
A Dynamic, Multi-Protocol Data Storage
Integration Framework for Multi-Tenanted Science

Gateway Middleware
1st Dimuthu Wannipurage

Cyberinfrastructure Integration Research Center
Indiana University

Bloomington, USA
dwannipu@iu.edu

2nd Suresh Marru
Cyberinfrastructure Integration Research Center

Indiana University
Bloomington, USA

smarru@iu.edu

3rd Eroma Abeysinghe
Cyberinfrastructure Integration Research Center

Indiana University
Bloomington, USA

eabeysin@iu.edu

4th Isuru Ranawaka
Cyberinfrastructure Integration Research Center

Indiana University
Bloomington, USA

isjarana@iu.edu

5th Marcus Christie
Cyberinfrastructure Integration Research Center

Indiana University
Bloomington, USA

machrist@iu.edu

6th Marlon Pierce
Cyberinfrastructure Integration Research Center

Indiana University
Bloomington, USA

marpierc@iu.edu

Abstract—Science gateways are user-centered, end-to-end cy-
berinfrastructure for managing scientific data and executions
of computational software on distributed high performance
computing and cloud resources. A typical goal of a science
gateway is to help users make more effective use of high
performance and other research computing resources, thus easing
the user support burden on research computing centers while
also increasing their ability to scalably serve user communities.
An important challenge for science gateways is to manage data
at scale, where scaling pressures come from both the number of
users of successful gateways and the size of data used in scientific
workflows that the gateways execute. This paper examines the use
of managed file transfer (MFT) approaches to generalize several
data flow scenarios. We examine a particular implementation,
Airavata MFT, which can be used to extend the data stores
integrated with a science gateway beyond local storage to include
multiple remote storage instances, including cloud vendors. An
agent-based approach is adopted, which enables streamlined
end-to-end flows of data between user storage and backend
computing. Integration with these diverse storage types is done
through a common application programming interface for data
operations, making the integration of a new storage system a
configuration change without requiring changes to portal server
code.

Index Terms—Science Gateways, Managed File Transfers,
Distributed Storage, Apache Airavata

I. INTRODUCTION

Science Gateways [1] play a vital role in research cyberin-
frastructure by bridging the gap between scientists, research
computing, and data management infrastructure. They provide

domain-specific user environments while absorbing complex-
ities such as using job schedulers, storage infrastructure, and
scientific software, and they further can absorb local policies
and security compliance issues, such as temporary/scratch
space usage, job queue limits, and proper resource usage. They
thus can simplify the use of scientific computing resources,
reducing the support burden on research computing support
operations.

Mature software projects [2]–[6] exist to create science
gateways. Science gateway platforms further simplify the
process of creating and operating science gateways by offering
hosted deployments, which may be multi-instance or multi-
tenanted [7].

This paper investigates three current research problems data
management for science gateway systems: 1) decoupling data
movement from web and control traffic in science gateway
cyberinfrastructure; 2) interfacing with heterogeneous storage
systems that include POSIX file systems [8], Object Stores
[9], and Block Stores [10]; and 3) supporting new transfer
protocols.

II. DATA MANAGEMENT CHALLENGES FOR SCIENCE
GATEWAYS

Data Movement in Multi-Tiered Architectures: Science
gateway cyberinfrastructure is typically conceptualized using
a multi-tiered architecture [11], as illustrated in Fig. 1. A web
server hosts the gateway portal that interfaces with the user’s

1



Fig. 1. A conceptual view of canonical gateway architecture with four
distinct layers. Data moves between users’ local environments and remote
computational clusters or storage devices through multiple hops of tiered
services. These extra hops constrain data management flexibility, impede the
design of highly available gateway systems, and add latencies and unnecessary
network traffic.

browser. The second tier bundles gateway middleware services
such as API servers, state management and orchestration ser-
vices, identity and security services, and persistent databases.
The third tier consists of remote computing and data storage
systems. The general challenge is the movement of data and
management of permissions across tiers, where the browser
(and its host computer), the portal server, the middleware, and
the backend services are controlled by different groups.

In a canonical deployment (Fig. 1), transferring users’ data
to and from computational and storage resources is typically
done by first copying to a large file system mounted to the
gateway portal’s web server. We will refer to this storage
as the “gateway portal data store.” Having the data locally
deployed with the gateway portal web server enables the
portal to enforce data security with user-level authorization
and serve the data to users through standard HTTP uploads
and downloads.

In a subsequent step, such as using the data as an input to
an analysis or simulation, the middleware pulls the file from
the gateway portal data store using standard protocols such as
SCP and pushes the data stream to compute resources using
SCP, SFTP, or similar protocols. The middleware may use in-
memory buffering to optimize these transfers. This approach
is rudimentary but provides a simple approach to developing
end-to-end data transfer solutions. However, the extra and
unneeded hop of transfers is inefficient and limits scalability
of users and data.

Science gateways execute scientific workflows and pro-
cessing pipelines, so data are inputs and outputs of these
processes. Gateways are responsible for fetching input data
from users, submitting computational jobs to remote resources,
and managing the outputs. Traditionally, users upload input
data through gateway portals to the gateway portal data storage
to make it available for the gateway middleware so that the
middleware can use these inputs to submit jobs into remote
computational resources.

One of the main assumptions made in this scenario is that
the gateway portal data storage and the portal server are
deployed on the same server so that the portal can upload
and download data by utilizing the local file system calls on
top of the storage directory. Even though this is simple and
easy to implement, this approach sacrifices the scalability of

gateway storage as it is bounded by the maximum disk space
available in the host machine or any directly attached network
storage.

Another gateway use case is the capability of configuring
and using cloud data storages as gateway storage. Cloud
storage systems such as Box and Google Drive provide in-
expensive, easy to use, and significantly high volume storage
solutions for academic institutions, and as a result, researchers
often store their research data in such cloud endpoints. When
it comes to processing such data through a science gateway, it
is cumbersome and inefficient to download and reupload that
data into the gateway storage. A better solution is to provide
direct access from the gateway to these cloud endpoints rather
than the typical POSIX-based storage acting as the broker.

We propose to address the above challenges by providing
more flexibility in how science gateway cyberinfrastructure
(Fig. 2) can mount storage endpoints and manage direct
data transfer paths between storage endpoints and compute
resources, eliminating data routing through the gateway mid-
dleware, which retains coordination functions.

Fig. 2. Decoupling the gateway’s storage from the webserver and serving by
an HTTPS proxy eliminates redundant transfer hops while providing flexibility
to add external storage without necessarily limiting web server deployments,
high availability, and uptimes. The decoupled architecture also provides the
capability to add user-controlled cloud storage but requires protocol translation
and secured credential delegation. The dotted lines in the figure indicate
control flow and solid lines data flow.

III. AN EXTENDABLE MANAGED FILE TRANSFER
FRAMEWORK FOR SCIENCE GATEWAYS

To support the growing number of data transfer use cases,
we advocate the distributed form of the “separation of con-
cerns” design approach, collecting the data management and
transfer functionality into a separate component, or service, to
avoid introducing too much complexity into either the gateway
portal server or the middleware. This approach has the added
potential benefit that the service, if properly designed, should
work in standalone usage scenarios as well as in part of a fully
integrated science gateway platform such as Apache Airavata
[6]. Airavata MFT is a novel, extendable and multi-protocol
managed file transfer framework that is designed to address
the above mentioned aspects.

Airavata MFT has two main components: MFT Back-End
Services and MFT Agents (Fig. 3). MFT Back-End Services
are a set of microservices that work together to accept, mon-
itor, and retry a transfer request coming into the framework.

2



Fig. 3. Top level Airavata MFT with two main data transfer modes; agent-
to-agent transfer and agent-to-storage transfer. Thick solid arrows depict data
transfer paths and dashed arrows depict transfer control paths.

These are middleware services that would typically be co-
deployed with other Apache Airavata components but which
may also be deployed as standalone services. These services
comprise a set of back-end components that control the
data management processes requested by clients. These back-
end components can be categorized into four sections: MFT
API, Controller, Resource Back-End, and Secrets Management
Back-End. MFT API is the front facing interface that accepts
data management and transfer request from users. Once the
requests are validated, the API component hands the request
over to the Controller to coordinate the execution of the
request. Airavata MFT supports a wide variety of storage
types to be integrated. The Resource component registers and
keeps track of these storage types, and data reside inside these
storage systems. Finally, the Secrets Management component
supports the the secure storage and access of resource cre-
dentials needed to connect to the variety of resources in the
Resource component.

MFT Agents are the daemons installed in external storage
systems that perform actual data transfers based on the instruc-
tion received by the MFT back-end services. MFT Agents are
installable binaries bundled with library implementations for
protocols like SCP, SFTP, FTP, HTTP, and TUS. For cloud
vendor systems such as Amazon S3, Google Drive, Azure
Blobs, Box, and DropBox, these protocols and associated
security mechanisms can be embedded as client libraries.
These agents can be directly installed on target platforms. For
example, an agent can be deployed on the same host as the
storage or on a network level closer to the storage endpoint.
These agents are capable of communicating with any storage
endpoint type using supported protocols to either push or pull
data using bundled protocol libraries.

There are two modes of data transfer types in this approach:

agent-to-agent and agent-to-storage transfers. In the agent-to-
agent mechanism, the sending agent pulls file content from
its local file system and pushes to the agent installed on the
target storage. Agent-to-storage transfers have an agent on one
end that communicates with the other storage endpoint using
the protocol that the target storage endpoint supports. That is,
an agenty may directly communicate with a remote storage
endpoint using SFTP, for example.

Airavata MFT is designed to separate data transfer paths
and control paths at the architectural level. This provides
flexible control of the data transfer route and allows for the
implementation of end-to-end transfer qualities of service,
such as encryption and integrity verification. Fig 3 shows
the command and transfer path separation of a general data
transfer job handled by Airavata MFT. Users send data transfer
requests to the MFT API, which forwards that message to
the Controller. The Controller determines the corresponding
agents that must be notified regarding the transfer. Resource
and Credential Back-End components provide the connection
details and credentials for those agents to connect securely to
the other endpoints. Once those control messages are sent to
the agent, the agent performs the transfer in a separate channel.

IV. INTEGRATING AIRAVATA MFT INTO SCIENCE
GATEWAYS

A traditional Science Gateway might handle data at multiple
stages. First, users upload input data for HPC jobs using the
gateway portal into a gateway data storage. Then those data
are copied to the HPC cluster to execute the job. Once the
job is completed, output data is copied back to the gateway
storage for users to download. For each of these steps, Airvata
MFT can offload most of the data transfer and management
functionalities from the gateway middleware and potentially
perform those task in a more efficient and scalable manner.

A. Managing, Uploading and Downloading Data through the
Gateway Portal

In a traditional deployment, a science gateway’s portal
server comes with limited local storage attached that is used to
store user-uploaded input data and job output data; gateways
typically expect users to download and manage their output
data and may implement periodic archiving or removal. In
this case, data management consists of file operations such
as locally copying data, creating directories, listing files and
removing data. Fig. 4 shows how a gateway portal translates
users’ data management, upload, and download requests using
local Linux file system commands. However, as mentioned
earlier, this approach is not scalable because if the local storage
is exhausted, the only ways to gain more capacity are to mount
more storage into the same instance, or to remove or archive
older data sets or data sets above a certain size threshold.

Using Airavata MFT, we can logically and physically de-
couple science gateway portals from their local storage so that
those can exist in two different instances. All the local file
systems calls that were executed by the portal can be replaced

3



from Airavat MFT file system API calls in order to minimize
the amount of changes going into the portal source code.

B. Utilizing Airavata MFT for Non-Intensive File Operations
in a Gateway Portal

Fig. 5 shows how the proposed architecture with Airavata
MFT integrates with a gateway portal for non-intensive file
management operations. Compared to earlier local data storage
approach, here we can have one or many external data stor-
age servers. MFT Agents acts as the interfacing mechanism
between the portal and the storage endpoint. In this case,
Agents can be installed inside the storage server (as in External
Data Storage 2) or closer to the storage server’s network
(as in External Data Storage 1). Depending on the locations
where those are placed, Agents can change the communication
mechanism that they need to interact with the storage endpoint.
For example, if the Agent was placed inside the storage server,
it can communicate with the storage with local file system
calls. On the other hand, if the Agent is remote to the portal
server, it can communicate with a standard file management
protocol like SFTP. In both cases, the MFT Agent provides
a single set of API methods that implement these operations.
The MFT API is specified using gRPC, which generates client
bindings in multiple programming languages.

MFT Services communicate with MFT Agents through a
secure Agent communication protocol to pass over the data
management operation requests received from the gateway
portal. Selection of the correct MFT Agent to communicate is
performed inside the controller back-end service considering
the locality of the Agent and the target storage endpoint.

C. Utilizing Airavata MFT for Data-Intensive File Operations
in a Gateway Portal

In a gateway portal, data intensive operations include job
input file uploads and output file downloads once jobs are
completed. As the content of the data file can vary from few
bytes to several gigabytes or more, we cannot use the gRPC
API provided by MFT Services to stream the file content to
the user’s browser as gRPC is not optimized for large data
transfers. In the classical local file storage approach, this is not
an issue because the portal can locally read the file content and
provide the byte stream through Hypertext Transfer Protocol
(HTTP) into user’s browser. At the same time, users are using
web browsers to upload and download data so HTTP is the
only viable protocol to use as the medium to transfer data at
the front end.

We call theses as synchronous data transfer paths where the
user is actively waiting until the data transfer job is completed.
To address this, any MFT Agent deployed in an Airavata MFT
deployment comes with a public HTTP endpoint exposed to
the outside. In an synchronous data transfer scenario, users
can use this public HTTP endpoint to upload or download
data content. However, as Agents are managed and registered
at the MFT back-end service level, users do not have direct
knowledge on which agent to connect and target path to upload
or download data. Because of that, we introduce an initial

Fig. 4. Data management in a classical gateway portal is performed through
utilizing local file management APIs provided by the operating system.
Because of that, portal and the storage file system should reside the same
server

control path that involves gateway portal and controller back-
end to figure out the target agent URL and data path to upload
and download data.

Fig. 6 shows full control and data paths for a synchronous
data download scenario using Airavata MFT. The number
placed at each arrow represents the order of execution and
operations performed at each stage are described as below

1) User (or Web Browser) sends data download request
with the resource path and endpoint name to the gateway
portal.

2) Gateway portal forwards the download request to MFT
Back-end services using the gRPC API.

3) The Controller back-end of MFT Services accepts the
request and determines the most suitable Agent to handle
to request by calculating the locality of the storage
and registered Agent pool. Once an Agent is selected,
controller sends a download request to the Agent through
Agent’s communication channel.

4) Agent processes the message and provides a unique
download URL, which consists of the <Agent’s public
endpoint URL>/<unique id>to the controller as the
response. In addition, the Agent keeps a copy of the
URL with download request inside its request cache.

5) Controller sends new download URL to the gateway

4



Fig. 5. Using Airavata MFT to connect and manage external data storages
into the gateway portal by replacing local file system calls with MFT Data
Management API. MFT Agents can live inside or closer to the storage
endpoints.

portal as the response for step 2.
6) Gateway portal returns the same URL as a HTTP redi-

rect response to the user (web browser) as the response
for step 1.

7) User (with web browser) visits the new URL, which
invokes the HTTP request handler of the target Agent.

8) Agent verifies the request and incoming user against its
message cache.

9) If the request is a valid one, Agent starts to fetch data
from the endpoint using a supported protocol (SFTP or
local file system calls) and translates into a HTTP data
stream as the response from the user.

D. Integrating Cloud Storage Endpoints

So far we have considered how an MFT service can be
used to expand a gateway’s data storage to include separate
server instances that can be accessed either through an Agent’s

Fig. 6. Control and data paths for active data transfers between gateway
portals and remote storage endpoints using Airavata MFT. Solid arrows
represents data paths and dotter arrows represent control paths

5



local file system interface or the SFTP protocol. However, the
basic approach can be generalized to include MFT Agents that
connect to commercial cloud storage endpoint types as well.
The current distribution of the MFT Agent is bundled with
Amazon S3, Google Drive, Azure Blobs, Box, and DropBox
cloud storage adaptors. A data translation engine inside the
Agent has the capability to read from any supported storage
type and convert the data stream to the destination storage type
at the streaming level (Fig. 7). In addition, the layers above
the MFT Agent including the MFT Services and gRPC APIs
use a generic file management API. This enables a gateway
portal, once it is using the MFT API, to transition between
local, remote, and cloud storage systems through configuration
changes rather than code changes.

Fig. 7. In depth view inside the MFT Agent on how it handles cross
protocol transfers. An Agent comes with built-in protocol connectors, and
each connector is wired with the data translation engine. These connectors
implement the generic file management API in a provider- or vendor-specific
manner. Dotted arrows represent control paths and solid arrows represent data
paths.

E. Integrating User-Provided Storage

With the popularity of cloud storage solutions, it is im-
portant that we consider how user-provided storage can be
integrated seamlessly with the gateway portal server. User-
provided storage may be both a source for input files and
a destination for outputs generated by the gateway. This

integration can also alleviate the storage requirements users
place on gateways: user-provided storage can host files that
are too large or (in advanced cases) have additional security
considerations.

As discussed previously, MFT Agents provide generic data
management APIs that can be implemented by the gateway
portal server. This is a variation on the previous scenario,
in which the gateway provider provisions cloud storage. In
the current case, the user-provided storage works in a similar
fashion, but with additional access controls enforcing read and
write permissions.

F. Data Transfers Between POSIX Storage and HPC clusters

In a typical science gateway workflow, once the input data
are deposited in to the gateways storage, the next step is to
transfer the data to the HPC cluster as inputs for computational
jobs. Airavata MFT separates the middleware, which controls
the transfer, from the data transfer path, which is handled by
agents; see Fig. 8. If both endpoints have agents installed, then
those agents open a HTTP2-based TUS [12] data channel to
transfer data in a secure and resumable manner. If only one
endpoint has an agent installed, that agent uses the supported
protocol on the other endpoint to transfer data.

Fig. 8. Implementing data transfer paths from gateway storage to the HPC
cluster with Airavata MFT. Thick solid arrows depict data transfer paths and
dashed arrows depict transfer control paths.

G. Data Transfers Between Cloud Storage and HPC Clusters

When integrating cloud data storage, we can either install
MFT Agents near the cloud storage or use an existing agent
installed on a cluster to pull or push data using a cloud storage
supported protocol (Fig. 9). When installing a cloud MFT
agent, we should make sure that the agent is installed in a
place inside the same network subnet of the cloud provider.
For example, S3 cloud agents can be installed within an AWS
virtual machine. This approach provides the maximum transfer
throughput with added network-level security between the
cloud storage and the MFT Agent.

6



Fig. 9. Handling cloud storage integration into gateways using Airavata MFT.
Solid arrows depict data transfer paths and dashed arrows depict transfer
control paths.

V. INTERNAL COMMUNICATION SECURITY

Airavata MFT is a collection of microservices working
together and it is vital to have each communication section is
secured so that no one from outside can see the data flowing
through in any channel. Fig. 10 shows all messaging paths
and underlying messaging protocols among Airavata MFT
microservices and external entities. Communications between
back-end components are all performed through the gRPC
protocol. Controller to Agent communications are performed
through a Consul asynchronous messaging medium and Con-
sul connections are handled through HTTPS protocol. MFT
Agents are getting external connections from users for active
data uploads and downloads through HTTPS protocol. gRPC
server sockets in each service is configured with SSL/TLS
encryption and clients connections are made through a secure
channel. Consul server is configured to expose its HTTP
API through a TLS channel which makes sure that both
connections from the controller and the Agents are secured
and encrypted. HTTP endpoint of the MFT Agent is a Netty
based non blocking web server configured with TLS so the
connections coming from users to Agents are also encrypted.
As summary, all the connections between MFT components
and external entities are encrypted over SSL/TLS so no one
can tamper with the data flowing through any channel.

However, encryption over communication channels alone do
not guarantee a secure communication. Each message should
be authenticated and authorized before preforming any action
over it. To address this, we provide a dual level authorization
mechanism for inter service communications. All messages
that are coming into MFT Services are initiated by external

Fig. 10. Communication protocols between the components of Airavata MFT
and rest of the external entities

users. We expect these users to be authenticated against an
identity provider and pass an authorization token along with
requests they sent into to MFT API. Each back-end service
has a message interceptor to validate this authorization token
before forwarding into the the message pressing handlers of
the service. If the front facing service needs to connect to any
internal service, this user token is forwarded with the request
message. In addition to that, each service has a service account
registered with the same identity provider mentioned above.
If an internal service receives a message from a front facing
service, it expects user token and the incoming service’s ser-
vice account token at the security interceptor to validate both
user’s and the sending service’s authenticity and permissions.
Fig. 11 shows how a user request is navigated to the controller
back-end with dual level authorization mechanism.

VI. RELATED WORK

Prior work related to the capabilities discussed in this paper
can be separated into storage management and data movement.
There are multiple related efforts that focus on subsets of these
capabilities. For instance, storage solutions such as MinIO [13]
and Ceph [14] provide a unified object storage abstraction
mapping multiple file systems.

Globus [15] is well known for scientific data management,
particularly in the transfer of very large data sets. Globus data
transfer services utilize GridFTP, a high performance, point-
to-point data transfer protocol. The main advantage of this

7



Fig. 11. Example dual level authorization between MFT services. Index at
each step represents the order of execution

protocol is that the data and control paths are separated. This
way, data can be transferred directly from one point to another
while keeping the control path for another third party. Globus
software is closed source, and its operations are proprietary.

Open source projects like StorkCloud [16] and Rclone
[17] are MFT implementations that provide extensible multi-
protocol transfer job schedulers and directory listing services.
However, the data and control paths are interleaved in these
approaches; as we have discussed here, separation of data and
control paths is key for science gateway use cases. Alluxio [18]
is a data orchestration framework that is heavily used in data
analytics applications. Alluxio is a fully contained distributed
system with its own data catalog and credential management
system, making it challenging to integrate into other systems.

Security considerations for the hybrid middleware-
distributed agent approach that we adopt here are described
in more detail in [19].

VII. CONCLUSION AND FUTURE WORK

In this paper we discussed our approach for diversifying data
and storage management for science gateways. Motivated by
typical data flow and execution scenarios common to many
science gateways, the paper focuses on specific use cases that
decouple data movement from both gateway web servers and
middleware to enable direct transfers between users’ systems
and computational resources. The capabilities discussed in this
paper lay the foundation for empowering gateway frameworks
to support diverse data-intensive computing such as more
ubiquitous integration of cloud storage systems and support
of data distribution gateways for scientific instruments.

REFERENCES

[1] K. A. Lawrence, M. Zentner, N. Wilkins-Diehr, J. A. Wernert, M. Pierce,
S. Marru, and S. Michael, “Science gateways today and tomorrow: pos-
itive perspectives of nearly 5000 members of the research community,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 16,
pp. 4252–4268, 2015.

[2] V. Jalili, E. Afgan, Q. Gu, D. Clements, D. Blankenberg, J. Goecks,
J. Taylor, and A. Nekrutenko, “The galaxy platform for accessible, re-
producible and collaborative biomedical analyses: 2020 update,” Nucleic
acids research, vol. 48, no. W1, pp. W395–W402, 2020.

[3] M. McLennan and R. Kennell, “Hubzero: a platform for dissemination
and collaboration in computational science and engineering,” Computing
in Science & Engineering, vol. 12, no. 2, pp. 48–53, 2010.

[4] D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T. Dockendorf,
and B. L. McMichael, “Open ondemand: a web-based client portal for
hpc centers,” Journal of Open Source Software, vol. 3, no. 25, p. 622,
2018.

[5] P. Calegari, M. Levrier, and P. Balczyński, “Web portals for high-
performance computing: a survey,” ACM Transactions on the Web
(TWEB), vol. 13, no. 1, pp. 1–36, 2019.

[6] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler
et al., “Apache airavata: a framework for distributed applications and
computational workflows,” in Proceedings of the 2011 ACM workshop
on Gateway computing environments, 2011, pp. 21–28.

[7] M. E. Pierce and S. Marru, “Integrating science gateways with secure
cloud computing resources: An examination of two deployment patterns
and their requirements,” in 2020 IEEE/ACM International Workshop on
HPC User Support Tools (HUST) and Workshop on Programming and
Performance Visualization Tools (ProTools). IEEE, 2020, pp. 19–26.

[8] S. R. Walli, “The posix family of standards,” StandardView, vol. 3, no. 1,
pp. 11–17, 1995.

[9] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran, “Object
storage: The future building block for storage systems,” in 2005 IEEE
International Symposium on Mass Storage Systems and Technology.
IEEE, 2005, pp. 119–123.

[10] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the
infrastructure of cloud computing,” in 2010 International Conference
on Intelligent Computing and Cognitive Informatics. IEEE, 2010, pp.
380–383.

[11] M. E. Pierce, M. A. Miller, E. H. Brookes, M. Wong, E. Afgan, Y. Liu,
S. Gesing, M. Dahan, S. Marru, and T. Walker, “Towards a science
gateway reference architecture,” 2018.

[12] Transloadit. (2013, https://tus.io/protocols/resumable-upload.html) Tus
protocol. [Online]. Available: https://tus.io/protocols/resumable-
upload.html

[13] MINIO. (2021, https://min.io/) Object storage. [Online]. Available:
https://min.io/

[14] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, 2006, pp. 307–320.

[15] I. Foster, “Globus online: Accelerating and democratizing science
through cloud-based services,” IEEE Internet Computing, vol. 15, no. 3,
pp. 70–73, 2011.

[16] B. Ross, E. Arslan, B. Zhang, and T. Kosar, “Managed file transfer as
a cloud service,” in Cloud computing for data-intensive applications.
Springer, 2014, pp. 379–399.

[17] RClone. (2021, https://rclone.org/) Cloud sync. [Online]. Available:
https://rclone.org/

[18] Alluxio. (2021, https://www.alluxio.io/) Data orchestration. [Online].
Available: https://www.alluxio.io/

[19] I. Ranawaka, S. Marru, J. Graham, A. Bisht, J. Basney, T. Fleury,
J. Gaynor, D. Wannipurage, M. Christie, A. Mahmoud et al., “Custos:
Security middleware for science gateways,” in Practice and Experience
in Advanced Research Computing, 2020, pp. 278–284.

8


