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Uncertainty Exchange through Multiple Quadrature
Kalman Filtering
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Abstract—One of the major challenges in Bayesian filtering is
the curse of dimensionality. The quadrature Kalman filter (QKF)
is the method of choice in many real-life Gaussian problems,
but its computational complexity increases exponentially with the
dimension of the state. As a promising solution to overcome the
filter limitations in such scenarios, we further explore the multiple
state-partitioning approach, which considers the partition of the
original space into several subspaces, with the goal to apply
a low-dimensional filter at each partition. In this contribution,
the key idea is to take advantage of the estimation uncertainty
provided by the QKF to improve the interaction among filters and
avoid the point estimate approximation performed in the original
Multiple QKF (MQKF). The new filter formulation, named
Improved MQKF, considers Gauss-Hermite quadrature rules to
propagate the subspaces of interest, together with cubature rules
for marginalization purposes. The nested quadrature-cubature
approximation provides robustness and improves the filter perfor-
mance. Simulation results for a multiple target tracking scenario
are provided to support the discussion.

Index Terms—Curse of dimensionality, filtering, high-
dimensional systems, multiple target tracking, uncertainty prop-
agation.

I. INTRODUCTION

THE problem under study concerns the derivation of new
robust methods to solve the Bayesian filtering problem.

The state-space models of interest are expressed as [1]

xk = fk−1(xk−1) + νk−1 , νk−1 ∼ N (0,Qk−1), (1)
yk = hk(xk) + nk , nk ∼ N (0,Rk), (2)

where xk ∈ Rnx and yk ∈ Rny are the hidden state of
the system and the measurements at time k; fk−1(·) and
hk(·) are known (possibly nonlinear) functions of the state;
νk−1 and nk are assumed to be independent. The solution
to the Bayesian filtering problem is given by the marginal
distribution p(xk|y1:k), which gathers all the information
about the states at time k given by the available measurements,
y1:k = (y1, . . . ,yk). A plethora of alternatives are available
in the literature, being particle filters (PFs) [2] the most
popular in general nonlinear/non-Gaussian systems, and the
Quadrature Kalman filter (QKF) [3]–[5], under the Gaussian
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assumption of interest here. One of the major challenges in the
development of new filtering methods is the well known curse
of dimensionality [6], that is, the exponential computational
complexity increase in high-dimensional systems [7], which
implies a loss of accuracy and possible divergence.

To circumvent the curse of dimensionality and associ-
ated problems, one may consider several strategies: i) Rao-
Blackwellisation to reduce the state-space dimension to be
explored by the nonlinear filter [8], which can be used in
systems with linear substructures, ii) posterior independence
assumption particle filters [9]–[11], and iii) the multiple ap-
proach based on state-partitioning introduced in [12]–[15],
leading to the so-called Multiple PF (MPF) and Multiple QKF
(MQKF). In this paper, we propose an improvement of the
original MQKF, which we proceed to review.

A. Standard Multiple QKF background

In the system of interest, we assume that the state in (1) can
be partitioned into S subspaces as xk = [x

(1)
k , . . . ,x

(S)
k ] such

that Qk−1 = diag(Q(1)
k−1, . . . ,Q

(S)
k−1). Under this assumption,

we can write the state equation as 1


x
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...

x
(S)
k

 =


f
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(1)
k−1,x
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...
f
(S)
k−1(x

(S)
k−1,x

(−S)
k−1 )

+


ν
(1)
k−1
...

ν
(S)
k−1

 , (3)

where functions f
(s)
k−1(·) can be different, and the s-th process

noise is independent and distributed as ν
(s)
k−1 ∼ N (0,Q

(s)
k−1).

The key idea behind the standard MQKF [15] is to apply
an individual filter to each subspace in (3), directly reducing
the state dimension each filter must deal with. Mathematically
this implies that the s-th filter is in charge of approximating
the subspace marginal predictive and posterior distributions,
p(x

(s)
k |y1:k−1) and p(x

(s)
k |y1:k), respectively. To compute

such distributions the s-th filter assumes: i) the joint predictive
and posterior distributions may be written as

p(x
(s)
k ,x

(−s)
k |y1:k−1) = p(x

(s)
k |y1:k−1)p(x

(−s)
k |y1:k−1), (4)

p(x
(s)
k ,x

(−s)
k |y1:k) = p(x

(s)
k |y1:k)p(x

(−s)
k |y1:k), (5)

1x(s) denotes the s-th element (possibly a vector) in a vector x and x(−s)

is the vector of all elements in x except for x(s). The dimension of each
subspace n(s)

x = dim{x(s)
k } is defined such that

∑S
s=1 n

(s)
x = nx, s ∈

S = {1, . . . , S}, and n(−s)
x = dim{x(−s)

k }.
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and, ii) as done in [12], [13], the interconnection among
subspaces is approximated using point estimates, which are
available from the other filters running in parallel,

p(x
(−s)
k−1 |y1:k−1) ≈ δ(x(−s)

k−1 − x̂
(−s)
k−1|k−1), (6)

p(x
(−s)
k |y1:k−1) ≈ δ(x(−s)

k − x̂
(−s)
k|k−1), (7)

or equivalently, x
(−s)
k−1 = x̂

(−s)
k−1|k−1and x

(−s)
k = x̂

(−s)
k|k−1.

Under these assumptions, the prediction and update
steps of the filter in charge of the s-th subspace
reduce to approximating Gaussian integrals of the
form2

∫
f(x

(s)
k−1, x̂

(−s)
k−1|k−1)p(x

(s)
k−1|y1:k−1)dx

(s)
k−1 and∫

h(x
(s)
k , x̂

(−s)
k|k−1)p(x

(s)
k |y1:k−1)dx

(s)
k . The MQKF uses

Gauss-Hermite quadrature rules (i.e., a set of deterministic
sigma-points and weights) [3], [4], to approximate such
integrals, therefore, it is a bank of S parallel QKFs which
exchange information at each step.

B. Contribution

The point estimate approximation in (6) and (7) is not
a robust solution and may lead to divergence of the filter,
because it does not take into account the uncertainty on the
predicted/estimated states (i.e., quality of the estimates), which
is characterized by the error covariance. Moreover, as the
subspace marginal predictive and posterior distributions are
Gaussian and fully characterized by their mean and covariance,
which are available from the filters running in parallel, we can
improve such approximation.

The main goal of this contribution is to further explore and
improve the original MQKF in [15]. First of all, we drop the
assumption in (6) and (7), and rewrite the general formulation
of the algorithm. Then, to obtain a more accurate subspace
marginalization, we propose to use a new nested quadrature-
cubature sigma-point approximation of the integrals in the
general solution. The new approach, named Improved MQKF
(IMQKF), considers Gauss-Hermite quadrature rules [4] to
propagate the partition of interest and cubature rules [16] to
marginalize the rest of subspaces. The coupled filters only need
to exchange the predicted and estimated mean and covariance
at each prediction and update steps. We prove that under
reasonable conditions the complexity is lower than that of
QKF and, although larger than MQKF, the new method allows
inference over large-dimensional systems where both QKF and
MQKF cannot effectively operate. The improved methodology
is applied to a representative multiple target tracking scenario.

II. ON THE UNCERTAINTY EXCHANGE THROUGH MQKF

A. General filter formulation

The state-partioning strategy considers a bank of S parallel
filters, each one tracking a single subspace. Considering the
filter in charge of the s-th subspace, the Bayesian solution is

2We write (x)2, (y)2, f2(·) and h2(·) as the shorthand for xxT , yyT ,
f(·)fT (·) and h(·)hT (·), respectively. We omitted the dependence with time
and the superscript (s) of f (s)k−1(·) and hk(·), for the sake of clarity.

given by the s-th subspace marginal predictive and posterior
distributions, which under the Gaussian assumption are

p(x
(s)
k |y1:k−1) = N

(
x
(s)
k ; x̂

(s)
k|k−1,Σ

(s)
x,k|k−1

)
, (8)

p(x
(s)
k |y1:k) = N

(
x
(s)
k ; x̂

(s)
k|k,Σ

(s)
x,k|k

)
. (9)

These distributions are recursively computed in two steps:
prediction and update. The general formulation of the marginal
predictive distribution in this case reads

p(x
(s)
k | y1:k−1) =

∫ ∫
p(x

(s)
k |x

(s)
k−1,x

(−s)
k−1 )

× p(x(s)
k−1|y1:k−1)p(x

(−s)
k−1 |y1:k−1)dx

(s)
k−1dx

(−s)
k−1 . (10)

In the prediction step, the filter is interested in the mean and
corresponding prediction error covariance of such distribution,

x̂
(s)
k|k−1 = E

{
x
(s)
k | y1:k−1

}
=

∫ ∫
f(x

(s)
k−1,x

(−s)
k−1 )

× p(x(s)
k−1|y1:k−1)p(x

(−s)
k−1 |y1:k−1)dx

(s)
k−1dx

(−s)
k−1 , (11)

Σ
(s)
x,k|k−1 =

∫ ∫
f2(x

(s)
k−1,x

(−s)
k−1 )p(x

(s)
k−1|y1:k−1) (12)

× p(x(−s)
k−1 |y1:k−1)dx

(s)
k−1dx

(−s)
k−1 −

(
x̂
(s)
k|k−1

)2
+ Q

(s)
k−1.

In the subsequent update step, the filter approximates the mean
and estimation error covariance of the marginal subspace pos-
terior, p(x(s)

k |y1:k). These estimates are given by the Kalman
update equations [17] as

x̂
(s)
k|k = x̂

(s)
k|k−1 + K

(s)
k

(
yk − ŷ

(s)
k|k−1

)
, (13)

Σ
(s)
x,k|k = Σ

(s)
x,k|k−1 −K

(s)
k Σ

(s)
y,k|k−1

(
K

(s)
k

)T
, (14)

where the Kalman gain is K
(s)
k = Σ

(s)
xy,k|k−1

(
Σ

(s)
y,k|k−1

)−1
.

To compute the updated estimates the filter needs the predicted
measurement, and both innovation and cross covariance ma-
trices, which are given by the following integrals

ŷ
(s)
k|k−1 =

∫ ∫
h(x

(s)
k ,x

(−s)
k )p(x

(s)
k |y1:k−1)
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k , (15)
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(
ŷ
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)T
B. Nested quadrature-cubature sigma-point approximation

In general, the problem reduces to approximating the inte-
grals in (11), (12), (15), (16) and (17). The original MQKF
solution in (6)-(7) is the simplest choice, but as already stated,
a much better approach is to use the full subspace marginal
distributions, p(x(−s)

k−1 |y1:k−1), and p(x
(−s)
k |y1:k−1). In this

contribution, we propose a new formulation to avoid the
approximation in [15], exploiting the distributions recursively
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characterized by each parallel filter. These filtered densities
gather knowledge about the uncertainty of the various tracked
subspaces, which is now taken into account. Notice that
the dimension of the concatenation of the −s subspaces is,
potentially, much greater than the dimension of the subspace
of interest, n(−s)x >> n

(s)
x . Therefore, considering the curse

of dimensionality and computational complexity reduction
problems, it may not be a good idea to use Gauss-Hermite
quadrature rules [4] to marginalize such subspaces. In contrast
with the exponential increase in the number of evaluation
points in the Gauss-Hermite quadrature rule with the state
dimension, the number of sigma points of the cubature rule
[16] grows linearly with the state dimension. Therefore, in this
contribution we propose to use a cubature-based marginaliza-
tion of the subspaces x

(−s)
k−1 and x

(−s)
k . Gauss-Hermite rules are

used to predict/update the s-th state partition at the s-th filter,
thus achieving improved tracking performances.

Notice that at time k, the distributions p(x(s)
k−1|y1:k−1) =

N
(
x
(s)
k−1; x̂

(s)
k−1|k−1,Σ

(s)
x,k−1|k−1

)
and p(x

(−s)
k−1 |y1:k−1) =

N
(
x
(−s)
k−1 ; x̂

(−s)
k−1|k−1,Σ

(−s)
x,k−1|k−1

)
are available from the pre-

vious time step. x̂
(−s)
k−1|k−1, is build from the concatenation of

the different subspace estimates, except for the s-th, and the
corresponding covariance matrix, Σ

(−s)
x,k−1|k−1, which charac-

terizes the filter prediction uncertainty, is build from the indi-
vidual covariances as a block diagonal matrix. After the pre-
diction step, the filter in charge of the s-th subspace is aware
of the information provided by the rest of the filters, thus the
distributions p(x

(s)
k |y1:k−1) = N

(
x
(s)
k ; x̂

(s)
k|k−1,Σ

(s)
x,k|k−1

)
and p(x(−s)

k |y1:k−1) = N
(
x
(−s)
k ; x̂

(−s)
k|k−1,Σ

(−s)
x,k|k−1

)
are fully

characterized, with x̂
(−s)
k|k−1 and Σ

(−s)
x,k|k−1 constructed as before.

The characterization of these Gaussian subspace marginal
distributions can be used to correctly approximate the integrals
in (11), (12), (15), (16) and (17). The key idea is to use a nested
quadrature-cubature sigma-point formulation. In the prediction
step, two sets of sigma-points are used for x

(s)
k−1 and x

(−s)
k−1 , and

equivalently, two distinct sets are used for x
(s)
k and x

(−s)
k in

the update step. The IMQKF formulation is detailed in the
sequel.

Prediction. Consider two sets of sigma-points, one built
according to n

(s)
x , and the other one according to the di-

mension of the concatenation of missing subspaces, n(−s)x :
{ξ(s)i , ω

(s)
i }i=1,...,Ls

and {ξ(−s)j , ω
(−s)
j }j=1,...,L−s

. Then con-
struct two transformed sets which capture the mean and
covariance of the two distributions of interest,

x
(s)
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(
S
(−s)
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. The integrals

in (11) and (12) can be approximated using this sigma-points

sets as

x̂
(s)
k|k−1 =

L−s∑
j=1

ω
(−s)
j

Ls∑
i=1

ω
(s)
i f(x

(s)
i,k−1|k−1,x

(−s)
j,k−1|k−1), (18)

Σ
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−
(
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)2
+ Q

(s)
k−1 , (19)

where
∑
j implements the marginalization over x

(−s)
k−1 .

Update. As done in the prediction stage, sigma-point rules
can be used to approximate the integrals in (15), (16) and
(17). First, we compute the transformed sets to capture the
mean and covariance of the predictive marginal distributions,

x
(s)
i,k|k−1 = S

(s)
x,k|k−1ξ

(s)
i + x̂

(s)
k|k−1, i = 1, . . . , Ls,

x
(−s)
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(−s)
j + x̂

(−s)
k|k−1, j = 1, . . . , L−s,

with the factorization Σ
(s)
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S
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and

Σ
(−s)
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x,k|k−1

(
S
(−s)
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. Then we approximate the

integrals of interest using quadrature rules as,

ŷ
(s)
k|k−1 =

L−s∑
j=1

ω
(−s)
j

Ls∑
i=1

ω
(s)
i h(x

(s)
i,k|k−1,x

(−s)
j,k|k−1), (20)

Σ
(s)
y,k|k−1 =

L−s∑
j=1

ω
(−s)
j

Ls∑
i=1

ω
(s)
i h2(x

(s)
i,k|k−1,x
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−
(
ŷ
(s)
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)2
+ Rk, (21)

Σ
(s)
xy,k|k−1 =

L−s∑
j=1

ω
(−s)
j

Ls∑
i=1

ω
(s)
i x

(s)
i,k|k−1

× h(x
(s)
i,k|k−1,x

(−s)
j,k|k−1)

> − x̂
(s)
k|k−1

(
ŷ
(s)
k|k−1

)>
(22)

where
∑
j implements the marginalization over x

(−s)
k .

To summarize, considering α points per dimension for the
Gauss-Hermite quadrature points, both sets used in the new
formulation of the MQKF are

{ξ(s)i , ω
(s)
i }i=1,...,Ls , with Ls = αn

(s)
x (quadrature points)

{ξ(−s)j , ω
(−s)
j }j=1,...,L−s

, with L−s = 2n(−s)x (cubature points)

It is worth saying that it may be useful for numerical
stability to implement the square-root version of each QKF [5].
Finally, it is straightforward to use sparse-grid quadrature rules
to further reduce the computational complexity with negligible
penalty in numerical accuracy [7], [18].

C. Complexity analysis

The computational complexity of the IMQKF is higher than
the MQKF and lower than the QKF for high-dimensional
systems, under certain conditions typically met in practice. A
detailed explanation is provided in the supplementary material.
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III. MULTIPLE TARGET TRACKING

Illustrative numerical results of the new method’s perfor-
mance are shown in a multiple target tracking example, where
K targets move in a 2-D plane and are tracked using a set
of N = 100 sensors, uniformly distributed in a deterministic
100× 100 m2 grid, receiving signal strength. The states to be
tracked for target i are position and velocity, respectively gath-
ered in vector x

(i)
k = [p

(i)
x,k, p

(i)
y,k, v

(i)
x,k, v

(i)
y,k]
>. The dynamical

model is

x
(i)
k = Gxx

(i)
k−1 + ν

(i)
k−1, ν

(i)
k−1 ∼ N (0,Q) (23)

where the process noise models the possible system errors due
to acceleration perturbations, with Q = Gνdiag(σ2

ax , σ
2
ay )G

>
ν ,

Gx =

(
I Ts · I
0 I

)
,Gν =

(
T 2
s /2 · I
Ts · I

)
. (24)

Ts = 1 s being the sampling period. Notice that MQKF and
IMQKF exploit the independence among targets to partition
the state-space, being each subspace defined as in (23). At
time k, the m-th sensor signal strength model is given by [14]

ym,k =

K∑
i=1

10 log10

(
1

|rm − li,k|2

)
+ nm,k, (25)

nm,k ∼ N (0, σ2
m) with li,k = [p

(i)
x,k, p

(i)
y,k]
>and known grid

sensor position rm.
The experiments are averaged over 50 independent trials.

Target trajectories are randomly generated and do not cross
each other in the duration of the simulation. Noise variances
are fixed to σ2

ax = σ2
ay = 0.01 and σ2

m = 10−3 for all

sensors. Filters are initialized as p(x̂
(i)
0 ) ∼ N

(
x
(i)
0 ,P

(i)
0

)
with P

(i)
0 = diag(10, 10, 0.1, 0.1). The performance of the

IMQKF, which is compared with the original MQKF [15],
and both standard QKF [3], [4] and Cubature KF (CKF)
[16], is shown in Fig. 1. Table I summarizes the number of
sigma-points at each filter, for α = 3. Additionally, a PF
is used to solve the same problem, particularly a Sampling
Importance Resampling PF [19] with transitional prior as
importance distribution. Two PFs are used for comparison: one
with the same number of particles as the QKF and another with
much larger number of samples to ensure convergence. We
have also implemented the quasi-Monte Carlo Kalman filter
(QMCKF) in [20] using a Halton sequence with the same
number of points as in the IMQKF. For this number of points,
the QMCKF does not finish the simulations due to negative-
definite covariance matrices, implying that the IMQKF makes
a more efficient use of this number of samples.

TABLE I
NUMBER OF SIGMA-POINTS FOR THE DIFFERENT METHODS AND α = 3.

Filter K = 1 K = 2 K = 4 K = 6
CKF 8 16 32 48

MQKF 81 162 324 486
IMQKF 81 1296 7776 19440

QKF 81 6561 43046721 324

Fig. 1 (bottom) shows that QKF-based solutions are equiv-
alent for K = 1 and 2 targets (nx = 4 and 8), and always
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Fig. 1. RMSE of position for different number of targets: K = 4 vs time
(top), K = 6 vs time (middle), and RMSE vs number of targets (bottom).

better than the CKF. The reason why there are no results for
the QKF at K ≥ 4 (nx ≥ 16) is clear from Table I, where
we can see that the number of samples is too large. Similarly,
PF approaches cannot be efficiently implemented when the
state dimension increases. 5000 particles (K = 1) and 50000
particles (K = 2) are needed for stable operation. For K ≥ 4
the number becomes prohibitive. Even more, when the number
of particles is that of QKF the PF is likely to diverge, as
stated in the figure with the percentage of diverged tracks. Fig.
1 (top) and (middle) show the different Kalman-like filters’
performances in time for K = 4 and 6 targets (nx = 16 and
24). The original MQKF [15] is able to cope with 4 targets,
but fails if the number of targets increases.

IV. CONCLUSIONS

Multiple quadrature Kalman filtering is a method that pro-
vides accurate tracking solutions in high-dimensional dynam-
ical systems where the Gaussian assumption holds. The state-
space is partitioned such that a bank of quadrature Kalman
filters is employed, one individual filter per partition, requiring
some information exchange. In the original work [15], this
interaction was in the form of point estimates. In this paper,
a new approach to marginalize out the contribution of the
other partitions is provided, accounting for the uncertainty of
the individual point estimates and properly fusing them in a
Bayesian sense. Particularly, while Gauss-Hermite rules are
used at each filter to propagate the partition under interest,
cubature rules are used for marginalization purposes due to
their lower computational requirements. At the expense of a
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reasonable complexity increase with respect to [15], the new
filter can perform notably in large dimensional systems where
QKF cannot due to the curse of dimensionality.
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