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ABSTRACT 1 
The continuous progress of machine learning has introduced numerous powerful classifiers that are 2 
examined as prominent alternatives to predict travellers' mode choices. However, most classifiers fail to 3 
capture the lower market share that characterizes the minority modes of transport. Although imbalanced 4 
choice datasets are common, this has been more apparent with the emergence of new modes and mobility 5 
services, which further fragment the mode choice composition. The problem is often magnified by biased 6 
sampling and measurement errors during the data collection process. The challenge of imbalanced 7 
classification in machine learning is subject of continuous multidisciplinary research, however its 8 
extensions in mode choice modelling, remain relatively unexplored. This paper provides empirical evidence 9 
of the effect that dataset imbalance might have on prediction measures and proposes a sequential tour-based 10 
framework for addressing skewed travel diary data. The framework is applied on a dataset from the city of 11 
Thessaloniki, Greece with a total of 5646 trips, using extreme gradient boosting (XGBoost). A set of 12 
performance metrics are used for the evaluation of the developed model and the output predictions are 13 
interpreted with partial dependence plots and state-of-the-art SHAP (SHapley Additive exPlanations) based 14 
on cooperative game theory. The results indicate that incorporating sequential effects can significantly 15 
improve the model’s overall performance, especially with regards to recognition rates for the minority 16 
mode, without inducing bias within the trained classifier. 17 
 18 
Key words: Mode Choice, Machine Learning, Classification, Imbalanced, Decision Trees, XGBoost, SHAP  19 
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INTRODUCTION 1 
Over the past decade, the flexible structure that characterizes advanced machine learning 2 

algorithms and their ability to process complex datasets, have motivated continuous research regarding their 3 
utilization in large-scale transport applications (1). However, a recurring point of debate is the trade-off 4 
between their high predictive accuracy and lack of explainability or internal logic interpretation. This 5 
challenge is relevant to travel behavior modelling, as accurate demand forecasts only partially cover the 6 
question of interest. Understanding the causation motivating people’s daily travel choices is critical to 7 
optimally design transport infrastructure (e.g. bus stops, bike lanes) and target social norms influencing 8 
behavioral trends. Furthermore, the design of deep ‘black box’ models entails the risk of misguided decision 9 
making, based on spurious correlations and artifacts in the training dataset (2).  10 

Within the context of mode choice modelling, this risk is magnified due to the imbalanced nature 11 
of transport data and information sources. The emerging mobility services have introduced new alternatives 12 
to be considered in everyday travel decisions, resulting in an increasingly fragmented market. As a result, 13 
it is a common paradigm in revealed preference data collection efforts, for some modes to receive much 14 
less observations than others or even be underrepresented. The presence of ‘dominating' classes (such as 15 
car or public transport) versus the low market shares of minority modes (such as cycling or ridesharing) 16 
create an imbalance within the datasets used for evaluation. The inherent imbalance of the problem is often 17 
magnified by biased sampling and measurement errors during the data collection process. This creates a 18 
challenge for traditional machine learning algorithms that tend to provide biased predictions favouring the 19 
majority classes, as their design and evaluation is based on accuracy and its complement error rate (3). 20 

This paper aims to address these limitations by proposing a sequential tour-based approach for 21 
mode choice modelling with skewed travel diary data, to increase recognition rates for the minority mode 22 
and overall predictive accuracy. The extreme gradient boosting algorithm (XGBoost) is selected for the 23 
evaluation of the modelling concept. The proposed framework is applied on a revealed preference (RP) 24 
study from the city of Thessaloniki, Greece. Model performance is assessed with a set of prediction metrics, 25 
while sophisticated explanation methods are investigated to account for the opaque nature of the ensemble 26 
model. More specifically, this paper aims to contribute to existing literature on machine learning for mode 27 
choice in the following ways, 28 

1. We provide empirical evidence on the effect that imbalanced datasets might have on prediction 29 
measures of classical machine learning approaches (e.g. decision trees) for mode choice. 30 

2. We propose a sequential tour-based approach for increasing predictive accuracy and alleviating 31 
class imbalance in travel diary data without inducing bias in the classifier structure. 32 

3. We apply and evaluate the proposed framework using extreme gradient boosting (XGBoost) on a 33 
case study from the city of Thessaloniki, Greece. 34 

4. We interpret the ‘black box’ model predictions with partial dependence plots and state-of-the-art 35 
SHAP (Shapley Additive exPlanations) based on cooperative game theory. 36 

We proceed as follows; Section 2 provides the background on imbalanced classification techniques and 37 
their applications within transportation modelling. Section 3 presents the dataset and provides summary 38 
statistics. Section 4 provides the design of the sequential tour-based modelling framework. Section 5 39 
presents the results and the interpretation of the model output. Finally, we provide conclusions and future 40 
work in Section 6. 41 

 42 
BACKGROUND 43 

The imbalanced classification problem is prevalent in numerous tasks such as rare disease diagnosis 44 
(4), fraudulent transactions (5), text recognition (6), and many others across multidisciplinary fields of 45 
study.  This ongoing field of research is relevant to transportation and particularly mode choice modelling, 46 
to evaluate the introduction of emerging mobility services which are currently underrepresented in everyday 47 
commuting. However, imbalanced classification with machine learning in transportation modelling is still 48 
relatively unexplored. Many solutions have been proposed to address imbalanced datasets in the predictive 49 
modelling problem of classification (assigning labels to a number of observations), with the four most 50 
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prominent to be i) Enhanced data collection; ii) Data resampling; iii) Cost-sensitive Learning; and iv) 1 
Boosting.  2 

In enhanced data collection, a larger dataset provides a balanced overview on the class frequency 3 
and is useful for the application of resampling techniques (7). Addressing class imbalance at the data 4 
collection level is one of the solutions commonly found in previous transportation literature. The predictive 5 
ability of the disaggregate mode choice models by Wilson et al. was reduced due to the low representation 6 
of the bus and rail modes within the dataset (8). To address this effect, they suggested the conducting of 7 
on-board surveys to enrich the estimation sample with observations on the less used modes; similarly, 8 
Nitsche et al. (9) enhanced underrepresented transport modes with further data collected to improve the 9 
accuracy of their models. 10 

The most applied solution to an imbalanced classification problem is to modify the composition of 11 
the training dataset (data resampling). It is an attempt to balance the class frequencies at the dataset level. 12 
There are two standard sampling methods that can be used: a) oversampling, replicating minority class 13 
examples and b) undersampling, discarding majority class examples. For the latter, although training time 14 
is decreased, the main drawback is the loss of information that comes with deleting examples from the 15 
training data (10). On the other hand, when oversampling, no information is lost as the resampled training 16 
set contains all instances from the original dataset. Oversampling can be performed either by including 17 
duplicate or adding new minority class examples. The main drawback when duplicating examples, is the 18 
higher risk of overfitting (11). Typically, sampling is only performed on the training dataset and not on the 19 
holdout set, to evaluate the resulting model on representative data of the target problem domain. Past 20 
research in this area includes random oversampling or under sampling, synthetic sampling with data 21 
generation, cluster-based sampling methods etc. (12). The SMOTE oversampling algorithm was applied by 22 
Chang et al. for vehicle classification on an imbalanced dataset from a single magnetic sensor (13). 23 

In cost-sensitive learning, a learner is modified at the algorithmic level to incorporate varying 24 
penalty for each of the classes under consideration (14). This solution addresses the assumption made by 25 
most machine learning classifiers, that the misclassification costs are equal among classes. In most real-26 
world applications however, this assumption is not valid (15). The cost of classifying an example incorrectly 27 
is typically greater than the cost of labelling it correctly. For instance, it is rational to reject a suspicious 28 
credit transaction, even if it is highly likely to be legitimate (16). Thus, the implementation of cost-sensitive 29 
learning shifts the problem scope from accuracy optimization to the minimization of the total 30 
misclassification cost (12). In previous transportation research, Tang et al. proposed a method for mode-31 
switching decision tree induction that incorporates loss matrix selection, aiming to mitigate the classifier’s 32 
difficulty in identifying the minority class (17). 33 

Finally, the concept of boosting is based on the observation that identifying many underlying rules 34 
is more feasible than a single accurate prediction rule (18). In each iteration, a ‘weak’ learner (e.g. decision 35 
tree) runs over a different distribution (or weighting) of the training examples. The contribution of all 36 
sequentially built weak classifiers represents the model's predictions. As the underrepresented class 37 
instances are more likely to be misclassified, this is addressed in subsequent iterations towards the 38 
minimization of past errors, making this technique appropriate for alleviating class imbalance. In practical 39 
applications, the ensemble learning approach of tree boosting was applied by Chen et al. in a study on 40 
ridesplitting behavior for on-demand ride services (19).  41 
XGBoost is a state-of-the-art, scalable, open-source machine learning system based on the concept of tree 42 
boosting. Each decision tree ‘learns’ from the previous within the sequence, building towards an overall 43 
strong learner (20). It has received wide acknowledgement for a series of winning performances in Kaggle 44 
competitions for machine learning applications (21). One of its main advantages is the parallelizable nature 45 
of the core algorithm, granting both speed and scalability for training on large datasets. Within 46 
transportation, XGBoost is gradually rising in research interest and was selected for the scope of this paper. 47 
Wang and Ross concluded on a higher predictive accuracy of the XGBoost model compared to the 48 
Multinomial Logit Model (MNL) for mode choice, even though both models underperformed in unbalanced 49 
datasets (22). Parsa et al. also applied the XGBoost algorithm to detect the occurrence of highway accidents 50 
using real time data (23). 51 
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DATA ANALYSIS 1 
The primary data source for our models is a survey from Thessaloniki (Greece) conducted in 2014, 2 

based on individual travel diaries. The participants were asked to state their modes of transport and 3 
activities. The resulting dataset, after data cleaning and removal of missing values, consists of 2,610 4 
individuals and a total of 5,646 trips. The trips were enriched with variables from Google Maps on distance 5 
and historical travel times for each alternative mode. The resulting dataset consists of 28 variables including 6 
both individual, household characteristics and trip-related attributes (Table 1).  7 

Descriptive statistics graphs are provided in Figure 1. The mode choice set includes: 1.Car, 2.Bus, 8 
3.MrC (motorcycle) and 4.Walk. As illustrated, there are significantly dominating modes and motorcycle 9 
(MrC) is present in only a few of the population classes. Hence, it is apparent that travelling using 10 
motorcycle is an underrepresented mode, accounting for only 171 trips in the whole dataset. This minority 11 
mode is not efficiently captured using basic machine learning techniques. For the experiments, the dataset 12 
was split into a training set (80% of the total instances) and a testing set (20% remaining instances) to 13 
evaluate the performance of the machine learning algorithms. A representative distribution of all classes 14 
was accounted for in the stratification. The models were implemented in Python 3.6 with the Scikit-learn 15 
machine learning module for medium-scale supervised and unsupervised problems (24). 16 

A key consideration in the selection of the XGBoost algorithm was the observed multicollinearity 17 
between variables. In fact, the historical travel times and distance variables from the Google APIs (Table 18 
1) are naturally correlated. Therefore, the selected algorithm needs to account for such relationships 19 
between variables, to obtain valid predictions on feature importance. Decision trees address multi-20 
collinearity to a great extent, as each split is determined on only one of the correlated features. In addition, 21 
within tree ensemble methods such as XGBoost, once a dominant feature has been learnt, the algorithm 22 
will minimize the complement error rate for future iterations, thus assigning a higher importance to only 23 
one of the correlated features. This is an important advantage of ensemble algorithms and particularly those 24 
that utilize decision trees. 25 
 26 

 27 

Figure 1 Descriptive Statistics for Thessaloniki Dataset 28 
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TABLE 1 Independent variables for Thessaloniki dataset 1 

Name Type Description 

Individual   

Gender Boolean Declared gender 
Age Categorical - 6 classes Declared age 

Income Categorical - 5 classes Declared income 

Occupation Categorical - 6 classes Current occupation 
Education Categorical - 7 classes Level of education 

Driver’s License Boolean Ownership of driver license 

Household 

Household Size Numerical – discrete Total household size 
Household over 16 Numerical  Members over the age of 16 

Car Availability Boolean Availability of car for use 

Trip/Activity   

Start Time Numerical - continuous Declared trip start time 
Duration Numerical  Declared trip duration 

Trip Day Categorical - 7 classes Day of the week 

Start Activity Categorical - 16 classes Activity at origin location 

End Activity Categorical - 16 classes Activity at destination location 
Origin Location Categorical - 11 classes Municipality of trip origin 

Destination Location Categorical - 11 classes Municipality of destination 

Google APIs   

Car Travel Time Numerical - continuous Historical travel time by car (seconds) 
Car Distance Numerical  Shortest travel distance by car (meters) 

Bus Travel Time Numerical  Historical travel time by bus 

Bus Distance Numerical  Shortest travel distance by bus 
Bus Access Walk Time Numerical Access from origin walk time 

Bus Access Walk Distance Numerical Access from origin walk distance 

Bus Egress Walk Time Numerical Egress to destination walk time 
Bus Egress Walk Distance Numerical  Egress to destination distance 

MrC Travel Time Numerical Historical travel time by MrC 

MrC Distance Numerical Shortest travel distance by MrC 

Walk Travel Time Numerical  Historical travel time walking 
Walk Distance Numerical  Shortest travel distance walking 

 2 
MODEL DEVELOPMENT 3 
 4 
Base case: Trip-based approach 5 

For the base case, we applied a single decision tree, a common algorithmic approach that identifies 6 
rules to split a dataset based on different conditions. Decision Tree algorithms have been extensively 7 
investigated in literature (25), characterized from their explainable structure. In the base-case scenario the 8 
individual’s sociodemographics, household and trip-specific variables are included, in combination with 9 
the historical distance and travel time values extracted from the Google APIs. Therefore, this is a solely 10 
trip-based approach, as the model is processing each travel diary instance separately, without assuming any 11 
dependence or correlation with previous trips. As expected, we received ‘naive’ results due to the strong 12 
imbalance within the dataset. The MrC instances were not captured by the classifier, providing biased 13 
predictions in favor of Car as the majority class. The initial training of the Extreme Gradient Boosting 14 
algorithm (XGBoost) improved the performance for two main modes (Car, Walk) but was also not able to 15 
capture the minority mode MrC. Figure 2 presents the confusion matrix for the base-case decision tree and 16 
XGBoost classifier on the validation dataset. 17 
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A classical approach to address the classification problem at this stage would be cost-sensitive 1 
learning. Nonetheless, this method entails certain limitations and was thus not considered for the scope of 2 
this study. Firstly, there is no insight available on the cost matrix during classifier training. This is important 3 
as the successful application of cost-sensitive learning relies on the accurate estimation of the supplied cost 4 
matrix (26). A common, though heuristic, choice of assigning misclassification cost could be based on the 5 
inverse class distribution. In addition, the scope of the model under development is not an increase of the 6 
Area Under Curve (AUC) for a specific  minority class of interest (MrC), but rather the design of a model 7 
that will accurately predict the probabilities for all modes, regardless of their occurrence. Therefore, 8 
applying cost-sensitive classification would bias the predictions of the classifier, increasing recall rates for 9 
the minority class at the cost of predictive accuracy for the majority modes. As a result, a more sophisticated 10 
approach is required to efficiently capture the mode choice decisions without inducing classification bias 11 
in the model output towards the minority mode. 12 

 13 
Figure 2 Normalized confusion matrix for base-case models on imbalanced dataset 14 

Extension:  Sequential Tour-based Approach 15 
Travel diaries offer a variety of useful information for designing comprehensive travel behavior 16 

models. The value of this information has led to recent research on alternative ways to collect travel diaries 17 
(smartphones, tracking location devices etc.), as response rates for the classical data collection methods 18 
have decreased significantly (27).  In previous data driven approaches, Chang (28) used travel diary data to 19 
evaluate a fusion model using machine learning methods for mode choice. A main advantage of the travel 20 
diary structure is the ability to depict the time dependent ordering of the trips undertaken by the participants 21 
within a tracked day. In this study, we utilize this feature to design a sequential tour-based approach for 22 
addressing imbalanced mode classification. 23 

The feature engineering technique proposed enables us to capture various nonlinear interactions 24 
and daily choice dependencies within the input dataset. For instance, in case the first trip of the day is 25 
undertaken by car, there is a high probability for subsequent trips to be affected by this initial choice. In the 26 
final trip of the day, the car is most likely to be returned home from the same individual. Furthermore, if an 27 
individual has selected a specific mode for a cyclical route (e.g. Bus), this might reveal a strong preference 28 
of Bus for the return trip to the original destination. Such a preference could be affected by various factors 29 
such as access and egress walking times, service frequency etc. To account for the majority of these tour-30 
based effects and dynamic dependencies, we can restructure the travel diary in a way so that a subset or all 31 
variables from previous trips on a given day, are transferred in the remaining trips of the individual’s 32 
schedule. Ultimately, our goal is to improve predicting performance on the ‘naïve’ base case scenario and 33 
efficiently capture the underrepresented mode, without including resampling or cost-sensitive bias in the 34 
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model, as it will be ‘informed’ on MrC ownership and usage by specific individuals from their previous 1 
daily choices.  Rashidi et al. (29) applied a similar sequential concept using the random forest method, to 2 
capture the serial correlation between trips towards a disaggregate travel demand modelling structure. A 3 
limitation of our proposed feature engineering technique on the training dataset is the increase of 4 
dimensionality for our problem.  After a series of evaluation attempts, we decided upon the sequential 5 
inclusion of the last two trips for every individual. Therefore, this modification can be viewed as a dynamic 6 
3-step memory horizon addition to the model. The modelling framework accounting for tour-based effects 7 
is depicted in Figure 3.  8 
 9 

 10 
 11 

Figure 3 Sequential modelling framework for tour-based effects 12 

 The first step towards the evaluation of the sequential, tour-based approach was to apply it on an 14 
explainable machine learning algorithm, a single 3-level decision tree. The structure of the tree is depicted 15 
in Figure 4. The average shortest distance is a key factor in the tree structure, with a threshold of <800m 16 
for the classification of walking instances. In the second level, the tour-based effects become apparent, as 17 
the split criterion is based on the previous mode choice, further classifying the longer trip modes (Car, Bus, 18 
MrC). Finally, the ownership of a driver’s license is the main factor determining the choice of Car over Bus 19 
usage. It is important to note that this modification allowed for the minority MrC to be captured to a basic 20 
extent. More information on the decision tree performance can be found in the Results section. 21 

As the decision tree identified basic trip dependencies and minority mode instances at a satisfactory 22 
level, the next step is to apply this framework using the advanced extreme gradient boosting algorithm 23 
(XGBoost). Compared to single decision trees, the ensemble model is expected to offer higher predictive 24 
accuracy and overall performance. The advantage of using trees, however, is that their structure easily 25 
explains how each specific prediction is made (Figure 4). As the gradient boosting machine (GBM) fits 26 
numerous shallow trees in a stage-wise fashion, we are optimizing the residuals, thus lacking the intuitive 27 
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interpretability provided by a single tree. The performance of the developed models is discussed in the 1 
following section. 2 
 3 
RESULTS 4 
With regards to comparing the results, it should be noted that especially in imbalanced classification 5 
modelling, accuracy is not a proper evaluation measure, often referred to as the ‘accuracy paradox’, as it 6 
may lead to erroneous conclusions (30). Therefore, we selected the following performance measures that 7 
give more insight into the performance of the model, based on the confusion matrix, 8 
i) Recall or sensitivity, the ability of a classification model to identify all the relevant data points within 9 

the dataset, 10 
ii) Precision, the ability of a classification model to identify only the relevant cases, 11 
iii) F-measure, the weighted harmonic mean of the test's precision and recall, ranging between 0 and 1;  12 
iv) Balanced accuracy, the average of sensitivity and specificity as computed for each class and averaged 13 

over the total number of classes (31), 14 
v) Cohen's Kappa, a measure of interrater reliability (or interobserver agreement). Values <0 indicate no 15 

agreement, 0.01-0.20 none to slight, 0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 substantial, and 16 
0.81-1.00 an almost perfect agreement (32). 17 

 18 

 19 
Figure 4 Shallow Decision Tree with dynamic trip dependency 20 

The performance of the tour-based Decision Tree model on the validation set of 1,129 trips is 21 
summarized in Table 2. Compared to the base case scenario, there is a significant increase in performance, 22 
which is a good reference point considering the structure’s explainability. On the downside, the Decision 23 
Tree overestimates Car over Bus usage, which has a significant effect on the Precision and Recall rates of 24 
the two classes respectively. Nonetheless, the Recall rate of 70% for the minority mode is promising, 25 
considering that the decision tree was not able to capture any instance of this class in the base case scenario. 26 
Table 3 depicts the performance of the tour-based XGBoost model on the validation set. By incorporating 27 
past factors sequentially into the dataset, the model was able to capture nonlinear dependencies and 28 
relationships between the various features, thus greatly increasing prediction measures. All the majority 29 
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class (Car, Bus, Walk) metrics performed at over 90%, with an overall Balanced Accuracy=0.924. 1 
Regarding the minority mode rates, Recall=0.70 and Precision=0.895, it is apparent that the class imbalance 2 
was alleviated to a significant level. The accurate identification of the minority mode did not affect the 3 
overall performance of the model on the majority modes, in contrast to the Decision Tree application. 4 
Moreover, the XGBoost matrix Cohen’s Kappa=0.872 corresponds to an almost perfect agreement, in 5 
contrast to Kappa=0.711 for the decision tree, indicating substantial interobserver agreement. Therefore, it 6 
is apparent that including tour-based effects and dynamic factors significantly increased the recognition 7 
rate for the minority (MrC) and improved the overall predictive performance of the Gradient Boosting 8 
Machine (GBM). 9 
 10 
TABLE 2 Performance of tour-based Decision Tree model on validation set 11 

Confusion 

Matrix 

 

Car Bus 
Predicted 

MrC Walk Total 

Car 548 25 8 1 582 

Bus 133 253 11 1 398 

MrC 6 1 17 0 24 

Walk 2 1 2 120 125 

Total 689 280 38 122 1129 

Performance 

Metrics 
Recall Precision Specificity F-Measure 

Balanced 

Accuracy 

Car 0.942 0.795 0.742 0.862 0.842 

Bus 0.636 0.904 0.963 0.746 0.799 

MrC 0.708 0.447 0.981 0.548 0.845 

Walk 0.960 0.984 0.998 0.972 0.979 

Average 0.811 0.782 0.921 0.782 0.866 

 12 
TABLE 3 Performance of tour-based XGBoost model on validation set 13 

Confusion 

Matrix Car Bus 
Predicted 

MrC Walk Total 

Car 543 36 1 2 582 

Bus 37 360 0 1 398 

MrC 5 2 17 0 24 

Walk 0 1 1 123 125 

Total 585 399 19 126 1129 

Performance 

Metrics 
Recall Precision Specificity F-Measure 

Balanced 

Accuracy 
Car 0.933 0.928 0.923 0.931 0.928 

Bus 0.905 0.9902 0.947 0.903 0.926 

MrC 0.708 0.895 0.998 0.791 0.853 

Walk 0.984 0.976 0.997 0.980 0.991 

Average 0.882 0.925 0.966 0.901 0.924 

 14 
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Model Interpretation 1 
The balance between interpretability and predictive accuracy in machine learning is subject to continuous 2 
research. Guidotti et al. (33) produced an extensive survey of methods for explaining black box models and 3 
classifying the different state-of-the-art approaches. For the scope of this study, we selected partial 4 
dependence plots and SHAP values to explain the output predictions of the XGBoost model. 5 
 6 
Partial Dependence Plots 7 
Partial dependence plots (PDPs) are used to illustrate the functional relationship between a small number 8 
of input variables and predictions. In one-way PDPs, the y-axis depicts the marginal effect of one feature 9 
on the outcome of the machine learning model. By visualizing mode choice dependency on the input 10 
variables of interest, we can extract useful information on the motivating factors that influence the choice 11 
behavior. 12 

Figure 5 depicts the two-way partial dependence of car usage on joint values of income and trip 13 
distance. As expected, higher values of trip distance increase the probability of car usage, with the greater 14 
increase observed in the region of 0-10km. This can be interpreted as a threshold value that individuals with 15 
car availability consider using alternative modes because of the shortest trip distance. In addition, the 16 
increase of income positively correlates with car usage as the main mode, reaching a point of diminishing 17 
returns for values >30,000 euros. This was expected considering the annual costs of maintaining a car are 18 
generally higher than the explored alternative modes (e.g. Bus, MrC). Furthermore, the partial dependence 19 
of Bus mode choice on the age distribution indicates that a lower age is linked to higher probabilities of 20 
Bus usage- for the age group of 16-24 years in particular- as it is characterized mostly by students that, in 21 
majority, do not own a driver’s license or have access to a Car. Although this insight is important in 22 
explaining the output of our GBM, it needs to be clarified that the causal interpretation provided by partial 23 
dependence plots are relevant only with regards to the validity of our developed model, and not necessarily 24 
to the actual real-world decision making (33). 25 

Partial dependence plots are a useful tool in model interpretation, but they entail an important 26 
limitation, in the form of the independence assumption. It is a rare occurrence that the features of interest 27 
are not correlated with any other feature of the model. For instance, computing the  Bus PDP (Figure 5) for 28 
a specific age range (e.g. 16-24 years), we need to average over the marginal distribution of income, which 29 
also includes higher values (>50,000 euros). This observation can be considered unrealistic for such a young 30 
age. Furthermore, PDPs may not account for hidden heterogeneous interactions, as they are based on 31 
average marginal effects across all individuals (33). Therefore, while we can gain some useful insight on 32 
the model output, it is important to explore more ways of interpretation for the model under development. 33 

  34 

 35 
Figure 5 Two-way partial dependence plots for Car and Bus modes 36 
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SHAP (SHapley Additive exPlanations) 1 
SHAP is a state-of-the-art machine learning interpretation approach, based on the work of L. Shapley in 2 
cooperative game theory (34). The Shapley values attribute the total payoff from a cooperative game to the 3 
corresponding players. In 2017, Lundberg and Lee developed a package in Python that enables the 4 
estimation of SHAP for various techniques including XGBoost (35). SHAP values are increasingly utilized 5 
by researchers within transportation for model interpretation. Mihaita et al. (36) employed SHAP to analyse 6 
the impact of different features on accident duration for traffic safety. Parsa et al. also used SHAP values 7 
to explain a GBM for the detection of highway traffic accidents (23). The background of the Shapley values 8 
framework is presented below (34). 9 
 10 
Formally, a cooperative game is played by a set of players {1,..., }N N= termed the grand coalition. The 11 

game is characterized by a set function : 2Mu R→  such that ( )u S is the payoff for any coalition of players 12 

S N . Shapley values are built by examining the marginal contribution of a player to the existing coalition 13 

S. The Shapley value method satisfies a set of desirable axioms, 14 
 15 

i) Additivity Axiom: For any two 
1u  and 

2u  , 1 2 1 2( , ) ( , ) ( , )i i iN u u N u u  + = +  for each i , where the 16 

game 1 2( , )N u u+  is defined by 1 2 1 2( )( ) ( ) ( )u u S u S u S+ = +  for every coalition S . 17 

ii) Symmetry Axiom: For any u , if i  and j  are interchangeable then ( , ) ( , )i jN u N u = . 18 

iii) Dummy Axiom  For any u , if i  is a dummy player then ( , ) 0i N u = . 19 

 20 
Theorem: Given a coalition game ( , )N u , there is a unique payoff division ( ) ( , )x u N u=  that divides the 21 

full payoff of the grand coalition and that satisfies the Additivity, Symmetry and Dummy axioms, the 22 
Shapley value, 23 

1{ ,..., }\

1
( , ) !( 1)![ ( { }) ( )]

!
m j

j j

S x x x

N u S N S u S x u S
N




= − −  −  24 

 25 
Applying this framework for machine learning model interpretation, the Shapley value of a feature is its 26 
contribution to the payout, weighted and summed over all possible feature value combinations. As a result, 27 
in order to calculate the exact Shapley value, all possible sets of feature values have to be evaluated with 28 
and without the j-th feature (33). Calculating the exact SHAP values for more than a few features is NP-29 
hard. A computational effective approximation can be achieved with Monte-Carlo sampling, averaging the 30 
quantity within the expectation of a random sample. The above methodology was applied for the XGBoost 31 
model using the SHAP Python package (37).   32 

Figure 6 illustrates the mean SHAP values of the features in order of significance, for the Car and 33 
Bus classes, respectively. It is apparent that the variable mode1 -encoding the mode of the previous trip- is 34 
a significant factor in the predictions, justifying the improvement in the performance of the model with the 35 
inclusion of dynamic factors. With regards to the SHAP values calculated for Bus, the historical distance 36 
and travel time variables have a strong influence on its selection probability. Owning a driver’s license has 37 
a negative effect, while higher values of egress walking distance appear to demotivate travelers in selecting 38 
Bus for their trips. Finally, age also seems to influence the Bus class prediction, with younger groups opting 39 
for it in a more usual basis than the aging part of the population. Therefore, feature importance indicates 40 
that accounting for tour effects and ordering dependencies is critical in the performance of the GBM as they 41 
play a key role in everyday activity planning. People tend to plan ahead and optimize their joint within-day 42 
schedule rather than individual trips.  43 

For the explanation of individualized predictions, we proceed to randomly select a female from the 44 
validation set, travelling from work to home, and depict the feature contributions for each classification 45 
class in relation to the base value (Figure 7). 46 
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Figure 6 Mean SHAP values of significant features for Car (left) and Bus (right) 3 

The GBM correctly classifies this individual as a commuting car driver with high confidence. The main 4 
positive factors include the past mode from the previous trip, in addition to the historical values on distance 5 
and trip duration. The choice of MrC was the second most probable for the given individual, with past mode 6 
choice and female gender contributing negatively to its probability. A possible explanation for this 7 
distinction might be the higher number of men that opt towards MrC ownership compared to women. 8 
Travelling on foot was disregarded by the classifier, mostly due to the higher values of travel time and 9 
distance, granting the specific trip impractical for travelling on foot.  10 

 11 
Figure 7 SHAP feature contribution on individual predictions for Car, Bus, MrC, Walk 12 

Finally, the individualized predictions are explored further by generating synthetic data for a feature of 13 
interest, to identify the functional relationships and threshold values that would lead to a shift of 14 
contribution and potentially change of behavior for this specific person (Figure 8). It is apparent that the 15 
current trip value duration of 60 min is over this person’s marginal value of positive contribution for the 16 
Bus mode, while the threshold of positive/negative contribution is predicted at 25min duration trips.  17 

Advanced interpretation methods (e.g. SHAP) for complex ‘black box’ models can be of great 18 
value for transportation planning and policy applications. Judging from personalized and -to an extent- 19 
explainable model predictions, we can gain insight on urban infrastructure design, requirements (e.g. 20 
parking spots, EV charging stations) and travelers’ needs. 21 

 22 
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 3 
Figure 8 SHAP value contribution of trip duration on Bus mode for individual 4 

 5 

CONCLUSION 6 
Creating effective classification models from imbalanced datasets is a challenge within many scientific 7 
domains. Typical machine learning algorithms tend to favor the ‘dominating’ classes and are thus inefficient 8 
in providing predictions for the minority class, which is often of great interest. This ongoing field of 9 
research is relevant to mode choice modelling, to evaluate the introduction of emerging mobility services 10 
which are currently underrepresented in everyday commuting. In this paper, we propose a tour-based 11 
modelling framework using extreme gradient boosting and apply it on imbalanced travel diary data from 12 
the city of the Thessaloniki. The results indicate that the XGBoost algorithm performed significantly better 13 
with the inclusion of tour-related effects and dynamicity factors within the training dataset, especially with 14 
regards to the identification of the minority mode. The output predictions were interpreted with partial 15 
dependence plots and the game theoretic SHAP approach, providing useful insight on feature importance 16 
and variable relationships. Future work includes working towards the implementation of these and other 17 
promising methods of machine learning modelling and interpretation for large-scale transport applications. 18 
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