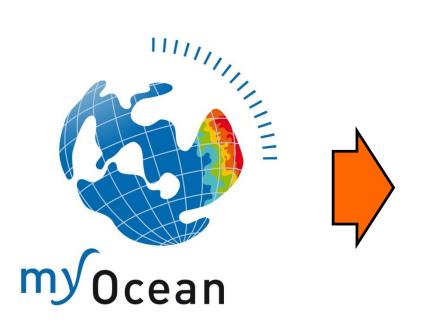
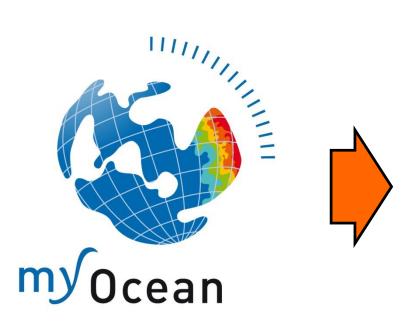


MyOcean-2 RDAC


Progress Report

Introduction (1)

January 2009 – March 2012


April 2012 – September 2014

Introduction (2)

SST TAC (M-F): SST

SIW TAC (met.no): Sea Ice & Wind

OSI TAC (met.no): SST, Sea Ice

& Wind

Introduction (3)

Name	PU	DU
SST-METOFFICE-EXETER-UK	Х	Х
SST-IFREMER-BREST-FR	X	X
SST-CNR-ROMA-IT	Х	X
SST-DMI-COPENHAGEN-DK	X	
SST-METNO-OSLO-NO	X	
SST-METFR-LANNION-FR	Х	

Current and future NRT SST products

UKMO :

- Global foundation L4 (OSTIA) + sensor biases
- GMPE
- <u>2014</u>: global diurnal L4

IFREMER:

- Global L3S (ODYSSEA)
- Regional foundation L4 (IBI + NWS)

• DMI:

- Regional foundation L4 (Baltic Sea)
- <u>2014</u>: regional Ice Surface
 Temperature L4 (Arctic)

• MET.NO :

Regional foundation L4 (Arctic)

CNR:

- Regional L3S + foundation L4 (Med Sea + Black Sea)
- Both HR (0.0625°) and UHR (0.01°) resolution

• M-F/CMS :

- Regional L3C + L3S (European Seas)
- <u>2014</u>: regional diurnal L3S + L4 (European Seas)

On-going SST re-processing activities

DMI:

Regional foundation L4 (Arctic): 1985 – 2011

IFREMER:

- Global L3S (ODYSSEA) + regional foundation L4 (IBI + NWS)
- 3 re-processing steps: 2006-2010 (NRT data, completed),
 2001-2006 (OSI-SAF + AATSR NRT data + PATHFINDER),
 1991-2001 (ARC + PATHFINDER)

Main products upgrades since GHRSST-XIII

OSTIA (UKMO) :

- 17 January 2013: update of background variance estimates, use of METOP-A/AVHRR in satellite bias correction, increased number of geostationary input data, minimum SST set as -2° C
- 29 April 2013 : lake ice added to OSTIA ice field
- use of a new SST climatology
- available in GDSV2 format

GDS2.0 Implementation

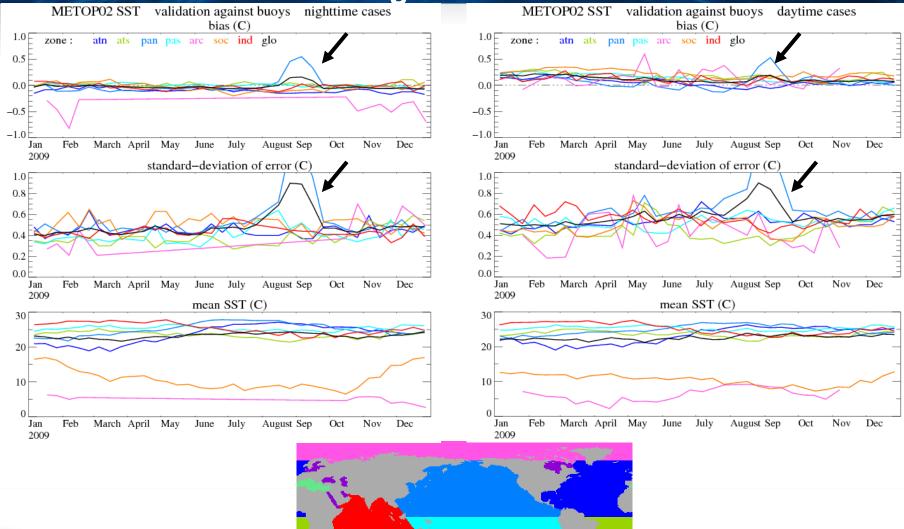
- (M-F/CMS)
 - •Regional L3C and L3S over European Seas January April 2013: transition from GDS1.7 to GDS2.0 (GDS1.7 stopped on 30 April 2013)

FOCUS ON TWO R&D ACTIVITIES

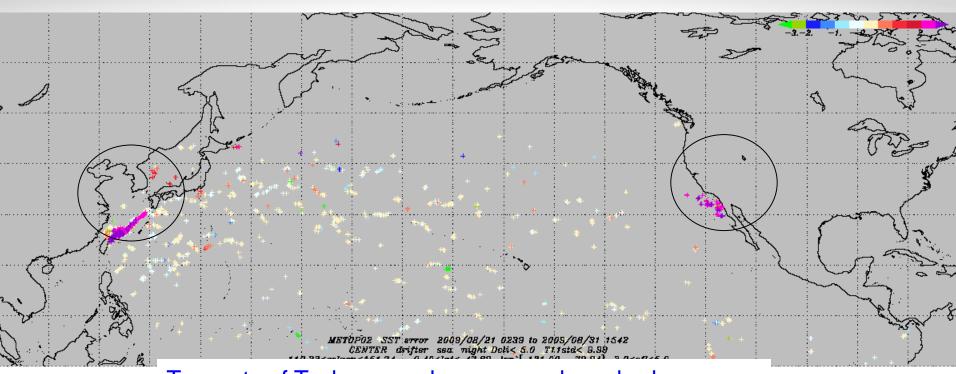
- CMS Buoys Blacklist
- BESST : Inter-sensor <u>Bias Estimation in Sea Surface Temperature</u>

CMS Buoys Blacklist

Sonia Péré, Anne Marsouin Meteo-France



METOP SST validation results showed an anomaly in summer 2009:


observed on the global and North Pacific results

basins used by Ostia

SST anomaly was due to erroneous buoys

Two sets of Technocean buoys were launched at the end of July 2009, showing a 2 to 3K negative bias

=> How to eliminate such buoys? ...building a buoy blacklist

Method: automatic scheme

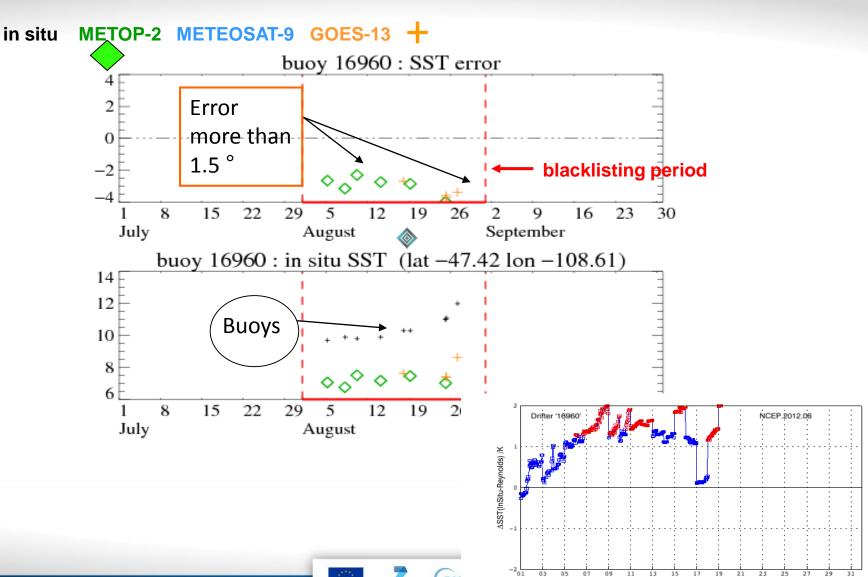
- Night time data
- Satellites: METOP-2, NOAA-18, NOAA-19

METEOSAT, GOES-13 since 1st June 2011

 Automatic update on 5, 15, 25 of the month: process two successive 10-day periods

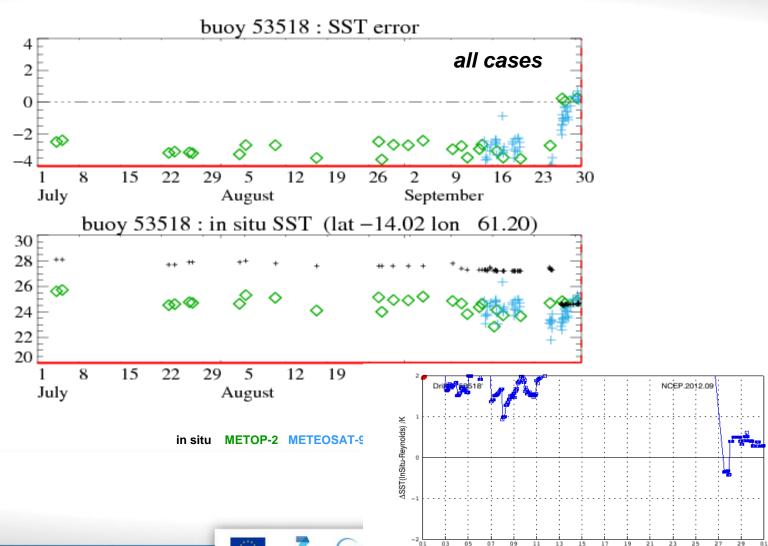
buoy blacklisted if |bias| > 1.5C for 2 satellites on 1 period or 1 satellite on both period

- Distributed every 10 days:
 - mailing list (initially MyOcean SST TAC members)
 - ftp://ftp.ifremer.fr/ifremer/cersat/projects/myocean/sst-tac/insitu/blacklist/


Method: interactive control

- Every 3 months; at the begining of month N, months N-4, N-3,
 N-2 are checked
- Information used:
 - SST plots derived from the CMS MDB
 - UKMO blacklist (and MF ARPEGE blacklist)
- The blacklisted buoy period may be enlarged using: (SST plot only) or (SST plot and UKMO blacklist)
- A buoy may be added to the blacklist if: blacklisted by UKMO and errors on SST plot, especially by day

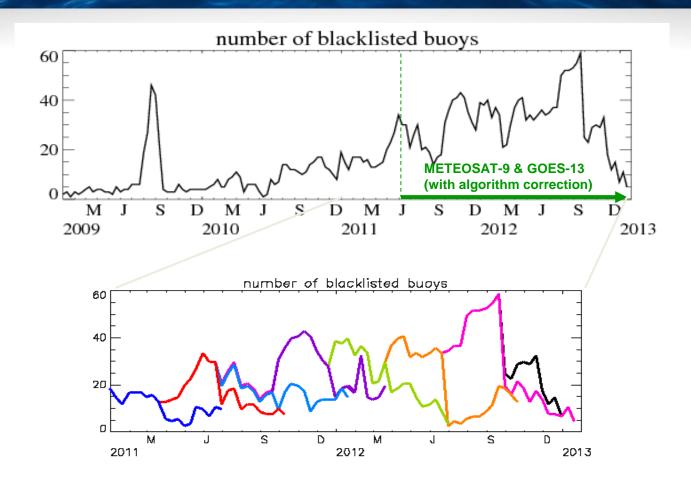
Example 1: an easy case for the automatic scheme



Aug 2012

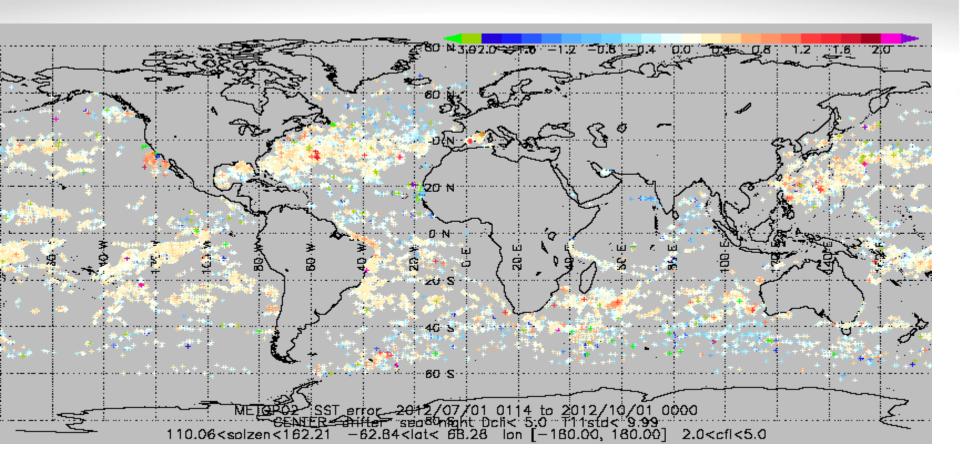
Example 2: a case modified by the interactive control

Results after the interactive control:

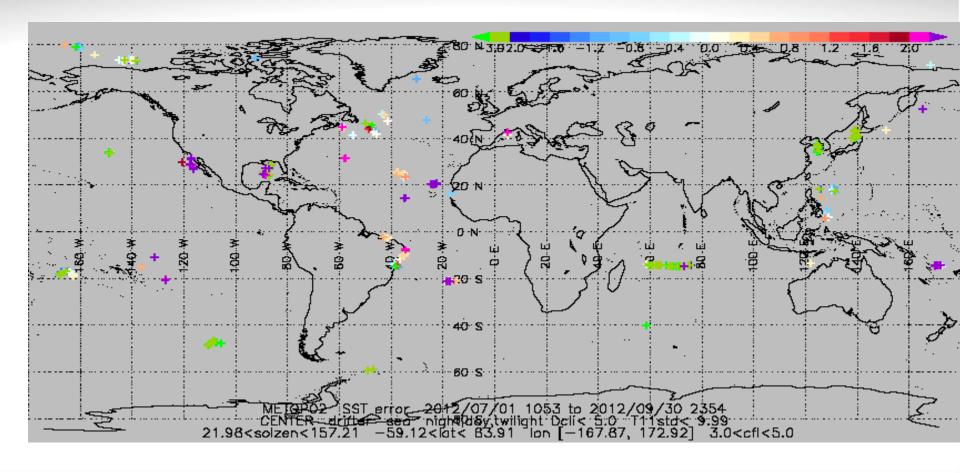


Sep 2012

How many buoys in the blacklist?


Variations associated with the interactive control

Buoys in METOP MDB over 3 months July-September 2012 (night)



Blacklisted buoys over 3 months July-September 2012

Conclusion 1

- A buoy blacklist is routinely maintained at CMS
 - updated every 10 days
 - interactive control every 3 months, using UKMO blacklist
 - distributed to users
- Blacklist characteristics
 - global, starting on 1 January 2009
 - drifting buoys only
 - based on nighttime satellite data
 - main contributors: METOP, METEOSAT and GOES-E

Conclusion 2

- Scheme could be improved, ... if somebody available
 - Change the automatic scheme using a sliding window, others methods than threshold
 - A few buoys are detected only by the interactive control (3 months delay!!!)
 - The interactive control is very laborious: handling of the data, many plots, etc
 - Not yet used in Myocean products validation (on going)

Inter-sensor <u>Bias Estimation in Sea</u> <u>Surface Temperature</u>

I. Tomažić1, A. Alvera-Azcárate1,

A. Barth1, J.M. Beckers1 and F. Orain2

1University of Liège, Liège (Belgium) 2Meteo-France/CMS, Lannion (France)

Overview - partners

University of Liège
AGO department
GeoHydrodynamics and
Environment Research (1)
Liège, Belgium

Aida Alvera-Azcárate Igor Tomažić Alexander Barth Jean-Marie Beckers

Météo-France Centre de Météorologie Spatiale (2) Lannion, France

Françoise Orain

Overview - description

- Analyse inter-sensor SST biases
- Use referent SST sensor (AATSR, Metop-A, ...) to improve SST derived from other sensors (AVHRR/SEVIRI, ...)
- Develop a methodology to derive more accurate SST bias fields based on DINEOF method
- Operational context (Meteo-France)
- Physical interpretation and application

Agenda

- Project overview
- Method
- Data + intercomparison
- Bias correction using referent sensor
- reconstruction of differences RECDIF
- differences of reconstruction DIFREC

PROJECT BESST overview

- WP1: Calculation of inter-sensor difference fields
- 1.1.: Application of two approaches based on reconstruction of difference fields and based on differences of reconstructed fields
- 1.2: Calculation of spatial maps of the error variance of the inter-sensor difference fields to determine the confidence of the results
- 1.3: Determination of which of the approaches from WP1.1 leads to best results when comparing to in situ data

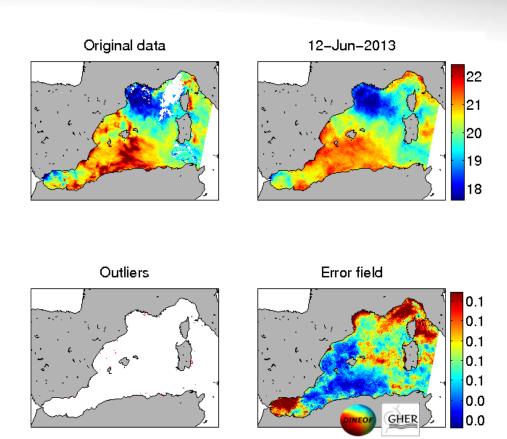
WP2: SST Applications

- 2.1. Use of inter-sensor difference SST fields in the bias analysis and correction of CMS comparison with technique currently used at CMS.
- 2.2. Assimilation of bias-corrected SST time series in an Antarctic model (PredAntar project)
- WP3: SST Spatio-temporal analyses
- 3.1. Spatio-temporal analysis of the difference fields
- 3.2. Clouds statistics
- 3.3. Influence of physical processes

Overview – working packages

WP0: Management, Coordination, Collaboration, Dissemination

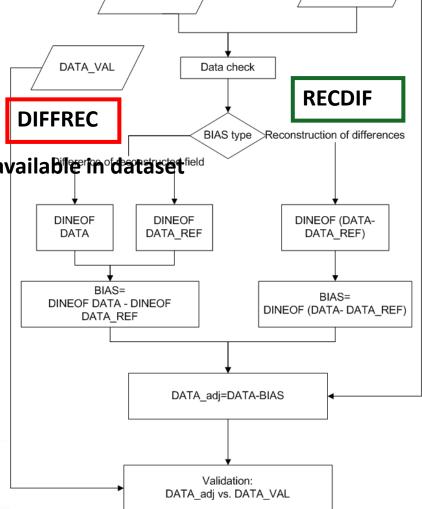
- Internal meeting
- Blog (http://besstproject.blogspot.com) for fast and easy correspondence and presentation of intermediate results
- Website (http://www.gher.ulg.ac.be/BESST) links to the preliminary results, publications, etc.



Method (DINEOF+bias correction)

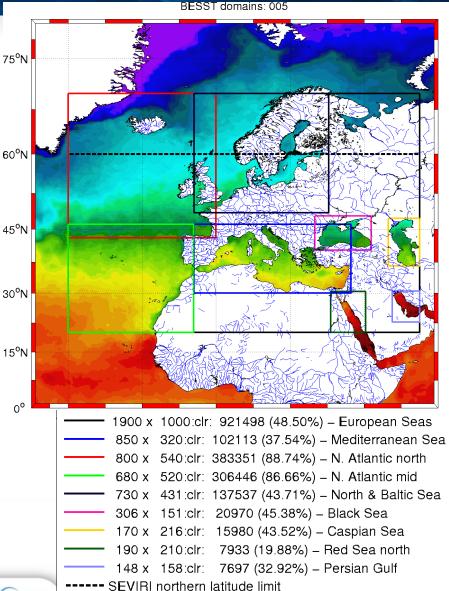
- DINEOF method
 - Technique to fill in n exploiting spatio-ter assumption)
 - Truncated EOF basis
 - Use of cross-validati determine optimal r
- Use DINEOF to derive S
 - DINEOF reconstructi
 - Difference of DINEO

Method



Method – bias corr. using ref. data

- Adjusting data based on DINEOF method and ref. measurements^{TA_REF}
- Features:
 - Inputs: Data; Data_ref; Data_val
 - Date range: start + end date
 - Area, Grid size, DINEOF params
 - Filtering based on any parameter/variable available in dataset field
 - Correction to input data (custom function)
 - Output: web + netcdf (opendap)



DATA

Data + analysis

- SST: SEVIRI, Metop-A
- Ref: AATSR, Metop-A
- Validation: buoy, AATSR
- 10/2010 03/2012
 - focus on 2011
- Nighttime
- L3C format (L2→L3C)
- Domain + subdomains

Data - quality check

Number of observations (Nobs): #days: 30.0 #files: 31

AATSR MYOCEAN L3C EUR

01-Dec-2010 - 31-Dec-2010:

Number of observations (Nobs): #days: 30.0 #files: 31

SVRI_MYOCEAN_L3C_EUR

01-Dec-2010 - 31-Dec-2010:

Number of observations (Nobs): #days: 30.0 #files: 31

METOPA_MYOCEAN_L3C_EUR

01-Dec-2010 - 31-Dec-2010:

Number of observations (Nobs): #days: 30.0 #files: 31

BUOY_MYOCEAN_L3C_EUR

01-Dec-2010 - 31-Dec-2010:

Number of observations (Nobs): #days: 30.0 #files: 31

AATSR MYOCEAN L3C EUR

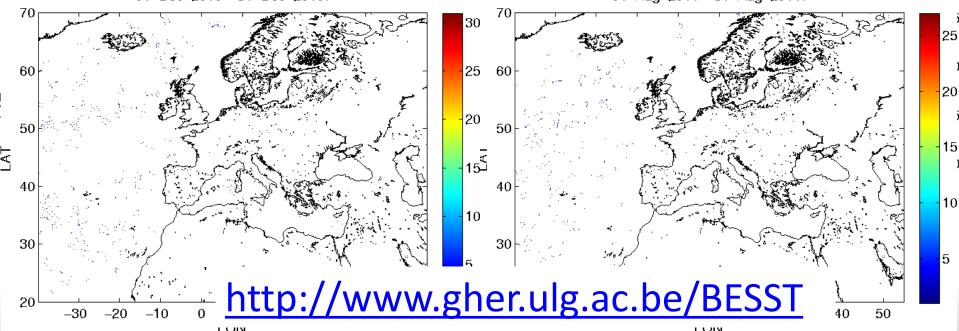
01-Aug-2011 - 31-Aug-2011:

Number of observations (Nobs): #days: 30.0 #files: 31

SVRI_MYOCEAN_L3C_EUR

01-Aug-2011 - 31-Aug-2011:

Number of observations (Nobs): #days: 30.0 #files: 31


METOPA_MYOCEAN_L3C_EUR

01-Aug-2011 - 31-Aug-2011:

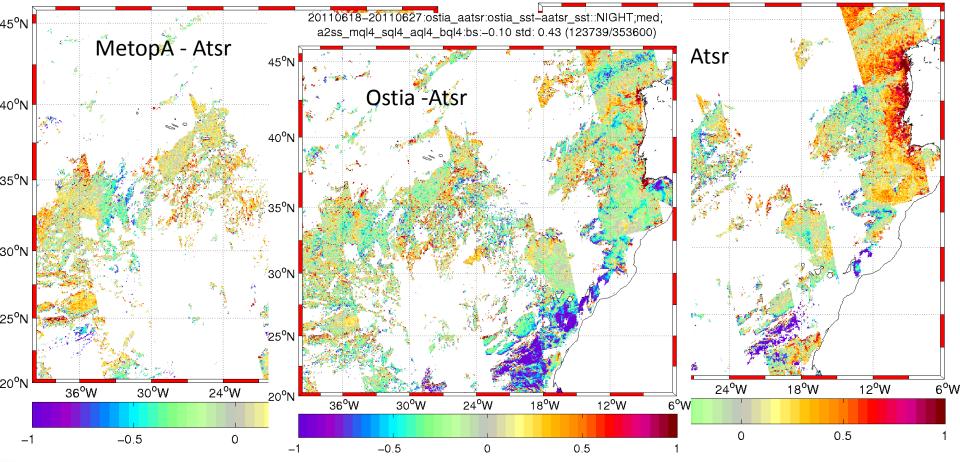
Number of observations (Nobs): #days: 30.0 #files: 27

BUOY_MYOCEAN_L3C_EUR

01-Aug-2011 - 31-Aug-2011:

Data - intercomparison

- A lot of work done on data intercomparisons (see web site)
 - http://www.gher.ulg.ac.be/BESST
 - Merge different datasets
 - Metop-A/AVHRR, SEVIRI, ENVISAT/AATSR, OSTIA, Buoy, ...
 - Different spatial resolutions
 - Zoom on sub-domains
 - Nightime
 - accurate 3.7 μm channel for Metop-A/AVHRR
 - SEVIRI BT adjustment: from 08/2011
 - Statistics + time series + spatial plots



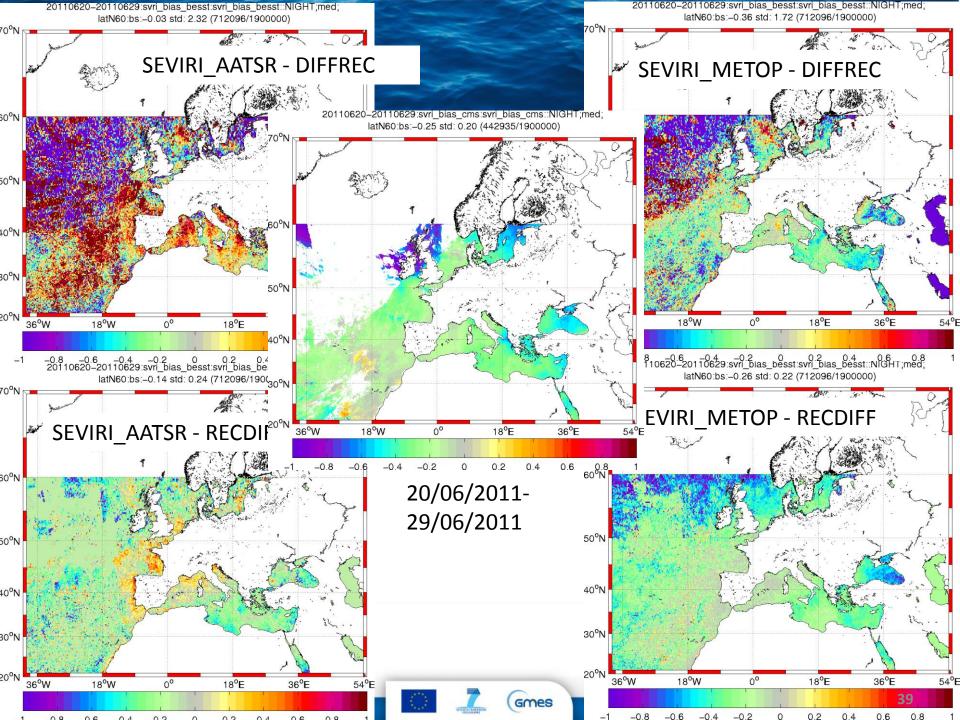
Data - intercomparison - spatial

Period 18 th of June 2011 to 27 th of june
20110618-20110627:svri_aatsr:svri_sst-aatsr_sst::NIGHT;med;

20110618-20110627:metopa_aatsr:metopa_sst-aatsr_sst::NIGHT;med; a2ss mgl4 sql4 aql4 bql4:bs: 0.13 std: 0.42 (84976/353600)

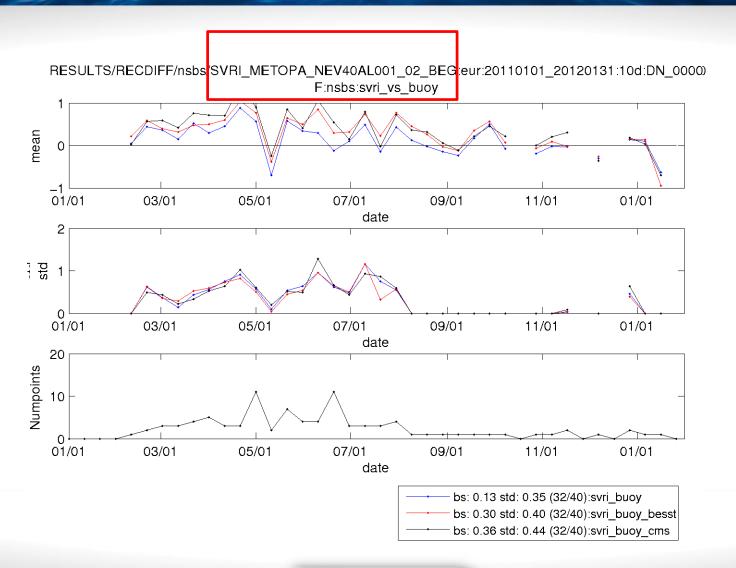
a2ss mgl4 sgl4 agl4 bgl4:bs:-0.04 std: 0.50 (82870/353600)

RESULTS



- Bias grid: 0.2 deg
- Period: 01/2011 01/2012
- Analysis: starting every 3 months for 120 days
- Bias fields: derived over EUR domain and remapped to original resolution (0.05/0.02 deg)
- SEVIRI vs. AATSR/METOPA http://www.gher.ulg.ac.be/BESST)
- Statistics total + 10 days averages
- Time series of 10 days averages

The two methods tested : **DIFFREC** and **RECDIF** (Poster)



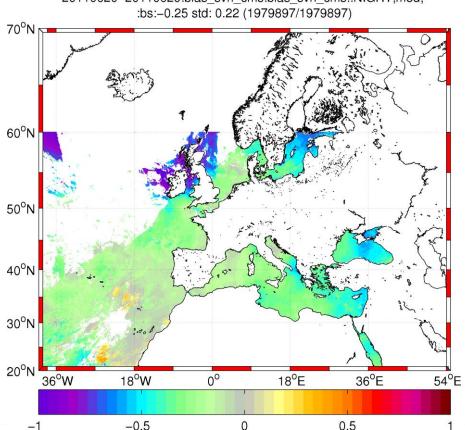
Results - RECDIFF: SEVIRI-METOPA vs. BUOY

Conclusions

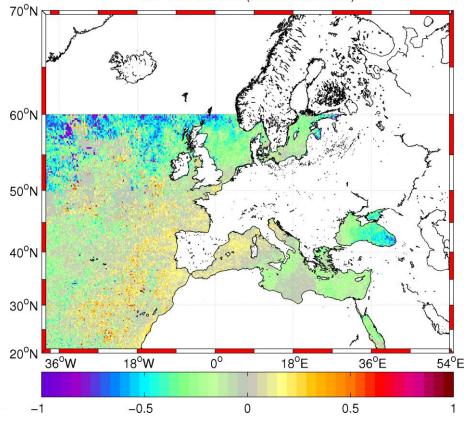
- DIFFREC: difference between reconstruction of each data sensor
 - Biases: close to zero
 - Standard deviations: higher compared to operational
 - Slightly better results when Metop-A used as a ref. sensor
 - AATSR based → too many missing data in reconstruction
 (>96%) → higher reconstruction errors → higher final std.
 - Metop-A/SEVIRI based → (>80%) → more accurate reconstructions → smaller errors
 - Not a good way

Conclusions

- RECDIFF (ie reconstructed differences)
 - Biases: close to zero
 - Standard deviations:
 - AATSR: lower than operational (regardless of ref. Sensor)
 - Buoy: similar or little higher → bias fields are still patchy → impacts sporadic in situ measurements → requires additional spatial smoothing
 - AATSR: only 1 EOF mod
 - Metop-A: 2-3 EOF mods
 - → Favorable approach



SEVIRI (Metop-A) - BIAS field


OI (CMS)

20110620-20110629:bias svri cms:bias svri cms::NIGHT;med;

DINEOF

20110620-20110629:bias svri besst:bias svri besst::NIGHT;med; :bs:-0.08 std: 0.20 (9214980/9214980)

•Implementation of this method in CMS/MYOCEAN test chains

this summer

MERCI DE VOTRE ATTENTION Thanks for attention

