

D2.2 Report on
Community-Driven
Requirements

Author(s): Thomas Thurner, SWC

Victor Rodriguez Doncel, UPM
Cécile Robin, NUIG
Pablo Calleja, UPM
Christian Faeth, GU
Matthias Hartung, Semalytix
John McCrae, NUIG

Date: 30/06/2020 (delayed)

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant
agreement No 825182. The information and views set out in this publication are those of the author(s) and do not
necessarily reflect the official opinion of the European Union.

Ref. Ares(2020)3431656 - 30/06/2020

H2020-ICT-29b
Grant Agreement No. 825182
Prêt-à-LLOD - Ready-to-use Multilingual Linked Language Data for
Knowledge Services across Sectors

D2.2
Report on Community-Driven Requirements

Deliverable Number: D2.2
Dissemination Level: Public
Delivery Date: 30/06/2020
Version: 1.0
Author(s): Thomas Thurner

Document History

Version Date Changes Authors

0.1

0.2

10.09.2019

27.05.2020

Initial
Review
Final

Thomas Thurner

Thomas Thurner

0.3 08.06.2020 Internal Review Matthias Hartung

0.4 10.06.2020 pre-final Thomas Thurner

1.0 17.06.2020 Final Thomas Thurner
Victor Rodriguez Doncel
Cécile​ Robin
Pablo Calleja
Christian Faeth
Matthias Hartung
John McCrae

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 2

Table of Contents
Table of Contents 3

Abbreviations 5

Executive Summary 6

Introduction 6
Structure of the project 6

Challenges 7
Components 8
Tools and Services 9

Requirements Elicitation 11
Requirements by Function 11

Requirements re. Lemmatization for PoolParty 12
Requirements re. PoS tagger for PoolParty 12
Requirements re. word sense induction and word sense disambiguation for PP 13
Requirements re. search for LLOD resources for LINGHUB 15
Requirements re. Multilingual Text Analytics for Semalytix Pharos 16
Requirements re. converting terminologies for TBX2RDF 17
Requirements re. AI model to allow the ChatBot to learn from user responses 19
Requirements re. cross-border Open Data discovery for datAdore 19
Requirements re. Metadata conversion to standards for CoNLL-RDF 20
Requirements re. Ontology Lexicalization 20
Requirements re. Entity Linking 21

Algorithms for cross-lingual ontology matching 22
Algorithms for cross-lingual instance matching 23
Algorithms for translation inference across dictionaries 23

Architecture of the Prêt-à-LLOD Stack 24
Server-side or backend stack 24
Frontend stack 26

Requirements for the Prêt-à-LLOD Stack 28

Implementation Path 29
Prioritized and later ranked components 29
Requirements for existing LT Infrastructures 31

European Language Grid 31
Linghub 32

Annex 33

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 3

Figures and Tables
Figure 1: User Journey 9
Figure 2: Prêt-à-LLOD tools and services map 11
Figure 3: an Overview of the Prêt-à-LLOD conversion components 20
Figure 4: an Overview of the Prêt-à-LLOD Linking component 24
Figure 5: Typical stack architecture 26
Figure 6: Swagger UI 29
Figure 7: Proposed future Teanga architecture 30
Figure 8: CKAN as UI for LINGHUB2 31
Figure 9: Related LT Infrastructures 33
Figure 10: ELG Platform 34
Figure 11: Improved Linghub Harvesting 34

Table 1: Prêt-à-LLOD tools and services 13
Table 2: Recent releases of triple-stores 27
Table 3: Requirements per component 36

Abbreviations
AI Artificial Intelligence
ACL Association for Computational Linguistics
API Application Program Interface
ASR Automated Speech Recognition
BMC Business Model Canvas
CEF Connecting Europe Facility
EC European Commission
HR Human Resources
IPR Intellectual Property Right
LOD Linked Open Data
LLOD Linked Language Open Data
LT Language Technology(ies)
ML Machine Learning
NLP Natural Language Processing
SaaS Software as a Service
SME Small or Medium-sized Enterprise
TTS Text-to-Speech
XML Extensible Markup Language

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 4

1. Executive Summary
The goal of this deliverable is to draw the largely complete picture of the Prêt-à-LLOD
software and language resource stack.

Typical for a stack of single tools, the requirements expressed are manifold. The
Requirements Document therefore concentrates on the specific requirements for the tools in
Chapter “3.1 Requirements by Function”. Overall requirements are mostly bound to three
design paradigms:

● Containerisation
● API Communication
● Linked Data Utilization

(i) The use of Docker containers and Kubernetes facilitates the stack tools’ deployment and
portability. One of the key concepts of the architecture is the use of containers to
encapsulate all components, settings and libraries of an individual LT service in one
self-contained unit. (ii) ​The OpenAPI specification, together with the Swagger UI provides a
flexible communication on the basis of a widely used standard. (iii) JSON-LD allows data to be
serialized in a way that is similar to traditional JSON. In order to map the JSON-LD syntax to
RDF, JSON-LD allows values to be coerced to a specified type or to be tagged with a language.
A context can be embedded directly in a JSON-LD document or put into a separate file and
referenced from different documents.

The frontend architecture is principally web-based. Beside the Swagger UI to directly interact
with the APIs, more high-level UIs are in use on a tools level (and beyond): Teanga and
Linghub (technically CKAN).

Interfacing from other resources and to other stacks and platforms is to be done via
interfaces mainly built on the design paradigms of Containerisation, API Communication and
Linked Data Utilization

2. Introduction

2.1. Structure of the project
The goal of this work package is to elicit (analyse and understand) business cases,
(regulatory, technical, societal) needs and requirements for a community-driven ecosystem
to support the lifecycle of LLOD. The goal of WP2 is to collect requirements for the
implementations made in the connected work packages and the Prêt-à-LLOD software and

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 5

language resource stack. So this document split up the project into functional blocks,
following a certain logic. We define:

1. Challenges
2. Components
3. Tools and Services

Each of these blocks builds upon the previous one. So the next level is a itemization of the
previous block.

2.1.1. Challenges
The challenges group the basic and applied research activities in logical blocks​ along a
typical user journey (shown as process chain in the centre of Figure 1).

Figure 1: User Journey

1. Discover
A step in which language resources will be analyzed and monitored directly in
order to deduce metadata about the availability, technical quality, and content of
language resources.

2. Prepare
Dataset transformation currently depends significantly on manual transformation.
Prêt-à-LLOD moves beyond this, using semantic ontologies in many formats
(including XML, CSV, JSON) to match to RDF

3. Organize
A step where we will investigate (i) the representation of licensing information, (ii) the
methodology to manipulate policies and provenance information; (iii) and new license
composition algorithms.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 6

4. Integrate
Look at linking across linguistic data, in particular corpora, lexicons, thesauri, and
ontologies.

5. Analyze & 6. Act
The Prêt-à-LLOD Workflows component will allow the deployment of language
technology pipelines on the cloud, increasing the interoperability by using
containerization technology

2.1.2. Components
The main technical outcomes of Prêt-à-LLOD are grouped as five technical
components in a “toolkit”. Every component will contain tools and services that will
result from the different research activities. They will cover different parts of the data
value chain, as shown in Figure 1.

Prêt-à-LLOD Discovery​ will track transactions, with due measures
of security. This component complements technologies for
discovering datasets and services with an explicit and automated

treatment of legal constraints enabling search-by-license across repositories.

Prêt-à-LLOD Transform​ addresses the challenge of “Transforming
language resources and language data”. Methodologies will be
developed for the transformation of language resources and

language data into LLOD representations.

Prêt-à-LLOD Link​ addresses the challenge of “Linking conceptual
and lexical data for language services”. Novel (semi-)automatic
methods will be studied that aim at establishing links across

multilingual LLOD datasets and models.

Prêt-à-LLOD Workflows​ addresses the challenge to create
“Workflows for Portable and Scalable Semantic Language Services”.
A protocol, based on semantic markup, will be developed to enable

language services to be easily connected into multi-server workflows.

Prêt-à-LLOD Data Manager​ investigates (i) the representation of
rights information of the Prêt-á-LLOD resources as ODRL policies, 1

including copyright law, database law and GDPR; (ii) the
methodology to manipulate policies and provenance information (PROV-O) granting 2

a lawful consumption of resources and services, (iii) new license composition
algorithms using deontic reasoning techniques.

1 Open Digital Rights Language, W3C Recommendation 15 February 2018, ​w3.org/TR/odrl-model/

2 The PROV Ontology, W3C Recommendation 30 April 2013, ​w3.org/TR/prov-o/

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 7

https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/prov-o/

2.2. Tools and Services
The Prêt-à-LLOD Tools and Services Stack is a collection of already established tools, tools
to be adapted and newborn tools, which are proposed by the consortium members as
candidates to create a solution for the challenges stated in the DoW. The majority of the
tools are well known to the consortium; expertise in their usage - together with knowledge
about strength and weaknesses - will ensure an appropriate usage in the stack.

Figure 2: Prêt-à-LLOD tools and services map

Partner Tools Name Type Memo Link

 Docker, JSON-LD Framework

 HTML + Bootstrap + Javascript Framework

 Postgres Framework

 Python Framework

UNIBI WikiData Knowledge

Base

OUP ML libraries Library Libraries for training the different components

of Pilot 2

https://scikit-learn.org/stable/

UZAR Apertium bilingual dictionaries Linguistic To be converted into RDF and linked, as part

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 8

https://scikit-learn.org/stable/

Resource of the already existent Apertium RDF

NUIG LINGHUB Linguistic

Resource

OUP OUP English corpora Linguistic

Resource

Corpus of English with content classified by

domain

N/A

OUP Oxford bilingual dictionaries Linguistic

Resource

Set of bilingual dictionaries covering language

pairs between English and any of the

following: German, Spanish, French, Italian,

Russian, Chinese

https://premium.oxforddictionar

ies.com

OUP Oxford Dictionary of English Linguistic

Resource

Dictionary of contemporary English https://en.oxforddictionaries.co

m

UNIBI PPDB: The Paraphrase

Database

Linguistic

Resource

UNIBI VerbNet Linguistic

Resource

UNIBI WordNet Linguistic

Resource

Lexical database of English covering lexical

categories of nouns, verbs, adjectives and

adverbs. Words are grouped into sets of

cognitive synonyms (synsets), each

expressing a distinct concept.

https://wordnet.princeton.edu/

OUP Corpus Sense Tagger Tool Tool for sense tagging corpus content given a

dictionary sense inventory

N/A

DLX datAdore Tool http://datadore.com/

UZAR Entity Linking Tool Set of algorithms for cross-lingual linking

DLX GovAssist chatbot Tool https://chatbot.staging.derilinx.

com/

UZAR Lexical Linking Tool Set of algorithms for cross-lingual linking

NUIG Naisc Tool https://gitlab.insight-centre.org/

uld/naisc

 OntoLex-Lemon Tool

 Poolparty Tool

SEM Semalytix Pharos Tool Proprietary text analytics stack/platform https://www.semalytix.com/solu

tions/

OUP Sense Granularity Annotation

Tool

Tool Linguistic annotation tool to develop training

content

N/A

OUP Sense Granularity Classifier Tool Tool for classifying the type of cross-dictionary

link based on sense granularity

N/A

OUP Sense Link Quality Estimator Tool Tool for estimating the quality of the sense

links

N/A

OUP Sense Linking system Tool Tool for linking 2 dictionaries at the sense

level.

N/A

UNIB

UPM

TBX2RDF Tool Up and running https://github.com/cimiano/tbx2

rdf/blob/master/samples/TBX-r

esources/ibm_tbx.tbx

NUIG Teanga Tool https://gitlab.insight-centre.org/

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 9

https://premium.oxforddictionaries.com/
https://premium.oxforddictionaries.com/
https://en.oxforddictionaries.com/
https://en.oxforddictionaries.com/
https://wordnet.princeton.edu/
http://datadore.com/
https://chatbot.staging.derilinx.com/
https://chatbot.staging.derilinx.com/
https://gitlab.insight-centre.org/uld/naisc
https://gitlab.insight-centre.org/uld/naisc
https://www.semalytix.com/solutions/
https://www.semalytix.com/solutions/
https://github.com/cimiano/tbx2rdf/blob/master/samples/TBX-resources/ibm_tbx.tbx
https://github.com/cimiano/tbx2rdf/blob/master/samples/TBX-resources/ibm_tbx.tbx
https://github.com/cimiano/tbx2rdf/blob/master/samples/TBX-resources/ibm_tbx.tbx
https://gitlab.insight-centre.org/houzia/teanga

houzia/teanga

GUF Fintan (CoNLL-RDF and other

conversion frameworks)

Tool

GUF OLiA Linguistic

Resource

Table 1: Prêt-à-LLOD tools and services

The described tools and service ​stack is a set of software subsystems and components needed
to create the complete Prêt-à-LLOD platform. Even if this stack is loosely (open) coupled, there
are some basic interoperability requirements to meet:

Software is packed in containers: ​Prêt-à-LLOD uses Docker to deliver software in 3

containers. Such containers are isolated from one another and bundle their own
software, libraries and configuration files; they can communicate with each other through
a defined API.

Communication between containers is done via OpenAPI: ​The OpenAPI 4

specification, originally known as the Swagger Specification, is a specification for
machine-readable interface files for describing, producing, consuming, and visualizing
RESTful web services. Swagger and some other tools can generate code,
documentation and test cases given an interface file.

Semantic data encoding is done with JSON-LD:​ JSON-LD allows data to be serialized
in a way that is similar to traditional JSON. In order to map the JSON-LD syntax to RDF,
JSON-LD allows values to be coerced to a specified type or to be tagged with a
language. A context can be embedded directly in a JSON-LD document or put into a
separate file and referenced from different documents.

3. Requirements Elicitation

3.1. Requirements by Function
In this chapter, we define the functions of tools listed in 2.2, where a function is described as
a specification of behaviour between inputs and outputs. Functional requirements are
complemented by non-functional requirements, which impose constraints on the design or
implementation. In this chapter we try to express functional requirements in the form "system
must do <requirement>", while non-functional requirements take the form "system shall be
<requirement>”. The plan for implementing functional requirements is detailed in WP3, 4 and
5, where also a detailed system architecture is laid out.

3 ​https://www.docker.com/
4 ​https://www.openapis.org/

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 10

https://gitlab.insight-centre.org/houzia/teanga
https://www.docker.com/
https://www.openapis.org/

3.1.1. Requirements re. Lemmatization for PoolParty
Lemmatization is used in PoolParty to normalise terms and to detect concepts (from a
thesaurus). Only a limited range of languages is currently covered and the goal is to extend
that. The intention is to implement corpus learning of lemmas so users of PoolParty can
improve lemmatization for their domain with the ultimate goal of improving the coverage of
concept matching (i.e., annotation of concepts from vocabulary to text) by better bridging the
gap of the surface forms contained in the vocabulary and what appears in the documents
that need to be tagged.

● Input: text (plain, PDF, HTML)
● Output: List of lemmas of the tokens in text
● Function: for each token identify its basic form (lemma)

3.1.1.1. Functional Requirements
● The following languages should be covered: English, German (with existing models

to be improved), Spanish, French, Czech, Slovak, Dutch and Russian (new models
to be created).

● 90% of unique words and 95% of unique verbs, adjectives, adverbs in a corpus
should be covered (test sets to be defined).

● Performance should be reasonable also in technical domains like finance,
engineering, biomedicine, … (i.e. the above specified numbers should be met).

3.1.1.2. Non-Functional Requirements
● Lemmatising 500 words may not take more than 500ms. Target value should be

below 100ms.
● The programming language of the solution should be Java or easy integration into

Java should be available.
● The available license agreements should either allow integration into PoolParty

without requiring PoolParty code to be made open-source (e.g. Apache or MIT
license) or a commercial license needs to be available.

3.1.2. Requirements re. PoS tagger for PoolParty
The goal of this development is to increase the quality of terms that are extracted from
different components in PoolParty. Success can be measured in two ways. On the one hand
side on a pure data level, i.e. extract terms with different methods and assess by some
criteria if the quality is different. And on the other hand, there is the effect that those results
have on the actual user of PoolParty, i.e. if and how terms that are produced by different
methods have an influence on how effectively a user can work with PoolParty.

The tools of interest are Part-of-Speech (PoS) taggers which assign parts of speech to each
word as well as Chunking tools capable of retrieving multiple word phrases. We have
identified the following tools based on different criteria such as ease of use, language
coverage, licencing, usage in production, API availability etc.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 11

PoS taggers and chunking tools:
● Stanford CoreNLP is a widely used Java-based NLP toolkit from Stanford University

with GNU General Public License. Covers English, German and Spanish.
● Apache OpenNLP is a Java-based NLP toolkit made by Apache Software Foundation

and licensed with Apache license. It covers English, German, Spanish and Dutch.
● The Natural Language Toolkit (NLTK) is a Python-based suite of libraries with

Apache license. Covers English, German, Spanish, French, Dutch and Russian.
● Spacy is a relatively new Python-based open-source NLP library with an MIT license.

It covers English, French, Spanish and Dutch.

3.1.2.1. Functional Requirements
The objective is to develop a method that chunks phrases, especially noun and verb
phrases, in a text document. Two areas in PoolParty have to be taken into account.
PoolParty Extractor:

● Extract terms based on complete phrases
● Add phrase type to extracted terms and allow filtering of results by type
● Filter concept annotations (based on vocabularies) and remove annotations

that do not overlap with at least one noun phrase
PoolParty corpus analysis:

● Apply the same filtering of concept annotations as for the PoolParty Extractor
● Term extraction should be based on phrases and separated by phrase PoS
● Develop a method for noun phrases that detects true nested-ness of terms

that avoids splitting named entities. E.g. in a text with "tiger shark" the term
"tiger" is not a true named entity (for that text), but in "tiger shark fishing" the
terms "tiger shark" and "fishing" are valid terms. This should be detected
based on phrase distributions in the corpus and the association of phrase
heads with different terms.

● Adjust term scoring by linguistic criteria such as the likelihood that a term
corresponds to a true named entity in the corpus

3.1.2.2. Non-Functional Requirements
○ Creating phrases of the text of 500 words may not take more than 500ms.

Target value should be below 100ms.
○ The programming language of the solution should be Java or easy integration

into Java should be available.
○ The available license agreements should either allow integration into

PoolParty without requiring PoolParty code to be made open-source (e.g.
Apache or MIT license) or a commercial license needs to be available.

3.1.3. Requirements re. word sense induction and word sense
disambiguation for PoolParty

Word sense induction and disambiguation are new functionalities for PoolParty and they will
allow new workflows that did not exist before in this way. We, therefore, plan to perform
again an evaluation close to the data to validate the methods as such, and a qualitative

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 12

assessment on how effective the new functionalities in PoolParty are for the users. The
following new functionalities will be realised based on the implementation of these methods:

● Run a corpus analysis and the system shows which concepts potentially have
multiple senses. The user can inspect the suggestions and split concepts if needed
to reflect each sense.

● The corpus analysis also extracts a list of terms where the existence of multiple
senses can be indicated. Users can then create concepts for each sense.

● Train the extractor to distinguish the different senses of concepts and annotating
them correctly in text.

3.1.3.1. Functional Requirements

Develop a method for word sense induction that induces senses of terms from a text
corpus:

● Input is a set of documents
● The first step is to extract (single and multi-token) terms
● The method should detect for each term in the corpus if it appears in clearly

different meanings
● Meanings are expressed in terms of their context, i.e. the terms that occur

around them in the text
● To each term, the corresponding meaning is attached

Develop a method for word sense disambiguation that can be trained to distinguish
meanings of terms in text:

● Input is a term and a set of documents where the term appears in different
meanings

● The documents are annotated in the sense that for each document the
meaning in which the term occurs is specified

● The method should produce a trained model that returns the correct meaning
for an input document and a term to be disambiguated

3.1.3.2. Non-Functional Requirements

The following time constraints should be met:

● Sense induction for a set of 100 documents of the length of 500 words where
a term occurs in 5 different senses should be below 2 sec (measured for each
term).

● Training a disambiguation model for a set of 100 documents of the length of
500 words where a term occurs in 5 different senses should be below 5 min
(measured for each term).

● The disambiguation of one term in a document should not take longer than
100 ms. Better towards 20 ms.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 13

The number of training instances for a method to produce meaningful results is
important to make it practically viable, so we need to establish realistic numbers of
training instances with which the methods still works "good enough" (to be
established what that means exactly):

● Sense induction should work reasonably well with 10 documents per sense.
● Training a disambiguation model should work reasonably well with 20

documents per sense.

3.1.4. Requirements re. search for LLOD resources for Linghub
Goal: Search for LLOD resources according to predefined criteria (resource type,
language/language pair, domain, license).
Input: query specifying criteria
Output: resource identifiers.

The main goals of the Linghub2 Data Catalogue development are to: 5

1. Provide a scalable and extensible repository for the Linghub resources
2. Standardise and simplify access to a wide range of language resources
3. Provide access to Linghub2 resources via a user interface, CKAN API and SPARQL

endpoint

The reasons for moving from Linghub to Linghub2 are:

1. Provision of a standardised open-source CKAN system
2. Improved supportability and reliability
3. Improved user search

3.1.4.1. Functional​ ​Requirements

● Provide standardised harvesters extracting and loading data from existing and
additional sources

○ Identify duplicate resources within a source or across sources
○ Harvest as much metadata as possible; initially DCAT fields

● Provide a SPARQL endpoint, allowing SPARQL queries to be performed on the data
● Every language resource (CKAN dataset) will have a pointer to data (CKAN

resource) - the data might not be publicly accessible, but the link should still be
provided, except in the cases where there is no link.

● Broken links or cases where no link is provided will be tagged, e.g. with a red
exclamation flag.

● Filters will be provided to select datasets by one or more of the following (as in
Linghub):

○ Language
○ Rights
○ Type

5 https://github.com/Pret-a-LLOD/linghub

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 14

○ Creator
○ Source
○ Contributor
○ Subject

● All metadata fields will be available for dataset search
● Interface with Teanga Linked Data Platform , so that language resources can be

6

selected from Linghub2

3.1.4.2. Nonfunctional​ ​Requirements

● Linghub2 will be extensible to facilitate the incorporation of data from new sources
● will be hosted in the EU

3.1.5. Requirements re. Multilingual Text Analytics for Semalytix Pharos
To address business questions about non-English text data, a straightforward approach
would be to recreate each analytical component for that language, requiring annotators and
language engineers to have knowledge about the language and the pharma domain, so that
they can annotate data, create ontologies and lexico-syntactic rules, as well as generating
meaningful feature representations for machine learning models. As this is both
time-consuming and costly, we seek to minimize the need for manual efforts by using LLOD
resources to enable language transfer of existing systems. Given the diversity of
components used in a single dashboard, one-off transfer for a specific NLP approach will not
suffice. Rather, depending on the type of the respective component to be transfered,
language transfer will need to involve different approaches (“recipes”) and specific
resources -- ranging from parallel corpora which help train task-specific cross-lingual
embeddings to multilingual linked data for bootstrapping dictionaries for entity tagging.
Therefore, our goal is to develop a framework for configurable language transfer pipelines
enabled by the capabilities to discover, transform and compose language resources
developed within the Prêt-à-LLOD project.

3.1.5.1. Functional Requirements
● Creation, configuration and deployment of language transfer pipelines

○ Consume LLOD resources as part of language transfer pipelines
○ Configuration of language transfer pipelines, selecting processing steps,

LLOD resources (and how to transform and combine them)
○ Deployment and execution of pipelines for language transfer that interface

with the specified resources
● Discovery and wrangling of LLOD resources relevant for language transfer

○ Search for LLOD resources according to predefined criteria (resource type,
language/language pair, domain, license)

○ Combine complementary LLOD resources, in the sense of handling them
within language transfer as if they were a single resource

○ Based on a given LLOD resource, suggest interoperable and complementary
resources in the context of language transfer

6 ​http://teanga.io/

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 15

http://teanga.io/

○ Transform between different formats of LLOD resources
● Transfer of NLP systems based on different types of approaches from a source

language to a target language
○ Transfer supervised machine learning models based on embedding,

distributional, morphological or linguistic features
○ Transfer lexicalisations of subgraphs of a knowledge graph as used e.g. for

entity tagging
○ Transfer patterns based on lexico-syntactical features and entity types
○ Transfer patterns based on unsupervised topic extraction

3.1.5.2. Non-functional Requirements
● The costs and implied person hours of employing language transfer pipelines should

be less than for recreating each analytical component for the target language.
● The performance of the transferred NLP systems should be at least within a

reasonable margin below the performance of target-language systems.
● The solution should be flexible in terms of configurability and support for different

types of NLP approaches and resources, i.e. abstract from the implementation of
individual NLP systems.

● The creation of specific language transfer pipelines should be at least
semi-automatized.

● The available license agreements should either allow integration into the tool without
requiring code to be made open-source (e.g. Apache or MIT license) or a commercial
license needs to be available.

3.1.6. Requirements re. converting terminologies for TBX2RDF
Term Base eXchange (TBX) is an open standard that has been published by the 7

Localization Industry Standards Association (LISA) . Using TBX2RDF , conversion into the 8 9

Resource Description Framework (RDF) should be made possible, whereby ​TBX2RDF

exposes a HTTP endpoint. The external interface communicates via OpenAPI-compatible

JSON messages. A service descriptor announces the availability of service instances via the

same endpoint.

As the backbone of the conversion of TBX into RDF format, lemon-ontolex is chosen as a 10

model proposed for representing lexical information relative to ontologies and for linking

lexicons and machine-readable dictionaries to the Semantic Web and the Linked Data cloud.

7 ​https://www.tbxinfo.net/
8 ​https://www.w3.org/International/O-LISA-object.html​ ​existed from 1990 to February 2011
9 ​https://github.com/cimiano/tbx2rdf
10 ​http://john.mccr.ae/papers/mccrae2017ontolex.pdf

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 16

https://www.tbxinfo.net/
https://www.w3.org/International/O-LISA-object.html
https://github.com/cimiano/tbx2rdf
http://john.mccr.ae/papers/mccrae2017ontolex.pdf

Figure 3: an Overview of the Prêt-à-LLOD conversion components

3.1.6.1. Technical Description of the Conversion

TBX is an international standard, officially ISO 30042:2019, for the representation of
structured concept-oriented terminological data . A TBX resource, as defined by the
specification described by the W3C BPMLOD Community Group , is “​a collection of 11

terminological concepts (terminological concept), which are represented as XML elements

of type termEntry and have a unique ID. Each terminological concept is described by a set of

properties, such as a subject field they belong to”. Terminological Concepts, also called term

entry) represent” a language-independent concept. Each terminological concept is

associated to a LangSet (see below), which can be seen as a set of language-specific terms

that express the terminological concept in question”. Terms that lexicalize a terminological

concept in a certain language are “LangSet”s. Additional concepts include groups of terms,

term decompositions (TermGrps and TermCompLists respectively) and descriptions.

3.1.6.2. Functional Requirements

● The module must transform TBX documents into OntoLex-Lemon documents
● The module must transform TBX documents into SKOS or SKOS-XL.
● The transformation should be lenient with errors in the syntax of the input

3.1.6.3. Non-Functional Requirements
● The functionality should be available as a service (for small documents)
● The functionality should be available from command line (for large collections)

11 https://www.w3.org/community/bpmlod/wiki/index.php?title=Converting_TBX_to_RDF

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 17

3.1.7. Requirements re. AI model to allow the ChatBot to learn from user
responses for GovAssist

We will explore the possibility of providing Virtual Assistant services in the Irish language,
and also in Spanish. This chatbot will, in particular, improve access to the Irish Health
Service’s schemes and allowances programme. Prêt-à-LLOD capabilities will be used to
enhance GovAssist to provide information in multiple languages, and also the quality of the
responses from the chatbot.

3.1.7.1. Functional​ Requirements
● The availability of the chatbot in multiple languages, possibly including the Irish

language.
● Improving the interpretation and disambiguation of natural language questions
● Enhancement of the GovAssist AI model
● Transfer to agent function (on request from user)
● QA system to provide consistency of answers and ability to audit answers

3.1.7.2. Non-Functional​ Requirements
● The GovAssist Chatbot should be extensible to facilitate the incorporation of

Prêt-à-LLOD functionality as it becomes available and evolves
● The Chatbot must comply with GDPR and ethical requirements
● The available license agreements should either allow integration into the Chatbot

without requiring Chatbot code to be made open-source (e.g. Apache or MIT license)
or a commercial license needs to be available.

3.1.8. Requirements re. cross-border Open Data discovery for datAdore
In the case of datAdore, users traditionally find data by entering keyword searches or
filtering through metadata values. In this project, we will harness Prêt-à-LLOD capabilities,
such as term extraction and concept disambiguation, to support unstructured,
human-readable queries across a number of different national Open Data portals, through
browsing a catalogue of the datasets. Involved data may be in any European language
(metadata, data dictionary). The discovered data will be displayed to the user in their native
language; as a minimum, this includes the metadata, but preferably the data dictionary as
well. The user can then access, download and share the discovered data.

3.1.8.1. Functional Requirements
● Interpretation and disambiguation of natural language queries

● Development of an API that enables cross-border Open Data discovery through
selected (European) languages

● Extension of datAdore based on the API, to allow the user to identify data relevant to
their search through selected (European) languages

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 18

● Translation assist tool to allow translation of metadata and data dictionary into
selected (European) languages

● The API will work in conjunction with the European data portal and other Open Data
portals within Europe

3.1.8.2. Non-functional Requirements
● The extension of datAdore should allow the incorporation of appropriate Prêt-à-LLOD

workflows as it becomes available and evolves
● The available license agreements should either allow integration into the tool without

requiring code to be made open-source (e.g. Apache or MIT license) or a commercial
license needs to be available.

3.1.9. Requirements re. Data conversion to standards for CoNLL-RDF
In the context of LLODifier , a larger toolset for transforming linguistic data into a shallow 12

Linked Data representation, we already provided a transformation suite for mapping
UniMorph data to OntoLex-Lemon, using our well-established CoNLL-RDF library . 13 14

Though CoNLL-RDF was originally built for transforming corpora into an isomorphic RDF
representation, it was applicable to the dictionary-type UniMorph data out-of-the-box
mainly because of their simple layout and TSV structure. This makes it an ideal case study
for testing CoNLL-RDFs streamed graph transformation capabilities on different types of
data. Building on this case study we are developing the Flexible Integrated Transformation
and Annotation eNgineering platform (Fintan).

3.1.9.1. Challenges to address
● The first challenge to overcome is the transformation of a CoNLL-RDF corpus

representation into an actual OntoLex-Lemon dictionary.
● The second challenge is to improve scalability issues. CoNLL-RDF was designed to

efficiently stream even extremely large corpora sentence by sentence. This would
limit both the amount of memory consumed as well as the processing complexity of
SPARQL updates since they would be applied only to single sentences instead of a
giant monolithically graph. So we want the CoNLL-RDF library to enable
parallelization, which can significantly speed up the conversion.

● Overcome the issue of verbose and chunked result data due to a limitation of the
current, corpus-oriented CoNLL-RDF implementation.

● Make other existing converters available for integration in pipelines with the
CoNLL-RDF framework.

12 ​https://github.com/acoli-repo/LLODifier
13 ​https://unimorph.github.io/
14 ​https://www.aclweb.org/anthology/L18-1090.pdf​ ​(Chiarcos et al. 2018b, Chiarcos and Fäth
2017)

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 19

https://github.com/acoli-repo/LLODifier
https://unimorph.github.io/
https://www.aclweb.org/anthology/L18-1090.pdf

3.1.10. Requirements re. Ontology Lexicalization
The goal of ontology lexicalization is to enrich and link existing ontologies with lexical entries
that verbalize the ontology elements, ideally across languages. ​In Prêt-à-LLOD, we seek to
achieve three main results:

3.1.10.1. Functional Requirements
● Extending the functionality of the Lemonade tool to provide users with a quicker 15

way to lexicalize ontologies using ​lemon patterns​. The new features include support
for multiple users and UI redesign for more effective interaction. The software is
being refactored to provide a general infrastructure to allow easy integration of lemon
patterns and Grammatical Framework (GF) on top of which new web applications
can be created. This general infrastructure will be released as an R package.

● A new concept of “Grammar-as-a-Service” (GaaS) that automatically generates a
task-specific grammar from an existing OntoLex-Lemon lexicon. A first prototype is
currently being developed and will be described in more detail in future versions of
the Research Challenge deliverable. These GaaS will support publication as LLOD
resources.

● Framework for instantiating QA systems for a particular ontology on the basis of a
question grammar generated by a GaaS. This will reduce the time and effort needed
to build QA systems, only requiring a lemon lexicon for a given ontology.

Service​: Extension to ​lemonade
Responsible​: UPM (Universidad Politécnica de Madrid)
Input​: ontology and lexicalisation data (manually provided)
Output​: lemon pattern instances
Description​: In the same way that Lemonade produced lemon pattern instances, this new
tool will produce the same data but in a quicker way. This is a key feature when dealing with
large ontologies like Wikipedia.

Service​: ​Grammar-as-a-service
Responsible​: UNIBI
Input​: OntoLex-Lemon lexicon, ontology (in OWL), knowledge base (in RDF)
Output​: A question answering grammar that can be used as the basis to develop a QA
system
Description​: A tool that generates grammars as a service on the basis of an OntoLex-Lemon
lexicon and a given ontology

Service​: ​Ontology lexicalisation
Responsible​: UNIBI (Universität Bielefeld)
Input​: linguistic resources (including corpora)
Output​: OntoLex-Lemon lexica, RDF-graph based patterns/SPARQL queries

15
https://www.researchgate.net/publication/278963755_Lemonade_A_Web_Assistant_for_Creating_an
d_Debugging_Ontology_Lexica​ (Rico and Unger, 2015)

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 20

https://www.researchgate.net/publication/278963755_Lemonade_A_Web_Assistant_for_Creating_and_Debugging_Ontology_Lexica
https://www.researchgate.net/publication/278963755_Lemonade_A_Web_Assistant_for_Creating_and_Debugging_Ontology_Lexica

Description​: Algorithm for inducing Ontolex-lexicalizations for a given ontology on the basis
of a given corpus

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 21

3.1.11. Requirements re. Entity Linking
Figure 4 gives an overview of the components for Entity Linking and their interaction.

Figure 4: an Overview of the Prêt-à-LLOD Linking component

3.1.11.1. Demands on Linking by Pilots
● Linking different dictionaries at the level of meaning; that is, at the level of sense,

which in monolingual dictionaries is featured by definitions and in bilingual ones, by
translations

● Linking corpora to dictionaries at the level of meaning. This task involves tagging
corpus data with dictionary senses, thus linking corpus text to the dictionary content.
It is a task that falls within the area of word sense disambiguation.

●

3.1.11.2. Algorithms for cross-lingual ontology matching
The target of this activity is to develop a general-purpose cross-lingual ontology matching
tool. Such a tool will be “general” in the sense that it will be domain-agnostic but easily
adaptable to the requirements of the project’s pilots. It will operate with any two input
ontologies given in standard formats (OWL, RDFS, …) and produce a resulting alignment (in
the Alignment Format and another suitable format). We plan to compare the resulting system
with other state-of-the-art cross-lingual ontology matching tools, based on the “Multifarm”
track of the Ontology Alignment Evaluation Initiative (OAEI) . 16

Service​: Generic ​ontology matching
Responsible​: UNIZAR
Input​: two monolingual or multilingual ontologies
Output​: an alignment in the Alignment Format

16 ​http://oaei.ontologymatching.org/

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 22

http://oaei.ontologymatching.org/

Description​: Generic ontology matching service for the discovery of cross-lingual and
monolingual semantic equivalences between classes and properties of the two ontologies.

Service​: semantic ​similarity ​between ontology entities
Responsible​: UNIZAR
Input​: two ontology entities
Output​: semantic similarity value in [0,1]
Description​: Computation of the degree of similarity between two ontology entities
documented in the same or different languages

Service​: semantic ​relatedness ​between ontology entities
Responsible​: UNIZAR
Input​: two ontology entities
Output​: semantic relatedness value in [0,1]
Description​: Computation of the degree of relatedness between two ontology entities
documented in the same or different languages

3.1.11.3. Algorithms for cross-lingual instance matching
A version of the generic ontology matching system will be developed to operate with a
particular type of data that is core in this project, that is with lexical data (e.g., data coming
from dictionaries, or from lexicalised ontologies), taking into account the particular
requirements of the pilots.

Service​: ​lexicon matching
Responsible​: UNIZAR
Input​: two lexicons in the same or different languages
Output​: a set of ontolex-based correspondences
Description​: service for the discovery of links across OntoLex-Lemon lexicons

3.1.11.4. Algorithms for translation inference across dictionaries
The objective of translation inference across dictionaries is to explore and compare methods
and techniques that infer translations indirectly between language pairs, based on other
bilingual resources. Such techniques will help in auto-generating new bilingual and
multilingual dictionaries based on existing ones. Three contributions are to be developed by
Prêt-à-LLOD partners:

Service​: ​translation inference
Responsible​: UNIZAR
Input​: two dictionaries
Output​: a set of translations
Description​: service for the discovery of indirect translations across two initially disconnected
dictionaries that belong to the same RDF graph of dictionary data.

Service​: ​imprecise/vague translation inference
Responsible​: UNIZAR

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 23

Input​: two dictionaries annotated with degrees of truth
Output​: a set of translations annotated with degrees of truth
Description​: service for the discovery of indirect translations across two initially disconnected
dictionaries that belong to the same RDF graph of dictionary data. Input dictionaries must be
annotated with degrees of truth denoting imprecision/vagueness, i.e., each translation can
be annotated with a degree in [0, 1] estimating to which extent a translation holds.

Service​: ​uncertain translation inference
Responsible​: UNIZAR
Input​: two dictionaries annotated with degrees of certainty
Output​: a set of translations annotated with degrees of certainty
Description​: service for the discovery of indirect translations across two initially disconnected
dictionaries that belong to the same RDF graph of dictionary data. Input dictionaries must be
annotated with degrees of certainty denoting uncertainty, i.e., each translation can be
annotated with a degree in [0, 1] measuring our confidence in the correctness of the
translation.

3.1.12. Requirements re. Policy-Driven Data Manager
The Policy Driven-Data Manager is the component responsible of providing policy-driven
language data management. A ​policy ​is the document where the rightsholder of a certain
asset describes what can be done with a certain resource. Whereas most of the permitted
actions and the conditions under which these actions are permitted are not automatically
enforceable (e.g. a computer cannot determine if the condition holds or not), they have an
important legal value that the resource consumer will want to know.

3.1.12.1. Functional Requirements
● Authorship Register​. Content creators or rightsholder MUST be able to assert their

ownership of the rights of a certain resource. As in any other IP registry, this claim
SHAN’T be verified. Derivative contents shall be able to be declared as such together
with the original works they are based upon.

● Authorship Query​. Content creators or rightsholders MUST be able to obtain a
proof the authorship registration (e.g. a signed timestamp).

● License Register​. Content creators, rightsholders or authorized parties MUST be
able to declare a license or policy for a certain content item.

● License Query​. Whenever public, anybody MUST be able to obtain the license
associated to a certain resource. Whenever non public, only interested parties MUST
get access to such license.

● License combination arithmetic​. The data manager MUST be able to determine
the subset of licenses that can be used to license content resulting from the
aggregation of heterogeneously licensed works.

● Provenance Retrieval​. Whenever public, anybody MUST be able to determine the
provenance chain.

● Preservation​. The link Authorship-ContentHash MAY be made pervasive, stable and
immutable by its addition to an IPFS file.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 24

3.1.12.2. Non-functional Requirements
● User identification and authentication. ​The data manager SHOULD be

identified/authenticated with WebID or user/password based. Other platforms that
use registration could be explored as user identification and authentication such as
DataHub (datahub.io)

● Standards​. Policies MUST be represented using standard technologies (e.g. W3C
ODRL Recommendations).

● Easy interface​. The license registration service SHOULD be understandable for
non-technical users.

● Predetermined licenses.​ Relevant licenses SHALL be stored and presented to
users as guidelines of other use cases.

3.2. Architecture of the Prêt-à-LLOD Stack
The Prêt-à-LLOD Stack is a set of tools that are used to construct and power various
Language Technology applications constructed by third parties. It consists of a combination
of software applications, frameworks, and programming languages that realize functions (as
described in 3.1) needed in Language Technology applications. Structure-wise, the
Prêt-à-LLOD Stack consists of two elements. One is frontend or client-side; the other is
server-side or backend. Combined, they create a stack.

Figure 5: Typical stack architecture

The Prêt-à-LLOD Stack does not serve a specific platform or single application; in contrast, it
is a blueprint for the architecture and intended interplay which has the taken up by third
parties (start-up companies, integrators, software vendors, solution providers etc.) to build
their own variant of the stack for their own use in own scenarios. So the Prêt-à-LLOD Stack
is more a structured toolkit, where each of the tools fits into a designated usage (in analogy
to a carpenter’s toolkit which is focused on tools for working with wood, and does not contain
tools for metal work).

3.2.1. Server-side or backend stack
The backend tech stack defines the inner workings of the application. Structure-wise, the
backend side consists of the following elements:

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 25

Programming languages​: The interplay of tools on the backend level of
Prêt-à-LLOD is kept agnostic to programming languages. All tools are containerized
and therefore only exposed to the stack with their APIs.

Containerisation​: A Prêt-à-LLOD container is a standard unit of software that
packages code and all its dependencies so the tool runs quickly and reliably across
computing environments. We use Docker container images as a lightweight,
standalone, executable package of software that includes everything needed to run
an application: code, runtime, system tools, system libraries and settings. Available
for both Linux and Windows-based applications, containerized software will always
run the same, regardless of the infrastructure. The Prêt-à-LLOD containers isolate
the tools from its environment and ensure that they work uniformly despite
differences for instance between development and staging.

Databases​: In principle, any RDF-based triple-store should be possible to use. But
some of the tools of the Prêt-à-LLOD stack are using specific functions of the
triple-stores, so that limited compatibility to others is given. In the end, the bundle of
used tools define the requirements for the triple-store. Recent releases of
triple-stores known:

Name Developed

in language
Latest
Version

Latest
Release

license

AllegroGraph Common
Lisp 7.0.0 2020-04-28 Proprietary

TerminusDB Prolog​, ​Rust​,
JSON-LD 1.1.1 2020-01-06 GNU GPLv3

Eclipse RDF4J Java 3.0.3 2019-11-30 Eclipse Distribution
License (EDL)

RDFox C++ 2.1.1 2019-11-15 Proprietary
Attean Perl 0.025 2019-10-25 Artistic or GPL-1+
Datomic Clojure 535-8812 2019-10-01 Proprietary

BrightstarDB C# 1.14.0-alpha0
3 2019-08-18 MIT

GraphDB by
Ontotext Java 8.11 2019-08-09 Proprietary

Stardog Java 7.0.0 2019-08-07 Proprietary
Apache Rya Java 4.0.0 2019-07-27 Apache 2
CM-Well Scala 1.5.168 2019-06-03 Apache 2
Halyard Java 3.0 2019-06-02 Apache 2
Apache Jena Java 3.12.0 2019-05-27 Apache 2
Parliament Java, C++ 2.7.13 2019-05-07 BSD license
MarkLogic C++ 10.0-1 2019-05 Proprietary
Blazegraph Java 2.1.5 2019-03-19 GNU GPL​ (v.2)
AnzoGraph C​/​C++ 4.1.0 2019-01-30 Proprietary

ARC2 PHP 2.4.0 2019-01-25 W3C Software
License or GPL

Cayley Go 0.7.5 2018-11-26 Apache 2
gStore C++ 0.7.2 2018-11-04 BSD

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 26

https://en.wikipedia.org/wiki/AllegroGraph
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/TerminusDB
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/JSON-LD
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/RDF4J
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Datomic
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/Ontotext
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Apache_2_License
https://en.wikipedia.org/wiki/Apache_2_License
https://en.wikipedia.org/wiki/Apache_2_License
https://en.wikipedia.org/wiki/Apache_Jena
https://en.wikipedia.org/wiki/Apache_2_License
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Blazegraph
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Apache_2_License
https://en.wikipedia.org/wiki/BSD_licenses

OpenLink
Virtuoso C 8.3 2018-10-22 GPL v2 ​or

Commercial
Table 2: Recent releases of triple-stores

Server​: Docker provides .deb and .rpm packages from the following Linux
distributions and architectures: CentOS, Debian, Fedora, Raspbian, Ubuntu.

3.2.2. Frontend stack
There is no intention to build a common graphical interface for all tools and components
used in Prêt-à-LLOD. For some tools an OpenAPI interface / Swagger UI is sufficient, others
will have a full-blown graphical interface. Such interfaces can provide also graphical editing
and combination of tools as in National University of Ireland Galway’s Teanga.

3.2.2.1. Basic client-sided techniques
Web frontends like in Prêt-à-LLOD are based on the basic server-sided techniques:

● HyperText Markup Language (HTML) is the backbone of any website development

process, without which a web page does not exist. The latest version of HTML is HTML5
and was published on October 28, 2014, by the W3 recommendation. This version
contains new and efficient ways of handling elements such as video and audio files.

● Cascading Style Sheets (CSS) ​controls the presentation aspect of the site and allows
your site to have its own unique look. It does this by maintaining style sheets which sit
on top of other style rules and are triggered based on other inputs, such as device
screen size and resolution.

● JavaScript is an event-based imperative programming language that is used to
transform a static HTML page into a dynamic interface. JavaScript code can use the
Document Object Model (DOM), provided by the HTML standard, to manipulate a web
page in response to events, like user input. Using a technique called AJAX, JavaScript
code can also actively retrieve content from the web (independent of the original HTML
page retrieval), and also react to server-side events as well.

● WebAssembly, supported by all major web browsers, is the only alternative to
JavaScript for running code in browsers (without the help of plug-ins, such as Flash,
Java or Silverlight), where interfaces are not done in WebAssembly (or asm.js) directly,
but with using languages such as Rust, C or C++.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 27

https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server

3.2.2.3. UI frameworks
The Prêt-à-LLOD frontend also uses, for some tools, UI frameworks with deeper functionality
and higher usability.

Swagger UI allows us to visualize and interact with the API’s resources without having any
of the implementation logic in place. It’s automatically generated from OpenAPI (formerly
known as Swagger) specification, with the visual documentation making it easy for back end
implementation and client-side consumption.

Figure 6: Swagger UI

Teanga enables the use of many NLP services from a single interface, whether the need
was to use a single service or multiple services in a pipeline. Teanga’s strengths include
being easy to install and run, easy to use, able to run multiple NLP tasks from one interface
and helping users to build a pipeline of tasks through a graphical user interface. Teanga is
built on the following open-source tools:

1. Easy-to-use interface by using the
Bootstrap library.

2. Stability and maintenance of the Web
framework by using the AngularJS
library to build the frontend.

3. Using the NodeJS library to run the
server and the backend parts.

4. MongoDB is used for data storage, as
it uses a JSON-like data structure,
which corresponds to our use of
JSON-LD files.

5. Using Docker as containerization technology so that the user can download and run
Teanga in a simple process of only one step.

6. JSON-LD files for input and output, and to create an interoperable model among the
services.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 28

Future improvements of Teanga will evolve the UI towards an even more general
frontend for Prêt-à-LLOD.

Figure 7: Proposed future Teanga architecture

3.3. Requirements for the Prêt-à-LLOD Stack
In opening up Teanga to even more NLP services, the ability to work around failed
services gets important. Failures within services should be handled gracefully and
shown clearly to the user so they may be properly debugged. Teanga should handle the
following errors:
● If a service returns an error message, Teanga should display the error message to

the user contained inside the results tab.
● If a service fails or has a server error, which usually stops the service and causes it

to crash and display default servers messages, Teanga should contain that and
return a corresponding message.

● If a service crashes and it returns blank data, Teanga should display an error
message that the service is returning an empty message.

Further improvements for Teanga should include:
● ability to access 3rd party servers
● a shared file system would facilitate sending large outputs

CKAN is a framework for making open data websites. It helps you manage and publish
collections of data. In the case of Prêt-à-LLOD, it should replace the LINGHUB technical
platform, where metadata of linguistic resources is made available. This includes data from
CLARIN, META-SHARE and ELRC-SHARE. Inside Prêt-à-LLOD, CKAN is ​to be developed

as a replacement for Linghub, mainly for the following reasons:
1. Provision of a standardized open-source CKAN system
2. Improved supportability and reliability
3. Improved user search

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 29

Figure 8: CKAN as UI for LINGHUB2

Functional requirements for the LINGHUB2 UI are:

● Linghub2 will be based on CKAN. Its appearance will be customized for the needs of
this project and using the corporate image of Prêt-à-LLOD

● Linghub2 will be open source
● The metadata will be DCAT-based but include ​metashare
● Linghub2 will provide API and SPARQL endpoints
● Linghub2 will be hosted in the EU
● All code will be available in Github
● Licensing of all data resources in Linghub2 will be clear
● Interface with the Teanga Linked Data Platform, so that language resources can be

selected from Linghub2

4. Implementation Path

4.1. Prioritized and later ranked components
Tools which compose the Prêt-á-LLOD components have to be developed continuously with
agile methods, react to findings and new requirements that arise in the process of
composing (and evaluating) the stack, its tools and interdependencies. Nevertheless, the
principle development timing has to ensure that interdependencies in infrastructure,
protocols, standards, principal techniques and methods are built on each other. In organizing
a priority chain component-by-component, this is ensured.

Month 15 Prêt-à-LLOD Link
addresses the challenge of “Linking conceptual and lexical data for language
services”. Novel (semi-)automatic methods will be studied that aim at
establishing links across multilingual LLOD datasets and models.

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 30

https://github.com/ld4lt/metashare/blob/master/metashare-descriptions.tsv

Deliverables for this Component:
■ D5.1 Vocabularies for Interoperable Language Resources and

Services (M12)
■ D3.2 Language Resource and Service Linking (M15)

Month 24 Prêt-à-LLOD Data Manager
investigate (i) the representation of rights information of the Prêt-á-LLOD
resources as ODRL policies, including copyright law, database law and
GDPR; (ii) the methodology to manipulate policies and provenance
information (PROV-O) granting a lawful consumption of resources and
services, (iii) new license composition algorithms using deontic reasoning
techniques.

Deliverables for this Component:

● 5.2 Policy-based Language Data Management (M24)

Month 27 Prêt-à-LLOD Transform
addresses the challenge of “Transforming language resources and language
data”. Methodologies will be developed for the transformation of language
resources and language data into LLOD representations.

Deliverables for this Component:

● 3.1 Language Resource Transformation Service (M27)

Month 30 Prêt-à-LLOD Discovery
will track transactions, with due measures of security. This tasks
complements existing technologies for discovering datasets and services with
an explicit and automated treatment of legal constraints enabling
search-by-license across repositories.

Deliverables for this Component:

● 5.3 Prêt-à-LLOD Language Resource Discover Portal (M30)

Month 33 Prêt-à-LLOD Workflows
addresses the challenge to create “Workflows for Portable and Scalable
Semantic Language Services”. A protocol, based on semantic markup, will be
developed to enable language services to be easily connected into
multi-server workflows.

Deliverables for this Component:

● 3.3 Workflows for NLP services (M30)

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 31

4.2. Requirements for existing LT Infrastructures
As an outcome of Prêt-à-LLOD we will expose our components and tools as well as the
Linguistic Linked Open Data produced to related platforms by cooperating with existing
infrastructures including CLARIN, META-SHARE, ELRC-SHARE and in particular the
European Language Grid (ELG) to be established as the outcome of the call ICT-29-2018
(part a).

Figure 9: Related LT Infrastructures

4.2.1. European Language Grid
ELG is a scalable platform with an interactive web user interface and corresponding backend
components and REST APIs. It offers access to various kinds of resources such as corpora
and data sets as well as functional LT services, i.e., existing LT tools that have been
containerised and wrapped with the ELG LT Service API. The architecture is separated into
three layers (Figure 10), i.e., the base infrastructure, the platform backend and the platform 17

frontend.

.
Figure 10: ELG Platform

17 ​https://www.slideshare.net/PretaLLOD/else-if-2019-whats-next-for-multilingual-europe

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 32

https://www.slideshare.net/PretaLLOD/else-if-2019-whats-next-for-multilingual-europe

To intertwine Prêt-à-LLOD with the ELG Platform, we have to follow ELG’s schema of
integrating a service executing six steps: (1) adapt the service to fit the ELG API; (2) create a
Docker image for the service; (3) push the Docker image into a registry; (4) request, from the
ELG administrators, a Kubernetes namespace, in case of a proprietary service with
restricted access; (5) deploy the service by creating the respective Kubernetes config file; (6)
add the service to the ELG catalogue by contacting the ELG and providing the metadata.

FINTAN → ELG

For integrating services of FINTAN into ELG we want for every service in FINTAN an own
configuration for Docker, so that we end up with a bunch of containerized service ready for
integrating into ELG one-by-one.

4.2.2. Linghub
The Lider project developed linghub.org as a linked data portal combining language 18

resource metadata from four independent sources and mapping them to a common RDF
schema based on DCAT and Dublin Core. Templates render the RDF in a readable manner
for browsers, while still showing the data clearly. Resources can be discovered by means of
faceted browsing by enabling users to select properties and their values. A free-text search
engine, which is powered by a separate index allows access to (human) browsers, while
machine agents may access the endpoint by means of SPARQL querying.

Figure 11: Improved Linghub Harvesting

Prêt-à-LLOD’s take up of Linghub​ will

1. incorporate and extend the resources of Linghub and will provide faceted search
from different providers and documented in different repositories.

2. provide extended access via CKAN API and SPARQL endpoint
3. run on a standardised open-source CKAN system
4. include ​metashare​ metadata will be included
5. improve supportability and user search

18 ​http://lider-project.eu/lider-project.eu/index.html

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 33

https://github.com/ld4lt/metashare/blob/master/metashare-descriptions.tsv
http://lider-project.eu/lider-project.eu/index.html

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 34

Annex

Requirements per component

ID Challenge
Component

affected

Core functional requirement

1
1: Discovery
→ WP5

Poolparty

 Lemmatization:
input: text
output: list of lemmas of the tokens in text
function: for each token identify its basic form (lemma)

2
1: Discovery
→ WP5

Poolparty

 PoS tagger:
input: text
output: list of tokens with PoS
function: for each token in the text identify its part of speach

3
1: Discovery
→ WP5

Poolparty
 Various datasets to do benchmarking: PoS annotated datasets, corpus + terminology

relevant for the corpus, sense-annotated corpus

4
1: Discovery
→ WP5

LINGHUB
 Search for LLOD resources according to predefined criteria (resource type,

language/language pair, domain, license). Input: query specifying criteria, output:
resource identifiers

5
5: Workflows
→ T3.3

Semalytix Pharos
 Configuration of language transfer pipelines, selecting processing steps, LLOD

resources (and how to combine, transform etc. them)

6
1: Discovery
→ WP5

LINGHUB
 Based on a given LLOD resource, suggest interoperable and complementary resources

in the context of language transfer. Input resource identifier, output: resource
identifiers

7
5: Workflows
→ T3.3

Semalytix Pharos
 Deployment and execution of pipelines for language transfer

8
5: Workflows
→ T3.3

Semalytix Pharos
 Consume LLOD resources as part of language transfer pipelines

9
4: Linking c →
T3.2

Semalytix Pharos
 Combine complementary LLOD resources, in the sense of handling them within

language transfer as if they were a single resource

10 Semalytix Pharos
 Language transfer of supervised machine learning models based on embedding,

distributional, morphological or linguistic features

11 Semalytix Pharos Language transfer of lexicalisations of (subgraphs of) a knowledge graph

12 Semalytix Pharos Language transfer of patterns based on lexico-syntactical features and entity types

13
2:
Transforming
→ T3.1

TBX2RDF

 TBX2RDF exposes a HTTP endpoint. The external interface communicates via
OpenAPI-compatible JSON messages. A service descriptor announces the availability
of service instances via the same endpoint.
Transforming TBX resources into RDF.
Input: TBX files
Output: RDF

14
1: Discovery
→ WP5

GovAssist
 Development of an AI model to allow the ChatBot to learn from user responses.

input:text, output: suggested text (simplified and clarified)

15
1: Discovery
→ WP5

datAdore
 API that enables cross-border Open Data discovery, through the user's native

(European) language. input:text, language pair, output:suggested text (expanded) in
alternate language

16
1: Discovery
→ WP5

LINGHUB
 Crawl new LLOD resources to add to LingHub. Input: url, output:file

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 35

17
2:
Transforming
→ T3.1

Fintan (CoNLL-RDF
and other
conversion
frameworks)

 Metadata conversion to standards (licensing defined in T3, other standards to be
defined in T5.1). Input: metadata, output metadata

18
1: Discovery
→ WP5

LINGHUB
 URL response + resource availability validation: input:url, output: validation message

19
1: Discovery
→ WP5

LINGHUB
 Community standards validation: input: resource, output:validation message

20
1: Discovery
→ WP5

LINGHUB
 Detection of duplicate resources. input: resource, output: validation message

21
1: Discovery
→ WP5

LINGHUB
 Data authors/creators consolidation. input: metadata on the author, output: all

resources linked to this author

22
2:
Transforming
→ T3.1

PPDB: The
Paraphrase
Database

 Syntactic-semantic patterns to create a dataset for ontology lexicalization based on
VerbNet, WordNet and PPDB

23
2:
Transforming
→ T3.1

VerbNet
 Syntactic-semantic patterns to create a dataset for ontology lexicalization based on

VerbNet, WordNet and PPDB

24
2:
Transforming
→ T3.1

WordNet
 Syntactic-semantic patterns to create a dataset for ontology lexicalization based on

VerbNet, WordNet and PPDB

25
2:
Transforming
→ T3.1

OntoLex-Lemon
 Transforming LRs into lemon lexicon

Input: CSV file
Output: LMF file

26
3: Licensing
→ WP5

Licensing module
 Representing licenses in a machine-readable form. Authorizing requested actions and

executing smart-contracts.

27
2:
Transforming
→ T3.1

Apertium bilingual
dictionaries

Bringing new Apertium dictionaries into the Apertium RDF graph.

28
4: Linking c →
T3.2

Entity Linking

Algorithms for cross-lingual ontology matching

29
4: Linking c →
T3.2

Entity Linking

Algorithms for cross-lingual instance matching

30
4: Linking c →
T3.2

Entity Linking

Methods and algorithms for translation inference across dictionaries

31
4: Linking c →
T3.2

Entity Linking

Fuzzy translations

32
4: Linking c →
T3.2

Oxford Dictionary
of English

 Estimate the quality of the automatically classified sense links.
- Input: A dataset of sense links automatically generated by the OUP sense linker
system.
- Output: (a) A dataset of sense links, and (b) metadata representing how this dataset
has been generated (source dataset, quality parameters applied, etc.)

33
4: Linking c →
T3.2

OUP English
corpora

 Sense-tag corpus data with the senses pre-determined in a dictionary

34
2:
Transforming
→ T3.1

PanLex

Table 3: ​Requirements per component

Prêt-à-LLOD D2.2 Report on Community-Driven Requirements 36

