IDT 16S qPCR 

115-1046R-S: CGACRRCCATGCANCACCT IDT 16S qPCR 

GCTGCCTCCCGTAGGAGT, dual labeled, 5’ CAL flour Red 
610, 3’ BHQ-2 

Stellaris 16S FISH 

CGATTGAGGCCGGTAATACGACTCACTATAGGGGCGACGT
GTGCTCTTCCGATCTXXXXXXXXT modified with a C3 
spacer (blocker) at the 5' 

(Gury-BenAri et al., 
2016) 

Chromatin first 
indexing adapter 

XXXXNNNNNAGATCGGAAGAGCGTCGTGTAG modified 
with a phosphate group at 5' and a C3 spacer (blocker) at 
the 3' 

(Gury-BenAri et al., 
2016) 

Ligation adapter 

TCTAGCCTTCTCGCAGCACATC (Gury-BenAri et al., 
2016) 

Second primer 
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AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
AC 

(Gury-BenAri et al., 
2016) 

P5_Rd1 

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCA
GAC 

(Gury-BenAri et al., 
2016) 

P7_Rd2 

Software and Algorithms 
NIH’s Database for Annotation, Visualization and 
Integrated Discovery 

(Dennis et al., 2003) https://david.ncifcrf.
gov/ 

QIIME (Caporaso et al., 2010) http://qiime.org 
Trimmomatic (Bolger et al., 2014) http://www.usadell

ab.org/cms/?page=t
rimmomatic 

TopHat (v2.0.10) (Trapnell et al., 2009) https://ccb.jhu.edu/
software/tophat/ind
ex.shtml 

HOMER software (Heinz et al., 2010) http://homer.salk.e
du 

 

Methods and Resources 

 

Contact for reagent and resource sharing 

Further information and requests for reagents may be directed to, and will be fulfilled by the 
corresponding authors Eran Segal (eran.segal@weizmann.ac.il) and Eran Elinav 
(eran.elinav@weizmann.ac.il). 

 

Experimental model and subject details 

Mice 

C57Bl/6 mice were purchased from Harlan and allowed to acclimatize to the animal facility 

environment for 2 weeks before used for experimentation. Germ-free C57Bl/6 mice were born in the 

Weizmann Institute germ-free facility and routinely monitored for sterility. Mice lacking RegIIIγ 

(B6.129-Reg3gtm1.1Lvh/J) were obtained from The Jackson Laboratory. Per1/2-deficient mice on a 

C57Bl/6 background were kindly provided by Gad Asher (Weizmann Institute). In all experiments, age- 

and gender-matched mice were used. Mice were 8-9 weeks of age at the beginning of experiments. 

All mice were kept at a strict 24-hour light-dark cycle, with lights being turn on from 6am to 6pm. In 

timed feeding experiments, food access was limited to the dark phase or light phase where indicated. 

Polyamine-deficient diet was applied for one month. For antibiotic treatment, mice were given a 

combination of vancomycin (0.5 g/l), ampicillin (1 g/l), kanamycin (1 g/l), and metronidazole (1 g/l) in 
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their drinking water for three weeks as previously described (Levy et al., 2015). Acetaminophen was 

administered intraperitoneally at a concentration of 500 mg/kg at either ZT0 or ZT12, and mice were 

analyzed 10 hours after injection. All antibiotics as well as acetaminophen were obtained from Sigma 

Aldrich. 

Food intake and other metabolic parameters were measured using the PhenoMaster system (TSE-

Systems, Bad Homburg, Germany), which consists of a combination of sensitive feeding sensors for 

automated measurement and a photobeam-based activity monitoring system detects oxygen and 

carbon dioxide consumption, and records ambulatory movements, including rearing and climbing, in 

each cage. All parameters were measured continuously and simultaneously. Mice were trained singly-

housed in identical cages prior to data acquisition. 

All experimental procedures were approved by the local IACUC. 

 

Method details 

Scanning electron microscopy 

Mice were perfused with fixative containing 2% glutaraldehyde and 3% PFA in 0.1M sodium cacodylate. 

Colonic samples were extensively washed from fecal matter and fixed for 24hrs. Samples were rinsed 

three times in sodium cacodylate buffer and postfixed in 1% osmiumtetroxide for 1hr, stained in 1% 

uranyl acetate for a further hour, then rinsed, dehydrated, and dried using critical point drying. 

Samples were then gold-coated and viewed in an ULTRA 55 FEG (ZEISS). For image quantification, the 

bacteria on randomly selected fields per sample were counted and averaged. 

 

16S qPCR protocol for quantification of bacterial DNA 

Colons were extensively cleaned from fecal material, and DNA was extracted using MoBio PowerSoil 

kit. DNA concentration was calculated using a standard curve of known DNA concentrations from E.coli 

K12. 16S qPCR using primers identifying different regions of the V6 16S gene was performed using 

Kappa SYBR fast mix, using the following primer sequences: 

111-967F-PP: CNACGCGAAGAACCTTANC 

112-967F-UC3: ATACGCGARGAACCTTACC 

113-967F-AQ: CTAACCGANGAACCTYACC 

114-967F-S: CAACGCGMARAACCTTACC 
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115-1046R-S: CGACRRCCATGCANCACCT 

Absolute numbers of bacteria in the samples were then approximated as DNA amount in a 

sample/DNA molecule mass of bacteria. 

 

Immunofluorescence 

For fluorescent visualization of bacteria, colon samples were fixed using freshly prepared Carnoy’s 

fixative (60% EtOH, 30% Chloroform, 10% glacial acetic acid) for 2 hours, at 4°C, followed by a wash 

with 100% EtOH and storage in 100% EtOH until paraffin embedding and section. Colon sections were 

hybridized with 16S probe at a concentration of 10ng/µl over night at 50°C, diluted in hybridization 

buffer (20mM Tris-HCl (PH 7.4), 0.9M NaCl, 0.1%SDS. 

Probe sequence: GCTGCCTCCCGTAGGAGT, dual labeled, 5’ CAL flour Red 610, 3’ BHQ-2. 

For co-immunostaining, tissue sections were blocked at room temperature for 30 min in PBS-/-, 0.05% 

Triton and 20% normal horse serum, followed by incubation with anti-Muc2 antibody (H300 Santa 

Cruz), 1:200 in PBS-/-, 0.05% Triton and 2% normal horse serum, over night at 4°C. Sections were then 

washed in PBS and incubated with a secondary Ab, 1:400, 2 hrs at room temperature. Samples were 

then washed and mounted. Visualization was performed using a Nikon Eclipse Ti microscope.  

 

Taxonomic microbiota analysis 

Frozen fecal samples were processed for DNA isolation using the MoBio PowerSoil kit according to the 

manufacturer’s instructions. For the 16S rRNA gene PCR amplification, 1ng of the purified fecal DNA 

was used for PCR amplification. Amplicons spanning the variable region 1/2 (V1/2) of the 16S rRNA 

gene were generated by using the following barcoded primers: Fwd 5’-

XXXXXXXXAGAGTTTGATCCTGGCTCAG-3’, Rev 5’-TGCTGCCTCCCGTAGGAGT-3’, where X represents a 

barcode base. The reactions were subsequently pooled and cleaned (PCR clean kit, Promega), and the 

PCR products were then sequenced on an Illumina MiSeq in 500 bp paired-end method. The reads 

were then processed using the QIIME (Quantitative Insights Into Microbial Ecology, 

http://www.qiime.org) analysis pipeline as described (Levy et al., 2015). In brief, fasta quality files and 

a mapping file indicating the barcode sequence corresponding to each sample were used as inputs, 

reads were split by samples according to the barcode, taxonomical classification was performed using 

the RDP-classifier, and an OTU table was created. Closed-reference OTU mapping was employed using 

the Greengenes database. Rarefaction was used to exclude samples with insufficient count of reads 
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per sample. Sequences sharing 97% nucleotide sequence identity in the V2 region were binned into 

operational taxonomic units (97% ID OTUs). For beta-diversity, weighted unifrac measurements were 

plotted according to the first two principal coordinates based on 10,000 reads per sample. 

 

Metagenomic analysis 

We filtered metagenomic reads containing Illumina adapters, filtered low quality reads and trimmed 

low quality read edges. We detected host DNA by mapping with GEM (Marco-Sola et al., 2012) to the 

mouse genome with inclusive parameters, and removed those reads. We assigned length-normalized 

RA of genes, obtained by similar mapping with GEM to a reference catalog (Li et al., 2014), to KEGG 

Orthology (KO) entries (Kanehisa and Goto, 2000), and these were then normalized to a sum of 1. We 

calculated RA of KEGG modules and pathways by summation. We considered only samples with >100K 

metagenomics reads. 

 

Quality control of metagenomic reads and removal of host DNA 

We applied Trimmomatic (Bolger et al., 2014) with the following parameters:  

ILLUMINACLIP:<Trueseq3 adapters fasta file>:2:30:10 LEADING:25 TRAILING:25 MINLEN:50. We 

removed host DNA by mapping to the mouse genome (mm10, downloaded from 

https://genome.ucsc.edu) and removing any mapped reads (see section below). 

 

Functional assignment of metagenomic reads 

Reads mapped to the gut microbial gene catalog were assigned a KEGG (Kanehisa and Goto, 2000). 

Genes were subsequently mapped to KEGG modules and pathways. For the KEGG pathway analysis, 

only pathways whose gene coverage was above 0.2 were included. Bacterial assignment to metabolic 

pathways was done by mapping of metagenomic reads to genes from the respective metagenomic 

modules. Mapped reads were extracted and re-mapped to a bacterial genomes database. Reads that 

were successfully mapped were grouped into genera, and those not mapped were marked as 

'unknowns'. 

 

RNA-seq processing and analysis 
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We used a derivation of MARS-seq as described (Jaitin et al., 2014), developed for single-cell RNA-seq 

to produce expression libraries with a minimum of two replicates per group. We aligned the RNA-seq 

reads to the mouse reference genome (NCBI 37, mm9) using TopHat v2.0.13 with default parameters 

(Trapnell et al., 2009). Duplicate reads were filtered if they aligned to the same base and had identical 

UMIs. Expression levels were calculated and normalized for each sample to the total number of reads 

using HOMER software (http://homer.salk.edu) with the command “analyzeRepeats.pl rna mm9 -d 

[sample files] -count 3utr -condenseGenes” (Heinz et al., 2010). KEGG analysis was done using DAVID 

(Dennis et al., 2003). For the generation of heatmaps, genes were normalized to their mean expression 

across all time points. 

 

iChIP-IVT 

We used a recently developed protocol for ChIP-seq involving amplification by in-vitro transcription 

(Gury-BenAri et al., 2016). Sorted epithelial cells were cross-linked for 8 min in 1% formaldehyde and 

quenched for 5 min in 0.125 M glycine prior to sorting. Sorted and frozen cell pellets were lysed in 

0.5% SDS and sheared with the NGS Bioruptor Sonicator (Diagenode). Sheared chromatin was 

immobilized on 12 µl Dynabeads Protein G (Invitrogen) with 1.3 µg of anti-H3 antibody (ab1791). 

Magnetized chromatin was then washed with 10 mM Tris-HCl supplemented with 1X protease 

inhibitors. Chromatin was end repaired, dA-tailed and ligated with 5 µl of 0.75 µM partial Illumina 

Read2 sequencing adapters containing T7 polymerase promotor. Indexed chromatin was pooled, split 

to 3 IP pools and incubated with 2.5 µg anti-H3K4me2 antibody (ab32356)/anti-H3K4me3 (Millipore, 

07-473)/anti-H3K27Ac (ab4729) at 4°C for 3h and for an additional hour with Protein G magnetic beads 

(Invitrogen). Magnetized chromatin was washed and reverse cross-linked. DNA was subsequently 

purified with 1.65X SPRI. In vitro transcription step of linear amplification were introduced to produce 

RNA transcripts out of the DNA fragments using the T7 High Yield RNA polymerase IVT kit (NEB). After 

IVT, DNAse treatment was performed to eliminate the DNA fragments. Next, a partial Illumina Read1 

sequencing adapter that includes a pool barcode was single strand ligated to the fragmented RNA using 

a T4 RNA ligase I (New England Biolabs). The ligated product was reverse transcribed using Affinity 

Script RT enzyme (Agilent) and a primer complementary to the ligated adapter. The library was 

completed and amplified through a PCR reaction with 0.5 µ M of each primer and PCR ready mix (Kapa 

Biosystems). The forward primer contains the Illumina P5-Read1 sequences and the reverse primer 

contains the P7-Read2 sequences. DNA concentration was measured with a Qubit fluorimeter 

(Invitrogen) and mean molecule size was determined with 2200 TapeStation analyzer (Agilent) and 

library quality was further determined by qPCR. 

The following primer sequences were used: 
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Primer name Sequence and modifications 

Chromatin first 

indexing 

adapter 

CGATTGAGGCCGGTAATACGACTCACTATAGGGGCGACGTGTGCTCTTCCGATCT

XXXXXXXXT modified with a C3 spacer (blocker) at the 5'. XXXXXXXX is the 

barcode for sample multiplexing. 

Ligation adapter XXXXNNNNNAGATCGGAAGAGCGTCGTGTAG 

modified with a phosphate group at 5' and a C3 spacer (blocker) at the 3'. 

XXXX is the barcode for sample multiplexing. 

 

Second primer 

 

RT primer 

TCTAGCCTTCTCGCAGCACATC 

P5_Rd1 

 

PCR forward 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC 

 

GACGCTCTTCCGATCT 

P7_Rd2 

 

PCR reverse 

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGAC 

 

GTGTGCTCTTCCGATCT 

 

Processing of ChIP-seq 

Reads were aligned to the mouse reference genome (mm9, NCBI 37) using Bowtie2 aligner version 

2.2.5 (Langmead et al., 2009) with default parameters. The Picard tool MarkDuplicates from the Broad 

Institute (http://broadinstitute.github.io/picard/) was used to remove PCR duplicates. To identify 

regions of enrichment (peaks) from ChIP-seq (H3K4me2, H3K4me3, H3K27ac), we used the HOMER 

package makeTagDirectory followed by findPeaks command with the histone parameter or 500bp 

centered regions, respectively (Heinz et al., 2010). Union peaks file were generated for each of 

H3K4me2 and H3K4me3 by combining and merging overlapping peaks in all samples. 

 

Chromatin analysis 

The read density (number of reads in 10 million total reads per 1000 bp) was calculated in each region 

from the union peaks files. The region intensity was calculated by quantile normalization (across 

samples) of the read density in log base 2 (log2(x+1)). We considered promoters to be H3K4me3 

regions within +/- 2000bp of a TSS and candidate enhancers to be distal H3K4me2 regions. Enhancers 

were assigned to the nearest gene within 50kb. The activity level of promoters and enhancers was 

determined by the H3K27ac intensity within the H3K4me3 or H3K4me2 region, respectively. 
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Gene tracks and normalization 

All gene tracks were visualized as bigWig files of the combined replicates normalized to 10,000,000 

reads and created by the HOMER algorithm makeUCSCfile (Heinz et al., 2010). For visualization, the 

tracks were smoothed by averaging over a sliding window of 500 bases. 

 

Metabolomics 

Cecal samples were collected, immediately frozen in liquid nitrogen and stored at -80oC. Samples were 

prepared using the automated MicroLab STAR® system from (Hamilton). To remove protein, dissociate 

small molecules bound to protein or trapped in the precipitated protein matrix, and to recover 

chemically diverse metabolites, proteins were precipitated with methanol. The resulting extract was 

divided into five fractions: one for analysis by UPLC-MS/MS with positive ion mode electrospray 

ionization, one for analysis by UPLC-MS/MS with negative ion mode electrospray ionization, one for 

LC polar platform, one for analysis by GC-MS, and one sample was reserved for backup. Samples were 

placed briefly on a TurboVap® (Zymark) to remove the organic solvent. For LC, the samples were stored 

overnight under nitrogen before preparation for analysis. For GC, each sample was dried under vacuum 

overnight before preparation for analysis. 

Data Extraction and Compound Identification: Raw data was extracted, peak-identified and QC 

processed using Metabolon’s hardware and software. Compounds were identified by comparison to 

library entries of purified standards or recurrent unknown entities. Metabolite Quantification and Data 

Normalization: Peaks were quantified using area-under-the-curve. For studies spanning multiple days, 

a data normalization step was performed to correct variation resulting from instrument inter-day 

tuning differences. 

For targeted analysis of polyamines and amino acids, 50 µl of serum were diluted 100 µl 0.1% formic 

acid in acetonitrile. After cooling on ice for 10 minutes, the samples were centrifuged, and 10 µl of the 

supernatant was added to 70 µl of borate buffer and derivatized using the AccQTag method (Boughton 

et al., 2011). The LC-MS/MS instrument consisted of Acquity I-class UPLC system and Xevo TQ-S triple 

quadrupole mass spectrometer (Waters). Chromatographic separation and mass detection were 

carried out in the conditions recently described (Zwighaft et al., 2015) with adjustments to obtain the 

highest signal for each compound. 

 

Histology 
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Sections from the left lobe of the liver were fixed in paraformaldehyde and embedded in paraffin for 

staining with H&E. Subsequently, sections were examined by a blinded veterinary pathologist and 

scored for necrosis and hemorrhage on a scale from 0 (healthy) to 3 (most severe). 

 

Statistical analysis 

Data are expressed as mean ± SEM. Cycling behavior was assessed using JTK_cycle (Hughes et al., 

2010), with oscillations tested for a 24 hour period length. Unless stated otherwise, elements with 

p<0.05 and q<0.1 were considered significant. For metabolites, q<0.2 was considered significant. For 

two-group comparisons, Mann-Whitney U-test was used and comparisons with p<0.05 were 

considered significant. Analysis of shared and unique oscillatory transcripts was performed on 

balanced groups to account for the sensitivity of JTK_cycle to the number of replicates. This was done 

by random sub-sampling of samples at each time point, performed 250 times. Hence, average numbers 

are presented. Significance and numbers of the fraction of shared oscillating transcripts out of total 

oscillating transcripts in colon and liver tissues was determined by permutations followed by re-

running of the JTK_cycle algorithm. In each permutation samples were randomly selected at each time 

point from both antibiotic-treated and controlled mice, maintaining balance both in the number of 

replicates and in the number of replicates belonging to each group across time points. 
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Figure legends 

 

Figure 1. Mucosal proximity of the intestinal microbiota undergoes diurnal fluctuations 

(A) Schematic showing sampling times for luminal and mucosal-adherent communities. 

(B) SEM images showing diurnal fluctuations in epithelial colonization by bacteria. Images are 

representative of 10 randomly chosen views per mouse. 

(C) Diurnal fluctuations in the number of bacteria attached to colonic epithelium over two dark-light 

cycles as determined by bacterial qPCR of adherent communities. 

(D) Relative taxonomic composition of mucosal-adherent bacteria over the course of two light-dark 

cycles. 

(E) Principal coordinate analysis (PCoA) of mucosal-adherent bacteria over the course of two light-dark 

cycles. 

(F) Epithelial-adherent operational taxonomic units (OTUs) showing diurnal oscillations in absolute 

abundance. Fluctuation amplitudes are depicted. Dashed line indicates q<0.1. 

(G) Example of a bacterial species showing fluctuating absolute numbers in mucosal-adherent 

communities. 

(H, I) Dot plot (H) and heatmap (I) of diurnal gene abundance oscillations in mucosal commensal 

bacteria. Genes with p<0.05 and q<0.1 are shown. 

Data are representative of two independent experiments with N=45 (A-G) or N=18 mice (H, I) mice. 

JTK_cycle was used to calculate p- and q-values. 

See also Figure S1. 

 

Figure 2. Bacterial motility and mucus degradation undergoes diurnal fluctuations 

(A) KEGG pathways of mucosal-associated microbial communities showing diurnal oscillations in 

relative abundance. 

(B) Diurnal fluctuations in the relative abundance of bacterial chemotaxis in mucosal-associated 

communities. 

(C, D) Quantification (C) and representative immunofluorescence images (D) showing diurnal 

fluctuations in epithelial proximity by commensal bacteria. Stained are Muc2 protein (green) and 

bacterial 16S rDNA (red). Images are representative of 10 randomly chosen views per mouse. Arrows 

indicate bacterial invasion into the mucus layer. Scale bars indicate 100 µm. 

(E) Comparative immunofluorescence images showing epithelial proximity of commensal bacteria in 

wild-type and Reg3g-/- mice at ZT12. 
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(F) Fluctuations in the number of bacteria attached to intestinal epithelium in wild-type and Reg3g-/- 

mice over two dark-light cycles as determined by bacterial qPCR of adherent communities. 

(G, H) Numbers of mucosal-resident bacteria in Per1/2-/- mice that were either fed ad libitum (G) or 

only during the light phase (H). 

(I) Epithelial-adherent operational taxonomic units (OTUs) showing diurnal oscillations in relative 

abundance in Per1/2-/- mice that were either fed ad libitum or only during the light phase. 

Data are representative of 1-2 independent experiments with N=18-45 mice. JTK_cycle was used to 

calculate p- and q-values. 

See also Figure S2 and Tables S1 and S2. 

 

Figure 3. Antibiotic treatment abrogates microbial adherence rhythms and reprograms intestinal 

transcriptome oscillations 

(A) Schematic showing sampling times for colonic transcriptome, epigenome, and metabolome in 

antibiotics-treated mice and controls. 

(B) Diurnal fluctuations in the number of bacteria attached to colonic epithelium over the course of 

two dark-light cycles in antibiotics-treated mice and controls. 

(C) Representative SEM images showing epithelial colonization by bacteria at ZT0 in antibiotics-treated 

mice and controls. 

(D) Epithelial-adherent OTUs showing diurnal oscillations in relative abundance in antibiotics-treated 

mice and controls. 

(E) Relative taxonomic composition of mucosal-adherent bacteria in antibiotics-treated mice over the 

course of two light-dark cycles. See Figure 1D for comparison to control mice. 

(F) Venn diagram of shared and unique oscillating colonic transcripts of antibiotics-treated mice 

compared to controls, p<0.05 and q<0.1. The sets of oscillating transcripts are significantly non-

overlapping (p<0.03). 

(G-I) Heatmap representation of shared cycling colonic transcripts between antibiotics-treated mice 

and controls (G), of transcripts uniquely cycling in control mice (H), and of transcripts uniquely 

oscillating in antibiotics-treated mice (I), p<0.05 and q<0.1. 

(J-L) KEGG analysis of shared cycling colonic transcripts between antibiotics-treated mice and controls 

(J), of transcripts uniquely cycling in control mice (K), and of transcripts uniquely oscillating in 

antibiotics-treated mice (L). 

Data are representative of two independent experiments with N=27-45 mice. JTK_cycle was used to 

calculate p- and q-values. 

See also Figure S3. 
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Figure 4. Antibiotic treatment reprograms chromatin oscillations in intestinal epithelial cells 

(A) Schematic showing sampling times for epithelial ChIP-seq analysis. Assayed histone marks for 

enhancers, promoters, and active regions are indicated. 

(B) H3K27ac peaks in H3K4me3 regions showing diurnal oscillations in antibiotics-treated and control 

mice, compared to stochastic oscillations in whole-cell extracts (WCE). 

(C) Venn diagram of shared and unique active promoters oscillations in intestinal epithelial cells of 

antibiotics-treated mice and controls, p<0.05. 

(D) Diurnal oscillations in normalized H3K4m3 peaks found in the 100 kb region of the Dbp locus in 

control (left) and antibiotics-treated mice (right). 

(E, F) Heatmaps of active promoter oscillations that are lost (E) and gained (F) upon microbiota 

depletion. 

(G) H3K27ac peaks at enhancers undergoing diurnal oscillations in intestinal epithelial cells of 

antibiotics-treated and control mice. 

(H) Venn diagram of shared and unique active enhancer oscillations in intestinal epithelial cells of 

antibiotics-treated and control mice. 

(I-L) Examples of gained (I, J) or lost (K, L) enhancer activity that correlates with gene expression 

rhythmicity. 

Data are from N=18-45 mice. JTK_cycle was used to calculate p- and q-values. 

See also Figure S4. 

 

Figure 5. Reprogramming of the colonic and hepatic circadian transcriptome 

(A) Schematic luminal and adherent variants of the same bacterial species. 

(B) Quantification of mucosal-resident mouse and rat SFB after mono-inoculation of germ-free mice. 

Data are pooled from several time points. **** denotes p<0.0001 by Mann-Whitney U-test 

(C) Numbers of mucosal-resident bacteria over 48 hours in germ-free mice that were mono-colonized 

with either mouse SFB or rat SFB. 

(D) Overlap of cycling genes in the colons of Reg3g-/- mice, mouse SFB-colonized mice, and rat SFB-

colonized mice with genes uniquely oscillating in either antibiotics-treated mice or controls. 

(E) Rhythmic colonic gene expression of Dbp in the indicated groups. 

(F) KEGG analysis of shared cycling colonic transcripts between mouse SFB mono-colonized mice and 

conventional controls. 
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(G) Schematic showing sampling times for intestinal and serum metabolite as well as liver 

transcriptome analysis. 

(H) Venn diagram of shared and unique oscillating hepatic transcripts of antibiotics-treated mice 

compared to controls, p<0.05 and q<0.1. The sets of oscillating transcripts are significantly non-

overlapping (p<0.005). 

(I) KEGG analysis of shared cycling hepatic transcripts between antibiotics-treated mice and controls. 

(J) Rhythmic hepatic gene expression of Nr1d1 in antibiotics-treated mice and controls. 

(K, L) KEGG analysis of hepatic transcripts uniquely cycling in control mice (K) and in antibiotics-treated 

mice (L). Inset in K shows gene expression of Gpi1. 

Data are representative of 1-2 independent experiments with N=18-36 mice. JTK_cycle was used to 

calculate p- and q-values. 

See also Figure S5. 

 

Figure 6. Diurnal patterns of the microbiota metabolome influence systemic metabolite oscillations 

(A) Heatmap of metabolites undergoing significant oscillations, p<0.05 and q<0.2. Examples for each 

cluster are indicated. 

(B) Depiction of rhythmic elements in the bacterial pathway converting ornithine to proline. 

(C) Depiction of rhythmic elements along the bacterial biotin biosynthetic pathway. 

(D) Correlation of p-values for rhythmicity of amino acids and polyamines in the intestinal lumen and 

serum. 

(E) Example of metabolites oscillating in intestinal lumen and serum with different phases. 

(F) Quantification of significantly oscillating amino acids and polyamines in the sera of controls, 

antibiotics-treated mice, germ-free mice, ad libitum-fed Per1/2-/- mice, and light phase-fed Per1/2-/- 

mice. 

(G-I) Diurnal oscillations of ornithine abundances in the sera of controls (G), antibiotics-treated and 

germ-free mice (H), and ad libitum-fed or light phase-fed Per1/2-/- mice (I). 

Data are representative 1-2 experiments with N=18 mice. JTK_cycle was used to calculate p- and q-

values. 

See also Figure S6. 

 

Figure 7. The microbiota impacts diurnal liver function and hepatotoxicity 
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(A) Schematic showing sampling times for serum metabolites and liver transcriptomes of mice fed a 

polyamine-deficient (PD) diet. 

(B) Heatmap of oscillating serum amino acids and polyamines in mice fed a PD diet and controls. 

(C) Venn diagram of shared and unique oscillating hepatic transcripts of mice fed a PD diet compared 

to controls, p<0.05 and q<0.1. 

(D) Overlap of cycling genes in the livers of mice on a PD diet with genes uniquely oscillating in either 

antibiotics-treated mice or controls. 

(E-G) Heatmap representation of shared cycling colonic transcripts between mice fed a PD diet and 

controls (G), of transcripts uniquely cycling in control mice (H), and of transcripts uniquely oscillating 

in PD diet mice (I), p<0.05 and q<0.1. 

(H-K) Serum levels of liver enzymes (H, I), liver histology score (J), and representative histological 

images (K) of control, antibiotics-treated (Abx), and germ-free mice (GF) that were injected with APAP 

at ZT0 or ZT12. ** denotes p<0.01 and **** denotes p<0.0001 by Mann-Whitney U-test. Scale bars 

indicate 100 µm. 

Data in A-G were obtained with N=18-36 mice. Data in H-K are representative of 3 independent 

experiments with N=4-10 mice in each groups. JTK_cycle was used to calculate p- and q-values. 

See also Figure S7. 
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Supplemental figure legends 

 

Figure S1. Diurnal fluctuations in the number and composition of mucosal-associated commensals, 

related to Figure 1 

(A, B) SEM images (A) and quantification (B) showing diurnal fluctuations in epithelial colonization by 

bacteria. Images are representative of 10 randomly chosen views per mouse. 

(C) Diurnal fluctuations in the number of bacteria attached to colonic epithelium determined every 4 

hours over one light-dark cycle. 

(D) Unweighted UniFrac distances of the initial time point compared to all other time points over the 

course of two light-dark cycles. 

(E, F) Diurnal rhythmicity of beta-diversity of mucosal-adherent bacteria, as shown by PCoA of samples 

obtained from two consecutive dark-light phases. ZT12’ indicates ZT12 on the following day. 

(G) Absolute numbers of taxonomic composition of mucosal-adherent bacteria over the course of two 

light-dark cycles. 

(H, I) Examples of bacterial species showing fluctuating absolute numbers in mucosal-adherent 

communities. 

Data are representative of two independent experiments with N=45 mice. Panel C is from one 

experiment with N=35 mice. JTK_cycle was used to calculate p-values. 

 

Figure S2. Diurnal fluctuations in bacterial motility and mucus degradation, related to Figure 2 

(A) KEGG modules of the mucosal microbial community showing diurnal oscillations in relative 

abundance. Selected modules and genes are highlighted in red. 

(B) Diurnal fluctuations in the relative abundance of flagellar assembly in mucosal-associated 

communities. 

(C) Diurnal fluctuations in the relative abundance of Deferribacteriaceae in mucosal-associated 

communities. 

(D) Immunofluorescence images showing diurnal fluctuations in epithelial proximity by commensal 

bacteria. Stained are Muc2 protein (green) and bacterial 16S rDNA (red). Images are representative of 

10 randomly chosen views per mouse. Scale bars indicate 100 µm. 

(E) Quantification of diurnal fluctuations in epithelial proximity by commensal bacteria in Reg3g-/- mice. 

Wild-type controls are shown in grey for comparison. 

(F) Unweighted UniFrac distances of the initial time point compared to all other time points in Reg3g-

/- mice over the course of two light-dark cycles. See Figure S1D for comparison to wild-type mice. 
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(G, H) Heatmap (G) and representative example (H) of oscillating OTUs in Per1/2-/- mice that were 

either fed ad libitum or only during the light phase. 

(I) Diurnal fluctuations in the number of bacteria attached to colonic epithelium in wild-type mice fed 

either during the dark phase or during the light phase. 

Data are representative of 1-2 independent experiments with N=18-45 mice. JTK_cycle was used to 

calculate p- and q-values. 

 

Figure S3. The microbiota is required for coordinated oscillations in the intestinal transcriptome, 

related to Figure 3 

(A) Representative SEM images of epithelial colonization by bacteria over the course of a day in 

antibiotics-treated mice. See Figure 1B for comparison to control mice. 

(B) PCoA of mucosal-adherent communities in antibiotics-treated mice every 6 hours over the course 

of one day. See Figures S1E and S1F for comparison to control mice. 

(C) UniFrac distance of the initial time point compared to all other time points over the course of two 

light-dark cycles in antibiotics-treated mice. See Figure S1D for comparison to control mice. 

(D) Colonic expression of Il18, Reg3b, and Reg3g in antibiotics-treated mice and controls. Data are 

pooled from several time points. **** denotes p<0.0001 by Mann-Whitney U-test 

(E) Venn diagram of shared and unique oscillating colonic transcripts of antibiotics-treated mice 

compared to controls sampled every 4 hours over 24 hours. 

(F, G) 48-hour recordings of rhythmic oxygen consumption (F) and food intake (G) in antibiotics-treated 

mice and controls. 

(H) Average colonic expression levels in antibiotics-treated mice and controls of genes that are cycling 

in either both conditions (shared), only in controls, or only in antibiotics (Abx)-treated mice. 

(I) Rhythmicity analysis in the mucosal microbiota of KEGG pathways that acquire rhythmicity in colonic 

transcripts upon antibiotic treatment. 

Data are representative of 1-2 independent experiments with N=45 mice. 

 

Figure S4. The impact of the microbiota on the diurnal epigenetic landscape, related to Figure 4 

(A) Heatmap representation of cycling active promoter marks compared to genomic background in 

whole-cell extracts. 

(B) Diurnal oscillations in normalized H3K4me3 peaks (left) and H3K27ac peaks (right) found in the 100 

kb region of the Nr1d1 locus. 

(C) Rhythmic colonic gene expression of Dbp in control and antibiotics-treated mice. 
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(D) Examples of shared (left), lost (middle), and gained (right) oscillations in active promoters (above) 

and gene expression (below) in antibiotics-treated mice compared to controls. 

(E) H3K4me2 peaks at enhancers undergoing diurnal oscillations in intestinal epithelial cells of 

antibiotics-treated and control mice. Dashed line indicates p<0.05. 

(F) Venn diagram of shared and unique enhancer usage oscillations in intestinal epithelial cells of 

antibiotics-treated and control mice. 

(G, H) Example of gene with H3K4me2 peak oscillation in the control group (G), but H3K27ac oscillation 

at enhancer (G) and rhythmic gene expression (H) uniquely in antibiotics-treated mice. 

Data are from N=18-45 mice. JTK_cycle was used to calculate p- and q-values. 

 

Figure S5. The impact of the microbiota on hepatic transcriptome oscillations, related to Figure 5 

(A-C) Heatmap representation of shared cycling hepatic transcripts between antibiotics-treated mice 

and controls (A), of transcripts uniquely cycling in control mice (B), and of transcripts uniquely 

oscillating in antibiotics-treated mice (C), p<0.05 and q<0.1. 

(D) Hepatic expression levels in antibiotics-treated mice and controls of genes that are cycling in either 

both conditions (shared), only in controls, or only in antibiotics-treated mice. 

(E) Rhythmic hepatic gene expression of Per2 in antibiotics-treated mice and controls. 

(F) Overlap of cycling genes in the livers of germ-free mice with genes uniquely oscillating in either 

antibiotics-treated mice or controls. 

Data are representative of 1-2 independent experiments with N=18-36 mice. JTK_cycle was used to 

calculate p- and q-values. 

 

Figure S6. Intestinal and systemic metabolite oscillations, related to Figure 6 

(A-C) Examples of metabolites oscillating in the intestinal lumen. 

(D) Depiction of rhythmic elements along the bacterial sucrose degradation pathway. 

(E-G) Examples of amino acids oscillating in intestinal lumen and serum. 

(H-J) Heatmap (H) and examples (I, J) of amino acids and polyamines in the serum of ad libitum-fed or 

light phase-fed Per1/2-/- mice. 

Data are from 1-2 experiments with N=18 mice. JTK_cycle was used to calculate p- and q-values. 
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Figure S7. The impact of the microbiota and metabolites on circadian liver function, related to Figure 

7 

(A-C) Examples of serum amino acids and polyamines losing oscillations upon feeding with a 

polyamine-deficient (PD) diet. 

(D-G) Serum levels of liver enzymes (D, E) liver histology score (F), and representative histological 

images (G) from Per1/2-/- mice and wild-type controls that were injected with APAP at ZT0 or ZT12. 

Data are representative of 1-2 independent experiments with N=18-36 mice. 
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Supplemental table legends 

 

Table S1. Bacterial species contributing to diurnal oscillations in bacterial chemotaxis (KO02030), 

related to Figure 2 

 

Table S2. Bacterial species contributing to diurnal oscillations in flagellar assembly (KO02040), 

related to Figure 2 
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