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Abstract 

To date, various speech technology systems have adopted the 
vocoder approach, a method for synthesizing speech waveform 
that shows a major role in the performance of statistical 
parametric speech synthesis. However, conventional source-
filter systems (i.e., STRAIGHT) and sinusoidal models (i.e., 
MagPhase) tend to produce over-smoothed spectra, which often 
result in muffled and buzzy synthesized text-to-speech (TTS). 
WaveNet, one of the best models that nearly resembles the 
human voice, has to generate a waveform in a time-consuming 
sequential manner with an extremely complex structure of its 
neural networks. WaveNet needs large quantities of voice data 
before accurate predictions can be obtained. In order to 
motivate a new, alternative approach to these issues, we present 
an updated synthesizer, which is a simple signal model to train 
and easy to generate waveforms, using Continuous Wavelet 
Transform (CWT) to characterize and decompose speech 
features. CWT provides time and frequency resolutions 
different from those of the short-time Fourier transform. It can 
also retain the fine spectral envelope and achieve high 
controllability of the structure closer to human auditory scales. 
We confirmed through experiments that our speech synthesis 
system was able to provide natural-sounding synthetic speech 
and outperformed the state-of-the-art WaveNet vocoder. 

Index Terms: wavelet model, speech synthesis, continuous 
vocoder, statistical features 

1. Introduction 

The application areas of speech synthesis are expanding into 
new domains, from newsreaders and simple task-oriented 
dialogues to multi-turn conversations. Text-to-speech (TTS) 
synthesis is an essential technology for users and computers to 
engage in natural spoken dialogue. In this regard, it is desirable 
to have vocoders synthesize high-quality voices from the 
speech parameters and be robust to artificial changes. So that 
vocoder-based TTS systems can synthesize stable speech under 
the parameters not included in the training data, and that users 
can process the synthetic speech according to their preference. 

Several end-to-end neural models such as WaveNet [1], 
WaveGlow [2], and LPCNet [3] have been proposed recently 
and can synthesize high-fidelity speech in TTS [4]. These 
models are frequently used as vocoders to convert acoustic 
features, e.g., the spectrogram into speech waveforms. 
However, in the current development and production scenario, 
it is important not only to achieve full-band and high-quality 
synthesis but also to allow users to control speech 
characteristics according to their preferences. Statistical 

parametric speech synthesis (SPSS) [5] is applied to be a full-
band and highly-controllable TTS system. It uses acoustic 
features as a low-dimensional intermediate representation for 
generating the speech waveform from the text. In SPSS, those 
features significantly influence the quality of synthetic speech 
and controllability.  

Most modern speech synthesis and recognition systems use 
either perceptual linear prediction or cepstral coefficients as 
acoustic features. Mel-cepstrum [6] is a well-known example of 
representation; it approximates the spectral envelope with 
trigonometric functions’ superposition. However, statistical 
averaging of mel-cepstrum in SPSS changes the entire original 
structure and significantly degrades synthetic speech quality. In 
this regard, conventional TTS systems using cepstral features 
tend to produce over smoothed spectra, which often result in 
muffled and buzzy synthesized speech. Although some attempts 
were made to emphasize the peaks and dips of generated spectra 
via post-processing [7], it is generally difficult to restore 
original peaks and dips once spectra are over-smoothed. Also, 
decomposition by trigonometric functions does not result in 
high controllability. To address this problem, approximation of 
speech parameters in an alternative speech representation based 
on wavelet transform is proposed in this paper. On this basis we 
formulate a new generative model for TTS.  

The wavelet transform [8] is becoming a common tool for 
analyzing localized variations of power in both time and 
frequency domains. It has been previously used in a variety of 
applications in speech processing; these include speech 
enhancement [9], speech segmentation and classification [10], 
pitch detection and voice conversion [11]. Several studies have 
been conducted to determine an effective and practical method 
for controlling the speech synthesis voice. The composite 
wavelet model was proposed in [12] as an alternative of the 
vocoder (regarded as convolution by non-recursive filters) 
which can synthesize stable speech and it was utilized in speech 
synthesis. However, its impulse responses are short, and it is 
reported that quality degradation occurs even for fluctuation of 
the pitch. Whereas in [13], Mel-Frequency Cepstral 
Coefficients (MFCCs) were replaced with wavelet parameters 
both in the training and speech synthesis based on Hidden 
Markov Model (HMM). Ribeiro and Clark in [14] were using 
wavelets for F0 modeling  under the assumption that they can 
be meaningfully related to linguistic units. However, this 
assumption was shown not to be accurate. Time-scale 
representation based on Continuous Wavelet Analysis (CWT) 
has previously been applied for detection and quantifying 
prosodic events regarding word and syllable prominence [15]. 
It was also seen in [16] that the CWT decomposition may be 
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used with discrete cosine transform to model each prosody scale 
at a supra-segmental level. 

To achieve higher quality speech synthesis, we propose a 
system based on CWT capable of modeling speech features in 
different temporal scales. Continuous fundamental frequency 
(contF0), Maximum Voiced Frequency (MVF), and spectral 
envelope of the speech signal are analyzed and decomposed by 
CWT. This approach is different from our earlier research in 
[17]. Finally, we compare its accuracy with the WaveNet 
architecture’s performance using six different types of 
speakers. Experimental results indicate that our framework 
outperforms the conventional one in quality of analysis-
synthesized speech. In the remaining part of this paper, we 
describe the wavelet synthesizer in Section 2. In Section 3, the 
experiments and simulation results are summarized. Finally, the 
discussions and conclusions are presented in Sections 4 and 5, 
respectively. 

2. Methods 

2.1. Continuous Wavelet Transform 

A wavelet is a short waveform with finite duration, whose 
average value is zero. The continuous wavelet transform 
(CWT) can describe the signal in various transformations of a 
mother wavelet. Scaling the mother wavelet, the transform can 
capture high frequencies if the wavelet is compressed, and low 
frequencies if it is stretched. The process is repeated by 
translating the mother wavelet. The CWT output is an ��� 
matrix where � is the number of scales and � is the length of 
the signal. The CWT coefficient at scale � and position � is 
given by: 

          ���, �
 � 1√� � ���
��� � �� 
����
��                         �1
 

where � is the input signal, and � is the mother wavelet. This 
work will consider a decomposition strategy using the CWT 
and the Mexican hat mother wavelet. A set of 10 components is 
defined, where each component is approximately one octave 
apart. 

The original signal can be recovered from the wavelet 
representation by inverse transform using the double-integral 
form over all scales and locations, � and � (for the proof, see 
[18] [19]): 
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Then we can obtain an approximation to the original signal by 
summing the scaled CWT coefficients over all scales 

���
 � � ����, �; �
 � ���
��
���                            �3
 

where ���
  is the reconstruction error. CWT can analyze a 
speech waveform with a time-frequency resolution different 
from the Short time Fourier Transform (STFT). Figure 1 shows 
an STFT spectrogram and a CWT scalogram. A major 
difference between them is that the frequency bands in STFT 
have a fixed width, whereas in the CWT the frequency bands 
grow, shrink, scaled, and shifted to correlate with the signal’s 
anomalies or events. This leads to high-frequency resolution 

with CWT at low frequencies and high time resolution at high 
frequencies. 

 
Figure 1: Comparison of different time-frequency 

representations. Top Row: Original speech signal. Second 
row: Wavelet Scalogram using a Mexican hat wavelet ��!
, 

which is also a particular case of the "-th order derivative of 

a Gaussian wavelet. Third row:  Short Time Fourier 
Transform spectrogram. 

2.2. Speech Analysis-Synthesis Framework 

This work develops a statistical wavelet method of speech 
parameterization for speech synthesis. As shown in Figure 2, 
our framework consists of speech analysis and synthesis. 
During the analysis phase, as in our previous work in SPSS  
which was successfully used with a deep neural network-based 
TTS [20], continuous fundamental frequency (contF0) is 
calculated on the input waveform using a simple continuous 
pitch tracker [21].  

 

Figure 2: Overview of proposed analysis-synthesis framework 
using CWT-based approximation of speech features. 

 

It should be noted that the contF0 algorithm may lead to 
erroneous tracking whenever the harmonic-to-noise ratio is 
low. To mitigate this issue, CWT coefficients were extracted 
from the speech signal and used to form a contF0 vector. The 
impact of this approach on contF0 performance is illustrated in 
Figure 3. Obviously, the contF0 obtained by CWT almost 
matches the reference pitch contour (that of REPEAR [22]) 
much better than baseline. It can also be seen here that the 
modified contF0 in the unvoiced region (frames from 135 to 
158) is significantly much smaller than for the baseline. 

Another excitation parameter is the maximum voiced 
frequency (MVF) which exploits both amplitude and phase 
spectra that are integrated into a maximum likelihood criterion 
to derive the MVF decisions [23]. Here, MVF is also 
decomposed by CWT. Similarly, we also approximate the 
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extracted continuous spectral envelope [24] with the wavelet 
transform. 

 

Figure 3: Examples from female and male speakers of F0 
trajectories estimated by the baseline (blue) and ground truth 
(grey) plotted along with proposed refined contF0 calculated 

from wavelet coefficients (red). 

 

During the synthesis phase, voiced excitation is made of 
principal component analysis (PCA) residuals overlap-added 
pitch synchronously. This voiced excitation is lowpass filtered 
frame by frame at the frequency given by the MVF parameter. 
In the frequencies higher than the actual value of MVF, white 
noise is applied. Voiced and unvoiced excitation is combined 
together, and the MGLSA (Mel-Generalized Log Spectrum 
Approximation) filter is used to synthesize speech. 

The continuous wavelet vocoder has the apparent advantage 
of avoiding voicing decision per frame that may be considered 
to reduce the perceptual degradation caused by voicing decision 
errors. Moreover, it uses only two one-dimensional parameters 
for modeling the excitation, which is computationally feasible 
in deep neural network-based text-to-speech [25]. 

 

3. Experimental Evaluations 

3.1. Experimental Conditions 

In order to carry out the evaluation of the proposed system, we 
used six speakers from the CMU-ARCTIC database [26]; SLT, 
CLB, AWB, JMK, RMS, and KSP for evaluation, where SLT 
and CLB are female and others are male. The sampling 
frequency is set to 16 kHz with 16-bit linear quantization. The 
total number of utterances is 1132 per speaker, and the total 
utterance duration is about 1  hour per speaker. Acoustic 
features were extracted every 5ms after applying a window of 25ms. 

In the experiment, we compare our proposed model with the 
following speech methods: 

 WaveNet: It was trained by using 80-dim log-Mel 
spectrograms. The network architecture of the 
WaveNet was the same as that used in [27]. The total 
number of utterances is 6580 for training and 350 for 
testing (that is about 6 hours of recorded speech). 

 WORLD: It was also used as a high-quality signal-
processing-based vocoder [28]. Spectral envelopes 
and aperiodicity measurements obtained by utilizing 
the WORLD were converted to 59-dim Mel-cepstrum 
and 21-dim band aperiodicity. The total number of 
dimensions of a WORLD vocoder were 82 (59 Mel-
cepstrum + 1 voiced/unvoiced flag + 1 F0 + 21 band 
aperiodicity). 

 Continuous [17]: It was used as a baseline vocoder 
in this work. The total number of dimensions of the 
continuous vocoder were 26 (24 Mel-cepstrum + 1 
MVF + 1 contF0). 

 Anchor: It is a simple pulse-noise excitation vocoder 
[29]. This model was just used for the listening test. 

3.2. Objective Results 

In order to confirm whether the proposed model can reproduce 
the characteristics of the original speech, we evaluated spectral 
and fundamental frequency distortions between the natural 
speech and synthesized speech.  

For cepstrum, the following Mel-Cepstrum Distortion 
(MCD) was applied: 

�*+ � 10log 10 0 � 12345�"
 � 26789:�"
;�<
=��            �4
 

where 2345  and 26789:  are mel-cepstrum from original and 
synthesized speech, respectively, and � is the order of mel-
cepstrum. For F0, the following RMSE were applied: 

?�@A � 01� �BC0345� � C06789:� D�E
���                      �5
 

where C0345 and C06789: denote the real and the synthesized 
continuous F0 features, respectively. The above MCD and 
RMSE were calculated for each frame and averaged over all the 
frames. Averages for male and female speakers have similarly 
been separated from each other. A lower MCD and F0-RMSE 
value indicate smaller distortion or prediction error. 

The average MCD results from the natural and synthesized 
speech are presented in Table 1. Comparing the proposed 
method with the baseline and WaveNet, the suggested model 
decreases the value of MCD, proving that the continuous 
wavelet transform has a significant impact on the spectral 
feature of speech synthesis. It can also be seen that MCD of the 
proposed method was improved at almost the same level as the 
MCD of WORLD, which means that it could reproduce the 
original spectrum correctly. 

Next, from Table 2, the root mean square error patterns are 
similar to the previous paragraphs’ correlation results. It can be 
noticed that WORLD and the proposed vocoder could 
reproduce the original F0 with a relatively higher accuracy than 
WaveNet and the baseline vocoder. Thus, it was demonstrated 
that the proposed method could capture the voiced and spectral 
information with relatively higher accuracy and outperformed 
the state-of-the-art WaveNet vocoder. 

Table 1: Comparison of mel-cepstrum distortion 

between spectral features of natural speech and 
synthesized speech.  

MCD (dB) Male Female 

Baseline 4.03 4.13 
WaveNet 4.74 4.97 
WORLD 3.31 3.27 
Proposed 3.47 3.42 
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Table 2: Comparison of F0-RMSE: Our framework 

versus the three vocoders. 

RMSE (dB) Male Female 

Baseline 4.37 4.31 
WaveNet 4.14 4.67 
WORLD 3.42 3.51 
Proposed 3.85 3.98 

 

3.3. Subjective Results 

In order to calculate the perceptual quality of the developed 
method, we performed a web-based MUSHRA (MUlti-
Stimulus test with Hidden Reference and Anchor) listening 
experiment [30]. We evaluated natural sentences with the 
synthesized ones from the baseline, proposed, WORLD, 
WaveNet, and an anchor system. The participants had to assess 
the naturalness of each stimulus relative to the reference (which 
was the natural sentence), from 0 (highly unnatural) to 100 
(highly natural). The listening test samples are available 
online1. Ten participants (7 males, 3 females) with a mean age 
of 33 years and no known hearing defects were invited to run 
the online perceptual test. On average, the MUSHRA test took 
10 minutes.  

Results are presented in Figure 4. The error bar represents 
95% confidence interval. The proposed system is preferred over 
the baseline, but no significant differences are seen when 
compared against the WORLD system. Moreover, the proposed 
vocoder achieves higher naturalness than the WaveNet 
vocoder. Hence, our method presents a good alternative 
approach to other methods for the reconstruction of speech.  

 
Figure 4: Sound quality of synthesized speech. 

 

4. Discussion 

We demonstrate that the wavelet transform provides a flexible 
approach to extract speech parameters and allows a multiscale 
decomposition of a speech signal. CWT is found to be 
significantly better than the standard STFT method. The 
continuous wavelet decomposition gives a possibility of 
adapting the weights of particular scales prior to reconstruction. 
This can be beneficial in the adaptation of speaking style.  

Overall, the results suggest that the proposed method can 
compensate for the degradation of the acoustic features in the 
baseline and WaveNet models for both male and female 
speakers. Although the differences between the proposed and 
WORLD methods are relatively small (did not differ 

                                                              
1 https://malradhi.github.io/cwt_vocoder/ 

significantly), the wavelet-based method requires fewer 
acoustic parameters. 

It is worth mentioning that although the original WaveNet 
paper describes that the WaveNet for TTS was trained by using 
speech data over 40 hours and successfully synthesized high-
quality speech, this is only valid for the corpus from the CSTR 
voice cloning toolkit (VCTK) [31]. Oord et al. (2016) found 
that WaveNet conditioned on linguistic features could 
synthesize speech samples with natural segmental quality, but 
it had unnatural prosody by stressing wrong words in a 
sentence. In this paper, we also found that the WaveNet model 
did not perform well with CMU-ARCTIC corpus after testing 
it by six different speakers. Even though different accents and 
varying reading proficiency will impact the speech synthesis 
quality, this requires further investigation and research by those 
who plan to adopt the WaveNet system into their applications. 

Additionally, the baseline contF0 contour was compared to 
the contF0 contour estimated with CWT by calculating the root 
mean square error for each test utterance. As expected, results 
showed significantly better performance for the wavelet method 
than for the baseline for all speakers. In the MUSHRA 
evaluation, the proposed method produces speech which sounds 
more persistent and more intelligible. But no significant 
differences were found when comparing it to the WORLD 
vocoder. Still, our system is more straightforward, i.e. uses 
fewer parameters. 

 
5. Conclusions 

The current paper has proposed a speech analysis-synthesis 
system based on wavelet decomposition. Our framework 
decomposes a multi-level representation of contF0, MVF, and 
spectral envelope using the continuous wavelet transform. Our 
work was supported by objective metrics of intelligibility and 
sound quality as well as subjective listening tests. We 
confirmed through experiments that our speech synthesis 
system was able to generate a natural-sounding synthetic 
speech and superior to state-of-the-art WaveNet vocoder on the 
CMU-ARCTIC database. 

Future work includes incorporating deep neural networks to 
improve the synthetic speech quality and apply this technique 
to voice conversion. It also worth investigating post-filtering 
algorithms that are appropriate for our proposed method in the 
future. 
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