
PUHURI Deliverable D3

Project Title: Puhuri

Public This document is PUBLIC

Deliverable title: LUMI Integration to Puhuri

Contractual delivery date: 20th of October 2021

Status v1.0

Actual delivery date: 16th of November 2021

Updated 11th of November 2021

Partner(s) contributing to
this deliverable:

FI, EE, SE

Authors and Contributors:

Marina Adomeit, Kent Engström, Kalle Happonen, Jarno Laitinen, Ilja Livenson, Juha Nyholm,
Ahti Saar, Sergei Zaiaev and Anders Sjöström

Table of Contents

Introduction 3

Puhuri key processes 5
User Registration 5
Project allocation 5
Other workflows 5

AAI implementation 6
AAI Architecture 6
Remaining future work 7

Resource allocation technical setup 8
Environments 8
Information stored in Puhuri Core 9
Puhuri Core integration with Puhuri AAI 9
Puhuri Core functionality for Resource Allocators 10
Puhuri Core functionality for Service Providers 10
Puhuri Portal as an option to manage allocations 11

Integration of the Swedish national portal to Puhuri 13
Background 13
Puhuri AAI / MyAccessID Integration 13
Puhuri Core Integration 14

Creating and Updating Projects 14
Project Membership Management 15
Resource Allocation Management 15

Future Work 16

Resource integration with the LUMI use case 17
User, Project and Allocation data import process 20
LUMI User authentication process 22

Authentication flow when using OIDC device flow 22
Authentication flow when using ssh public keys 23

LUMI Accounting data export process 24

References 26

2

Introduction
This deliverable is a report of LUMI integration to Puhuri Services. EuroHPC Joint Undertaking
(JU) is acquiring pre-exascale and petascale supercomputers (the EuroHPC supercomputers)
which will be located at and operated by supercomputing centres in the Union. LUMI [LUM] is
one of those. It is hosted at CSC in Kajaani data center. LUMI is the main use case for Puhuri.
LUMI consortium countries may integrate their national portal to Puhuri or use Puhuri provided
portal to manage the LUMI projects. The resource application review process of the call is out of
Puhuri’s scope. The LUMI integration is described in Chapter 5. As the previous deliverable 2
[D2], includes an explanation of planned CSC integration with LUMI so this deliverable partially
repeats it.

The documentation in https://puhuri.neic.no [PUH] has been continuously extended. Please
refer to that website for the latest technical details. The upcoming Deliverable 4 will report the
accounting and reporting separately.

In addition to technical implementation of the integration, legal aspects have to be taken into
account, in particular agreements and contracts regulating transferred and preserved data are
needed. Due to Puhuri services operating with personal data of the users, GDPR needs to be
applied. We have found a model for the GDPR roles for the LUMI piloting phase, where LUMI
Consortium has taken a role of a Joint Data Controller in LUMI, Puhuri Core and Puhuri AAI
(IdP Proxy) but it is subject to change in the future when more services join Puhuri.

Figure 1. Puhuri’s high level architecture. User uses either Puhuri Portal or National Portal.

3

https://www.lumi-supercomputer.eu/
https://puhuri.neic.no

Chapter 1 summarises the key processes regarding user registration and project allocation. The
implementation of the processes are explained in the following chapters.

Chapter 2 describes the authentication and authorisation infrastructure services. User identity
management is based on the MyAccessID AAI service operated by GEANT and technically
based on eduTEAMS. Puhuri is an Infrastructure Service Domain (ISD) of MyAccessID.

Chapter 3 describes Puhuri Core, where information about resource allocation requests and
fulfillment is kept. It provides programmatic interfaces (APIs) for the portals used by resource
allocators, service providers like LUMI as well as support teams.

Chapter 4 reports how SNIC is integrating their national portal (SUPR). This is especially
interesting for those who plan to integrate their existing national portals to Puhuri.

Chapter 5 focuses on how CSC as a Service Provider is integrating to Puhuri Core and Puhuri
AAI.

4

1. Puhuri key processes

1.1. User Registration
All users must register in Puhuri AAI to use Resources connected with Puhuri, in particular
LUMI. The Registration creates a unique identifier (Community Unique Identifier, CUID) for
the User, which is used for referencing and linking user identity across the different
components.

The identity provider releases the attributes about User’s identity and affiliation, which is
important for the resource providers to know. Furthemore, Level of Assurance of such
data is provided by Puhuri AAI. Users can also provide additional information e.g. SSH
public keys. Users can define alternative email addresses than what was returned from
the Identity Provider used for registration in Puhuri AAI. That email will then be verified.

A user must also accept the Terms of Use agreement (ToU) as well as Acceptable Use
Policy (AUP) document of the Puhuri AAI services. At the moment there are LUMI Terms
of Use and we have to plan how to scale this for more services.

The national portal may implement identity linking of local accounts with a Puhuri AAI
account. The recommended way for that is to use OIDC registration flow, which can be
triggered from the national portal and redirect back with a created Puhuri User CUID

1.2. Project allocation
The Resource application review process happens outside of Puhuri. Once the project has
been approved, Resource Allocator is responsible for pushing project information to
Puhuri Core, from where it is then synchronised to the Service Provider. In addition to
Project metainfo and membership data, allocation-specific attributes are included. The
detailed description is in Chapter 3.

1.3. Other workflows
There are various other workflows related to the User and Project lifetime management
including updating the User and Project related information.

Accounting information flows from the Resource to Puhuri Core and then to the portals.
The Deliverable 4 describes that in more detail.

5

2. AAI implementation
2.1. AAI Architecture
Puhuri AAI is one of the essential Puhuri Service components as it enables Users to
securely access to Resources such as LUMI. Draft of Puhuri AAI, which is compliant with
AARC blueprint architecture, was presented in Deliverable 1 [D1]. In Deliverable 2 was
discussed about Infrastructure Service domains. Since then, the central AAI has been
branded as MyAccessID, as presented in Figure 2 that shows Puhuri AAI Architecture.

Figure 2: Puhuri AAI Architecture

GEANT delivers MyAccessID IAM platform (Identity and Access Management) that
connects federated R&E IdPs via eduGAIN and HPC and Community AAI IdPs with the
purpose of offering a common Identity solution for multiple HPC communities. With
MyAccessID, users will be able to apply for and use HPC resources with their
MyAccessID using their IdP account, without having to create and manage separate
logins for each system. MyAccessID will be able to connect National eID systems as
authentication sources as needed. GEANT also operates Puhuri Infrastructure Proxy,
which connects the LUMI resources and allocation portals to MyAccessID.

6

Both MyAccessID and Puhuri Infrastructure Proxy are deployed in a production
environment. GEANT has a service for testing attribute release by the Identity Providers.
This have been used by LUMI countries integrators and LUST members to test attribute
release from IdPs from their countries. Initial results are good, but Identity Providers will
have to step up their capabilities to signal expected Level of Assurance.

In collaboration with LUMI countries integrators, their National Puhuri Portals are being
connected to Puhuri Infrastructure Proxy as portals Terms of Use and Privacy Notices are
being confirmed by the respective portal controller/owner.

2.2. Remaining future work
Following work is planned to further evolve Puhuri AAI:

● For users without a federated identity, e.g. users from the industry, needs to be further
developed. This is of high importance as users from industry users.

● As a first measure, we are planning to enable usage of national eIDs solutions based on
the eIDAS to eduGAIN connector operated by SUNET. For those users where national
eID is not available either, a fall back solution to register and manually vet users will
need to be put in place. These would be features supported by the MyAccessID
platform, and conversations with GEANT about ways to support these are ongoing.

● Governance for Puhuri Infrastructure Proxy and policies for connecting services, security
policy etc need to be defined.

● A date for when the required level of assurance described in Deliverable 2 will become
mandatory needs to be defined so that AAI integration contacts can use this to influence
implementation at IdP side. We will monitor the compliance with the level of assurance
requirements on MyAccessID platform,

7

3. Resource allocation technical setup
In the Puhuri project, Waldur software is being used for resource allocation and accounting.1

Waldur is an open-source cloud marketplace with a self-service environment for users to
request and get access to resources. Waldur is deployed in two separate roles: as Puhuri Core
and as a reference solution for Puhuri Portals. In the latter case, Waldur was extended to
integrate with Puhuri Core APIs in the same way as National portal integration is done.

Puhuri Core is the heart of the resource allocation as it holds necessary information about
users, group management, roles, resources, accounting etc. Puhuri Core is accessible using
REST API with target users of API being:
● National allocation portal;
● Shared international allocation portal ;2

● Service Providers that want to use allocation information via Puhuri Core.

If the Resource Allocator does not have a national allocational portal or is not willing to integrate
at once, Puhuri partner Estonian National Research Infrastructure (ETAIS) is providing an option
for setting up a reference national portal either as a managed version or as a supported
software package. There is an agreement framework in place including service description,
pricing, Service Level Agreements and Data Protection Agreements. Alternatively, Resource
Allocator can self-host the reference Puhuri Portal.

EuroHPC Joint Undertaking’s resource allocation is handled through PRACE. The Puhuri
project has an ongoing dialogue on how to enable PRACE to use the Puhuri system for the
allocation of the EuroHPC JU portion of the LUMI resource.

In the Puhuri Core case, registered organizations are the Resource Allocation organizations,
which allocate resources from service providers. In case of LUMI, a single service provider -
LUMI - has been created with multiple offerings corresponding to the EuroHPC project types
and Resource Allocators as nominated by LUMI Consortium.

3.1. Environments
In total, we operate three different deployments for Puhuri Core. Each environment has3

its own intention and policy.
● Dev (https://puhuri-core-dev.neic.no/) runs the latest code and is updated frequently.
● Beta (https://puhuri-core-beta.neic.no/) is deployed with the versioned code, either the

same or newer than on production and contains production structure for resource
allocators.

3 https://puhuri.neic.no/environments/
2 Puhuri Portal - https://puhuri-portal.neic.no/
1 Waldur site - https://waldur.com/

8

https://puhuri-core-dev.neic.no/
https://puhuri-core-demo.neic.no/
https://puhuri.neic.no/environments/
https://puhuri-portal.neic.no/
https://waldur.com/

● Production (https://puhuri-core.neic.no/) is intended to be used for production data
exchange.

The development environment is connected to the pre-production MyAccessID AAI
(eduTEAMS-based AAI), Beta and Production environments are connected to the
production MyAccessID AAI. All deployments implement the business processes we have
decided so far in the Puhuri project. The whole deployment process is designed to allow
for dynamic changes into the processes during the stabilization phase. In addition to OIDC
flow, Puhuri Core implements a custom integration with MyAccessID for looking up user
data based on provided unique references of the user, aka CUID.

3.2. Information stored in Puhuri Core
Puhuri Core stores information about projects, users, allocations and relations between
those. Every project must contain members (PI, co-PI and regular members) and
allocation (CPU, GPU or storage components).

Data from reference Puhuri Portal is synced with Puhuri Core only if the project has
allocations and this project is approved by the Resource Allocator. If the data is present in
the Core, then it will be synced with Service Provider. This synchronization interval is
Service Provider specific.

Some of the project attributes are Service Provider specific and these existence depends
on the requirements from the Service Provider. For example, the OECD science domain is
required by LUMI and is mandatory for all allocations in LUMI.

More information can be found on Puhuri documentation website .4

3.3. Puhuri Core integration with Puhuri AAI
Puhuri Core is integrated in with MyAccessID AAI in the following ways:
● Via standard OIDC protocol though Puhuri AAI proxy, where Puhuri Core acts as a

client. This allows it to do permission grants as well as accept logins of Puhuri users
into Core, for example representatives of Resource Allocators and support team
members. While this is technologically possible, direct end user login to Puhuri Core
is not foreseen in the general case.

● Access to user registry over a custom MyAccessID userinfo endpoint for retrieving
user data from the registry based on the lookup. Such integration is needed to be able
to present the National Portals API-endpoint for adding users to the resource
allocation using the unique identity reference of the Puhuri AAI. Access is based on
the offline access of OIDC.

4 Puhuri documentation - https://puhuri.neic.no

9

https://puhuri-core.neic.no/
https://puhuri.neic.no

3.4. Puhuri Core functionality for Resource Allocators
Resource Allocators are external parties that are entitled to manage projects and resource
allocations in Puhuri Core via Puhuri Portal or national portal. In the scope of Puhuri,
Resource Allocators are typically organizations operating National Portals or research
communities.

Puhuri Core provides a rich set of APIs along with Python SDK for easy integration of
Puhuri Core services with portals of Resource Allocators. The up-to-date documentation
for the allocators is kept at https://puhuri.neic.no/resource-allocators/.

3.5. Puhuri Core functionality for Service Providers
Currently, the main service provider for Puhuri is CSC with its service LUMI. As such
development of the functionality is largely driven by use cases that arise from LUMI,
however we believe that they are generic enough to integrate a wide range of similar
Service Providers.

A typical flow of operations from the Service Provider point of view is as follows:

1. Organization representing an allocation body creates allocation in a certain project.
Allocations are created in the 'Creating' state.

2. Service Provider polls for new allocations and users with access to them, processes
them and marks allocations as approved or rejected. Service Provider also reports to
Puhuri Core local username created for the user accounts as well as local references
to allocations.

3. Service Provider regularly reports back accounting data as well as can provide status
report for allocation (a semi-structured report visible to end-users).

From the Service Provider side, Puhuri Core provides several groups of APIs.
Functionality related to the setup of environment on the Service Provider side:

● Getting a list of active projects where Service Provider’s resources are available.
● Getting a list of active Allocations of Resources.
● Getting a list of members and their roles in each project.

Functionality related to reporting of accounting of resources
● Updating usage of each Resource Allocation.
Functionality in progress includes:

10

https://puhuri.neic.no/resource-allocators/

● Ability to report on the status of the environment provisioning to improve feedback to
resource allocators.

● Ability to report locally generated usernames for each Puhuri AAI identity.

Service Provider documentation is available at https://puhuri.neic.no/service-providers/.

3.6. Puhuri Portal as an option to manage allocations
In order to validate Puhuri Core APIs as well as to provide a graphical tool for the resource
allocators that do not have or do not want to integrate their own allocation portal, we
developed Puhuri Portal as one option to manage projects and allocations. As of today,
two slightly different portal options are available for Resource Allocators.
● Shared version - this is a common version of the portal, meant for several Resource5

Allocators and with the fixed Privacy Policy and Terms of Service.
● Dedicated version - meant for typically one Resource Allocator with customizable

Privacy Policy and Terms of Service.

Based on the same technology as Puhuri Core, dedicated Puhuri Portal users will have
additional roles to reflect established processes of resource allocation. The roles are:
● Organization owner: represents a scientific organization or community, able to create

new projects, manage project teams and manage requests for resources by
approving or rejecting them.

● Principal Investigator (PI): able to request and use provisioned resources (with
approval by Organization owner), can add project members from the same
organization (i.e. pre-approved by the owner).

● co-Principal Investigator (co-PI): same rights as PI.
● Project member: can only participate in particular project work, able to use

provisioned resources.

In the shared Puhuri Portal, the organization owner is renamed into Resource Allocator
and all projects are affiliated with a Resource Allocator.

Puhuri Portal uses MyAccessID authentication for all of these mentioned roles.
Organization owner roles are set to specific persons by the Puhuri team after they register
in MyAccessID and in the portal. Further on, organization owners can manage other roles
and persons.

Resource allocation process is designed to be flexible and generic, meaning that we
standardize the main flows and actions, but allow for customisations, where we foresee
changes. For example, we expect LUMI to provide a common schema for allocating
resources for the initial LUMI services (cpu-hours, gpu-hours and storage-hours), but we

5 Shared Puhuri Portal - https://puhuri-portal.neic.no

11

https://puhuri.neic.no/service-providers/
https://puhuri-portal.neic.no

allow to provide own allocation components to other service providers or not yet clearly
defined resources under LUMI umbrella. As such, Puhuri Core serves as a generic
solution for sharing of resources by multiple allocators.

12

4. Integration of the Swedish national portal to
Puhuri

4.1. Background
The SUPR project began in 2011 to provide SNIC (the Swedish National Infrastructure for
Computing) and the multiple computing centres providing SNIC resources with a unified
database of users and projects, as well as support for handling project proposals within
different application rounds.

Users with different roles (PIs, project members, reviewers, staff etc.) use the portal at
https://supr.snic.se/ to perform their various tasks. The primary authentication method is
federated login via the Swedish SWAMID identity federation, but we also allow
email/password login for those who do not have a SWAMID identity, and client certificate
login for those who wish to use that. Staff users and PIs for sensitive data projects are
required to use two factor authentication (2FA). TOTP in SUPR itself on top of the primary6

method, and all users can enable 2FA if they wish.

The main reasons for integrating SUPR with Puhuri are:

● SUPR already has the functionality needed to accept project proposals of different kind,
assign reviewers and let them register their evaluations, handle and document decisions,
and then create projects from the approved proposals.

● PIs and project members know how to use SUPR for managing their proposals and
projects and we expect most of them to have a mix of projects at LUMI and at national
resources.

In the remainder of this part of the document, we describe how we have integrated SUPR
with Puhuri, as this may be useful for other resource allocators that want to do the same
for their national portals.

4.2. Puhuri AAI / MyAccessID Integration
The core user identity in the Puhuri system is the MyAccessID identity (also known as a
CUID within Puhuri). For SUPR to be able to talk to the Puhuri Core system and
add/remove users to projects, it needs to know the users' MyAccessID identities.

6 https://en.wikipedia.org/wiki/Time-based_One-Time_Password

13

https://supr.snic.se/

This is implemented using a function in SUPR that allows a user to link their MyAccessID
identity to their SUPR user. Users who become members of LUMI projects are reminded
that they need to do that.

The technical implementation uses an OIDC flow from SUPR to the Puhuri AAI proxy . As7

we run Apache httpd and use other Apache modules for SAML and client certificate
authentication, we use the mod_auth_openidc module to take care of the OIDC
protocol. We enable it for the MyAccessID linking page in SUPR.

We have added a new field to our Person object in SUPR to store the linked MyAccessID
identity. In addition, we also store the name and email address returned from
MyAccessID, to be able to show them to the user, as the MyAccessID identity itself is a
long opaque identifier.

4.3. Puhuri Core Integration
SUPR needs to talk to Puhuri Core to push information about projects, memberships and
allocations. This is implemented using a sync script that is run regularly, and using the
Puhuri Core APIs documented at https://puhuri.neic.no/resource-allocators/.

4.3.1. Creating and Updating Projects
Project creation is done using the API documented at
https://puhuri.neic.no/resource-allocators/#project-creation. Here we need to map
fields from our Project object to the Puhui Core fields:

Puhuri Core Field SUPR Field Comment

name name Formal name/code, for example "SNIC
2021/99-42"

description title For example "Monte-Carlo simulations of feline
table-object interactions"

backend_id id Database ID on our side (an integer)

end_date end_date SUPR uses exclusive semantics while Puhuri
Core uses inclusive, so 2022-01-01 will be

translated to 2021-12-31.

oecd_fos_2007_code classification1 SUPR has a five digit code that needs to be
translated. For example, "21001" (for

Nano-technology) maps to "2.10".

7 https://puhuri.neic.no/idp_integration/use-cases/national-portal-integration/#overview

14

https://puhuri.neic.no/resource-allocators/
https://puhuri.neic.no/resource-allocators/#project-creation
https://puhuri.neic.no/idp_integration/use-cases/national-portal-integration/#overview

The concept of a start_date is not yet present in Puhuri Core. Projects become
active as they are created. Therefore, we do not create the project in Puhuri Core
before the start_date in SUPR has been reached.

We have added a field in the SUPR Project object to keep track of the Puhuri Core
UUID for the project, for use in API calls referencing the project. We have also
added a field to the SUPR Project object to keep track of the last time we updated
the project information in Puhuri Core. As we already have a field for the last time
the project's relevant fields were updated in SUPR, the sync script can compare
those timestamps. If the project has been updated in SUPR since the last update
done by us in Puhuri Core, we fetch the project object from Puhuri Core, compare
field values, and use the API call documented at
https://puhuri.neic.no/resource-allocators/#project-update to update any changed
value.

4.3.2. Project Membership Management
SUPR projects have exactly one PI, zero or one proxy for the PI, and one or more
members. Those concepts map to the Puhuri Core permission roles manager,
admin and member respectively as described at
https://puhuri.neic.no/resource-allocators/#membership-management

We need the Puhuri Core UUID for a user before we can reference that user in the
permissions API. We have added a field to the SUPR Person object to store that. If
that is empty, but we have the MyAccessID present, we first use the call
documented at
https://puhuri.neic.no/resource-allocators/#puhuri-aai-user-mapping-lookup to map
the MyAccessID identity to the Puhuri Core UUID and store it for future use.

As part of project update handling, we compare the permissions present on the
Puhuri Core project with the PI, proxy and members in SUPR, and issue the
necessary calls to add and/or remove permissions from Puhuri Core to make it
consistent with the SUPR project.

4.3.3. Resource Allocation Management
To communicate to Puhuri Core how many core hours, GPU hours and/or TB hours
a project is allowed to use, we use the API calls documented at
https://puhuri.neic.no/resource-allocators/#resource-allocation-management

We have added a field to the SUPR Project object to specify what Puhuri Core
offering (for example, "LUMI SNIC / Regular Access") is to be used for the project.

15

https://puhuri.neic.no/resource-allocators/#project-update
https://puhuri.neic.no/resource-allocators/#membership-management
https://puhuri.neic.no/resource-allocators/#puhuri-aai-user-mapping-lookup
https://puhuri.neic.no/resource-allocators/#resource-allocation-management

We have also added a field to the SUPR Round object, that carries the default
offering to be used for projects created from that application round.

We create a marketplace order with the limits taken from the allocations for the
project in SUPR and store the resulting UUID for the order in a new field on the
SUPR Project. When the sync script runs again, it will check if the order has been
marked as done. When that is the case, it saves the resulting resource UUID in yet
another new field on the SUPR Project object.

As part of project update handling, we fetch and compare the limits present on the
project's resource object with the current allocations present in SUPR. If they differ,
we use the update_limits API call to adjust them.

4.4. Future Work
LUMI (and therefore Puhuri Core) uses allocation units that are not used elsewhere in
SUPR. LUMI uses core-hours and GPU-hours for the whole project duration, while SNIC
resources use core-hours per month and GPU-hours per month. Also, LUMI uses TB
hours (the time integral of the storage usage) while SNIC resources use TB or GB (the
maximum storage usage at any time). We have added the LUMI units to SUPR, but still
have work to do to make sure that we show the LUMI units in the correct way in allocation
graphs, etc.

During the next phase of the Puhuri Project we will decide how usage accounting from
LUMI will be propagated via Puhuri Core to national portals and Puhuri Portals. We will
have to integrate this too with SUPR and decide if this will be done via the SGAS
database that is used for other SNIC accounting, or if it will be stored in SUPR only. The
amount and granularity of accounting data we can get will influence that decision.

There may also be other information, in addition to usage accounting, that needs to be
sent from LUMI via Puhuri Core to national portals and Puhuri Portals, such as the actual
user names used to login to LUMI and the actual project names (the Slurm account used)
on LUMI. This will require changes to the way the sync script works, as it will then have to
poll for changes from Puhuri Core too to fetch such data, in addition to looking for changes
in SUPR to push data to Puhuri Core.

If it works policy-wise, we may want to enable MyAccessID as an authentication
alternative for SUPR itself in the future. Also, SNIC centres may be interested in having
MyAccessID authentication as a system login method if it turns out to be popular on LUMI.

16

5. Resource integration with the LUMI use case

CSC has implemented two scheduled scripts for data synchronization with Puhuri Core and its
Identity Management (IdM) system. The first script is used to pull in User, Project and Allocation
data from Puhuri Core to CSC IdM. The pull-script fetches all the relevant information from
Puhuri Core’s REST API endpoints and transforms the data into a format that is more easily
consumed by the IdM system. The IdM system then consumes the pull-script generated
pre-processed data and creates (or updates) the local instances of Puhuri Users and Puhuri
Projects in CSC’s IdM system.

During local instance creation, the imported objects are extended with auxiliary attributes, which
are a part of CSC’s IdM systems schema for Users and Projects. These auxiliary attributes
include, among other things, the imported Puhuri Users local CSC username and the imported
Puhuri Projects local CSC identifier. These local identifiers are needed by Puhuri Users and
Puhuri Project members to access and use LUMI services.

After the local instances have been created in CSC’s IdM system, the IdM system provisions the
imported Puhuri Users and Puhuri Projects to CSC’s LDAP cluster, from where the LUMI
services consume the imported User, Project and Allocation data, by querying the relevant
information using LDAP protocol. CSC’s HPC team have implemented their own scheduled
pull-scripts, which are used to pull in the relevant User and Project information from CSC’s
LDAP cluster to LUMI.

CSC’s IdM system regards Puhuri Core as the authoritative source of information with regard to
Puhuri imported Users, Projects and Allocation data, and updates the imported objects local
instance in CSC IdM accordingly, when the imported objects state has changed in Puhuri Core.

Table of data that the pull-script reads from Puhuri Core

Puhuri User Description

uuid Users UUID in Puhuri Core

lastImportDate Current date in ctime format, generated by
import script

puhuriUserUniqueId Users CUID in Puhuri Core

givenName Users forname

surname Users surname

17

mail Users email address

telephoneNumber Users telephone number (if available)

schacHomeOrganization Users home organizations domain name (if
available)

isActive Accounts status in Puhuri Core (for future
use)

sshPublicKeys Multi-value, Users ssh public keys

eduPersonScopedAffiliations Multi-value, Users scoped affiliations

Puhuri Project Description

uuid Projects UUID in Puhuri Core

lastImportDate Current date in ctime format, generated by
import script

title Projects title

description Projects description

types Projects type(s), parsed from Allocation(s)

startTimestamp Parsed from initial Allocation

endTimestamp Parsed from Project, Allocation or generated
based on Project type

allocatedCPUHours Parsed from active Allocation(s) and summed
up if there are multiple allocations

allocatedGPUHours Parsed from active Allocation(s) and summed
up if there are multiple allocations

allocatedStorageHours Parsed from active Allocation(s) and summed
up if there are multiple allocations

principalInvestigatorUniqueId Single-value, PI’s CUID

proxyPrincipalInvestigatorUniqueIds Multi-value, CO-PI’s CUID(s)

memberUniqueIds Multi-value, PI + CO-PI(s) + Member(s)
CUID(s)

18

scienceAreaCode Science area code of Project, parsed from
Project details or from Allocation details

allocatorName Parsed from initial Allocation. Contains
Allocators label e.g. SNIC, CSC

allocatorCountry Parsed from initial Allocation. Contains
Allocators country e.g. se, fi

The second scheduled script is used to publish information from CSC’s IdM system to Puhuri
Core. This push-script is used to publish Puhuri Users local CSC usernames and Puhuri
Projects local CSC identifiers to Puhuri Core. Puhuri Core SDK provides ready-made methods8

for publishing these local identifiers to Puhuri Core in an easy and consistent way. National
Portals are then able to consume the local identifier data by querying it directly from Puhuri
Core. This enables National Portals to display these local identifiers to their end-users in a way
they see fit.

Puhuri Project local identifier at CSC Puhuri UUID for Project in Puhuri Core

project_42600000 9ad4aad3c20c4f55a950775a0ce2b295

project_42600001 e41dc386d8884c798aba26039f588f30

Puhuri User local CSC username Puhuri UUID for User in Puhuri Core

johndoe 91c9a4d3fa9e46197629abc392eff85f

janedoe fd99ec56cbb94d8c905f8379b3628627

User and Project life-cycle management needs to be defined in policy level and then implement
for example termination of the project process with data removal.

8

https://puhuri.neic.no/SDK%20guide/allocation-management-sp/#updating-resource-allocation-with-local-r
eference-setting-backend_id-field

19

5.1. User, Project and Allocation data import process

Figure 3. User registration process for LUMI. User, Project and Allocation data import
procedure. When User has registered, Puhuri Core will get information from Puhuri AAI
Registration Service (step 5a). This data, and possible additional data, such as User
provided ssh public keys, are then propagated to CSC IdM (step 1).

20

The data import procedure outlined in Figure 3 consists of the following steps:

A) User registers, requests, and is granted resources
5)
5a) Authenticate User (initiation of the authentication workflow)
5d) User uses his/her home institution's IdP to authenticate (User attributes are returned to

Puhuri Core)
In addition to the IdP provided attributes, User can give additional attributes such as ssh

public keys
During the login process, the User accepts LUMI specific Terms of Use

B) Information on User, Project and Allocation is propagated to Puhuri Core
1) Users, Projects and Allocations are pulled in from Puhuri Core REST API to CSC IdM (script,
cron job)
2) The pull script pre-process and transform imported data to comply with CSC’s internal data
model

Local instances of User and Project are created in CSC IdM during CSC IdM import
CSC IdM sends welcome email to User which contains information regarding Users local

CSC user id
3) CSC IdM provisions imported local instances of User and Project to target systems

When interfacing with Puhuri Core REST APIs, the Waldur projects waldur_client.py can be9

used as a good starting point, when developing programs or scripts, which publish or consume
data from Puhuri Core.

9

https://github.com/opennode/ansible-waldur-module/blob/6679b6b8f9ca21099eb3a6cb97e846d3e8dd124
9/waldur_client.py

21

5.2. LUMI User authentication process

Figure 4. User authentication flow for the LUMI services. The Users can authenticate to
the LUMI services using the OIDC device flow or an ssh public key based authentication.

5.2.1. Authentication flow when using OIDC device flow
The authentication flows outlined in Figure 4 consists of the following steps when using
OpenID Device Code workflow, which is being investigated as a login option :

22

4) CSC AAI and LUMI Services consume the imported local instances of User and
Project from CSC LDAP

5) User tries to establish ssh session with LUMI using his/her CSC provided local
user id
5b) User is instructed by LUMI ssh service to authenticate using web browser

User opens provided hyperlink in web browser or scans provided QR code
Users web browser is redirected to CSC AAI

5c) User selects Puhuri AAI login method in CSC AAI
5d) User uses his/her home institution’s IdP to authenticate

Users attributes are returned to CSC AAI

6) CSC AAI attempts to map authenticated remote User to local CSC identity
CSC AAI queries CSC LDAP using Puhuri AAI provided unique User identifier

(CUID)
If a match is found in CSC LDAP, and the matched local user id is not disabled in

CSC LDAP, the web browser
prompts the User to Approve or Deny the ssh access request

7) LUMI grants or denies access based on CSC AAI authentication result and
imported Users and Projects state in

CSC LDAP

5.2.2. Authentication flow when using ssh public keys
4) CSC AAI and LUMI Services consume the imported local instances of User and
Project from CSC LDAP.

5) User tries to establish an ssh session with LUMI using his/her CSC provided local
user id while requesting an ssh key based authentication.
Steps 5b), 5c), 5d) and 6) are not performed when using the ssh key based
authentication with LUMI.

7) LUMI reads Users ssh public keys from LDAP and/or LUMI file system and
performs ssh key based authentication.
LUMI grants or denies access based on ssh public key authentication result and
imported Users and Projects state in CSC LDAP.

The Resource provider may have additional processes to authorise the first login, which are not
feasible or wise to implement in earlier processes. For example, those can be very service
specific processes, such as collecting complementary User information, that is required by the
Resource provider, but is not directly available via the Puhuri integration. A Resource may also
implement a multi factor authentication in addition to the authentication flow described above.

23

5.3. LUMI Accounting data export process

Figure 5. Accounting data export procedure from LUMI Resource to Puhuri Core.

The accounting reporting steps are:
8) Pull in Resource usage data from LUMI services to CSC’s reporting database (REPPU)
9) Push Resource usage data from REPPU database to Puhuri Core (matches Projects in
Puhuri Core using Puhuri Project UUID)

24

25

References
[D1] Requirements and architecture plan for Puhuri. Puhuri Deliverable 1
https://zenodo.org/record/4288776#.YFytZ9yxVhF

[D2] Implementation of Puhuri core functionalities. Puhuri Deliverable 2
https://zenodo.org/record/4727686

[LUM] LUMI EuroHPC supercomputer web page. https://www.lumi-supercomputer.eu/

[PUH] Puhuri Documentation Portal https://puhuri.neic.no

26

https://zenodo.org/record/4288776#.YFytZ9yxVhF
https://zenodo.org/record/4727686
https://www.lumi-supercomputer.eu/
https://puhuri.neic.no

