
On the Capacity of Thermal Covert Channels in Multicores

Davide B. Bartolini
Computer Engineering and Networks

Laboratory (TIK), ETH Zurich
davideb@ethz.ch

Philipp Miedl
Computer Engineering and Networks

Laboratory (TIK), ETH Zurich
miedlp@ethz.ch

Lothar Thiele
Computer Engineering and Networks

Laboratory (TIK), ETH Zurich
thiele@tik.ee.ethz.ch

Abstract
Modern multicore processors feature easily accessible tem-
perature sensors that provide useful information for dynamic
thermal management. These sensors were recently shown to
be a potential security threat, since otherwise isolated ap-
plications can exploit them to establish a thermal covert
channel and leak restricted information. Previous research
showed experiments that document the feasibility of (low-
rate) communication over this channel, but did not further
analyze its fundamental characteristics. For this reason, the
important questions of quantifying the channel capacity and
achievable rates remain unanswered.

To address these questions, we devise and exploit a new
methodology that leverages both theoretical results from in-
formation theory and experimental data to study these ther-
mal covert channels on modern multicores. We use spectral
techniques to analyze data from two representative platforms
and estimate the capacity of the channels from a source ap-
plication to temperature sensors on the same or different
cores. We estimate the capacity to be in the order of 300 bits
per second (bps) for the same-core channel, i.e., when read-
ing the temperature on the same core where the source appli-
cation runs, and in the order of 50 bps for the 1-hop channel,
i.e., when reading the temperature of the core physically next
to the one where the source application runs. Moreover, we
show a communication scheme that achieves rates of more
than 45 bps on the same-core channel and more than 5 bps on
the 1-hop channel, with less than 1% error probability. The
highest rate shown in previous work was 1.33 bps on the 1-
hop channel with 11% error probability.

Categories and Subject Descriptors K.6.5 [Management
of computing and information systems]: Security and Pro-
tection; C.1.2 [Processor Architectures]: Multiple Data
Stream Architectures (Multiprocessors)

Keywords covert channel, thermal, capacity bound, trans-
mission scheme, achievable rate

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright c© 2016 is held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901322

1. Introduction
After the breakdown of Dennard Scaling [8], power den-
sity grows with increasing integration in CMOS technology.
Due to this effect, switching too many transistors at a time
generates more heat than can be dissipated, possibly dam-
aging the chip due to exceeding the maximum safe tempera-
ture. While hardware driven Dynamic Thermal Management
(DTM) [4] can avoid damages and ensure integrity, it re-
sorts to techniques (e.g., sharp speed throttling) that severely
impair performance. For this reason, most modern multi-
cores feature temperature sensors accessible via software,
to expose information to smarter thermal management poli-
cies that gracefully impact performance and avoid triggering
hardware DTM. For example, Intel Core processors expose
one sensor per core; similarly, the ARM big.LITTE SoC
exposes one sensor per big core. These sensors are easily
accessible on laptops or desktops through simple tools that
export temperature information to userspace processes and
we verified that user-installed apps can access the sensors
on Android-based smartphones and tablets without requir-
ing any specific permissions.

Temperature sensors are a valuable asset for thermal
management, but they can represent a security breach in
privilege-separated, or sandboxed, systems. A widespread
example of such systems are Android-based smartphones,
where each app has access to data and resources based on
user-granted system permissions. Another example is sand-
boxing in modern browsers, where each tab runs in an iso-
lated process with restricted permissions [25]. Recent re-
search [21] provides evidence that temperature sensors can
be used to implement a covert channel [18] that allows oth-
erwise isolated applications to communicate and possibly
leak sensitive data. For instance, consider the dual-core sys-
tem depicted in Figure 1. A source (src) app runs on core 0
and has access to sensitive data that is only stored locally,
but it does not have network access. A sink (snk) app runs on
core 1 and can freely communicate over the network, but has
no rights to access the sensitive data. In theory, privilege-
separation should disallow communication between the two
applications and keep the sensitive data secured, even in
presence of a compromised source app and a malicious sink
app. However, if the sink app can read the on-chip tempera-

Figure 1. The source app (src) has access to restricted data
but no network access; the sink app (snk) has no access to
the restricted data but has network access. A compromised
source app can leak sensitive data to the sink app through the
thermal covert channel, breaking privilege separation.

ture sensors, communication is possible through the thermal
covert channel, regardless of privilege-separation.

If the system load is low, the source app can exploit the
sleep-states [2], used in modern multicores to save energy
and increase battery life, to predictably influence the tem-
perature of its core and, due to heat transfer, the tempera-
ture of the nearby cores. When the source app is active, its
core wakes up and dissipates heat, thus raising the tempera-
ture; when the source app is idle, its core goes back to sleep
and the temperature drops. At low load, the other cores are
mostly in sleep-mode and do not introduce much noise. The
source app exploits this effect to encode a message into its
execution trace; the sink app can retrieve the message by
decoding the temperature trace it reads from the on-chip
sensors. In Section 3, we specify in more detail our threat
model, while Section 4 illustrates how we model this covert
communication channel.

Previous work [21] presents an empirical study of the 1-
hop channel, i.e., when the sink app can read the temperature
of the core physically next to the one where the source app
runs. This study shows experiments that achieve a through-
put of up to 1.33 bits per second (bps) with an error rate of
11% on an Intel Xeon-based server. This result demonstrates
the feasibility of communication on the 1-hop channel at low
rates, but finding the actual channel capacity and the achiev-
able rates, and evaluating different platforms remain chal-
lenging open questions. We need to answer these questions
in order to understand the possible entity of this threat in
current systems.

Contributions. In this paper, we present and exploit a new
methodology that mixes theoretical and experimental analy-
sis to tackle two main challenges:

1. Estimating the capacity (under controlled but realistic
conditions) of the thermal covert channel; and

2. Finding a communication scheme that improves previous
throughput results towards the channel capacity.

Both for estimating the channel capacity and for evaluating
the throughput of our communication scheme, we use exper-
imental data collected from two diverse mobile multicores
representative of laptops and smartphones, compared to the
single server platform studied in previous work. Section 5
illustrates our experimental setup. We estimate that the ca-

pacity can be in the order of 50 bps for the 1-hop channel
and in the order of 300 bps for the same-core channel, i.e.,
when the sink app can read the temperature of the core where
the source app runs (Section 6). Moreover, we show a com-
munication scheme that achieves rates of more than 5 bps
on the 1-hop channel and more than 45 bps on the same-core
channel, with less than 1% error probability (Section 7). This
result is much higher than the maximum rate of 1.33 bps on
the 1-hop channel with 11% error probability achieved in
previous work [21] with a naı̈ve communication scheme.

2. Background and Related Work
Studying the security issues related with privilege-separation
and isolation in computing systems is a well-defined area of
research. Back in 1973, Lampson [18] analyzed this confine-
ment problem and noted the possibility of exploiting covert
channels, i.e., observing system properties not originally in-
tended for communication, in order to leak restricted data.

The term covert channel is used when the source and the
sink app actively share information, as opposed to the term
side channel, used when an attacker observes an unaware
system with the aim of inferring sensitive information, e.g.,
a cryptographic key [15]. While temperature measurements
could be used as a side channel [21], in this paper we focus
on their use as a covert channel, as Figure 1 illustrates.

Covert channels can broadly be classified as storage or
timing channels. In storage channels, the source app directly
or indirectly writes to a shared resource, which the sink app
reads; in timing channels, the source app exploits the ability
to influence timing properties of the system that the sink app
can observe [22, 32]. The covert channel that we study in
this paper is a storage channel: the source app affects the
temperature that the sink app can observe.

2.1 Microarchitectural Channels
Complex processor architectures are likely to expose prop-
erties that can be exploited to create covert or side chan-
nels [34] to leak information across security domains; in
particular, shared microarchitectural resources are a major
target for this purpose. Modern multicores are an example,
as they often feature a last-level cache shared among differ-
ent cores. Suzaki et al. [30] showed that shared caches can
be used as a side channel to disclose the existence of other
virtual environments on the same physical machine.

Other researchers demonstrated covert channels that ex-
ploit a shared cache to transmit information between two
virtual environments running on the same multicore [36,
37]. Besides caches, also other shared microarchitectural re-
sources, e.g., branch predictors [9], were used as covert and
side channels; Hunger et al. [14] recently proposed a bucket
model that captures the common characteristics of these mi-
croarchitectural side and covert channels.

2.2 Thermal-Related Attacks
Another target for the realization of side channels are the
physical characteristics of the CMOS implementation of a
chip. For example, Hutter and Schmidt [15] demonstrated a
temperature side channel able to retrieve the private key from
an RSA implementation on an AVR microcontroller. They
decapsulated the chip to measure the temperature directly on
the surface of the silicon substrate and operated the device at
150 ◦C, beyond its specified temperature range. They found
that, under these conditions, the device leaks the Hamming
weight of the processed data via the temperature side chan-
nel. They exploited this property to retrieve the private key
by correlating the temperature, execution, and power traces
of the chip for several runs.

Other researchers presented a denial of service attack by
creating a hot spot on the silicon to trigger DTM and in-
duce performance throttling [11]. Similarly to this work, our
covert channel is based on heat dissipation and temperature
variations in chips based on CMOS technology.

2.3 Temperature-Based Covert Channels
Previous work studied covert channels based on different
effects related to temperature variations on CMOS chips.

A well-studied timing channel exploits the local clock
skew introduced by temperature variations [23, 26, 38, 39].
If a source app can trigger temperature variations on a victim
host, it can induce skew in the local clock; the sink app can
observe the skew by looking at timestamps and comparing
to a reference clock. This channel was exploited to reveal
hidden services [23, 26, 38], for example services running
under the Tor network. The attacker induces a load pattern
that triggers temperature variations on the victim host by
frequently accessing the hidden service. The attacker can
then localize the hidden service by observing the clock skew
of a set of candidate hosts. Another research exploited the
same timing channel to infer the topology of a public cloud
infrastructure [26]. Zander et al. [39] estimated the capacity
of this timing channel to be up to 20.5 bits per hour. Besides
clock skew, previous work also investigated channels based
on other side-effects related to temperature variations. For
example, Brouchier et al. [6] studied a storage channel based
on fan speed on a desktop and a laptop.

In contrast to these channels, which exploit side-effects
of temperature variations, we focus on the storage chan-
nel where the sink app directly observes on-chip tempera-
ture variations. This storage channel is not totally new; vari-
ants of it were studied in previous work on different plat-
forms. Guri et al. [10] recently studied an indirect variant
of this channel to attack air-gapped systems. They showed
that communication is possible between two nearby, air-
gapped desktops by using the available temperature sensors:
the source app runs on one desktop and controls load; the
sink app runs on the other desktop and observes temperature
variations caused by the heat coming from the source. Vari-

ants of the channel that exploit on-chip heat transmission
were studied on FPGAs configured with isolated compo-
nents that cannot communicate through the logic [5, 16, 20].
Work in this direction showed that communication between
the isolated components is possible through a covert channel
similar to the 1-hop channel that we study in this paper.

In the previous work more closely related to our research,
Masti et al. [21] present an initial study of the 1-hop and
2-hop channels on multicore processors. They show experi-
ments that achieve a transmission rate of up to 1.33 bits per
second (bps) with an error rate of 11% for the 1-hop channel
on an Intel Xeon-based server. This work only looks at these
channels from an empirical perspective, while we present
a new methodology that uses both experimental results and
theoretical analysis to characterize the family of thermal
covert channels (including the same-core channel, see Sec-
tion 4) on modern multicores. Thanks to this methodology,
we are able to provide upper bounds on the channel capac-
ity, which they did not study; moreover, we show a trans-
mission scheme that, at the same 11% error rate, achieves a
20× faster rate of 27 bps for the same channel on the same
platform they used.

3. Threat Model
We are interested in the scenario introduced in the example
of Figure 1. Without loss of generality, we assume that the
sink app just records a temperature trace by reading the
sensors and later sends it to the attacker over the network;
message decoding is done offline by the attacker. Thus, the
sink app is mostly idle and only periodically wakes up to
read the sensor.

We target modern mobile devices, which implement per-
core sleep states to extend battery life. On these devices, the
operating system (OS) puts idle cores to sleep and, when
sleeping, cores consume close to zero power and produce
almost zero heat. On Intel Core processors, when schedul-
ing the idle thread the OS calls the mwait instruction to
switch the current core from the active state to a lower c–
state and save power. For instance, the C1-HSW state, which
implements clock-gating on the Haswell generation of these
processors, brings most of the power savings for a cheap
wakeup latency of 2µs [2]. Switching to deeper c-states
saves more power, but implies a higher wakeup latency, up
to hundreds of µs. ARM big.LITTLE multicores implement
a similar, while simpler, hierarchy, where the C1 state imple-
ments clock-gating. Assuming no scheduling artifacts, even
a costly wakeup latency of 200µs only puts a loose upper
bound of 5KHz on how fast the source app can switch.

We note that the mobile devices that we target are idle or
lightly-loaded most of the time (e.g., a smartphone resting
in a pocket or a laptop just running a text editor). Thus, the
source and sink app can wait for the system load to be low
before starting to use the covert channel, so as to avoid inter-
ference. We briefly evaluate the impact of background load

Figure 2. The sink app can establish several channels, de-
pending on the physical location of the temperature sensor it
reads with respect to the location of the source app.

in Section 7.3, but we leave a more detailed study of inter-
ference to future work. In this paper, we focus on bounding
the channel capacity and studying achievable rates in con-
trolled, while still realistic, conditions that enable repeata-
bility of our experiments. Thus, we set the environment to
limit interference and noise as much as possible (Section 5);
Section 7.3 presents a study of the sensitivity of our results
to departure from this controlled environment.

Finally, we note that modern mobile multicores, e.g., Intel
Core mobile processors or ARM multicores, generally fea-
ture one temperature sensor per core and that these sensors
are easily accessible by userspace processes or apps. For in-
stance, on Linux, lm sensors exports a simple command-
line interface; on Windows, CoreTemp offers a graphical
interface. While setting up these tools might require ad-
ministrative rights (e.g., # sensors detect), they are com-
monly installed on client devices. On Android devices, the
temperature sensors are even easier to access for the apps:
we verified that the CPU-Z app (v. 1.15), available on the
Google Play Store, requires no system permissions to be in-
stalled and it reports several temperature measurements on a
Nexus 4 running Android 5.0.2. Moreover, once the sensors
are exposed, any app can normally read all sensors, regard-
less of which core it is running on.

4. Communication Channel Model
We study a family of storage covert channels [22, 32] where
a source and a sink app share a multicore processor and
covertly communicate through the on-chip temperature sen-
sors. Assuming that the source app runs on coren, we can
define at least as many channels as there are temperature
sensors. Similarly to previous work [21], we consider one
sensor per core and a floorplan with cores in a linear array,
as commonly found on multicores with a moderate number
of cores.While the actual floorplan of our experimental plat-
forms is not documented, the results we obtain are compat-
ible with this assumption; our definitions can be adapted to
a more general topology. Since the sink app is mostly idle
and, on current systems, it usually has access to all the sen-
sors, it is not so important on which core it runs; we just
assume that it runs on a different core than the source app.
As Figure 2 illustrates, when the sink app reads the temper-
ature of coren (the one where the source app runs), we have
the same-core channel. Similarly, we have an m-hop chan-

Figure 3. Discrete linear channel model with transfer func-
tion H(f) from the execution trace x(k) to the temperature
trace y(k), with additive noise q(k). In our analysis, we ne-
glect the quantizer.

nel when the sink app reads the temperature of a corem hops
away from coren, i.e., core (n±m).

We expect the same-core channel to have the highest ca-
pacity, as the thermal resistivity of silicon degrades the sig-
nal for the m-hop channels. In fact, the sink app can simply
record a trace for each sensor and send all the data to the
attacker, who could always exploit the same-core channel.
Studying the m-hop channels is, however, still interesting,
since system virtualization may restrict the sink app to only
have visibility over the sensor of its local core(s).

We consider the discrete-time channel model of Figure 3.
The input to the channel is x(k), the execution trace of the
source app; at each instant k, x(k) = 0 if the source app is
idle and x(k) = 1 if it is active. The output of the channel
is y(k), i.e. temperature trace from the corresponding sensor.
Similar to previous work [19, 24, 29], we use the linear block
with transfer function H(f) to model the temperature vari-
ations at the sensor caused by the execution trace. The ad-
ditive noise q(k) models thermal noise and any disturbances
from other apps or the OS. The quantizer block models the
fact that commercial processors offer a coarse sensor resolu-
tion, e.g., 1 ◦C on our two platforms. Explicitly considering
the quantizer might increase the model accuracy, but adds a
non-linear component, which is complex to analyze. For this
reason, in our analysis we ignore the quantizer and consider
a linear approximation of the system. Our results (Sections
6 and 7) indicate that this approximation is reasonable.

Thanks to the model of Figure 3 (excluding the quan-
tizer), we can employ the powerful tools available for the
analysis of discrete linear dynamic systems for estimating
the channel capacity (Section 6). Additionally, we refer
to this model to design the experiments that evaluate the
throughput achieved with our transmission scheme (Sec-
tion 7).

5. Experimental Setup
We base our analysis on experimental data collected from
two diverse and representative hardware platforms:

1. a Lenovo ThinkPad T440p laptop, featuring a quad-core
Intel Core i7-4710MQ processor clocked at 2.5GHz;

2. an Odroid-XU3 board, featuring a Samsung Exynos 5422
SoC including an ARM big.LITTLE processor with two
quad-core clusters of Cortex-A7 and Cortex-A15 cores,
respectively. The big cluster is clocked at 2.1GHz.

In the rest of the paper, we refer to platform 1 as Laptop
and to platform 2 as Smartphone. Laptop is representative
of current business laptops; Smartphone is representative
of hand-held devices (it has the same SoC as the Samsung
Galaxy S5 SM-900H smartphone). We use the two platforms
both to analyze the channels for capacity estimation and to
evaluate a communication scheme that achieves higher rates
than previous work; in both cases, we use the following ex-
perimental setup. Additionally, we reproduce previous re-
sults [21] on our two platforms and evaluate our commu-
nication scheme on a third Server platform (Section 7).

5.1 System settings
On both Laptop and Smartphone, we install Ubuntu 14.04.2
and we use the /dev/cpu dma latency interface of the Linux
kernel to limit the maximum wakeup latency to 10µs. With
this setting, the deepest c-state for Laptop is limited to
C1E-HSW, with a wakeup latency of 10µs; the deepest sleep
state for Smartphone is C1, with a wakeup latency of 1µs1.

On Laptop, the temperature sensors are refreshed every
1ms [17]. We were not able to find the sensors refresh period
for Smartphone on the SoC documentation. To determine
this parameter, we collected several traces with a varying
system load, using 1ms as the sampling period; we noticed
that the temperature only changed every 5ms, which we
take as the sensor refresh rate for this platform. Based on
these characteristics, we set the sampling period to T =
1ms for Laptop and T = 5ms for Smartphone. Therefore,
the Nyquist frequency of our discrete system is 0.5/1ms=
500Hz for Laptop and 100Hz for Smartphone.

To favor repeatability, we run all experiments in a con-
trolled, while still realistic, environment. We set both de-
vices in an air-conditioned server room with an ambient
temperature of ≈ 23C◦ and, for both, we fix the fan
speed to the maximum level2 and set the clock frequency
of active cores to the maximum, i.e., 2.5GHz for Lap-
top and 2.1GHz for the big cores on Smartphone. In or-
der to avoid scheduling artifacts, we run the source and
sink app with the SCHED FIFO scheduling class at highest
priority by using the pthread setschedparam() inter-
face and we pin the source app to one core by using the
pthread setaffinity np() interface. During all experi-
ments, the system is idle except for the source and sink apps
and the default system services of the Ubuntu installation.

For both the four cores of Laptop and the four big cores of
Smartphone we assume a linear floorplan, as shown in Fig-
ure 2. While the actual floorplan of the two platforms is not
documented, our results are compatible with this assump-
tion. We run the source app on the third core in the array, i.e.,
on core 4 on Laptop, which has eight virtual cores with two-

1 We retrieve wakeup latencies from the sysfs interface exposed at
/sys/devices/system/cpu/cpu$i/cpuidle/state/$n/latency.
2 For Laptop, # echo ’level 7’ > /proc/acpi/ibm/fan;
for Smartphone,
echo 255 > /sys/devices/odroid fan.14/pwm duty.

int time, state;

while (!cin.eof()) {

cin >> time;

cin >> state;

if (state)

run_for(time);

else

usleep(time);

}

Snippet 1. Stripped-down
code for the reference
source app.

string log;

ofstream logfile;

// initialize...

while (!interrupt) {

log_temps(&log);

// sample every T us

usleep(T);

}

logfile << log;

Snippet 2. Stripped-down
code for the reference sink
app.

way hyper-threading, and on core 6 on Smartphone, where
cores 0 to 3 are the LITTLE cores and cores 4 to 7 are the big
cores. In the rest of the paper, we only count the four phys-
ical (big) cores, starting from 0; thus, for both platforms,
we say that we run the source app on core 2 and we record
the temperature traces from cores 0 to 3. On Smartphone,
we run the source app on the big cores, since the LITTLE
cores provide no temperature sensors and they do not sen-
sibly affect the measurements on the big cores. This setup
allows us to analyze one same-core channel (when looking
at the temperature trace of core 2), two different 1-hop chan-
nels (when looking at either core 1 or core 3), and one 2-hop
channel (when looking at core 0).

On Laptop, we exploit hyper-threading and we run the
sink app with four parallel threads on the odd-numbered vir-
tual cores; each thread reads the temperature of its core from
the /dev/cpu/$i/msr interface. On Smartphone, all the
sensors are exposed in the single virtual file /sys/devices/
10060000.tmu/temp; here we run the sink app single-
threaded on the first LITTLE core. This setup avoids tim-
ing interference between the source and the sink app.

Unless differently specified, we use these settings in all
our experiments. Since a real attack would not benefit from
this controlled environment, in Section 7.3 we analyze the
sensitivity of our results to variations to these settings.

5.2 Reference apps
We develop a reference source and sink app in C++. Snip-
pets 1 and 2 show the key parts of their main loop.

The source app (Snippet 1) replays the execution trace
that is passed on standard input (cin in C++ terminology).
If the next state is 1 (active), then it keeps the core active for
the specified time; if the next state is 0 (sleep), it goes idle
by calling usleep(). The run for() function executes a
tight loop similar to the one of the popular cpuburn stress-
test3; the loop periodically (every several iterations, about
every 1µs) checks whether the elapsed time exceeded the
requested active time and terminates when this condition is
verified. For this check, we use the gettimeofday() call,
which proves precise enough for this purpose; since we are

3 https://patrickmn.com/projects/cpuburn/

https://patrickmn.com/projects/cpuburn/

sleep
active

sleep
active

 30
 34
 38

co
re

 0

 53
 60
 67

co
re

 0

 30
 34
 38

T
em

pe
ra

tu
re

 [C
]

Laptop

co
re

 1

 53
 60
 67

T
em

pe
ra

tu
re

 [C
]

Smartphone

co
re

 1

 30
 34
 38

co
re

 2

 53
 60
 67

co
re

 2

 30
 34
 38

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time [s]

co
re

 3

 53
 60
 67

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time [s]Time [s]

co
re

 3

Figure 4. Traces from Laptop (left) and Smartphone (right) when the source app executes on core 2; the top plot shows the
active/idle execution trace of the source app, the other plots show the temperature traces from the four cores.

keeping the core active anyway, its overhead is not so impor-
tant in this case. Additionally (not shown in Snippet 1), the
source app keeps track of the overall elapsed time and keeps
adjusting the value of time to avoid drifting apart due to jit-
ter in run for() or usleep(). We find gettimeofday()

precise and lightweight enough also for this task.
The sink app (Snippet 2) samples the temperature sensors

every T µs (T = 1000 for Laptop, T = 5000 for Smart-
phone) and keeps a preallocated in-memory log, which it
dumps to the logfile at the end. Similarly to the source
app, the sink app keeps track of the elapsed time and adjusts
T, in order to avoid long-term timing skew. The parallel ver-
sion of the sink app that runs on Laptop additionally handles
thread synchronization through barriers. We register a signal
handler to set the interrupt flag at the experiment end and,
at that point, we retrieve the log file and analyze it offline.

5.3 Platform characterization
Figure 4 shows the results of a preliminary experiment that
characterizes the temperature range and dynamics of our two
platforms. On both Laptop (Figure 4, left) and Smartphone
(Figure 4, right), the source app runs on core 2 with the
execution trace shown in the top plots (blue lines). The
execution trace is an active/sleep square wave with 50%
duty cycle and varying frequency, with 4 periods each at
1Hz, 2Hz, and 4Hz. The bottom plots report the resulting
temperature traces for cores 0 to 3, i.e., for the same-core
channel (core 2), the two 1-hop channels (cores 1 and 3),
and the 2-hop channel (core 0).

For both platforms, the same-core channel resembles the
response of a low-pass filter that oscillates between a high
and a low value with a smoothened version of the input
wave. In both cases, it is easy to see that it is possible to
reconstruct the input wave from the temperature trace for the
whole experiment. As expected, the execution trace is harder
to infer from the 1-hop channels, due to the farther distance
on the silicon of the corresponding sensors from the area
that generates heat. Moreover, the two 1-hop channels show

Platform core 0 core 1 core 2 core 3

Laptop [30,36] ◦C [33,39] ◦C [32,39] ◦C [29,36] ◦C
Smartphone [53,54] ◦C [54,58] ◦C [58,68] ◦C [54,56] ◦C

Table 1. Dynamic temperature ranges measured on Laptop
and Smartphone for the experiment of Figure 4.

a different amount of attenuation and distortion: the trace
from core 3 looks “better” than core 1 for Laptop, while the
opposite is true for Smartphone. Finally, Laptop shows much
less attenuation for the 2-hop channel than Smartphone, for
which the temperature trace is basically flat, making the
input trace impossible to reconstruct.

The dynamic temperature range on the different channels
is also different across the two devices, as Table 1 highlights.
For the same-core channel, Smartphone has a wider dynamic
range of 10 ◦C, while the dynamic range on Laptop is just
7 ◦C. On the contrary, for the 1-hop channels the dynamic
range is wider on Laptop, where it is at least 6 ◦C for both
core 1 and core 3, compared to the dynamic ranges of just
4 ◦C and 2 ◦C, respectively, measured on Smartphone. Sim-
ilarly, Laptop has a much wider dynamic range on the 2-hop
channel, which still oscillates up to 6 ◦C, while for Smart-
phone the temperature trace of core 0 is basically flat. This
different behavior depends on the floorplan, fabrication char-
acteristics, and cooling system of the two platforms. Two
characteristics that probably play a role are the lower TDP
(less than 20W versus 47W TDP) and the reduced package
area (213mm2 versus 1200mm2) of the big.LITTLE SoC of
Smartphone compared to the Intel Core processor of Laptop.

Intuitively, on both platforms and for all channels, the dy-
namic range shrinks as the frequency of the input increases.
As a notable example, the temperature trace of core 3 of
Smartphone shows significant variations as long as the in-
put frequency is 1Hz, but the signal is quickly lost as the
frequency increases (from time 4 s on).

Finally, another important difference between the two
platforms lies in the incidence of noise in the temperature

traces. The traces from Laptop present a sensible amount of
noise, with the temperature constantly oscillating by 1 ◦C.
Instead, the traces from Smartphone show almost no noise
and have an accentuated staircase-like quantization effect,
probably due to internal filtering in the sensors, which have
a slower refresh rate compared to Laptop (5ms versus 1ms).
The lack of noise on Smartphone accentuates the signal at-
tenuation at higher frequencies and further distance, since
temperature variations are only observable if the actual tem-
perature varies across a quantization boundary; otherwise,
variations are hidden by the quantization. Despite this differ-
ence, we found that we are able to stick to the linear channel
model of Figure 3 for both platforms in our study to estimate
the channel capacity (Section 6).

The heterogeneity in the behavior of these two platforms
makes them good candidates as the source of representative
data for our study of the capacity bounds (Section 6) and for
the evaluation of our communication scheme (Section 7).

6. Capacity Estimation
In the 1985 Orange Book [32], the US department of defense
reports that “a covert channel bandwidth that exceeds a rate
of one hundred (100) bits per second is considered high” and
that covert channels with “maximum bandwidths of less than
one (1) bit per second are acceptable in most application
environments”. While these numbers may look somewhat
different if estimated today, the 1.33 bps transmission rate
with 11% error probability achieved by Masti et al. [21]
for the 1-hop channel seems too low to be considered a
threat in practice. Still, much higher rates with much lower
error probability are possible when considering the same-
core channel or a better communication scheme, as we show
in Section 7. In order to evaluate whether these channels
can or cannot be a security threat, we need to find a reliable
estimation of their capacity C, i.e., we need to find the upper
bound on the rate of communication achievable through
them with arbitrarily small error probability [7, 28].

Following Shannon’s seminal work [28], researchers ex-
tensively studied ways to determine the capacity of a wide
range of channel models [7]. Still, even with this vast the-
oretical literature available, estimating the capacity of a
physical channel remains very challenging: it requires using
an appropriate model and retrieving quantitatively accurate
measurements of the channel parameters, despite of noise
and limited precision. We tackle this challenge by leverag-
ing the simple model described in Section 4 and determin-
ing its transfer function H(f) through carefully designed
experiments based on the experimental setup described in
Section 5.

6.1 Finding Capacity Bounds
— The theory —
The first step towards determining a good estimate of the
channel capacity C is finding a suitable mathematical ex-

 0
 5

 10
 15
 20
 25

 0 200 400 600 800 1000T
em

pe
ra

tu
re

 D
if

f.
[K

]

Time [s]

Step Response

Measured
Model

-40
-30
-20
-10

 0
 10
 20
 30

10-3 10-2 10-1 100 101 102

M
ag

ni
tu

de
 [d

B
]

Frequency [Hz]

Bode Magnitude Response

3dB drop
B = 0.029 Hz 15 dB drop

B = 10.4 Hz

Figure 5. Step response of the same-core channel on Smart-
phone; the input is 1 in the interval [150, 750) s, 0 elsewhere.

pression to compute it based on observable parameters.
One of the simplest expressions for the channel capacity
is given by the Shannon-Hartley theorem [7], reported in
Equation (1). The theorem gives the capacity C for the ideal,

C = B log2

(
1 +

S

N

)
[bps] (1)

additive white gaussian noise (AWGN), band-limited chan-
nel with bandwidth B and signal-to-noise ratio (SNR) S/N .

Since Equation (1) applies exactly only to an ideal, band-
limited, channel, we first need to verify whether we can rea-
sonably approximate our channels this way. If this approxi-
mation is possible, we can determine the bandwidth B and
the SNR S/N of our channels based on experimental mea-
surements and use these values to estimate the capacity. In
order to find the bandwidth, we try to fit a discrete-time dy-
namical system model to match the dynamics of the chan-
nels. For instance, we were able to fit the same-core chan-
nel of Smartphone with a discrete-time model with six poles
and four zeros [13]. Figure 5 shows the measured and mod-
eled step response for this channel (left) and the magnitude
Bode diagram of the corresponding model (right). The step
response plot visually shows how well the model can predict
the measured behavior of the channel, while the Bode dia-
gram shows the asymptotic approximation of the frequency
response in logarithmic scale. In an ideal band-limited chan-
nel, we would expect the bode diagram to have a rectangular
shape that lets a band of frequencies pass and blocks all the
rest of the spectrum. While the model fits the step response
well (the normalized mean-squared-error is 4.7%), its Bode
magnitude plot does not allow to easily define the bandwidth
B. On the one hand, the commonly used cutoff frequency at
the 3 dB drop (shown in Figure 5) does not seem to be a
good choice to determine the bandwidth in this case, since
the magnitude keeps decreasing slowly up to about 10Hz,
where there is a clear knee. On the other hand, using the
frequency at the knee for the bandwidth would be rather ar-
bitrary as well, since the amplitude is far from constant up to
there, with a 15 dB drop. Moreover, looking at the prelimi-
nary experiment of Figure 4, we notice that there is a signif-
icant attenuation when increasing the input frequency, even
just from 1Hz to 4Hz; therefore, using a fixed SNR value
for the whole passband would not be accurate. In the inter-
est of space, we omit the step responses and Bode diagrams

for the other channels and for Laptop; similar considerations
apply in those cases. From these observations, we conclude
that Equation (1) is not adequate to estimate the capacity of
our channels, since we are not able to reliably estimate the
required parameters.

While using the Shannon-Hartley theorem is not effective
in our case, we can leverage a different approach to find the
capacity [7, 33]. We can search, among all the possible input
patterns x(k), the one that has the frequency characteristics
that make the most information pass through the channel; in
other words, we need to find the best allocation of the input
power Ŝxx(f) across the frequency spectrum. If we can find
this ideal allocation Ŝxx(f), we can use results from the in-
formation theory literature to compute the channel capacity.
The key observation in this method is that we can only al-
locate as much power as we are able to put into our input
signal, i.e., we have a power cap p0 on how much power we
can input into our system. The general approach to determin-
ing Ŝxx(f), and thus C, subject to a power cap p0 is known
as water-filling [7, 33] The water-filling technique is based
on the assumption that the optimal input spectrum is the one
that allocates power such that the sum of the noise and the
signal power is constant over the whole channel spectrum;
so more power of the signal is in parts of the spectrum with
high SNR. We study two different solutions based on this
technique. First, we consider the classic solution [33], which
considers the constraint p0 on the average input power. Sec-
ond, we analyze a constrained-input solution [12] that ex-
plicitly considers the extra constraint that the input to our
channels is a binary value (active/idle).

Classic water-filling approach. The classic water-filling
technique allows to compute the capacity of channels with
arbitrary transfer functionH(f) and additive Gaussian noise
q(k), not necessarily white [7, 33]. If we can estimate the
power spectrum of the channel Shh = |H(f)|2 and of the
noise Sqq then, given a cap p0 on the average input power,
we can derive the channel capacity according to Equa-
tion (2) [33, Eq. (6.15)]. The capacity Cb is determined by

Cb = max
Sxx

{∫
F
log2

(
1 +

Sxx(f) · Shh(f)
Sqq(f)

)
df

}
[bps] , (2)

under the constraint that
∫
F
Sxx(f)df ≤ p0 (3)

the spectral power allocation Sxx(f), which cannot exceed
the power cap p0, as Equation (3) states. We can maximize
the expression in Equation (2) and determine the capacity by
intelligently shaping the power allocation Sxx so that more
power is allocated at those frequencies with better SNR. This
ideal allocation Ŝxx can be determined with a water-filling
procedure [7, 33], which we do not describe in details here.

As we will show in Section 6.2, we are able to estimate
Shh and Sqq for our channels; thus, we can use the water-

filling procedure on Equation (2) to estimate the capacityCb.
We expect Cb to be an upper bound on the real capacity C,
because the classic water-filling approach does not consider
the more stringent constraint that our input is required to
be a binary value. In order to evaluate how much more
stringent this constraint is, we use an additional result from
the literature to compute a tighter upper bound on the real
capacity.

Constrained-input water-filling. In a 1992 paper, Hee-
gard and Ozarow [12] studied the capacity of saturation
recording, i.e., the capacity of storage systems such as tape
recorders or optical disks. While this problem has, in gen-
eral, little to do with our study, it has the same saturation
constraint on the channel input: input values can only be ei-
ther 0 or 1. This shared property allows us to leverage their
expression for an upper bound Ca on the channel capacity
C [12, Eq. (11)]. We report this result (with minor nota-
tion changes) in Equation (4). Ca depends on the value of

C ≤ Ca = max
λ

{
1

2

∫
Aλ

log2 (λ · Shh(f)) df
}

[bps] , (4)

the power spectrum of the channel Shh and the parameter λ
over Aλ, which is the set of frequencies f ∈ (−∞,∞) for
which λ · Shh ≥ 1. The parameter λ must be maximized
subject to the constraint of Equation (5), which makes sure
that the SNR does not exceed the ratio of the power cap p0
over the noise power N0. These equations assume that the

1

2

∫
Aλ

(
λ− 1

Shh(f)

)
df ≤ p0

N0
(5)

noise is white, i.e., that the noise has a constant power spec-
trum Sqq = N0 across the frequency range Aλ. Since, in
our channels, Sqq is not constant, we use this constrained-
input solution only after splitting the channel into sub-bands
where Sqq can be assumed constant; Section 6.3 explains
this technique in more details. Finding the λ that maximizes
Equation (4) subject to Equation (5) follows again a water-
filling procedure.

6.2 Determining the Power Spectra
— The practice —
To use the water-filling methods, we need to find reliable
estimates for the power spectra of the noise and our channels
on our two platforms. Computing reliable estimates from
experimental data is challenging mainly due to (i) the limited
temperature resolution (1K) of the sensors, (ii) the noise (on
Laptop), (iii) the quantization effect (on Smartphone), and
(iv) the saturation constraint on the input.

Noise spectra. Sqq is easier to estimate than Shh, since the
input constraint does not play a role in this case. For both
platforms, we just record a 120 s long temperature trace
for each channel, with the system idle except for the sink

10-4

10-2

100

102

2501 10 100Po
w

er
 D

en
si

ty
 [K

2 /H
z]

core 0 (two hops)

10-4

10-2

100

102

2501 10 100

core 1 (one hop)

10-4

10-2

100

102

2501 10 100

Laptop

core 2 (same core)

10-4

10-2

100

102

2501 10 100

core 3 (one hop)

10-4

10-2

100

102

1 10 100Po
w

er
 D

en
si

ty
 [K

2 /H
z]

Frequency [Hz]

core 0 (two hops)

10-4

10-2

100

102

1 10 100
Frequency [Hz]

core 1 (one hop)

10-4

10-2

100

102

1 10 100
Frequency [Hz]

Smartphone

core 2 (same core)

10-4

10-2

100

102

1 10 100
Frequency [Hz]

core 3 (one hop)

Shh (measured) Shh (trend) Sqq (measured)

Figure 6. Power density spectra Shh for the four channels measured on Laptop (top) and Smartphone (bottom). The crosses
are measured values and the red solid line is the bezier trend for Shh. The dotted grey lines are the spectra of the noise Sqq.
Both axes are in logarithmic scale.

app, which records the traces, and the default system ser-
vices. Then, we compute the power spectral density Sqq(f)
over the frequency range [0.5, fm]Hz for each channel, with
fm = 250 for Laptop and fm = 100 for Smartphone, which
is limited by the lower sampling rate. After subtracting the
mean value from the temperature traces, to remove the DC
component, we get the spectra through fast Fourier trans-
forms (FFTs) [3] of each temperature trace. To improve the
accuracy of our analysis, we use Welch’s method [35] and a
Blackman-Harris window [1]. Welch’s method is commonly
used to minimizes the variability in the calculation of the
power spectral density, i.e. the noise in the power spectrum,
compared to standard Fourier analysis. The Blackman-Har-
ris window is designed to minimize the side-lobes in the fre-
quency domain and therefore the influence of neighbouring
frequencies on each other. We report the resulting high-res-
olution noise spectra in Figure 6, together with the channel
spectra Shh, which we illustrate next.

Channel spectra. Determining Shh is more challenging be-
cause of the constraint on the input. This constraint basi-
cally restricts the variety of input signals that we can use
to rectangular waves of different frequency, similar to the
one we used in the preliminary experiment of Figure 4.
Our approach to determine Shh consists in designing a set
of experiments {Ef} where experiment Ef gives us an es-
timate of the value of the channel power Shh(f) at fre-
quency f . We go into the details through the example of
Figure 7, which illustrates how we determine Shh for the
1-hop channel of core 1 of Laptop. The data used to draw
Figure 7 come from five separate experiments Ef , with f ∈
{5.1, 14.9, 25.0, 34.5, 45.5}Hz. Each experiment Ef con-
sists in using a modified version of the source app to excite
the system with a square wave at frequency f and in com-
puting the power spectra of the input and the output, which
are superimposed in the left and right plots of Figure 7, re-
spectively. To compute these spectra, we use the same FFT-
based method that we use to compute Sqq. The spectra from

10-6

10-4

10-2

100

0 10 20 30 40 50

Po
w

er
 D

en
si

ty
 [H

z-1
]

Frequency [Hz]

Input

10-4

10-2

100

0 10 20 30 40 50

Po
w

er
 D

en
si

ty
 [K

2 /H
z]

Frequency [Hz]

Output

5.1 Hz 14.9 Hz 25.0 Hz 34.5 Hz 45.5 Hz Sxx Syy Shh

Figure 7. Input (left) and output (right) spectra from core 1
of Laptop for the five experiments Ef at the frequencies f
reported in the legend. We use the spectra peaks to build Sxx
and Syy; then, Shh = Syy/Sxx. The y-axis is in logarithmic
scale.

experiment Ef show a peak at frequency f , which is where
most of the power is allocated. We take these peaks as the
values of the input Sxx (blue circles in Figure 7) and out-
put Syy (green triangles in Figure 7) power spectra. Then,
we can simply compute the power spectrum of the chan-
nel Shh as the sample-wise output-over-input ratio Syy/Sxx.
Figure 6 reports the values of the Shh spectra that we derive
with this methodology for the four channels on our two plat-
forms, along with the noise spectra Sqq .

6.2.1 Additional notes on the experiments {Ef}
Each experiment Ef lasts 120 s on Laptop and 600 s on
Smartphone, so that we collect the same number of sam-
ples (120 k) for both platforms. The longer experiments on
Smartphone also help to make sure that we can actually ob-
serve enough variations in the temperature traces to build
a meaningful spectrum (recall the accentuated quantization
effect on Smartphone that was discussed in Section 5.3). Fi-
nally, for all the channels, we only keep the Shh points up to
the frequency f where Shh(f) drops at or below the noise
level Sqq(f).

We determine the frequency range {f} for the experi-
ments {Ef} so as to reduce measurement errors as much as
possible. We only use frequencies that, at the sampling pe-

riod of either 1ms (Laptop) or 5ms (Smartphone), have an
integer number of samples per period of the square wave. We
start from 0.5Hz and we proceed in steps of either 0.2Hz or
one fewer sample per period, whichever yields the largest
step. The crosses in Figure 6 are located at these frequencies
along the x-axis. In total, we evaluate 138 different frequen-
cies for Laptop and 60 different frequencies for Smartphone.

Due to the constraints on the input, we use square waves
as an approximation of sine waves, which would be the most
appropriate waveform to concentrate the input power at the
corresponding frequency. In practice, the non-idealities of
our channels (particularly, the c-state sleep/wakeup latency)
make sure that our logical square waves are really steep
ramps that approximate a sine wave well enough. In fact, the
spectra of Figure 7 clearly show the peaks at the fundamental
frequencies, with some negligible harmonics.

One way to better approximate sine waves on the input
would be to use active/sleep pulse-width modulation (PWM)
at at a rate r much higher than the frequency corresponding
to the sampling time T we use (i.e., r � 1KHz). In this way,
it is possible to obtain different power levels and to generate
a sampled sine wave. Since the c-state and scheduling la-
tencies are fast enough to do so, we actually implemented
this PWM approach in a modified version of the source app.
However, we found that the results were not significantly
different; thus, we decided to stick with the “square” waves.

6.3 Computing the Capacity Bounds
— Theory meets practice —
We can finally compute the two capacity bounds Cb and Ca,
with the classic and constrained-input water-filling methods,
respectively. Since we work with discrete spectra, we ac-
cordingly adapt the equations of Section 6.1 to use summa-
tions instead of integrals and to consider the discretization
intervals along the frequency range. While the noise spectra
Sqq already come with a high frequency resolution, the Shh
spectra are more coarsely quantized, as the crosses in Fig-
ure 7 show. To simplify the computations, we linearly inter-
polate all the spectra on a regular frequency grid with 0.1Hz
spacing.

Classic water-filling. This method can handle non-white
noise spectra Sqq, which is the case in our measurements
(see Figure 6). We determine the input power cap p0 as
the average of measured input spectrum Sxx. To find Cb,
we compute the ideal power allocation Ŝxx by iteratively
refining the value of the parameter λ until the condition of
Equation (5) is met (almost) with equality (with a maximum
error of 10−6).

Constrained-input water-filling. In order to compute Ca,
Equation (4) assumes that the additive noise is white, with
constant power density Sqq = N0 across the relevant fre-
quency range. However, our measured Sqq spectra vary sig-
nificantly across the frequency range we are interested in. To
address this issue, we split the channel into sub-bands [33,

100

101

102

103

core 0
2 hops

core 1
1 hop

core 2
same core

core 3
1 hop

core 0
2 hops

core 1
1 hop

core 2
same core

core 3
1 hop

C
ap

ac
ity

 [b
ps

]

Classic water-filling Constrained-input water-filling(Cb) (Ca)

25

70

10
37

20
2

55

37
1 13

81

16
9

12

27

33
4

58

26

10
5 41

4

55

Laptop Smarthpone

Figure 8. Upper bounds Cb (left) and Ca (right) on the
channel capacity C for the four channels on Laptop and
Smartphone. The y-axis is in logarithmic scale.

Chap. 6.5] where the noise Sqq does not vary by more than
50% of the smallest value in the sub-band. This operation
gives us about 10 to 20 sub-bands per channel, depending
on the different shape of the Sqq spectra. For each sub-band
k over the frequency range [fi, fj), we use the reference
noise level Nk = mean{Sqq(f)} | fi ≤ f < fj}. Given
the global power cap p0, which we determine as in the clas-
sic water-filling case, we compute the optimal allocation to
the sub-bands based on their width and their noise level [33,
Chap. 6.5]. Finally, we consider one sub-band at a time and
we independently compute the capacity in an iterative way,
similar to how we do it for the classic case. To compute Ca,
we sum the resulting capacity in all the sub-bands.

Capacity bounds.Figure 8 shows the capacity bounds Cb
(left) and Ca (right) that we compute with the classic and
constrained-input water-filling methods, respectively. As ex-
pected, Cb > Ca and the bound for the same-core channel
is the highest for both platforms and both methods. In gen-
eral, the trend across the four channels seems consistent on
the two platforms and the bounds on the two different 1-hop
channels are consistent with the observations of Section 5.3:
the channel on core 1 is better than the one on core 3 for
Smartphone, while the opposite is true for Laptop. These re-
sults do not exclude that the same-core channel might be a
security threat, with Ca well above 100 bps for both plat-
forms. While the bounds for the 1-hop channels are (mostly)
below 100 bps, they are still much higher than our initial ex-
pectations based on previous research. In Section 7 we show
a transmission scheme able to notably increase previous re-
sults on transmission rates.

7. Transmission Scheme and Achieved Rates
The transmission scheme that Masti et al. [21] used to eval-
uate the 1-hop channel is based on ON-OFF keying: the
source app is active to transmit a 1 and it goes idle to trans-
mit a 0. A major issue with this simple scheme is that the
average load level depends on the input message: a message
with several ones (respectively, zeros) in a row will leave the
source core active (respectively, idle) for a long time com-
pared to the symbol duration, causing the average tempera-
ture to drift up and down. This drift of the operating point
unpredictably changes the temperature dynamics over time,
making the channel non-stationary and the decoding more

(a)1 1 0 0 1
sleep

active
(b)

sleep

active
(c)

 38
 42
 46

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

T
em

p.
 [C

]

Time [s]

(d)

Figure 9. An input message (a), encoded onto the 1Hz
clock (b), gives the execution trace (c), which leads to the
temperature trace (d) on the same-core channel of Laptop.

complicated. This issue, coupled with the simplistic edge-
detection decoding method they used, could explain the poor
performance that they measured (see Section 2.3) compared
to the capacity bounds that we derived in Section 6. In this
section, we evaluate a simple communication scheme that
overcomes this issue.

7.1 Encoding and Decoding Scheme
A simple way to keep the channel in the dynamic range
during communication is to encode the input message so as
to maintain, on average, a constant load. To do so, we use
square waves with a 50% duty cycle as a clock signal onto
which we encode the input message.

Message encoding. We generate the execution trace of the
source app with the Manchester encoding scheme [31], as
Figure 9 illustrates for a 5-bit message and a 1Hz clock.
A one in the message is encoded into an unmodified clock
signal in the execution trace; a zero becomes a 180◦ phase-
shifted clock signal in the execution trace. The resulting ex-
ecution trace leads to temperature traces oscillating around
a roughly constant average, as Figure 9 (d) shows for the
same-core channel on Laptop. The transmission rate directly
depends on the frequency of the clock signal, since the trace
carries 1 bit of information per period of the clock, i.e., r bps
for a rHz clock.

Message decoding. Message decoding happens offline (see
Section 3) from the temperature traces recorded by the sink
app. The first step of decoding is determining the phase of
the clock signal. For simplicity, we synchronize our exper-
iments so that the beginning of the temperature trace coin-
cides with the beginning of the message. In a real attack,
where this synchronization would not be possible, the source
app could send a known preamble that the sink app can use
to detect the clock phase. Once the clock phase is detected, it
will not change during an experiment, since our source and
sink app are designed to not accumulate clock skew (see Sec-
tion 5.2). To proceed with decoding, we look at each clock
period, i.e., at each bit, separately. As Figure 10 shows, for
each bit, we first get a 0-mean signal by subtracting its mean
temperature; in this way, the decoding is robust against long-
term temperature variations due to environmental changes.
We decode the resulting trace with traditional signal-pro-
cessing techniques [33]. We first multiply the trace with a

Figure 10. Block diagram of our bit-wise decoding scheme.

90◦ and a 0◦ phase-shifted clock signals and we integrate
over the two resulting signals (

∫
blocks in Figure 10). The

two resulting numbers are the real (Re) and imaginary (Im)
parts of a representation of the bit in the complex plane C.
To classify each bit as a 1 or a 0 in this signal space, we
use a naı̈ve-Bayes classifier [27] with a kernel smoothing
density estimate4, previously trained on data from the same
platform.

7.2 Performance Evaluation
To evaluate our transmission scheme, we encode several ran-
dom messages onto clock signals at different frequencies and
we use our source and sink app to transmit and record these
messages on our two platforms, configured according to the
reference setup of Section 5. We decode the temperature
trace from each channel with our classifier; as the perfor-
mance indicator, we use the error probability, as measured
through the empirical bit error rate, i.e., the relative number
of misclassified bits. We just report raw transmission rates
and error probabilities and do not evaluate error correction
strategies; we leave such study to future work.

Error probability at increasing rates. As a first test, we
generate a 1000 bit and a 5000 bit message and we evalu-
ate the error probability of our channels at increasing trans-
mission rates, from 1 bps in 1 bps steps. For each channel,
we use the 1000 bit message to train the classifier, which we
evaluate on decoding the 5000 bit message. In a real attack,
the source app could first transmit a known message that the
sink app can use for training the classifier and then the ac-
tual information, which the sink app can decode with the
trained classifier. Figure 11 shows the resulting error prob-
ability (measurements and bezier trends) for the four chan-
nels on our two platforms. For both Laptop (left) and Smart-
phone (right), the same-core channel shows very few errors
(� 1%) up to ≈ 40 bps; Figure 12 zooms in to this region.
Up to this rate, Smartphone performs better than Laptop,
thanks to the much lower noise. At increased rates, errors
increase more slowly on Laptop, where we achieve≈ 90 bps
at 10% error probability, than on Smartphone, where the rate
is ≈ 60 bps at the same error level. Laptop shows better per-
formance also for the 1-hop and 2-hop channels, where the
error probability remains very close to 0 up to ≈ 10 bps and
hits the 10% level between 30 bps and 40 bps. On Laptop,
the 2-hop channel does not perform much worse than the 1-

4 We use the NaiveBayes object of Matlab R2015a, with default settings.

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Bit Rate [bps]

L
ap

to
p

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Sm
ar

tp
ho

ne

core 0 (2 hops) core 1 (1 hops) core 2 (same core) core 3 (1 hop)

Figure 11. Error probability on decoding a 5000 bit random
message for the four channels on Laptop (top) and Smart-
phone (bottom), for transmission rates up to 150 bps and
80 bps, respectively.

 0.1

 0.4

 0.7

 1

 1.3

0 5 10 15 20 25 30 35 40 45 50

E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Bit Rate [bps]

Laptop Smartphone

Figure 12. Zoom-in to the low-rate area of Figure 11; show-
ing only the same-core channel.

 0
 0.1
 0.2

 0 2 4 6 8 10 12E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Bit Rate [bps]

 5
 20
 35
 50

Laptop Smartphone Server Masti et al. [21]

Figure 13. Direct comparison with Masti et al. [21, Tab. 1]
for the 1-hop channel. The solid lines show the results with
our scheme (see Section 7.1), the dashed lines show the
results reported by Masti et al. [21] on Server and the results
we obtained using their same scheme (ON-OFF keying).

hop channels; instead, on Smartphone the error probability
immediately increases steeply and the performance gaps are
more evident, with the 2-hop channel showing several er-
rors already at 1 bps. These results relate with the stronger
quantization effect and the higher attenuation for these two
channels on Smartphone.

While directly comparing these results with the capacity
bounds of Figure 8 is not rigorous, since we are not consid-
ering the overhead of error correction, we can observe that
Smartphone generally performs worse than Laptop when
compared to the capacity bounds. In fact, for the capacity

study, we hid the negative effects of quantization on Smart-
phone through longer experiments (see Section 6.2), while
our transmission scheme is oblivious to this effect. A better
transmission scheme for Smartphone might leverage temper-
ature observations in the source app in order to tune the duty
cycle of the clock signal so as to bring the average temper-
ature at a quantization boundary, thus making the small 1K
variations visible and reducing the errors at high rates.

Direct comparison with previous work. To evaluate our
transmission scheme against the naı̈ve ON-OFF keying
scheme used by Masti et al. [21], we provide a direct com-
parison. We both evaluate our scheme on the exact same
platform they used5 (we refer to it as Server) and implement
the ON-OFF keying scheme in our framework, to evaluate
it on Server, Laptop and Smartphone. Figure 13 shows all
these results for the 1-hop channel; for all platforms, we plot
the best of the two 1-hop channels. The solid lines show
the results we obtained with our scheme on the three plat-
forms (Laptop, Smartphone, and Server). The dashed lines
show the results that we obtained on the three platforms by
implementing the ON-OFF keying scheme with an edge de-
tection decoder as described in Masti et al. [21] and addition-
ally report the original results from this previous work [21,
Tab. 1], which only covers a smaller range of bit rates. As
Figure 13 shows, on Server our results with ON-OFF key-
ing are very close to the original ones. Our scheme achieves
8 bps at about 0.1% error probability, while ON-OFF keying
does not go below 8% error probability at 0.6 bps [21]. On
Laptop, establishing a communication with ON-OFF keying
proves virtually impossible due to the high level of noise,
which hinders the edge detection algorithm; instead, our
scheme proves more robust and obtains better results than
on Server. On Smartphone, where there is almost no noise,
ON-OFF keying matches the performance of our scheme for
bit rates up to 2 bps and shows a slightly higher error prob-
ability for higher rates. From this extensive comparison, we
conclude that our transmission scheme ensures much better
performance than ON-OFF keying in all cases.

Spectral efficiency. To get a feeling of whether our scheme
could be further improved, Figure 14 compares the input
(green, top) and output (red, bottom) power spectra of the
5000 bit evaluation sequences at 5 bps and 80 bps with the
ideal water-filling power allocation Sxx for the same-core
channel on Laptop. The comparison is purely indicative,
since the water-filling solution only gives an upper bound
on the capacity of our channels (see Section 6.1), but is
nonetheless interesting. On the one hand, the 5 bps input
spectrum allocates much power at low frequency, resulting
in very little distortion in the output spectrum in that area,
which is where most information is encoded. On the other
hand, the 80 bps input spectrum shifts most of the power at

5 A dual-socket server with two Intel Xeon E5-2690 multicores clocked at
2.90GHz.

10-5
10-3
10-1

5
bp

s

80
 b

ps

Input
Input spectra Ideal power allocation Output spectra

5
bp

s

80
 b

ps

Input

10-5
10-3
10-1

100 101 102Po
w

er
 D

en
si

ty
 [K

2 /H
z]

Frequency [Hz]

Output

100 101 102
Frequency [Hz]

Output

Figure 14. Input and output (same-core channel on Lap-
top) power spectra of the evaluation sequences at 5 bps and
80 bps, compared to the ideal water-filling power allocation.

 0
 10
 20
 30
 40

0 20 40 60 80 100 120 140E
rr

or
 P

ro
ba

bi
lit

y
[%

]

Bit Rate [bps]
0 20 40 60 80 100 120 140

Bit Rate [bps]

Fan auto No pinning Baseline No RT DVFS Conserv.

Figure 15. Sensitivity of the error probability to using auto-
matic fan speed, not pinning the apps to cores, no real-time
scheduling, or the conservative Linux DVFS governor.

higher frequency, leading to visible distortion in the output
spectrum due to the noise which, as Figure 6 shows, is
stronger at lower frequencies. A better scheme should have
a leveled input power allocation across the spectrum; finding
such a scheme, despite the limitations on the input, is an
interesting challenge for future work.

7.3 Sensitivity to Environmental Conditions
Finally, we evaluate how variations in the environmental
conditions affect the error probability on our channels. We
identify four important parameters that, in a real attack,
would not be fixed as in our experimental setup (Section 5)
and we evaluate the sensitivity of our results to variations
of these parameters. As a representative case, we show the
results of this study on the same-core channel on Laptop.

Figure 15 shows how the error probability is affected
when changing these four parameters in the experimental
setup:

1. Setting the fan speed to automatic (Fan auto);

2. not pinning the apps to a specific core (No pinning);

3. using the default, Linux scheduling policy (SCHED OTHER)
instead of the high-priority SCHED FIFO (No RT);

4. letting the conservative Linux DVFS governor change the
frequency of the cores (DVFS Conserv.).

These four parameters have different impact on our baseline
results, represented in Figure 15 by the solid red line.

Automatic fan speed. Using a variable, automatic fan speed
highly affects the channel and makes the it very chaotic. This
result is intuitive, as the fan controller is designed to keep the

25

50

75

100

100 101 102 103 104

Pe
rc

en
ta

ge
 [%

]

Jitter [µs]

0% load
100 101 102 103 104

Jitter [µs]

10% load
100 101 102 103 104

Jitter [µs]

30% load

pin, rt nopin, rt pin, nort nopin, nort

Figure 16. CDF of the transition jitter of the source app
on Laptop with or without real-time scheduling ([no]rt) and
thread pinning ([no]pin) and with different background load.

temperature on a low constant level, strongly hindering the
possibility to encode data in temperature variations.

Conservative DVFS governor. Similarly to variable fan
speed, enabling DVFS has a strong effect on the communi-
cation channel, which becomes highly unstable. This result
is due to the fact that the active frequency of the cores largely
determines the active power consumption, and thus tempera-
ture. Notice, however, that since on both platforms all active
cores run at the same frequency, load-level based frequency
scaling (which the Linux conservative governor implements)
might enable another covert channel, where the sink app ob-
serves frequency variations induced by the source app. We
plan to apply our methodology to study this channel in the
future.

No real-time priority. Dropping real-time priority signifi-
cantly affects the error probability only for rates faster than
≈ 15 bps. The additional errors are due to increased jitter
in the timing of the source and sink apps; Figure 16 fur-
ther investigates this effect by analyzing the jitter in the state
transitions of the source app when running a 100s random
trace with our baseline setup (pin, rt) and when dropping
real-time priority (nort) or thread pinning (nopin). We repeat
the experiments with different levels of system load, which
we simulate by pinning one additional source app to each
core, each running a different random execution trace with
the appropriate duty-cycle. At low load, dropping real-time
priority causes the jitter to increase to≈ 100µs in≈ 50% of
the transitions; the sink app is similarly affected in the pre-
cision of its sampling rate. Figure 15 shows that this effect
only starts impairing the performance of our scheme at rates
faster than ≈ 15 bps. The jitter is higher at increased load,
but it does not exceed 1ms for 90% of the transitions at 30%
load for the nopin, nort case; thus, error correction should
still enable communication at low rates even with system
load. Finally, we note that, with increasing load, not pinning
the source app to a core (nopin in Figure 16) leads to re-
duced jitter, thanks to smart core migrations by the Linux
scheduler.

No thread pinning. When the source and sink apps are not
pinned to a specific core, the different channels effectively
move with the source app. As an example, Figure 17 shows
part of a trace from Smartphone where the source app, which

 57
 60

 63
 66

 0 1 2 3 4 5 6 7

T
em

pe
ra

tu
re

 [C
]

Time [s]

core 1 core 2

Figure 17. Traces from cores 1 and 2 of Smartphone; the
source app is not pinned.

 0
 10
 20
 30
 40

0 20 40 60 80 100 120 140

E
rr

or
 P

ro
b.

 [%
]

Bit Rate [bps]

Baseline core 2 All-cores

Figure 18. Same-core vs. all-cores channel comparison
with no pinning on Laptop.

is transmitting a 1Hz clock signal, migrates between cores
1 and 2. Initially, reading the temperature from core 2 cor-
responds to a same-core channel, while it becomes a 1-hop
channel at time ≈ 1.5 s, when the source app migrates to
core 1. As Figure 18 shows, if the sink app always observes
the same core (core 2 on Laptop in this case), the error prob-
ability without thread pinning will sensibly increase com-
pared to the baseline, since the channel type keeps chang-
ing. However, there is a simple way to work around this is-
sue. Since the sink app can always read the temperature of
all the cores, we can simply look at the all-cores channel,
which is the sum of the temperatures from all cores. As Fig-
ure 18 shows, the all-cores channel has performance compa-
rable (or possibly better) than the same-core channel.

We conclude that our communication scheme is robust
to disabling thread pinning and, to some extent, to dropping
real-time priorities and having background system load. The
most sensitive parameters are varying fan speed and enabling
the DVFS governor, which makes communication impossi-
ble with our scheme but might enable a different covert chan-
nel when all cores share the same active frequency.

8. Concluding Remarks
In this paper, we analyzed a family of covert channels where
a source app induces temperature variations on a multicore
processor and the sink app observes these changes through
the on-chip temperature sensors.

Summary and takeaways. Our two main contributions with
this paper are providing upper bounds on the capacity of
these channels and showing a transmission scheme that im-
proves previous results on communication rates by more
than 20×. Based on experimental data from two diverse plat-
forms representative of laptops and smartphones, we derived
capacity bounds by leveraging information theory and spec-
tral analysis. Based on our results, we cannot exclude the

possibility that these channels might be a security issue, as
the capacity could be in the order of 300 bps for the same-
core channel. We presented a transmission scheme based
on Manchester encoding that sensibly improves the perfor-
mance of previous work and we studied the sensitivity of our
results to non-ideal conditions. With this scheme, we were
able to achieve rates of more than 45 bps on the same-core
channel and more than 5 bps on the 1-hop channel, with less
than 1% error probability.

Threat mitigation. As we reported in Sections 1 and 3, the
on-chip temperature sensors that enable the thermal covert
channels we studied are easily accessible by user-level apps
on current mobile systems. A technically simple way to
block the potential threats coming from these channels is
to restrict access to the temperature sensors to trusted code.
If temperature information needs to be made available to
user apps (e.g., a CPU temperature monitor), viable miti-
gation strategies include increasing the refresh interval from
milliseconds to seconds or minutes and reducing the sensor
resolution, thus directly limiting the capacity of the thermal
covert channels. While mitigating this threat is not techni-
cally challenging, it requires shipping security patches to a
huge base of affected devices running different versions of
different system software stacks. Our aim with this paper
was building awareness on the potential threat that current
systems are exposed to and providing a quantitative study
that can be used as a base to decide what actions to take in
order to mitigate this threat.

Directions for future work. The methodology based on
spectral analysis that we devised in order to estimate the
channel capacity (Section 6) introduces a new way to quan-
tify the potential threat of complex covert channels, which
are often only analyzed from an empirical standpoint. We are
planning to exploit this same methodology to analyze other
covert channels and we hope that others will find it a use-
ful guideline. Sensible avenues for further research focus-
ing on the thermal covert channels, include reporting results
of real attacks (e.g., leaking an encryption key) using these
channels on real systems, analyzing the impact of error-cor-
rection schemes on the achievable rates, and finding more
efficient communication schemes to reduce the gap between
the capacity estimations and achieved rates.

Acknowledgements
This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644080.

This work was supported by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under con-
tract number 15.0025. The opinions expressed and argu-
ments employed herein do not necessarily reflect the official
views of the Swiss Government.

Thanks to Lukas Sigrist, Georgia Giannopoulou and Re-
han Ahmed for their help with polishing the paper.

References
[1] G. Andria, M. Savino, and A. Trotta. Windows and interpola-

tion algorithms to improve electrical measurement accuracy.
IEEE Transactions on Instrumentation and Measurement, 38
(4):856–863, Aug 1989.

[2] D. B. Bartolini. Techniques and Tools for Efficient, QoS-
Driven Warehouse-Scale Computing. Tesi di Dottorato (PhD
Thesis), Politecnico di Milano, 2015.

[3] E. O. Brigham. The Fast Fourier Transform and Its Appli-
cations. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1988.

[4] D. Brooks and M. Martonosi. Dynamic Thermal Management
for High-Performance Microprocessors. In Proceedings of the
7th International Symposium on High-Performance Computer
Architecture, pages 171–, 2001.

[5] J. Brouchier, N. Dabbous, T. Kean, C. Marsh, and D. Nac-
cache. Thermocommunication. Cryptology ePrint Archive,
Report 2009/002, 2009.

[6] J. Brouchier, T. Kean, C. Marsh, and D. Naccache. Tempera-
ture Attacks. Security Privacy, IEEE, 7(2):79–82, 2009.

[7] T. M. Cover and J. A. Thomas. Elements of Information The-
ory (Wiley Series in Telecommunications and Signal Process-
ing). Wiley-Interscience, 2006. ISBN 0471241954.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark Silicon and the End of Multicore Scaling.
In Proceedings of the 38th Annual International Symposium
on Computer Architecture, pages 365–376, 2011.

[9] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh. Covert
Channels Through Branch Predictors: A Feasibility Study.
In Proceedings of the Fourth Workshop on Hardware and
Architectural Support for Security and Privacy, pages 5:1–
5:8, 2015.

[10] M. Guri, M. Monitz, Y. Mirski, and Y. Elovici. BitWhisper:
Covert Signaling Channel between Air-Gapped Computers
using Thermal Manipulations. URL http://arxiv.org/

abs/1503.07919.

[11] J. Hasan, A. Jalote, T. Vijaykumar, and C. Brodley. Heat
stroke: power-density-based denial of service in SMT. In
High-Performance Computer Architecture, 2005. HPCA-11.
11th International Symposium on, pages 166–177, 2005.

[12] C. Heegard and L. Ozarow. Bounding the capacity of satura-
tion recording: the Lorentz model and applications. Selected
Areas in Communications, IEEE Journal on, 10(1):145–156,
Jan 1992. ISSN 0733-8716.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feed-
back Control of Computing Systems. John Wiley & Sons,
2004.

[14] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vish-
wanath, and M. Tiwari. Understanding contention-based
channels and using them for defense. In Proceedings of the
21st IEEE International Symposium on High Performance
Computer Architecture, pages 639–650, 2015.

[15] M. Hutter and J.-M. Schmidt. The Temperature Side Channel
and Heating Fault Attacks. IACR Cryptology ePrint Archive,
2014:190, 2014.

[16] T. Iakymchuk, M. Nikodem, and K. Kepa. Temperature-
based covert channel in FPGA systems. In Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2011
6th International Workshop on, pages 1–7, June 2011. doi:
10.1109/ReCoSoC.2011.5981510.

[17] Intel Corporation. Intel 64 and IA-32 architectures software
developer’s manuals volume 3: System programming guide,
2015.

[18] B. W. Lampson. A Note on the Confinement Problem. Com-
mun. ACM, 16:613–615, Oct. 1973.

[19] C. H. Lim, W. R. Daasch, and G. Cai. A thermal-aware
superscalar microprocessor. In Quality Electronic Design,
2002. Proceedings. International Symposium on, pages 517–
522. IEEE, 2002.

[20] C. Marsh and D. McLaren. Poster: Temperature Side Chan-
nels. In In the Proceedings of the 9th International Workshop
on Cryptographic Hardware and Embedded Systems (CHES),
2007, 2007.

[21] R. J. Masti, D. Rai, A. Ranganathan, C. Müller,
L. Thiele, and S. Capkun. Thermal Covert Chan-
nels on Multi-core Platforms. In 24th USENIX Se-
curity Symposium (USENIX Security 15), pages 865–
880, Washington, D.C., Aug. 2015. USENIX Asso-
ciation. ISBN 978-1-931971-232. URL https:

//www.usenix.org/conference/usenixsecurity15/

technical-sessions/presentation/masti.

[22] A. Mileva and B. Panajotov. Covert channels in TCP/IP
protocol stack - extended version-. Central European Journal
of Computer Science, 4(2):45–66, 2014. ISSN 1896-1533.

[23] S. J. Murdoch. Hot or Not: Revealing Hidden Services by
Their Clock Skew. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, CCS ’06,
pages 27–36, 2006.

[24] D. Rai, H. Yang, I. Bacivarov, and L. Thiele. Power Agnos-
tic Technique for Efficient Temperature Estimation of Multi-
core Embedded Systems. In Proceedings of the 2012 Interna-
tional Conference on Compilers, Architectures and Synthesis
for Embedded Systems, pages 61–70, 2012.

[25] C. Reis, A. Barth, and C. Pizano. Browser Security: Lessons
from Google Chrome. ACM Queue, 7(5):3, 2009.

[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security, pages
199–212. ACM, 2009.

[27] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, second edition, 2003.

[28] C. Shannon. A Mathematical Theory of Communication. Bell
System Technical Journal, 27:379–423, 623–656, 1948.

[29] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic
Techniques and Thermal-RC Modeling for Accurate and Lo-
calized Dynamic Thermal Management. In Proceedings of the
8th International Symposium on High-Performance Computer
Architecture, pages 17–, 2002.

[30] K. Suzaki, K. Iijima, T. Yagi, and C. Artho. Memory Dedu-
plication As a Threat to the Guest OS. In Proceedings of the

http://arxiv.org/abs/1503.07919
http://arxiv.org/abs/1503.07919
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti

Fourth European Workshop on System Security, EUROSEC
’11, pages 1:1–1:6, 2011.

[31] A. Tanenbaum. Computer Networks. Prentice Hall Profes-
sional Technical Reference, 4th edition, 2002.

[32] U.S. Department of Defense. DOD Trusted Computer System
Evaluation Criteria “The Orange Book” [DOD 5200.28].
1985.

[33] P. P. Vaidyanathan, S.-M. Phoong, and Y.-P. Lin. Signal Pro-
cessing and Optimization for Transceiver Systems. Cambridge
University Press, 2010. ISBN 9781139042741. URL http:

//dx.doi.org/10.1017/CBO9781139042741. Cambridge
Books Online.

[34] Z. Wang and R. Lee. Covert and Side Channels Due to
Processor Architecture. In Computer Security Applications
Conference, 2006. ACSAC ’06. 22nd Annual, pages 473–482,
2006.

[35] P. D. Welch. The use of fast Fourier transform for the estima-
tion of power spectra: A method based on time averaging over
short, modified periodograms. IEEE Transactions on Audio
and Electroacoustics, 15(2):70–73, Jun 1967.

[36] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space:
High-speed Covert Channel Attacks in the Cloud. In Proceed-
ings of the 21st USENIX Conference on Security Symposium,
Security’12, pages 9–9, 2012.

[37] Xu, Yunjing and Bailey, Michael and Jahanian, Farnam and
Joshi, Kaustubh and Hiltunen, Matti and Schlichting, Richard.
An exploration of l2 cache covert channels in virtualized en-
vironments. In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop, CCSW ’11, pages 29–
40, 2011.

[38] S. Zander and S. J. Murdoch. An Improved Clock-skew
Measurement Technique for Revealing Hidden Services. In
USENIX Security Symposium, pages 211–226, 2008.

[39] S. Zander, P. Branch, and G. Armitage. Capacity of
Temperature-Based Covert Channels. Communications Let-
ters, IEEE, 15(1):82–84, 2011.

http://dx.doi.org/10.1017/CBO9781139042741
http://dx.doi.org/10.1017/CBO9781139042741

	Introduction
	Background and Related Work
	Microarchitectural Channels
	Thermal-Related Attacks
	Temperature-Based Covert Channels

	Threat Model
	Communication Channel Model
	Experimental Setup
	System settings
	Reference apps
	Platform characterization

	Capacity Estimation
	Finding Capacity Bounds— The theory —
	Determining the Power Spectra— The practice —
	Additional notes on the experiments {Ef}

	Computing the Capacity Bounds— Theory meets practice —

	Transmission Scheme and Achieved Rates
	Encoding and Decoding Scheme
	Performance Evaluation
	Sensitivity to Environmental Conditions

	Concluding Remarks

