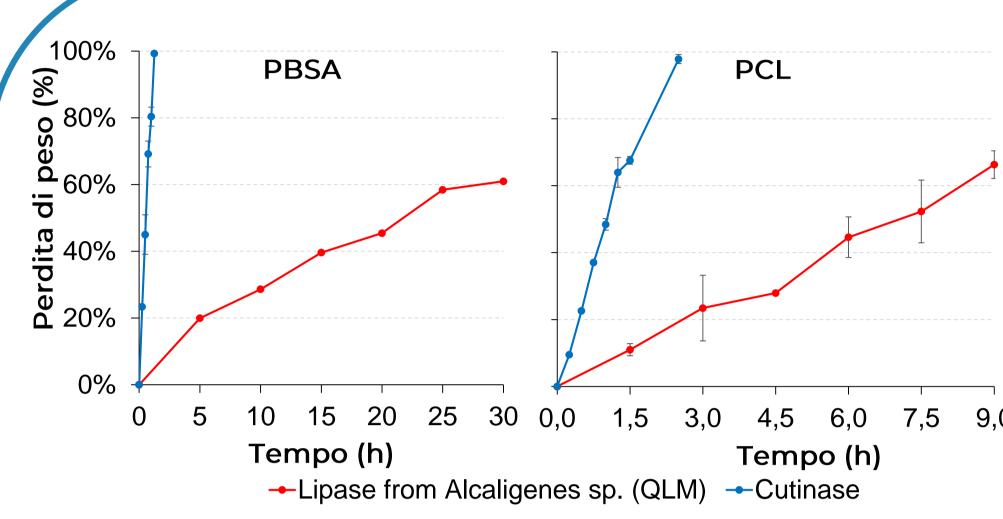


Studio del meccanismo di degradazione enzimatica di poliesteri commerciali



<u>Angela Romano</u>, Antonella Rosato, Grazia Totaro, Annamaria Celli, Laura Sisti, Giulio Zanaroli Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum - Università di Bologna, Via Terracini 28, 40131 Bologna, Italia angela.romano6@unibo.it

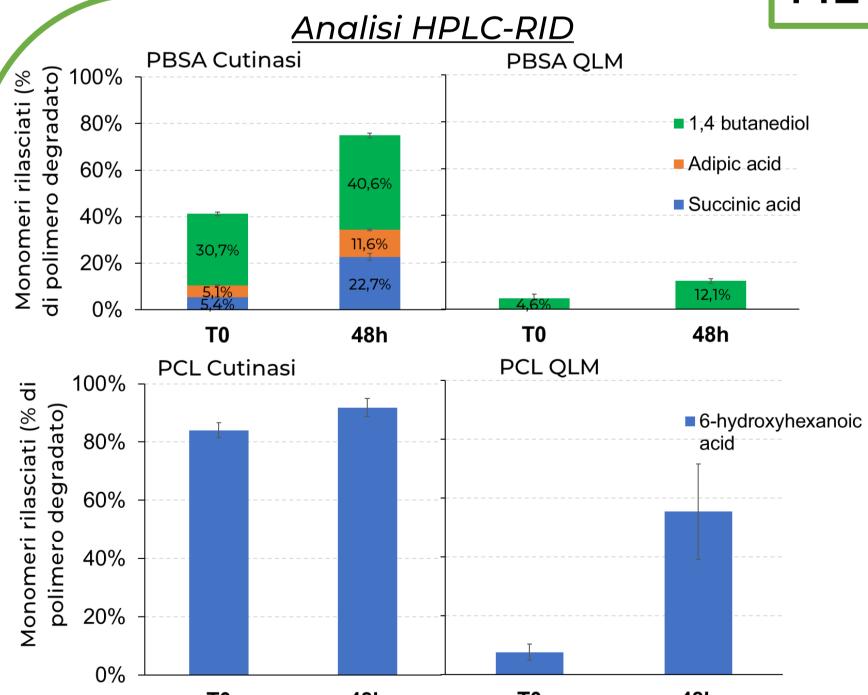
INTRODUZIONE

Tra le plastiche biodegradabili, i poliesteri alifatici risultano essere i più suscettibili all'attacco di enzimi idrolitici e microrganismi. Il <u>poli(butilene succinato-co-adipato)</u> (PBSA) è un copolimero semicristallino del poli(butilene succinato) (PBS), con l'acido adipico come co-monomero. Il poli(ε-caprolattone) (PCL) è un poliestere alifatico semicristallino che oltre a essere biodegradabile è anche biocompatibile. Questo studio indaga la <u>degradazione enzimatica</u> di PBSA e PCL e il meccanismo d'azione degli enzimi cutinasi da Fusarium solani e lipasi da Alcaligenes sp. (QLM).

DEGRADAZIONE DI FILM POLIMERICI

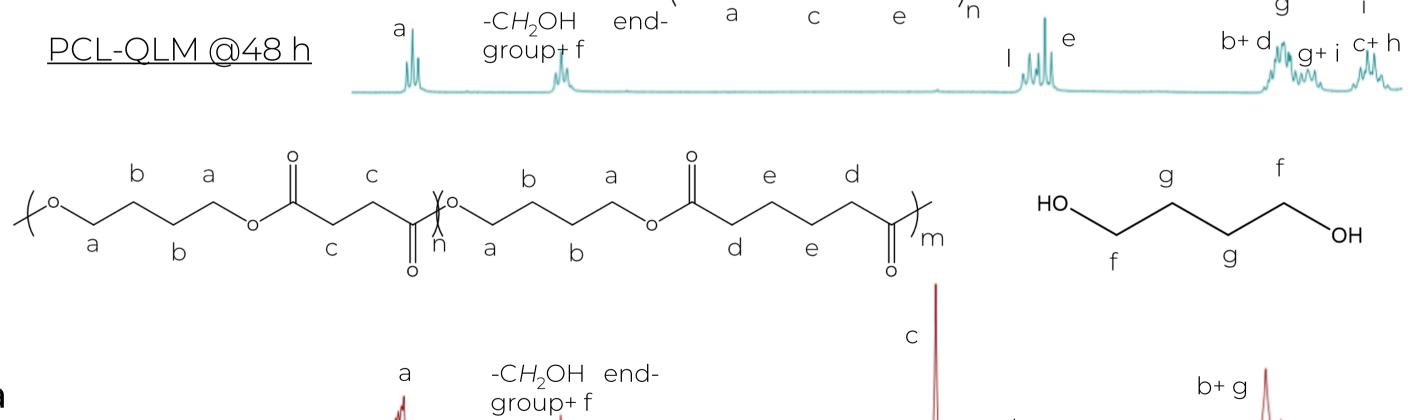
- Le proprietà termiche dei film degradati rimangono pressoché invariate. Piccole variazioni sono osservabili nella T_c di entrambi i polimeri, e nella T_a del PBSA, probabilmente a causa della diminuzione del peso molecolare.
- I risultati delle caratterizzazioni non hanno un andamento lineare nel tempo, poichè ottenuti da campioni sacrificali, che possono essere diversi per peso e spessore.

- > La <u>cutinasi degrada completamente</u> PBSA e PCL in breve tempo (meno di 3 h), mentre la <u>lipasi QLM degrada circa il 60%</u> di entrambi i polimeri in un tempo più lungo (30 h per il PBSA, 9 h per il PCL).
- L'analisi ¹H-NMR dei film degradati mostra un <u>incremento dei gruppi</u> terminali alcolici nel tempo.
- > Analisi GPC: il peso molecolare medio numerale (M_n) di entrambi i polimeri <u>diminuisce di circa il 20%</u> all'inizio della degradazione enzimatica, successivamente non varia in modo significativo.


			Analisi molecolare				Analisi termica (DSC)				
	Tempo (h)	Perdita di peso (%)	Terminali OH ^a (mol%)	M _n b (x10 ³ g/mol)	M _w ^b (x10 ³ g/mol)	PDb	T _c c (°C)	ΔH _c ^c (J/g)	T _g d (°C)	T _m d (°C)	ΔH _m ^d (J/g)
PBSA	_	_	1.1	81	195	2.4	43	39	-45	86	37
PBSA-	0.5	45	1.6	68	166	2.4	46	36	-48	85	33
Cutinasi	1	80	2.2	72	177	2.5	39	39	-48	85	37
PBSA-	10	29	1.6	63	160	2.6	41	40	-49	86	29
QLM	30	61	1.9	60	164	2.7	41	41	-48	86	30
PCL	-	-	0.5	102	153	1.5	30	55	nr	56	57
PCL-	0.5	23	0.8	87	133	1.6	25	54	nr	56	54
Cutinasi	1.5	68	1.6	81	130	1.6	27	55	nr	56	57
PCL-	3	23	1.2	80	122	1.5	31	54	nr	58	54
QLM	9	66	1.7	78	118	1.5	31	53	nr	58	54

nr= non rilevabile

PBSA-QLM @48 h


a) determinati tramite ¹H-NMR; b) determinati tramite GPC; c) misurati in DSC in scansione di raffreddamento a 10 °C/min; d) misurati in DSC in seconda scansione di riscaldamento a 10 °C/min

MECCANISMO DI AZIONE DEGLI ENZIMI

> La <u>cutinasi</u> idrolizza entrambi i polimeri a monomeri con un meccanismo di tipo <u>eso</u>. La <u>lipasi QLM</u> agisce con un meccanismo di tipo endo (formazione prevalentemente di oligomeri).

- > I film di PBSA e PCL sono stati incubati con gli enzimi. Dopo aver raggiunto una perdita di peso minore del 50%, i film sono stati rimossi dalla soluzione enzimatica e metà del liquido è stata analizzata (T0). L'altra metà è stata incubata per altre 48 h e analizzata (48h).
- > L'analisi 1H-NMR ha mostrato come, nel caso della lipasi QLM, la quantità di monomeri presenti in soluzione aumenti leggermente, ma molti oligomeri sono ancora presenti dopo 48 h.

CONCLUSIONI

La degradazione enzimatica avviene in modo omogeneo sulla superficie dei film polimerici tramite <u>erosione</u> superficiale. La cutinasi idrolizza PBSA e PCL nei rispettivi monomeri tramite meccanismo di tipo eso, mentre la lipasi QLM idrolizza entrambi i polimeri in oligomeri tramite meccanismo di tipo endo.

Questo progetto è stato finanziato dal programma di ricerca e innovazione Horizon 2020 dell'Unione Europea nell'ambito degli accordi di sovvenzione nº 814400 (Terminus).

5-8 SETTEMBRE 2021 | REGGIO CALABRIA