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Notation and basic definitions
Throughout we consider partial Boolean operations, that is, maps f : D → A
defined on a subset D ⊆ An for some n ∈ N, where A = {0, 1}. The subset D
where f is defined is also called the domain of f and denoted as D = dom(f);
the integer n is the arity of f . A Boolean relation is any subset ρ ⊆ Am for some
m ∈ N, called the arity of ρ. In other words, an m-ary Boolean relation is any
(possibly empty) set of m-tuples (x1, . . . , xm) over A = {0, 1}.

Definition. Let m,n ∈ N. We say that an n-ary partial (Boolean) operation f
preserves an m-ary (Boolean) relation ρ if the following condition, denoted by
f B ρ, holds: for every (m× n)-matrix

X =

x11 . . . x1n

...
. . .

...
xm1 . . . xmn

 ∈ Am×n

with the property that all its rows belong to the domain of f ,

(xi1 . . . xin) ∈ dom(f), (1 ≤ i ≤ m)

and all its columns belong to the relation ρx1j

...
xmj

 ∈ ρ, (1 ≤ j ≤ n)

the resulting column when f is applied to all rows of X must again belong to ρ:

f(X) :=

 f(x11, . . . , x1n)
...

f(xm1, . . . , xmn)

 ∈ ρ.
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Rephrasing the previous definition, a partial operation f : D → A fails to
preserve ρ ⊆ Am if there is a matrix X ∈ Am×n that acts as a counterexample,
that is, all rows of X are in dom(f), all columns of X are in ρ, but f(X) /∈ ρ.
This means that non-preservation can be proven by a certificate of satisfiability
of a first-order formula with m · n variables (one for each entry of the matrix
X ∈ Am×n) expressing the relational constraints on the rows, the columns and
the image of the matrix under f . The other way round, preservation can be
justified by a proof of unsatisfiability of this formula. Both are tasks that can
be handled efficiently by sat solvers, in particular in the Boolean case.

We observe also that f : D → A preserves a relation ρ ⊆ Am for trivial
reasons if all matrices with columns from ρ have at least one row outside the
domain D of f , or all matrices made up from rows of D have at least one column
that does not belong to ρ, because then the corresponding first-order formula is
clearly unsatisfiable.

If Q is a set of relations of possibly different arity, then we put

pPolQ :=
⋃

n∈N

⋃
D⊆An

{f : D → A | ∀ ρ ∈ Q : f B ρ} ,

and call this the set of all partial polymorphisms of Q.
Furthermore, as basic binary Boolean operations we need Boolean conjunction

(and) ∧ and addition modulo two (xor) ⊕.

Description of the dataset
The purpose of this dataset is to give a formal verification that the following
partial ternary Boolean function

f : D → {0, 1}; f(x, y, z) := x ∧ y ∧ z

for all (x, y, z) ∈ D ⊆ {0, 1}3, that is,

f(x, y, z) =
{

1 if x = y = z = 1,
0 for any other (x, y, z) ∈ D,

where

D =


(0, 0, 0),
(1, 0, 0),
(1, 0, 1),
(1, 1, 0),
(1, 1, 1)

,
is a partial polymorphism of certain Boolean relations, but does not preserve
certain others.

The involved relations are the following; we present them by a set-theoretic
description as well as by listing all their elements by showing a Boolean matrix
the columns of which are exactly the tuples in the relation. The meaning of the
notation for these relations is relevant in a different context, but can be safely
ignored here.

ΓL0(χ2) = {0} × ev3 =
{

(x0, x1, x2, x3) ∈ {0, 1}4
∣∣∣ x0 = 0 & x1 ⊕ x2 ⊕ x3 = 0

}
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=


0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 0

,
ΓL2(χ3) =

{
(x0, . . . , x7) ∈ {0, 1}8

∣∣∣∣ (∃i ∈ {0, 1, 2} ∀b0, b1, b2 ∈ {0, 1} : x4b2+2b1+b0= bi)
∨ ∀b0, b1, b2 ∈ {0, 1} : x4b2+2b1+b0= b2 ⊕ b1 ⊕ b0

}
,

=



0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1


,

RL = ev4 =
{

(x1, x2, x3, x4) ∈ {0, 1}4
∣∣∣ x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0

}

=


0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

,
{0} ×RL = {0} × ev4 =

{
(x0, x1, x2, x3, x4) ∈ {0, 1}5

∣∣∣ x0 = 0 & x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0
}

=


0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

,
{0} ×RL × {1} = {0} × ev4×{1} =

{
(x0, . . . , x5) ∈ {0, 1}6

∣∣∣ x0 = 0 & x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 & x5 = 1
}

=



0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1


.

The aim of the dataset is to provide evidence for the following fact.

Claim. The ternary Boolean conjunction f defined on D as above satisfies the
following properties:

f ∈ pPol {ΓL0(χ2),ΓL2(χ3)}, (1)
f /∈ pPol {{0} ×RL}, (2)
f /∈ pPol {{0} ×RL × {1}}. (3)

Parts (2) and (3) can be quickly checked by hand, once a suitable matrix has
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been found. Such matrices are, for example,

X2 =


0, 0, 0
1, 0, 0
1, 0, 1
1, 1, 0
1, 1, 1

 f7→


0
0
0
0
1

 /∈ {0} × ev4 = {0} ×RL,

consisting of the last three columns of {0} × RL and showing f 6B {0} × RL,
i.e. (2), and

X3 =


0, 0, 0
1, 0, 0
1, 0, 1
1, 1, 0
1, 1, 1
1, 1, 1


f7→


0
0
0
0
1
1

 /∈ {0} × ev4×{1} = {0} ×RL × {1},

consisting of the last three columns of {0} × RL × {1} and showing that
f 6B {0} ×RL × {1}, i.e. (3).

The purpose of the present dataset is not to give these matrices, but to
provide a script in the SMT-LIB2.0 language that can be run by a sat solver
such as Z3 [1, 2], which can perform this task automatically and, moreover, can
prove unsatisfiability of the two corresponding problems related to (1). Such a
script is given in the file f-pPol-GammaL0chi2-GammaL2chi3.z3. It makes use
of the formalisation of non-preservation (f : D → {0, 1}) 6B ρ as a satisfiability
problem involving D, ρ and f . In this connection we represent all involved
Boolean relations, such as D and various ρ, by their characteristic functions.
Hence, the file f-pPol-GammaL0chi2-GammaL2chi3.z3 only deals with Boolean
operations; these are defined at the beginning of the script. The following table
gives an overview of which function in f-pPol-GammaL0chi2-GammaL2chi3.z3
represents which relation:

mathematical object identifier used in f-pPol-GammaL0chi2-GammaL2chi3.z3
f f
D domf
{0} × ev3 = ΓL0(χ2) nev3
{0} × ev4 = {0} ×RL nev4
{0} × ev4×{1} = {0} ×RL × {1} nev41
ΓL2(χ3) gL2chi3

After defining these (characteristic) Boolean functions, for each of the four
preservation problems in the claim, we first declare (existentially quantified) vari-
ables for the entries of the corresponding (m× 3)-matrix using declare-const,
and then we assert the constraints that have to hold for the rows, columns
and the f -image of the matrix. Finally, we ask the solver to check whether this
assertion is satisfiable (check-sat).

The output of running the Z3 solver on f-pPol-GammaL0chi2-GammaL2chi3.
z3 can be found in the file z3-output.txt. The files f-preserves-GammaL0chi2_
proof.txt and f-preserves-GammaL2chi3_proof.txt contain formal proofs
generated by Z3 corresponding to the preservation statements in (1).
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