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Executive Summary

To achieve security certification according to the highest levels of assurance, formal models and
proofs of security properties are required. In the MILS context, this includes formalisation of
key components – such as separation kernels – and the formalisation of applications built on top
of these verified components. In the second chapter of this document, we use the Isabelle/HOL
proof assistant to formalise the Firewall application built on top of a verified separation kernel
according to the model of Greve, Wilding, and Vanfleet (GWV). This Firewall application has
been formalised twice after the original effort by GWV. These different efforts have been com-
pared and discussed on paper. Our main contribution is to provide a formal comparison between
these formalisations in the formal logic of a proof assistant.

In the third chapter of this document, we extend Rushby’s model of noninterference with
explicit between-domain information transfer, as well as programs that determine domain be-
haviour. These extensions enable the reasoning at an abstract level built on top of noninter-
ference, at a much finer level than allowed by base noninterference. As an illustration of our
approach, we formally model and analyse an example system inspired by the GWV Firewall.
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Chapter 1

Introduction

To achieve security certification at the highest levels of assurance (e.g. EAL6 or EAL7 of the
Common Criteria), formal models and proofs are required. In the context of MILS architec-
tures, this not only means the formalisation of key components, like separation kernels, but also
the formalisation of more mundane applications and their composition in a complete system.
Within the EURO-MILS project, we aim at providing a modelling and validation environment
based on a generic MILS architecture. This environment should ease the development of formal
models and proofs of systems built according to the MILS architectural paradigm.

Chapter 2 discusses three previous efforts about the application of formal methods to a sys-
tem built on top of a separation kernel. This application is a Firewall originally proposed and
formalised by Greve, Wilding, and Vanfleet [GWV03], who also proved its correctness using
the ACL2 theorem prover [KMJ00]. This formalisation was later replicated by Rushby [Rus04],
who proved the relevant properties in the logic of the PVS [ORS92] proof system; to do so, he
also refined the axiomatisation of the Firewall behaviour. Subsequently, a further refinement
of this formalisation was proposed by Van der Meyden [dM10], who also proves relations be-
tween the three efforts using informal pen-and-paper proofs. The main contribution of Chap-
ter 2 is to formalise Van der Meyden’s axiomatisation and proofs in the Isabelle/HOL proof
assistant [NPW02]. We also re-formulate in Isabelle/HOL the formalisations by GWV and
Rushby and the relations between the three axiomatisations. As part of this effort, we found a
small flaw in Van der Meyden’s axiomatisation, for which we present a corrected version. The
conclusion of this chapter is that all current approaches to the formal verification of MILS-like
architectures make unrealistic assumptions.

In Chapter 3, we propose an extension of Rushby’s noninterference model that makes it pos-
sible to formally reason about the communication behaviour of applications running on top of a
separation kernel proven to respect a given information flow policy. The goal of this extension
is to leverage the unrealistic assumptions made in existing approaches. The main contribution
of our new model is to extend the abstract notion of noninterference such that the flow of in-
formation can be described on a more detailed level than allowed by base noninterference. To
achieve this, we introduce an explicit notion of information and express the flow of this infor-
mation between domains. We introduce explicit domain programs to make it possible to reason
about the specific actions run inside domains. We illustrate the applicability of our new model
by revisiting the firewall application introduced by Greve, Wilding, and Vanfleet.

Chapter 4 presents concluding remarks and points to further research directions.
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Chapter 2

Formalisations of the GWV firewall

This chapter presents and discusses three existing efforts about the formal verification of an ap-
plication built on top of a verified separation kernel. In the next three sections, we introduce the
Firewall example application, the GWV model of formalised security, and express the Firewall
in term of the GWV model. Afterwards, we compare the three different axiomatisations of the
Firewall, proving relevant relations between them. We point out a flaw in the axiomatisation
of Van der Meyden, and present a corrected version. Finally, we formally show how all three
axiomatisations are sufficient to prove the desired properties of the larger system containing the
Firewall, which we take as the compositional overall correctness proof.

2.1 The Firewall Application
The application Greve, Wilding, and Vanfleet used as an example of their formalisation of se-
curity is one that sanitises useful but sensitive information for use by an untrusted application.
This so-called Firewall takes as input information presented by trusted parts of the system,
which may be sensitive. It then filters and censors this information to produce a version that can
safely be passed to applications that are not trusted to handle it securely, and delivers this sani-
tised information to a location where the untrusted application can find it. Under the assumption
that the Firewall application is the only source of information to the untrusted application, this
should provably ensure that no sensitive information ever ends up within reach of the untrusted
application.

The Firewall application does not exist in a vacuum. It runs on top of an operating system
of some sort, specified in more detail in the next section, which provides controlled access to
memory. Its job is to divide the system memory into segments and enforce limits on which
applications can access which memory segments. To ensure security, it is assumed that the
operating system is configured in such a way that the Firewall application is the only component
that can write to memory segments that are accessible to the untrusted application; moreover, it
can only write to a single such a segment, denoted as outbox. This configuration is depicted in
Figure 2.1.

For the purpose of the Firewall example, Greve, Wilding and Vanfleet do not try to express in
detail what information is and is not sensitive. Instead, they assume the presence of a predicate
black that, for a given memory segment and system state, expresses whether or not that segment
contains only nonsensitive information. Thus, in a given state, a memory segment is black if
and only if its contents are not sensitive. The function of the Firewall, then, is to make sure
it only ever writes black data to outbox. The security requirement we seek to formalise can
then be expressed as requiring that none of the memory segments accessible to the untrusted
application ever becomes nonblack. The main goal of the different formalisations presented
in the remainder of this paper is to prove that this is the case under the assumption that the
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Figure 2.1: The Firewall MILS Example.

operating system and Firewall work as specified.

2.2 The GWV model of separation
The system model proposed by Greve, Wilding and Vanfleet [GWV03] (GWV) guarantees a
security property called Separation. Extensions and variations of this model have then been
proposed [WGW10, GWRV04] and discussed [Gre10, AFT04]. We will nonetheless use the
original GWV model [GWV03], which is sufficient for the purposes of this paper.

The GWV model defines a mathematical formulation of systems similar to the one
presented in Figure 2.1. At its base, a GWV system is a deterministic state machine, with
states denoted s or t. Execution consists of repeatedly changing from a state s to the next state
denoted next(s). A GWV system contains a finite set of memory segments, which in each
state s have contents denoted select(s, a) for segment a. Furthermore, it contains a finite set of
partitions, which represent independent subcomponents akin to processes in general-purpose
operating systems. In any state, a single partition is currently active and executing; this partition
is denoted current(s) for state s. This basic model is formalised in Isabelle parlance using the
following axioms:

fixes current :: State⇒ Partition
fixes select :: State⇒ Segment::finite⇒ Value
fixes next :: State⇒ State

Here, State, Partition, Segment, and Value represent arbitrary sets. The finiteness condi-
tion on Partition is irrelevant for the correctness of any of the formalised proofs and has been
omitted. Finiteness of Segment, on the other hand, turns out to be crucial.

The GWV model assumes that the different partitions run on top of a separation kernel, a
basic operating system tasked with the duty of restricting memory access of partitions to those
accesses that satisfy a given security policy. One part of this security policy is a set of memory
segments segs(p) for each partition p describing the memory segments that that partition is
allowed to access. A more subtle component of the security policy is an information flow
policy, represented by a binary relation between memory segments, with the semantics that any
computation step that writes to memory segment a may only do so while reading from a limited
set of input memory segments. Thus, information may only flow along the edges of the directed
graph represented by the information flow policy. GWV formalise the information flow policy
as a function dia, short for direct interaction allowed, which for each memory segment a returns
a set dia(a) of memory segments that are allowed to directly influence it:
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fixes segs :: Partition⇒ P(Segment)
fixes dia :: Segment⇒ P(Segment)

The security requirement enforced by the separation kernel can then be expressed as
requiring that all memory accesses must respect the security policy. Greve, Wilding, and
Vanfleet call this property separation. Rather than describing how a separation kernel might
enforce such a security policy, GWV define separation as requiring that all actions performed
by a partition must be independent of the contents of memory segments that are not allowed
to influence the action. Specifically, they require that whenever a partition writes to a memory
segment a, the contents written may depend only on the contents of the segments that are both
in the accessible segments of the executing partition and dia(a):

assumes Separation: ∀s, t ∈ State, a ∈ Segment.

current(s) = current(t) ∧
select(s, a) = select(t, a) ∧

∀b ∈ dia(a) ∩ segs(current(s)). select(s, b) = select(t, b)
→ select(next(s), a) = select(next(t), a)

This definition reads that for any segment a, for any states for which both the contents of a
and the active partition are equal, the contents of a in the next state must be a function of the
contents of the memory segments that are both readable by the active partition and allowed to
influence a. Thus, in changing the contents of a, the executing partition may not make use of
any information other than that allowed by the security policy.

In the GWV system model, the presence and correct functioning of a separation kernel is
taken as an assumption, as formalised by the Separation axiom. Greve, Wilding, and Vanfleet
propose that this axiom is a useful base for proving security properties of larger systems that rely
on a separation kernel as a key component. They use their Firewall application as an example
of how to prove security properties of a larger system by relying on the separation kernel as a
provider of the base security infrastructure.

2.3 Firewall in GWV
In this section, we formally define both the Firewall application and the security property it is
supposed to provably establish.

The Firewall application is a partition F that collects sensitive information from unspecified
locations in the system, and passes a sanitised version of this information along to a different
partition, B, that cannot be trusted to handle it securely. Relying on the separation kernel to
ensure that no other partitions can write to memory segments accessible to the untrusted appli-
cation, this should ensure that the untrusted application can only ever get access to information
that has been judged safe by the Firewall.

GWV satisfy this information flow property as the specific requirement that there is a single
memory segment outbox accessible to B which may be influenced by segments accessible to
partitions other than B. Furthermore, any such segments that can influence outbox can only be
accessible by F and B. Formally:
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fixes B :: Partition
fixes F :: Partition
fixes outbox :: Segment

assumes FW Pol: ∀a, b ∈ Segment, P ∈ Partition.
a ∈ segs(B) ∧
b ∈ dia(a) ∧
b ∈ segs(P ) ∧
P 6= B →
(P = F ∧ a = outbox)

Together with the Separation axiom described in the previous section, this should suffice to
ensure that the only information that ends up in segments accessible to B is information that
the Firewall put there.

As described in Section 2.1, the behaviour of the Firewall is modelled using the black
predicate, which models the distinction between sensitive and nonsensitive information. A
memory segment is black in a given state if the contents of that segment in that state does
not contain any sensitive information. The security functionality of the Firewall, then, is that
it never writes any information to outbox that would cause it to become nonblack. This can
be formalised as the proposition that outbox never changes from black to nonblack while the
Firewall partition F is executing:

fixes black :: State⇒ Segment⇒ B

assumes FW Blackens: ∀s ∈ State.
current(s) = F ∧ black(s, outbox)→
black(next(s), outbox)

We can now state a formal definition of the correctness of the Firewall application.
The desired security property of the complete system including the Firewall, the untrusted
application, and any possible other applications is that the segments accessible to B never
become nonblack. The requirement that the segments of B start black is not a property of the
Firewall; the weaker property that can be guaranteed by the Firewall is that the segments of B
are already black, they will remain black. Introducing a function run to express the execution
of a number of computation steps, this can be formalised as follows:

fun run :: N⇒ State⇒ State where
run(0, s) = s
run(Suc(n), s) = run(n,next(s))

theorem FW Correct: ∀s ∈ State, n ∈ N, a ∈ segs(B).
black(s, a)→ black(run(s, n), a)

The combination of the Separation, FW Blackens, and FW Pol axioms is insufficient to
prove the FW Correct property. For this to be the case, we need further properties describing
the behaviour of the black predicate; for example, if black data in the segments accessible to
B could become nonblack on its own accord, the FW Correct security property quickly falls
apart. It is in the axiomatisation of the black predicate that GWV, Rushby, and Van der Meyden
differ in their approaches. These three approaches will be the topic of the next section.
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2.4 Axiomatisatising blackness
The behaviour of the Firewall is defined in terms of the black predicate, which models the
property of a segment of memory of not containing any sensitive information. It would be
expected for this property to satisfy certain axioms, such as the proposition that a segment
cannot change from black to nonblack without the segment contents being modified. Certainly,
if a nonsensitive chunk of memory were suddenly to become sensitive without anyone touching
that piece of memory, this would violate our assumptions on what sensitivity is supposed to
mean.

In their publications, GWV, Rushby, and Van der Meyden take different approaches in char-
acterising the assumed behaviour of the black predicate. The basic notion of all three ap-
proaches is that nonblack data cannot be generated from black data; any computational process
that takes only nonsensitive data as its input must surely produce output that is also nonsensi-
tive. In this section, we compare the three different axiomatisations of this notion, and prove
relevant relations between them.

2.4.1 The GWV Formalisation
One of the main properties that GWV require the black predicate to have is that in a system in
which all segments are black, all segments will remain black; this is a special case of the “no
spontaneous generation of nonblack data” principle described above. Another property they
require is that blackness is a function of the content of a memory segment; it is not allowed that
the same data is considered black or nonblack depending on the context, as this would allow
sensitive data to leak into a completely idle partition.

assumes S5: (∀a ∈ Segment.black(s, a))→
(∀a ∈ Segment.black(next(s), a))

assumes S6: select(s, a) = select(t, a)→
black(s, a) = black(t, a)

These two properties are not sufficient to prove all desired properties of blackness, however.
In particular, we would like to be able to prove a version of S5 restricted to a particular partition:
the proposition that when all segments of a partition P are black in a state in which P is active,
then all these segments will still be black in the next state. A lemma like this has an obvious
role to play in any potential proof of FW Correct.

To make this possible, GWV assume that for every state s and any segment a, a state
can be constructed in which a is black but which is otherwise identical to s; such a state
could be constructed by, say, wiping the contents of the memory segment a. To formalise this
notion, they posit the existence of a function scrub producing such a state scrub(a, s), with
straightforward properties:

fixes scrub :: Segment⇒ State⇒ State

assumes S1:
scrub(a, scrub(b, s)) = scrub(b, scrub(a, s))

assumes S2:
a 6= b→ select(scrub(b, s), a) = select(s, a)

assumes S3:
black(scrub(b, s), a)↔ (a = b ∨ black(s, a))
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assumes S4:
current(scrub(a, s)) = current(s)

Axioms S1, S2, and S4 together specify that scrub does not change anything relevant about
a state other than the contents of the scrubbed segment; axiom S3 specifies that a scrubbed
segment is black.

With these properties, the lemma sketched above can be proven. For if all segments accessi-
ble to partition P are black in a state s with current(s) = P , we can construct a state t in which
all segments are black by scrubbing all other segments; per axiom S5, the next state next(t)
of t also has all P -accessible states black. But s and t have the same contents of all memory
segments accessible to P ; according to the Separation axiom, the same must hold for next(s)
and next(t). Thus, per S6, because all P -accessible segments in next(t) are black, the same
must hold for next(s).

The axioms S1 . . . S6 together with the FW Blackens, FW Pol, and Separation properties
are sufficient to prove the desired FW Correct theorem. We shall prove this by showing that the
GWV axioms are stronger than the Rushby axioms, and that the Rushby axioms are sufficient
to prove FW Correct, both claims of which are described in the section below.

2.4.2 Rushby’s Version
The formalisation proposed by Rushby is a reasonably minor refinement of the original by
GWV. Like GWV, Rushby includes the two main properties from the GWV formalisation:

assumes B4: select(s, a) = select(t, a)→
black(s, a) = black(t, a)

assumes B5: (∀a ∈ Segment.black(s, a))→
(∀a ∈ Segment.black(next(s), a))

The difference between the two formalisations is that instead of a function scrub that
replaces the contents of a single segment by a blackened version, Rushby posits a function
blacken that for a given state scrubs all segments that are not black.

fixes blacken :: State⇒ State

assumes B1:
black(blacken(s), a)

assumes B2:
black(s, a)→ select(s, a) = select(blacken(s), a)

assumes B3:
current(s) = current(blacken(s))

It is clear that this axiomatisation is quite similar to GWV’s original. The lemma that was
proven for the GWV formalisation can be proven for Rushby’s version in a very similar way.
Furthermore, it is clear that the Rushby axioms follow from the GWV axioms: the blacken
function can be constructed by calling scrub on each segment that is not black1, and the result-
ing function clearly satisfies the B1, B2, and B3 axioms.

Unfortunately, formalising this fact in Isabelle proved challenging. In the logic of Isabelle,
the fact that Segment is finite is expressed as a nonconstructive assertion that a function f ::

1Here the fact that the number of segments is finite is critical: without this requirement, the function blacken
could not be defined based on scrub.
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N ⇒ Segment and a natural number n exist such that the segments f(m) for 0 ≤ m < n
exactly cover Segment. Because this is a nonconstructive assertion, we can only similarly
prove in a nonconstructive way that a function blacken must exist that behaves like a repeated
application of scrub. Both proving that this function exists, and working with this function to
prove properties such as B1 . . . B3 about it, are technically challenging; moreover, they result
in cumbersome proofs that are difficult to understand due to the technical tricks intermixing
the substance of the argument. We consider this a weakness of the Isabelle proof system; a
more readable way of dealing with nonconstructively existing entities would be a welcome
improvement. Moreover, to avoid turning this section into an unreadable mess of proof trickery,
we have omitted the formal proof that the GWV axioms imply the Rushby axioms.

Similarly to the previous section, we prove that the axioms B1 . . . B5 combined with
the FW Blackens, FW Pol, and Separation properties are sufficient to prove the desired
FW Correct theorem by reducing this problem to the related problem for Van der Meyden’s
axiom. Doing so will be the subject of the remainder of this paper.

2.4.3 Van der Meyden’s Axiom
Van der Meyden argues that these axioms defined by GWV and Rushby unnecessarily restrict
the class of systems to which the results apply. He proposes an alternative formulation con-
sisting of one axiom over predicate black without the need of ancillary functions, and thus the
richness of the state space they imply. Rushby’s axiom B5 basically states that if the entire sys-
tem is black, then this is still the case in the next state. Van der Meyden generalises this notion
by requiring that if the value of a memory segment is computed based only on the values of a
set of memory segments X , and all segments in X are black, then the computed segment must
be black in the next state.

The notion of being computed based only on a set of memory segments is just the same
that GWV use to define the Separation axiom. In the Separation axiom, the requirement of
the security policy is that the content of a memory segment in the next state is a function
of its current content, the active partition, and the contents of the memory segments that are
allowed to influence it. Using the same construction, Van der Meyden defines his sole axiom
formalising black as follows:

fun equals :: P(Segment)⇒ State⇒ State⇒ B where
equals(X, s, t) = ∀a ∈ X.select(s, a) = select(t, a)

assumes Black: ∀X ∈ P(Segment), s ∈ State,
a ∈ Segment.

(∀r, t ∈ Segment.equals(X, r, t) ∧
current(r) = current(t)→
select(next(r), a) = select(next(t), a)) ∧

(∀b ∈ X.black(s, b))→
black(next(s), a)

This axiom states that if the value of segment a in the next state of s is a function of the
segments in X and the active partition, then this function preserves blackness. In other words,
as the value of a is computed based on X , so is the blackness of a inherited from X .

The Black axiom follows from the Rushby axioms; indeed, the proof for this in Isabelle is
very simple. The proof starts by assuming the two premises stated in the Black axiom:
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fix X s a
assume 1:

(∀r, t ∈ Segment.equals(X, r, t) ∧
current(r) = current(t)→
select(next(r), a) = select(next(t), a))

assume (∀b ∈ X.black(s, b))

Because a is already black in s and is thus unaffected by blacken due to B2, and because
blacken does not change the active partition of s, according to assumption 1 we have
select(next(s), a) = select(next(blacken(s)), a).

hence select(next(s), a) = select(next(blacken(s)), a)
by (metis 1 B2 B3 equals def)

But of course blacken(s) is black for all segments; by B5, so is next(blacken(s)). Because
by B4 blackness is a function of the contents of a memory segment, we get

thus black(next(s), a)
by (metis B1 B4 B5)

which completes the proof.
Unfortunately, the Black axiom is not sufficient to show the FW Correct security require-

ment. This problem is the topic of the next section.

2.5 Preservation of blackness
In the paper introducing the Black axiomatisation of the black predicate[dM10], Van der Mey-
den appears to prove that together with the FW Pol, FW Blackens, and Separation axioms,
the Black axiom is sufficient to prove the FW Correct theorem specifying the secure operation
of the Firewall. Unfortunately, this proof is incorrect, and the Black axiom is in fact not strong
enough to ensure that the black predicate is sufficiently well-behaved.

To prove FW Correct, Van der Meyden correctly shows that partitions other than B, in-
cluding the Firewall partition F , can never make any segments of B nonblack. He also shows
that B can never make any segments other than outbox nonblack without some other segment
already being nonblack. A problem occurs, however, in proving that B can never make outbox
nonblack. For this to be the case due to the Black axiom, there needs to be a set of segments X
such that the next contents of outbox is a function of the active partition and the contents of the
segments in X .

Van der Meyden shows that a set of segments X exists such that among all states s
for which current(s) = B, the contents of outbox in next(s) is a function of the con-
tents of the segments in X . That is, he constructs a set X such that for all segments r
and t for which current(r) = current(t) = B, if equals(X, r, t) holds, then we can con-
clude select(next(r), outbox) = select(next(t), outbox). Based on the “no spontaneous
generation of nonblack data” intuition, we would expect this to be sufficient to show that
black(next(s), outbox) holds under the assumption that current(s) = B and all segments
in X are black in s, and Van der Meyden argues exactly this in his proof of FW Correct. This
does not follow from the Black axiom, however.

Indeed, there is nothing in the Black axiom that requires a computation step of B to main-
tain the blackness of outbox when all segments accessible to B are black. This would require
the next contents of outbox to be a function of the active partition and segs(B). But in general,
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this is not the case; the Firewall partition generally writes to outbox based on segments not
accessible to B, which means that the next content of outbox is not independent of those seg-
ments. Appendix 2.7 describes a specific counterexample in which this is the case, showing that
the Separation, FW Pol, FW Blackens, and Black axioms can all be true while FW Correct
is false.

To remedy this, we propose a stronger version of the Black axiom that does not suffer
from this problem, which we feel better formalises the intuition behind the Black axiom. In
his flawed proof, Van der Meyden inadvertently argues that the next contents of outbox are a
function of the active partition and the contents of a set X of segments among those states s for
which current(s) = B; because this predicate current(s) = B is true for the specific state he
is considering, he concludes that blackness follows for outbox in the next state of this specific
state. We feel this line of reasoning should hold for black for arbitrary predicates of s. That is,
if the functionality of segment a on segments X property holds for all states matching some
predicate P , and all segments of X are black in a state s also matching this predicate P , then a
should be black in the next state of s. Formally:

assumes StrongBlack: ∀P ∈ P(State),
X ∈ P(Segment), s ∈ State, a ∈ Segment.

(∀r, t ∈ Segment.P (r) ∧ P (t) ∧
equals(X, r, t) ∧
current(r) = current(t)→
select(next(r), a) = select(next(t), a)) ∧

(∀b ∈ X.black(s, b)) ∧
P (s)→
black(next(s), a)

This definition is a generalisation of Black; using P (s) = true yields Black as a special
case. Using this stronger axiom, Van der Meyden’s proof does hold; the problem described
above no longer applies, and the rest of the proof goes through unchallenged.

We feel that the StrongBlack axiom is a more accurate characterisation of the idea that non-
black data cannot be generated from black data. The added predicate makes it possible to show
more fine-grained instances of subsystems only having access to black data, and conclude the
expected consequences of that fact for these limited cases. In the next section, we demonstrate
how this notion can be used to conclude useful properties of black.

Unlike the Black axiom, the StrongBlack axiom does not follow from Rushby’s formalisa-
tion, and neither does the Rushby formalisation follow from the StrongBlack axiom. The two
formalisations are formally incomparable. For both directions, the reason that the implication
does not hold is straightforward. Rushby’s blacken function requires the existence of a large
set of states, including lots of states in which all segments are black; the StrongBlack axiom,
however, can easily hold in systems in which particular segments are always black. Conversely,
because the blacken function does not preserve arbitrary predicates P , it is of no help in prov-
ing the StrongBlack axiom for arbitrary values of P . Constructing specific counterexamples
for both implications is left as an exercise for the reader.

Like Rushby’s axiomatisation, the StrongBlack axiom is sufficient to prove the correctness
of the Firewall when combined with the Separation, FW Pol, and FW Blackens postulates.
We will prove both in the next section.
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2.6 Proving FW Correct
In this section, we formally prove the correctness of the Firewall under the GWV, Rushby, and
StrongBlack axiomatisations of the black predicate. That is, for these three axiomatisations,
we prove that those axioms combined with the Separation, FW Pol, and FW Blackens axioms
together imply the security property FW Correct.

As described in Section 2.4.2, the Rushby axioms follow from the GWV axioms. We can
therefore prove the correctness of both using a single proof that uses only the Rushby axioms as
an assumption. No such luck applies to the Rushby and StrongBlack axiomatisations, however.

To avoid having to prove the same property twice for the Rushby and StrongBlack axioms,
we first construct an axiomatisation that is weaker than either. This axiomatisation only
functions as an artefact of proof; it does not aim to fully characterise the black predicate,
but is only there to simplify the proofs. The axiomatisation we have in mind is a variant of
StrongBlack that generalises Black in a minimal way while still being powerful enough to
support the attempted usage in Van der Meyden’s proof:

assumes WeakBlack: ∀X ∈ P(Segment), s ∈ State,
a ∈ Segment.

(∀r, t ∈ Segment.current(s) = current(r) ∧
equals(X, r, t) ∧
current(r) = current(t)→
select(next(r), a) = select(next(t), a)) ∧

(∀b ∈ X.black(s, b))→
black(next(s), a)

The WeakBlack axiom is a special case of the StrongBlack axiom produced by substitut-
ing the predicate P (t) ≡ current(s) = current(t) for the variable P ; thus, it trivially follows
from StrongBlack. More interestingly, it also follows from Rushby’s axioms, using almost
exactly the same proof as the one in Section 2.4.3:

fix X s a
assume 1:

(∀r, t ∈ Segment.
current(s) = current(t) ∧ current(r) = current(t) ∧
equals(X, r, t)→
select(next(r), a) = select(next(t), a))

assume (∀b ∈ X.black(s, b))
hence select(next(s), a) = select(next(blacken(s)), a)
by (metis 1 B2 B3 equals def)

thus black(next(s), a)
by (metis B1 B4 B5)

When using the WeakBlack axiom instead of Black, Van der Meyden’s proof is correct. We
prove this below by presenting Van der Meyden’s proof in fully formalised form in the Isabelle
proof system.

The theorem we want to prove is that FW Correct holds under the assumption of the
Separation, FW Blackens, FW Pol, and WeakBlack axioms:
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theorem
assumes Separation: ∀s, t ∈ State, a ∈ Segment.

equals(dia(a) ∩ segs(current(s)), s, t) ∧
current(s) = current(t) ∧
select(s, a) = select(t, a)→

select(next(s), a) = select(next(t), a)

assumes FW Pol: ∀a, b ∈ Segment, P ∈ Partition.
a ∈ segs(B) ∧
b ∈ dia(a) ∧
b ∈ segs(P ) ∧
P 6= B →
(P = F ∧ a = outbox)

assumes FW Blackens: ∀s ∈ State.
current(s) = F ∧ black(s, outbox)→
black(next(s), outbox)

assumes WeakBlack: ∀X ∈ P(Segment), s ∈ State,
a ∈ Segment.

(∀r, t ∈ Segment.current(s) = current(r) ∧
equals(X, r, t) ∧
current(r) = current(t)→
select(next(r), a) = select(next(t), a)) ∧

(∀b ∈ X.black(s, b))→
black(next(s), a)

shows ∀s ∈ State, n ∈ N.
(∀a ∈ segs(B).black(s, a))→
(∀a ∈ segs(B).black(run(n, s), a))

Proof of this property is ultimately by induction on n. To simplify things, we first prove the
correctness of the induction step as a lemma.

proof -
have 0: ∀s ∈ State, a ∈ Segment.

(∀b ∈ segs(B).black(s, b))→
a ∈ segs(B)→ black(next(s), a)

proof -
fix s a
assume 1: ∀b ∈ segs(B).black(s, b)
assume 2: a ∈ segs(B)

We now need to prove that black(next(s), a). This proof will proceed by cases, but first
we prove the simple lemma that FW Pol applies to a: in other words, that if something can
influence a, then a must be outbox and that something must be accessible only to B and F .
This is a triviality, but proving it here will spare us the effort of having to duplicate the proof in
all the cases that make use of it.

EURO-MILS D21.4 Page 12 of 29



D21.4 – Formal Framework for MILS Integration

with FW Pol have 3:
∀b ∈ Segment, P ∈ Partition.
b ∈ segs(P )→ P 6= B →
b ∈ dia(a)→ (a = outbox ∧ P = F )

by simp

The proof of black(next(s), a) will proceed by cases. We first consider the case where
a 6= outbox.

show black(next(s, a))
proof cases
assume 4: a 6= outbox

Because a 6= outbox, by FW Pol and Separation it follows that the next contents of a
are a function of the contents of segs(B) and the active partition. The WeakBlack axiom then
requires that the blackness of the segments in segs(B) which we assumed in assumption 1. To
show this, we first need to establish the functional dependence of a on segs(B) and the active
partition as a lemma to later feed to WeakBlack.

have ∀r, t ∈ State.
current(s) = current(r)→
current(r) = current(t)→
equals(segs(B), r, t)→
select(next(r), a) = select(next(t), a)

proof auto
fix r t
assume 5: current(s) = current(t)
assume 6: current(r) = current(t)
assume 7: equals(segs(B), r, t)

Because a ∈ segs(B) and equals(segs(B), r, t), we have select(r, a) = select(t, a).

with 2 have 8: select(r, a) = select(t, a)
unfolding equals def by simp

Because of FW Pol and the fact that a 6= outbox, we must have dia(a) ⊆ segs(B).
Because equals(segs(B), r, t) and (X ∩ Y ) ⊆ X , we certainly have the following:

from 3 4 7 have
equals(dia(a) ∩ segs(current(r)), r, t)

unfolding equals def by auto

But then Separation gives us the desired result:

with 6 8 Separation show
select(next(r), a) = select(next(t), a)

by simp
qed

This finishes the lemma stating that the next contents of a are a function of the contents of
segs(B) and the active partition. The WeakBlack axiom will now prove the blackness of a in
next(s).

with 1 WeakBlack show black(next(s), a) by auto
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This finishes the case where a 6= outbox.
Next, we make a further case distinction on the value of the active partition in s. We con-

sider three cases: current(s) = B, current(s) = F , and current(s) 6= B ∧ current(s) 6= F .

next assume 4: a 6= outbox
show ?thesis proof cases
assume 5: current(s) = B

The case where current(s) = B uses the same structure as the a 6= outbox case. It first
proves the lemma that the next contents of a are a function of the contents of segs(B) and the
active partition.

have ∀r, t ∈ State.
current(s) = current(r)→
current(r) = current(t)→
equals(segs(B), r, t)→
select(next(r), a) = select(next(t), a)

proof auto
fix r t
assume 6: current(s) = current(t)
assume 7: current(r) = current(t)
assume 8: equals(segs(B), r, t)
with 2 have 9: select(r, a) = select(t, a)
unfolding equals def by simp

The details of this step are different from the a 6= outbox case, however. Here, the
next contents of a are only a function of the contents of segs(B) and the active partition
for those states s with current(s) = B; in other words, this is the point in the proof in
which the difference between WeakBlack and Black is crucial, and it’s the point where
Van der Meyden’s original proof is incorrect. Because current(r) = current(s), we have
equals(dia(a) ∩ segs(current(r)), r, t):

from 5 6 7 8 have
equals(dia(a) ∩ segs(current(r)), r, t)

unfolding equals def by simp

The remainder of this case proceeds in the same way as the case where a 6= outbox.

with 7 9 Separation show
select(next(r), a) = select(next(t), a)

by simp
qed
with 1 WeakBlack show black(next(s), a) by auto

This concludes the case where current(s) = B.
The case where current(s) = F is almost trivial; blackness of a in next(s) follows

immediately from its blackness in s and FW Blackens:

next assume 5: current(s) 6= B
show ?thesis proof cases
assume 6: current(s) = F
from 1 2 4 have black(s, outbox) by simp
with 4 6 FW Blackens show ?thesis by simp
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All that remains is the case where both current(s) 6= B ∧ current(s) 6= F . This, too, is a
simple case: the security policy forbids the active partition from modifying any of the segments
of B, which means the same proof used for the a 6= outbox case applies.

next assume 6: current(s) 6= F
have ∀r, t ∈ State.

current(s) = current(r)→
current(r) = current(t)→
equals(segs(B), r, t)→
select(next(r), a) = select(next(t), a)

proof auto
fix r t
assume 8: current(s) = current(t)
assume 9: current(r) = current(t)
assume equals(segs(B), r, t)
with 2 have 10: select(r, a) = select(t, a)
unfolding equals def by simp

with 3 5 6 8 9 have
equals(dia(a) ∩ segs(current(r)), r, t)

unfolding equals def by auto
with 9 10 Separation show

select(next(r), a) = select(next(t), a)
by simp
qed
with 1 WeakBlack show black(next(s), a) by auto
qed qed qed qed

Because this is the last case, this finishes the proof of the lemma which states the cor-
rectness of the induction step of the main theorem. That is, we just proved ∀s, a.(∀b ∈
segs(B).black(s, b))→ a ∈ segs(B)→ black(next(s), a).

With this lemma in hand, we can now easily prove the main theorem, with an appeal to the
lemma 0 in the induction step:

shows ∀s ∈ State, n ∈ N.
(∀a ∈ segs(B).black(s, a))→
(∀a ∈ segs(B).black(run(n, s), a))

proof -
fix s n
assume ∀a ∈ segs(B).black(s, a)
then show ∀a ∈ segs(B).black(run(n, s), a)
proof (induction n, auto)
fix n x
assume 2: ∀x ∈ segs(B).black(run(n, s), x)
assume 3: x ∈ segs(B)
with 0 2 show black(next(run(n, s)), x) by simp
qed qed qed

This completes the proof.
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2.7 Counterexample to Van der Meyden’s axiom
In Section 2.5, we described how a system can be constructed that satisfies the Separation,
FW Pol, FW Blackens, and Black axioms, while still not satisfying FW Correct. For the
sake of completion, we provide here a specific minimal system for which this is the case.

Consider a GWV system as described in Section 2.2 consisting of two segments out-
box and inbox, a partition B with segs(B) = {outbox}, and a second partition F with
segs(F ) = {outbox, inbox}. The dia function does not constrain any types of influence:
dia(a) = {outbox, inbox} for both values of a. The system has three possible states, named
S1, S2, and S3. The three states succeed each other in a cycle: next(S1) = S2, next(S2) = S3,
and next(S3) = S1.

The contents of the memory, its sensitivity, and the active partition are summarized in Ta-
ble 2.1. The F partition is active in the states S1 and S2, and B is active in S3. The contents of
outbox are equal for states S1 and S2, and different for S3; the contents of inbox are equal for
S1 and S3 and differnet for S2. Of course, the exact values are irrelevant.

The outbox segment is black in states S2 and S3; the inbox segment is never black. This has
the curious property that the states S1 and S2 have the same contents for the outbox segment,
but differing blackness for that segment; the GWV and Rushby axiomatisations of the black
predicate would not allow this, but it is possible under the Black axiom.

The system described here satisfies the Separation axiom. Because the dia function de-
scribes the complete relation and thus does not forbid anything, and because B does not write
to inbox in the one state in which it is active, this is trivial.

Because B and F are the only partitions in the system and outbox is the only segment in
segs(B), FW Pol is trivially satisfied. The FW Blackens axiom is easily checked by verifying
that black(next(s), outbox) is true for every state s with current(s) = F .

Showing that this system satisfies Black is less obvious. The value of outbox in the next
state of s is not a function of the current value of {outbox} and the active partition; in-
deed, the states S1 and S2 have the same active partition and the same values for outbox, yet
select(next(S1), outbox) = 1 6= 2 = select(next(S2), outbox). The value of outbox in the
next stage of s is a function of the current value of {inbox} and the active partition, and there-
fore also of the superset {outbox, inbox}. However, all we can conclude from this using the
Black axiom is that if all segments in {inbox} are black, then outbox must be black in the next
state. Because inbox is never black, this is vacuously true. Thus, the system satisfies Black in
a vacuous way.

The WeakBlack axiom, and therefore also the StrongBlack axiom, would note that among
all states for which current(s) = B, the contents of outbox in the next state is a function of the
active partition and the contents of {outbox}; indeed, it is even a function of the active partition
and the contents of ∅. Thus, they would require that whenever outbox is black in a state for
which B is the active partition, then outbox must still be black in the next state. This system,
then, does not satisfy the WeakBlack axiom, and is not a counterexample against it.

s next(s) current(s) select(s, outbox) select(s, inbox) black(s, outbox) black(s, inbox)
S1 S2 F 1 3 false false
S2 S3 F 1 4 true false
S3 S1 B 2 3 true false

Table 2.1: The Firewall MILS Example.
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For the Black axiom, however, it is indeed a counterexample. This system does not satisfy
FW Correct; in state S3 all segments of B are black, yet in the next state S1, this is no longer
the case. That makes this a system for the Separation, FW Pol, FW Blackens, and Black
axioms are satisfied, yet FW Correct does not hold, and a proof that Van der Meyden’s proof
is flawed.

2.8 Conclusion
In the previous section, we have proven the formal property Separation ∧ FW Pol ∧
FW Blackens ∧WeakBlack → FW Correct. That is, we have shown that the desired se-
curity property that the untrusted application does not gain access to unprivileged information
holds, under assumptions that the separation kernel and Firewall application behave in a certain
way. An issue remains that the corrected axiom from Van der Meyden somehow assumes sepa-
ration. This is not a satisfactory solution as the main objective is to obtain a clear decomposition
of the responsibility. Regarding the firewall, we should only assume that it behaves as a firewall
and not as firewall together with a separation kernel. The next chapter proposes a first solution
to this issue.

EURO-MILS D21.4 Page 17 of 29



D21.4 – Formal Framework for MILS Integration

Chapter 3

Modeling Information Routing with Nonin-
terference

Many requirements have been proposed that formalise the behaviour of separation kernel;
examples include Rushby’s Noninterference [Rus92], Greve, Wilding and Vanfleet’s Separa-
tion [GWV03], and many variations of these schemes. Formalising the behaviour of individual
applications, on the other hand, is a problem for which few satisfactory approaches exist; as we
have argued in the previous chapter, existing solutions —such as illustrated by the GWV Fire-
wall [GWV03]— are too unrealistic to be usable for practical formalisations. A similar pred-
icate holds for formalisations of the information flow between different applications; whereas
separation kernel formalisations such as noninterference include facilities for describing the
forms of communication allowed between different applications, these mechanisms are far too
coarse-grained for many practical verification challenges.

In this chapter, we propose an extension of Rushby’s noninterference model that makes it
possible to formally reason about the communication behaviour of applications running on top
of a separation kernel proven to respect a given information flow policy. The main contribution
in this model is to extend the abstract notion of noninterference such that the flow of information
can be described on a more detailed level than allowed by base noninterference. More precisely,
the contributions of our paper are the following:

1. In Section 3.2, we extend the Rushby system model with an explicit notion of information,
and the way it can flow between domains.

2. To enable the reasoning about specific programs that run inside domains supported by the
separation kernel, we introduce the notion of domain programs that determine domain
behaviour in Seection 3.3.

3. Finally, in Section 3.4, we illustrate the applicability of the extensions above by per-
forming the formal verification of an example system, re-visiting the firewall example
originally introduced by Greve, Wilding, and Vanfleet.

Note that all models and proofs are all formalised within the logic of the Isabelle/HOL theorem
proving system [NPW02].

3.1 Background and Related Work
A separation kernel is a simple type of operating system that provides an environment in which
multiple components, known as domains or partitions, can run independently on a shared piece
of hardware without interference from each other. In that sense, it is not much different from a
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general-purpose operating system, which might provide the same functionality regarding pro-
cesses. Unlike general-purpose operating systems, a separation kernel provides the further guar-
antee that different partitions cannot affect each other in any way whatsoever, except through a
set of well-defined communication channels through which influence may flow. In the absence
of such a communication channel between two partitions, one partition should not be able to
distinguish whether the other partition is present at all. This is a much stronger guarantee than
what is implemented by general-purpose operating systems, in which mechanisms like con-
tention of resources such as processing power and memory, or a shared data storage system
such as a filesystem, provide ways in which influence can flow unchecked.

To support formal reasoning about systems based on separation kernels, Rushby [Rus92] intro-
duced the notion of noninterference as a formal model of the services and guarantees provided
by separation kernels. This automata-theoretic formalisation models a system as a set of secu-
rity domains —independent components separated to some degree by the separation kernel—
that can each access a certain part of the system resources, such as a part of the memory of the
system allocated to that domain. Each of these domains can perform a set of system calls, re-
quests towards the separation kernel to perform a certain restricted operation that will hopefully
change the state of the global system in some way. Together, the domain-accessible resources
and executable system calls define a transition system, with system calls identifying labelled
actions, and domain resources representing a (structured) state labelling function.

More formally, a Rushby system is a deterministic labelled transition system
(S, s0, D,A, step, O,obs), where

• S is a set of states;

• s0 ∈ S is the initial state;

• D is a set of domains;

• A is a set of actions, each representing a particular system call performed by a particular
domain;

• step : S × A→ S is a transition function;

• O is a set of possible domain observations, and

• obs : S×D → O is a function describing the contents of the system resources accessible
to a particular domain in a given state.

In this definition, an action a ∈ A represents a system call that can be performed by a particular
domain d ∈ D. In particular, each action can be performed only by a single domain, denoted
dom(a); as a notational convenience, the set of actions a for which dom(a) = d is denoted as
Ad. The transition function step describes the way the system state changes as a consequence
of the execution of system calls performed by domains; in particular, step(s, a) is the result-
ing state after executing the action a in state s. As such, the transition function can also be
interpreted as a deterministic transition relation→, with s a→ t if and only if t = step(s, a).

The observation function obs abstractly describes the degree to which a given domain can
tell states of the whole system apart. For a state s ∈ S and domain d ∈ D, the observa-
tion obs(s, d) describes the state in s of all resources that d has access to; consequently, if
obs(s, d) = obs(t, d) for states s and t, the states s and t are indistinguishable to d. This will
become critical when formalising strong separation properties.
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ipurge′ ([], E) = []
ipurge′ (α · a,E) =

ipurge′ (α, (E ∪ {dom(a)})) · a
if dom(a) d for some d ∈ E

ipurge′ (α,E)
otherwise

ipurge (α, d) = ipurge′ (α, {d})

Figure 3.1: Rushby’s definition of the ipurge function. ipurge′ (α,E) is the subsequence of
actions of α that are allowed to influence at least one domain in E.

A Rushby system as defined above models the behaviour of an operating system of sorts in
which a domain structure can be recognised; it does not, as such, describe any guarantees
regarding the level of domain isolation realised by the operating system kernel.

An information flow policy is a description of the degree and forms in which information
is allowed to flow between different security domains; in other words, it is a specification of
the degree to which domains running on a separation kernel need not be perfectly isolated from
each other. In the noninterference model, such a policy takes the form of a reflexive binary
relation  between domains, in which a policy  with d  e approximately encodes the
property that domain e is allowed to learn information available to domain d whenever domain
d performs an action. In other words, it roughly specifies that domain d is allowed to influence
domain e through its actions.

To substantiate this informal property, Rushby defines a function ipurge : A∗ ×D → A∗,
described in Figure 3.1, that for a sequence of actions α and a domain d defines the subse-
quence α′ of actions whose effects may be noticed by d after the execution of α, according
to the information flow policy . Based on this function, Rushby defines the noninterference
property as the requirement that for all action sequences α and β and for all domains d, if
ipurge (α, d) = ipurge (β, d), then obs(s0 · α, d) = obs(s0 · β, d). In other words, if α and
β are action sequences that should have the same observable consequences for domain d accord-
ing to the information flow policy, the resulting states after executing these action sequences in
the initial state s0 should be indistinguishable to d.

Noninterference for a given information flow policy is a property that may or may not be
satisfied by a complete system, consisting of both an operating system of some sort and domains
running on that operating system. Noninterference can be considered a property of separation
kernels if the separation kernel can guarantee that the noninterference property always holds.
That is, an operating system can be considered a separation kernel if, for a given information
flow policy , it can guarantee that the system as a whole satisfies the noninterference property
no matter what applications run inside particular security domains, and no matter what these
applications try to do.

Information Flow Content
The noninterference property, as described above, specifies in formal detail the guarantees that
a given application can rely on when running as an isolated component on top of a separation
kernel. This is a great help when any attempt is made to prove properties about the behaviour
of an application in the context of a separation kernel; for in this analysis, the behaviours of
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any applications that are unable to affect the studied application can be disregarded entirely.
Domains that can affect the studied application remain a complication, but this still greatly
reduces the number of cases to consider.

Noninterference does not provide any tools, however, for reasoning about the detailed be-
haviour of domains that are allowed to influence the domain under consideration. As an obvious
example, an application domain can very rarely function as desired if a different domain that is
allowed to influence it chooses to exercise that allowance by completely wrecking the destina-
tion domain’s working memory; yet the noninterference property does not contain any clause
to disallow this. Meaningful cooperation between such domains is only practically possible if
any information exchange between the cooperating domains happens in the form of some well-
defined communication protocol; a typical example would be an inter-domain message passing
system as implemented by many operating systems in countless variations. As a consequence,
any domain-level formal analyses of systems in which inter-domain information exchange takes
place must necessarily specify a communication protocol of some sort, and adherence thereto
of the domains involved. As noninterference by itself does not provide anything like this, such
a system must be specified on top of the noninterference abstractions.

If such a system is taken for granted, it becomes possible to reason formally about the
information content transmitted between domains that influence each other. If a domain d is
allowed to influence domain e, domain e is not usually supposed to have complete access to
all information accessible to d; indeed, the desire to transfer such information from d to e in a
limited way is one of the main reasons for having d and e as two separate domains in the first
place.

In practical systems, one commonly wants to achieve a situation in which a domain d transmits
some of the information it holds to a receiver domain e, while keeping other, private information
away from any domains other than itself. Consequently, when doing formal analysis of systems,
this is the sort of property one would like to formally establish.

It is clear that a model describing the flow of information content along domains would be
a useful formal basis for doing this sort of analysis. Using such a system, one could formulate
properties about the form of information transfer that is being undertaken by particular domains.
Combining such properties with the guarantees made by the separation kernel as formalised by
the noninterference property, one could then prove that the system as a whole consisting of both
the separation kernel and the various domains never exhibits undesirable information transfer.

In this paper, we aim to develop a simple model to describe coordinated domain information
exchanges of this sort, in a way that connects well with the guarantees delivered by the nonin-
terference property. We also illustrate a method for describing the ways in which domains make
use this system, thus specifying the behaviour of domains in regards to information transfer.

To confirm that this model, while abstract, is also sufficiently detailed to express realistic
system properties, we use this model to describe the properties of a simple but realistic sys-
tem containing domains whose behaviour depends sensitively on the content of information
transferred. This system consists primarily of a “firewall” domain that forwards incoming in-
formation exchanges to destination domains while satisfying certain security requirements. The
example system is reminiscent of GWV’s Firewall [GWV03] example; indeed, this case study
can be readily interpreted as the lifting of the GWV Firewall example to Rushby’s noninterfer-
ence formalisation.
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Related Work
As noted above, the example use case constructed as an applicability test of the communication
model is in many ways a variation of the Firewall use case studied by Greve, Wilding, and Van-
fleet [GWV03] as a similar test of their own separation kernel formalisation, and further studied
by Rushby [Rus04] and Van der Meyden [dM10]. This use case is based on GWV’s own for-
malisation of separation kernel behaviour, which they call Separation; this formalisation is quite
different from Rushby’s noninterference, and as a consequence the details of the specification
of the firewall behaviour bears little resemblance to the version we use.

In the previous chapter, we argue that the communication model used in the construction of
the GWV Firewall is too unrealistic to be useful in describing the behaviour of practical systems;
while the correctness results in [GWV03] are correct, this is accomplished only by making
assumptions on the communication structure that no realistic system can satisfy. As such, this
chapter is a counterproposal of sorts, aiming to develop a model with a better applicability to
practical systems.

3.2 Information Transfer
In this chapter, we do not attempt to specify the internal workings of a system to communicate
information between domains in a coordinated way. Instead, we axiomatise the way such a
system is to behave, and model its effects in a form that falls within the purview of the nonin-
terference guarantee.

The flows of information are a famously subtle topic; an accurate coverage of the behaviour
of information, and the ways in which activities can influence it, involve such considerations
as results in probability theory, information theory, cryptography, and several other fields. An
analysis that takes all these matters into account would make an inordinately powerful vehicle
for analysing systems in which information flows between components. Unfortunately, formu-
lating properties for systems or components to satisfy in such a framework —much less actually
proving them— is still too far removed from the state of the art in formal verification to make
this a feasible approach. For this reason, we propose a model describing the behaviour of flow-
ing information that aims to approximate reality well enough to enable formal verification of
practical information flow properties, without claiming to accurately take into account the full
subtleties of the problem.

Two key observations inspire the model of information and the communication thereof that
we use in this paper. The first observation is the information-theoretically elementary point
that in full generality, information about a system can only be acquired by interacting with
that system; as long as two systems do not interact, no information flow can occur between
them in any direction. The consequence of this in the context of a Rushby system is that no
information transfer can happen between two domains without at least one of these domains
taking an action with communicative consequences. In particular, it is not possible for a domain
to divine information about, or present in, another domain without performing such an action.
While a domain can of course modify its memory in a way that resembles the state of having
information about some other domain, this have an expected accurate bearing on the state of
the other domain, and thus cannot create any information about that domain in the information-
theoretic sense.

The other observation is that in the noninterference model, information can only flow from
a domain d to domain e through actions of d; in particular, it is not possible for domain e to

EURO-MILS D21.4 Page 22 of 29



D21.4 – Formal Framework for MILS Integration

collect information from d by its own accord. What is more, the information flow policy behind
a noninterference property is not necessarily symmetric; that is, it is possible for domains d, e
to have d  e but e 6 d. As a consequence, communication must generally take the form of
one-way message passing, in which a sender domain transmits information to a receiver domain
without paying much heed to the fate of this message.

Combining these two observation readily yields a theory of information in which informa-
tion is a resource held by particular domains, which can then transmit this information to other
domains —in accordance with the information flow policy— by performing actions. Domains
can only acquire information by receiving it from other domains in this way, with one excep-
tion: each domain is presumed to at all times have perfect information about its own state.
Importantly, this is the (only) way in which information can ever enter the formal system; there
is no other way in which information can be synthesised from nothing.

The model sketched here can be formalised as an extension to the Rushby formalisation of oper-
ating systems. A Rushby system with information is a Rushby system as defined in Section 3.1,
together with a set I of possible units of information. In each state s, each domain d has access
to a certain set of pieces of information; and this set is part of the observation obs(s, d) that
the domain can make of the state. That is to say, for a Rushby system with information with
observation domain O, the set O has the form O = 2I × O′; for convenience of notation, we
will just write i ∈ obs(s, d) to denote that domain d has access to information unit i in state s.

Each unit of information i ∈ I is presumed to describe the state of a particular domain
d, which is called the subject of the unit of information; this subject is denoted as subject(i),
for subject : I → D. Based on this notion, we can describe the message passing semantics
that characterise the flow of information between domains. These message passing semantics
amount to the property that information may be transmitted through the execution of actions,
from the domain executing the action, assuming that domain has access to the transmitted in-
formation, to arbitrary receiver domains. Another property implied by the message passing
semantics is that a domain can never remove information from being accessible to another do-
main; once a domain has received a unit of information, it can only be deleted by a voluntary
action performed by that domain.

Interpreted in the context of the domain I and observation function obs, these semantics
translate to two formal axioms that a Rushby system with information must satisfy:

• if i ∈ obs(s, d) and a is an action such that dom(a) 6= d, then i ∈ obs(step(s, a), d)
(information may not be removed by anyone other than the domain holding it); and

• if i ∈ obs(step(s, a), d) and i 6∈ obs(s, d), then either i ∈ obs(s,dom(a)), or
subject(i) = dom(a) (information transmitted by a domain is accessible to that do-
main, either inherently due to having that domain as its subject, or due to having received
this information in the past).

Together, these axioms approximately characterise the way information behaves when trans-
ported through a message-passing-style communication system.

A Rushby system with information —that is to say, a Rushby system with an information do-
main I and an observation function satisfying these axioms— models an operating system that
features a well-defined inter-domain communication system. It does not, by itself, have any
bearing on the separation guarantees offered by the operating system. In particular, it is notable
that the message passing axioms do not in any way mention the information flow policy; do-
mains can transmit information to arbitrary receivers, with no concern for the opinion of any
information flow policy in regards to this information transfer.
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From a formal point of view, the consequence of this —by design— is that the message-
passing properties and the noninterference property are independent properties that a Rushby
system might satisfy. That is to say, the message-passing properties over some information
domain I , and the noninterference property for some information flow policy , can be inter-
preted as orthogonal extensions to the base Rushby system.

However, we hold that the message passing properties are defined in such a way that the
noninterference property, if applicable, has the expected semantics when applied to the concept
of information as defined by the message passing theory. Because both the noninterference
property and the message passing properties are defined in terms of the observation function,
any restrictions offered by the noninterference property regarding allowed sources of influence
to this observation function apply to message-passing information transfer as well. In particular,
if d and e are domains such that d 6 e, any information transmission from d to e is disallowed
by the noninterference property; for if d were to transmit a unit of information i to e through
execution of the action a, this action would modify the observation of domain e, which is
disallowed by the noninterference property. We hold that this is exactly the desired behaviour
of information in the context of noninterference.

It must be pointed out that the model of information presented here, while inspired by
information-theoretical concerns, does not come close to capturing the full semantics of in-
formation that that theory dictates. In particular, this model cannot express a situation in which
a domain receives information from different sources, combines it in a nontrivial way, and
transmits the combination (but not the source material). If, for example, a domain is to receive
sensitive information from some source domain, encrypt it using some secret key, and trans-
mit the resulting non-sensitive ciphertext to some receiver domain, the theory of information
proposed here cannot model this exchange in a sensible way.

Nonetheless, we hold that this theory of information is an approximation of the real se-
mantics that is sufficient to accurately model many formal verification properties that involve
information flow across domains. In Section 3.4, we support this proposition through an exam-
ple verification of an information flow property in a noninterference system using this model of
information.

3.3 Domain Programs
In Rushby’s formalisation of systems based on a separation kernel, the noninterference property
describes a guarantee that the separation kernel makes, no matter what the individual domains
attempt to do; that is, it models domains as black boxes with no specified behaviour at all.
When formalising of larger systems running on top of a separation kernel, this is only one piece
out of many in the complete formalisation effort. In such a system, the individual domains
tend to run components that also have a well-defined specification of their own, and the desired
behaviour of the system as a whole can only come to pass if the individual domains meet their
own specifications. It follows, then, that in order to prove properties of the system as a whole,
one first needs to prove properties regarding the behaviour of the individual domains.

At first sight, the noninterference formalisation does not seem like it can easily express any
such properties. The Rushby model of a system running an operating system kernel (which may
or may not be a separation kernel) defines a transition system in which domains can perform
any action from a certain action set in any state of the system; while the response of the kernel
to this action is deterministic, the domain action taken is not. Domains tend to run programs
of some sort, that in particular system states choose particular actions to execute, and as such
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are very different from nondeterministic action-taking processes; but this distinction does not
easily fit into the Rushby model.

This semantic divide is not an actual conflict, however. The transition system defined in
Section 3.1 describes the way the separation kernel responds to system calls from domains in
particular states if the domain were to issue these system calls. As such, it does not model a com-
plete system with separation kernel and domain implementations; rather, it models a platform
created by the separation kernel on which domain applications can run. To model a complete
system, one needs to provide a Rushby transition system combined with a description of the ac-
tions particular domains choose to take, which models the application programs running inside
the domains the separation kernel defines.

In order to model these application behaviours, we propose the notion of a domain program,
which for a given domain describes the actions a domain chooses to take in each state of the
system as a whole. Formally, for a domain d, a program for d is a function P : S → Ad, that
for a given state s ∈ S defines the action P (s) with dom(P (s)) = d that the domain d chooses
to execute in state s.1

Given a program for a domain d, or indeed programs for all domains e ∈ E for some
E ⊆ D, we can study the property that the system as a whole satisfies some requirement as
long as the behaviour of the domains E is described by the programs P . This proposition can
be fleshed out as the requirement that for all action sequences α, if each action a in α for which
dom(a) ∈ E is the action specified by the relevant program P , the system-wide requirement
holds after executing the action sequence α.

We can formally define this scheme as follows. We say an action sequence α = a · α′ respects
a program P for domain d in state s, if and only if

• either dom(a) 6= d, or a = P (s); and

• α′ respects P in state step(s, a).

We can then say that a property Q holds for a system running programs P1 . . . Pn, if and only
if Q holds in any state reached by executing, in the initial state s0, an action sequence α that
respects all of P1 . . . Pn.

By combining this framework with the noninterference property, a system characterisation can
be given that describes the behaviour of both the separation kernel, and the applications running
in any of the domains we wish to specify. Using this characterisation, one can prove that under
the assumption that noninterference holds, for any action sequence that respects the specified
domain programs, the resulting state has the desired property. We argue that this is a mean-
ingful and natural way to prove system properties based on formal specifications of individual
components. In the next section, we demonstrate this technique by applying it to the task of
proving the correct behaviour of an example firewall system, based on properties assumed to
hold for the firewall program.

3.4 The Firewall System
In order to test the suitability of the theories presented in the previous two sections for the job of
compositional verification of information-handling systems, we performed a formal verification

1 This makes a domain program a deterministic quantity: a specific action is deterministically chosen based on
the system state. This model can easily be extended to a nondeterministic variant with no real consequences; in
this paper, we use the deterministic version for simplicity.
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of a simple example system. This example system is based on GWV’s Firewall example sys-
tem [GWV03], and like the original it is centred around a domain that prevents certain sensitive
information from reaching an untrusted receiver by scrutinising the information it passes on.

The system whose global properties we seek to verify consists of four components that are
relevant to the security requirements. The system is based on an operating system, which we
presume to satisfy the guarantees of a separation kernel for some as of yet to-be-determined
information flow policy. Inside this separation kernel live a trusted domain t, with access to
sensitive information i with subject(i) = t; an untrusted domain u; and a firewall domain f
with the responsibility of mediating any information transfers from t to u. We assume that t,
u and f are all distinct domains2. For this system, we want to ensure —and formally verify—
that u never gets access to i.

The system is designed around two design properties that together ensure this security re-
quirement. One property is that the operation system is a separation kernel, configured for an
information flow policy such that no information flow from t to u is possible which does not
pass f . The other property is that the firewall domain contains a program that takes care never
to forward the information i to such a domain that the information might reach u — a property
which we shall need to specify in further detail.

To verify the desired security requirement, we specify some requirements that the system
design informally described above should satisfy. Based on that, we can then proceed to prove
that whenever a system meets all those requirements, the desired security requirement should
follow.

For a given information flow policy, a communication path from a domain d to domain e is a
sequence of domains [d1, d2, . . . , dn], such that d1 = d, dn = e, and di  di+1 for all i < n.
A communication path contains a domain c if di = c for some i. Using this definition, we can
formalise the requirement that no information flow from t to u is possible that does not pass
f — this property can be codified as the proposition that no communication path from t to u
exists that does not contain f .

To describe the behaviour of the firewall domain, a predicate can be described regarding
the program P that determines its behaviour. Naively, one might try to specify the firewall
behaviour as the requirement that the firewall program P never chooses to transmit information
i to domain u; but this is insufficient, as the firewall might instead transmit the information i to
a domain u′, with u′  u.

Instead, a stronger version of this property is required. Let E ⊆ D be the set of all domains
e such that a communication path from e to u exists that does not contain f . Then the behaviour
of the firewall domain can be fully specified as the following requirement: as above, let P be the
program running in domain f . Then we require that for all states s and for all domains e ∈ E,
if i 6∈ obs(s, e), then i 6∈ obs(step(s, P (s)), e). That is to say, P never chooses to transmit the
information i to any domain in E.

Together, these two properties are sufficient to prove the desired security requirement that the
information i never reaches domain u. In more formal detail, we can prove the following
theorem:

• For a Rushby system with information I , distinct domains t, u, and f , and information
unit i ∈ I;

• assuming the information message passing axioms as defined in Section 3.2 hold; and
2 Though technically, the proof below still works unchanged if t = f .
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• assuming noninterference holds for an information flow policy ; and

• assuming satisfies the information flow property defined above; and

• assuming P is a program for f satisfying the program property above: then

• for all action sequences α that respect P :

• it holds that i 6∈ obs(s0 · α, u).

With the requirements defined as above, the proof of this property is actually pretty trivial. By
induction, we can prove that i 6∈ obs(s0 · α, e) for all e ∈ E. For α = α′ · a, we can recognise
three cases:

• Either dom(a) ∈ E, in which case by induction i 6∈ obs(s0 ·α′, e). From the information
message passing axioms it follows that i 6∈ obs(s0 · α′ · a, e); or

• dom(a) = f , in which case a = P (s0 ·α′). By induction we have i 6∈ obs(s0 ·α′, e), and
from the property of P we get i 6∈ obs(s0 · α′ · a, e); or

• No communication path from dom(a) to e exists that does not pass through f , which in
particular means that dom(a) 6 e. By noninterference it follows that obs(s0 ·α′ ·a, e) =
obs(s0 · α′, e), and thus by induction i 6∈ obs(s0 · α′ · a, e).

Together these cases show that i 6∈ obs(s0 · α, e) for all e ∈ E, which in particular means that
i 6∈ obs(s0 · α, u).

We hold that the existence of this proof suggests that the theories proposed in Sections 3.2 and
3.3 are sensible models of the phenomena they describe. Certainly, it implies that both theories
are sufficiently powerful to describe the necessary components in a formal verification of a
system that is reasonably realistic.

We feel that the simplicity of the correctness proof above is a strong indication that the
model of information and domain programs used here is a fairly natural one. To further support
this claim, we codified both the theories in this paper and the correctness proof above in the
logic of the Isabelle/HOL theorem proving system [NPW02]; this serves the dual purpose of
both verifying the correctness of the proof, and determining whether the proof is as simple
as the paper version above suggests. We can confirm that the proof is both correct, and as
simple as we had hoped; this in stark contrast to the complicated technical circumlocutions
necessary to finish many other computer-verified proofs of system correctness. For reference,
the Isabelle/HOL proof script making up this formalisation is available on http://www.
win.tue.nl/˜jschmalt/publications/mils16/mils16.html .

3.5 Conclusions
In this chapter, we introduced a theory modelling the detailed flow of information in a system
based on a separation kernel described by Rushby’s noninterference formalisation. We also
described a method for specifying the contribution of domain applications to the realisation of
formally verified properties. We have shown that this combination yields a practical formal ver-
ification framework through the case study of the verification of a variant of the GWV Firewall
system, in an effort backed up by the logic of the Isabelle/HOL theorem proving system.
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Chapter 4

Conclusions

The second chapter considered parts of the verification of a firewall application running on
top of a separation kernel. The point of this exercise is to study techniques for the formal
verification of system properties in a compositional way. In this chapter we did not prove
any properties about the behaviour of system components such as the separation kernel or the
Firewall; instead, these properties were taken for granted. The problem studied here is how to
make use of independently proven properties describing individual system components to prove
properties of the system as a whole in which these components play a role; that is, to compose
verified behaviour of components into verified behaviour of the complete system.

When verifying practical systems, one would presumably independently prove behavioural
properties regarding individual system components, and then later attempt the composition in a
way similar to the methods used in this paper. Based on our experience formalising the notions
presented in this paper, we feel confident that compositional formal validation of system prop-
erties is a practical technique for certifying desired system properties in applications such as
security certification. The main issue with these approaches is that they are not fully composi-
tional in the sense that the correct axiom for the firewall already assumes that the firewall itself
has the property of separation, whereas this property should be ensure solely by the separation
kernel.

The third chapter makes a first proposal towards a solution. It extends Rushby’s model with
an explicit notion of information and explicit domain programs. It revisits the firewall example
showing a clear compositional solution. One thing that remains unclear is the degree to which
the simplified theory of information used in this verification is necessary, as opposed to basing
verification on the real information theory of which the model presented here is, ultimately,
a crude approximation. Formalising a verification framework that takes into account the full
tenets of information theory, probability theory, cryptography, and related subjects remains a
daunting task, and tools for performing actual properties on actual systems using this frame-
work even more so. On the other hand, if successful, such a project could vastly expand the
range of properties and systems for which formal verification is feasible, while rooting existing
verifications in ever more solid ground; we shall follow any new approaches in this area with
great interest.
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