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Abstract
In this paper, we discuss the importance of considering causal relations in the devel-

opment of machine learning solutions to prevent factors hampering the robustness and
generalisation capacity of the models, such as induced biases. This issue often arises
when the algorithm decision is affected by confounding factors. In this work, we argue
that the integration of causal relationships can identify potential confounders. We call
for standardised meta-information practices as a crucial step for proper machine learn-
ing solutions development, validation, and data sharing. Such practices include detailing
the dataset generation process, aiming for automatic integration of causal relationships.

1 Introduction
The number of scientific publications in the biological field employing machine

learning (ML) is rapidly growing. Both as a result of better access to larger amounts
of data generated using the latest technology (e.g. high throughput screening) and the
computational capacity together with the faster development in the ML area, especially
in deep learning (DL). Such trend and its direct consequences in biological healthcare
applications call for standardised guidelines to ensure the quality of each stage of the
research and application pipelines. Among other objectives, these guidelines aim to
establish better data sharing and appropriate foundations for good appraisal and re-
producibility. The data sharing goal aims to ensure good data management not only
to advance in knowledge discovery and innovation but also to allow for proper data
reuse. Better appraisal and reproducibility can be achieved through standardised report-
ing guidelines that guarantee the report of key dataset elements (for example dataset
generation details) as an essential step for dataset comparison and validation. In this
way, remarkable efforts have been done in the recent years. Here we highlight the FAIR
principles [1] and the DOME recommendations [2].

The FAIR principles (Findability, Accessibility, Interoperability, and Reusability)
aim to increase data usability, with special emphasis on machine-readable and action-
able datasets. This need arises because machines, in contrast to humans, lack a natural
ability to identify and interpret the context, becoming more likely to make errors contex-
tualising data. However, machines can overcome humans’ main limitations operating at
the scope, scale, and speed that the current e-Science scenario requests. Thus, different
mechanisms and protocols seeking machine self-guidance for data exploration need to
be developed [1]. More specific to the area of applied ML for biological analysis we
can find DOME (Data, Optimization, Model and Evaluation), a collection of recom-
mendations focused on proper reporting of supervised ML in biological studies [2].

The rest of the paper is structured as follows: with FAIR and DOME as guidance, we
discuss the importance of considering potential confounders in the data, especially after
the paradigm change from classical statistical modelling to ML. Below, we explore its
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impact on the ML-based biological applications emphasising human disease biology.
Finally, we discuss potential solutions with a special focus on the standardised metadata
that aims to encode causal relationships. Although every step is critical to develop better
models, this paper focuses on the datasets and their standardised reporting.

2 Considerations for the development and reporting of ML solutions
The study of biological systems involves either inferences or predictions. Inference

aims to create a mathematical model about the data-generation process, testing a hy-
pothesis or formalising our understanding of how the studied systems behave. It is used
to understand the mechanism of the studied event, for instance, how the accumulation
of one specific protein affects the system. In contrast, prediction purpose is to forecast
future behaviour, without necessarily understanding the mechanism behind it. For ex-
ample, to predict which treatment is better based on the specific level of a determined
protein. Despite both statistics and ML can be used to predict and make inferences, tra-
ditionally, statistical methods have focused on inference and ML in prediction [3]. The
choice between prediction or inference depends on the ultimate analysis goal.

In short, the statistical approaches are useful when we want to understand each vari-
able influence; but in general (not always), have less prediction power, frequently be-
cause only few variables and linear relationships are considered. Conversely, when large
and high dimensional datasets are analysed with prediction as a goal, ML is chosen [3].
One of the most crucial handicaps in current ML is the lack of model traceability. How-
ever, the high prediction power of these methods promotes their use for biological ap-
plications. Although, such methods are not exempt from risks.

Current limitations in biomedical ML solutions. The number of scientific works
using ML techniques has increased during the last years exponentially, and it is pro-
gressively translating into real-world applications, including High-Stakes domains such
as health, conservation, employment, education or justice. High-Stakes AI domains
are characterised by their significance and lasting impact on both individuals and soci-
ety [4]. Unfortunately, despite these models report excellent results during their model
training and testing steps, there are notorious cases when the accuracy dropped signif-
icantly during their real application, in some cases with harmful repercussions when
happened in High-Stakes domains. Systematic errors have been reported in commercial
software employing ML models for tracking, face detection, criminal justice and hiring
recommendations. Such errors include systematic biases against concrete populations
[5] and limitations in model generalizability and transportability which are well-known
issues in biomedical applications [6].

Origin and errors types. The reasons and solutions are complex, but one of the
most notable factors is the dataset composition, including the consideration and inter-
vention to avoid undesirable biases and potential confounders. Simply put, the main
error sources fall into two subtypes of biases. First, conveyance of systematic biases
in the datasets. These patterns represent actual real-world bias that we do not want to
convey in the data. For instance, a dataset may reflect an unfair systematic historical dis-
crimination against a particular group of people that may undesirably be perpetuated or
even amplified if is not controlled for [5]. Second, biases induced during the collection,
annotation, preprocessing, and learning strategies. In this case, biases arise from one
or multiple steps of the data pipeline. For example, the data collection process might be
biased, or the training process may wrongly use features, producing a biased model [7].
Although the origin and impact of both type of errors is different, the solution to both
involves improving model traceability in different ways for a better understanding of the
model’s decisions. Efforts on this direction are applied in the whole MLOps pipeline,
from data collection, modelling and post model evaluation.

This paper focuses on the induced biases as they are an important concern in biolog-



Proceedings of CIBB 2021 3

Figure 1: Panel A: Causal diagram depicting a confounding factor (age) acting (dashed lines) in both
the predictor and outcome. Panel B: Diagram depicting data cascades extracted from [4]. Thick red
arrows show the point where compounding effects become visible; dotted red arrows depict abandoning
or restarting of the ML data process. Coloured lines show different cascades: Interacting with physical
world brittleness (yellow); Inadequate application domain expertise (blue); Conflicting reward systems
(green); Poor cross-organisational documentation (purple).

ical studies. A special focus is put on dataset documentation as a way to reduce the risk
of such undesirable biases.

Limitations of the current evaluation system. At this point, one may wonder how
models suffering from such issues could satisfy all the requirements needed for their
deployment. This issue is explained to a large extent because the metrics currently
employed by practitioners (for instance, F1, accuracy, AUC, Matthews correlation co-
efficient) assess the goodness of the model fitting the data but do not express the phe-
nomenological fidelity and validity of the data. The phenomenological fidelity refers to
the representation of the modelled phenomena, while the validity of the data indicates
how well the data captures the phenomena in order to explain it [4]. Current applications
measure how good the models perform in the test data, which generally is a subdivision
of the same dataset or a dataset collected under similar conditions. Such a score does
not express how well the model captures the behaviour of the real phenomena, for which
data is just an approximate representation of reality. For instance, they do not measure
whether all the event variations are considered or if the capturing methods have enough
sensitivity. Moreover, the ’black box’ nature of current ML models hinders transparency
regarding the features or combination of features employed during predictions. While
common ML safe practices like cross-validation or class imbalance control aim to min-
imise model issues such as model over-fitting, their use draws from the premise that data
is a solid representation of the modelled phenomena. Such practices cannot overcome
data collection issues, leading to poor consideration of the dataset harvest and docu-
mentation work. These practices have been proven to impact ML projects. For instance,
decreasing the accuracy of IBM’s cancer treatment AI solution and causing that Google
Flu Trends underestimates a flu peak by 140% [4]. In absence of context, models may
use undesirable bias or confounders during the training.

Towards potential solutions. The first step to avoid, or detect, potential bias in
datasets and models is to improve the documentation of the dataset generation pro-
cess. One of the most common sources of induced bias includes unknown confounders
as well as selection, acquisition, and annotation biases. As shown in Figure 1 panel A,
confounders (age) are variables that affect both the potential predictor variable (physical
activity) and the outcome (cardiac problems). When the presence of confounders is un-
known and in lack of experiments specifically designed to minimise them (for example
randomised controlled trials), we cannot control for them. Uncontrolled confounders
lead to conclude that a given feature may be a strong predictor of the outcome when in
reality the association is spurious and it does not hold anymore when the sample comes
from a different setting where the confounder is differently expressed. When the model
learns spurious associations between predictors and outcomes, an undetected overfitted
model is produced, resulting in poor generalization capabilities that eventually unveil
during its translation into real-world settings [6].



Proceedings of CIBB 2021 4

Recently, the concept of data cascades (DC) was presented as one of the main issues
in the current life-cycle of an ML systems. DC are compounding events provoking
negative downstream impact from data issues causing a technical debt over time. DC
describes and identifies how induced biases are generated during the design and data
collection process: From the problem statement, dataset collection, data labelling, data
analysis and cleaning; as well as model selection, model training, model evaluation until
model deployment. This is represented in Figure 1 panel B.

Before ML-based analysis expansion, researchers generally employed statistical mod-
elling of biological processes to make inferences from observational data. Generally, in
statistical modelling, there is a tight control of potential confounders. This close analysis
allows to include functional assumptions that affect the relationships between variables.
Bearing all the previous concerns, intervention in the developing and reporting systems
of ML-based solutions must be addressed before its translation into real-world settings.

3 Relevance of induced bias in biological studies for ML analysis
There is a large diversity in the biological ML applications, particularly in the areas

focused on the understanding the biological process that underlines the human diseases.
Such studies aim to understand the core biological processes like transcription, trans-
lations, signalling or metabolism, including tissues and organs. The current size and
precision of omics data opens the door for insight modelling using among others ML
techniques. From gene expression, splicing, single-cell data to neuroscience [8].

The batch effect (BE) is a known source of confounders in the area of biology. The
BE refers to the different factors when comparing sample lots that affect the measure-
ments masking the biological variation impact. BE is the consequence of different
laboratory conditions, reagent lots, machine calibration, software and even personnel
differences. For example, a strong laboratory-specific effect has been reported when
comparing multiple micro-array experiments. Another example concerns gene expres-
sion studies, in which large variations are associated with the data processing and the
specific settings of micro-array work. Consequently, several papers, including relevant
studies published in high-impact journals, were retracted [9] on the basis of such errors.

This is usually addressed during the experimental design thanks to randomisation,
stratification, replications and inclusion of both positive and negative controls. How-
ever, dataset reuse and dataset mix (often produced with different settings) may impede
controlling for such factors. Therefore, this is a lurking problem in biological data anal-
ysis and ML solutions employing mixed high-throughput datasets. Finally, although
BE often focus on the preparation and measure conditions of the samples, other induced
bias may arise in the subsequent pipeline steps in the form of data cascades.

As depicted in Figure 2, there are five general steps from which these potential in-
duced biased can arise. In first place, the biological source. For instance, variations in
population, disease penetrance, phenotypic manifestation, environmental conditions or
sample techniques may induce biases during human sampling. Next, human or machine
sample preparation may be sensitive to the machines employed, reactants, protocol set-
tings and in-house calibration. In the same line, different settings conditions may affect
the signal measurement. Then data analysis is conditioned by the approach employed
for data cleaning, normalisation and labelling. Finally, data sharing is not exempt from
issues if decisions are taken to modify or remove features before the data distribution.

4 Potential solutions: Metadata Standardisation
Open science and open innovation allow fulfilling a basic principle of science, re-

producibility. The main principles include open code, open data and open publications.
But while open data allows reproducing the reported results, ensuring data reusability
entails proper description of the whole generation process. At this point, it is clear that
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Figure 2: General workflow diagram showcasing the generation process of biological datasets. Gray
boxes contain potential sources of induced bias.

datasets must be paired with proper documentation and accompanied with additional
information, indeed it is one of the principles of relevant guidelines such as DOME [2].
However, encoding such information together with the dataset is not always possible,
often requiring sidecar files better suited to express dataset properties differently. Meta-
data has emerged as a crucial component for reproducibility in the research life cycle
[10]. Additionally, the full potential of metadata is still open to unexplored opportu-
nities associated with the area of biological ML [2]. FAIR principles reflect the need
of reusability and interoperability, suggesting extensive documentation to satisfy data
management and stewardship needs. Similarly, DOME guidelines aim for proper data
provenance and safe model evaluation. However, such principles do not demand further
metadata encoding the causal assumptions made during the data collection process and
the intentions of the original study for which it was collected.

The final aim of such metadata should convey the generation process enabling its
comparison across datasets to identify differences in the generation process and in-
form of potential induced biases as the first step of its control. To ensure its correct
comparison the metadata should be standardised. The metadata standardisation is al-
ready present in domain-specific repositories such as Genbank or UniProt which are
highly curated and include specific metadata. However, general-purpose solutions are
still missing [1]. Other data and metadata standard include DICOM (Digital Imaging
and Communications in Medicine), FHIR (Fast Healthcare Interoperability Resources),
Functional Annotation of ANimal Genomes (FAANG) and Observational Health Data
Sciences and Informatics (OHDSI). This information may also include causal graphs
representing the assumptions considered during the data collection process. Such ad-
ditional information could prevent issues in which the modeller is unaware of known
confounders between the variables or samples, with unexpected consequences. For ex-
ample, an inappropriate split may break the assumption that data is independent and
identically distributed, in other words, that all samples stem from the same genera-
tive process which has no memory of past generated samples. For instance, a medical
dataset containing multiple samples from the same patients without stating the patient id
(or another patient dependent variable), precluding group-wise division of the dataset.
In this example, the training process could be compromised due to potential data leak-
age caused by the presence of samples from the same patient in both the train and test
sets. Similarly, if the samples stem from a time-dependent process, a time-wise scheme
is at hand. In any case, such data generative process must be properly documented
beforehand. In short, standardised metadata may include the following principles. In-
teroperability: through automatic data generation. Usability: easy-to use integration
when human input in required. Adherence: provide an interface to which general and
domain-specific standards may adhere. Integrative: employ already existing guide-
lines. Privacy: provide features to comply with current data protection (such as GDPR).
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5 Conclusion
In this paper we present the general issues affecting ML solutions for High-Stakes

domains, such as biomedical research, caused by induced biases derived from the col-
lection, annotation and preprocessing stages of the ML model production pipeline. In
particular, we address the lack of information context which enables ML models to
learn spurious associations between variables that might be affected by endogenous
confounding factors derived from the particularities of the pipeline setting (such as in-
strument noise, laboratory protocols). This issue is amplified in high-throughput scenar-
ios when comparing sample lots generated in different settings. The solution involves
bringing data work to the foreground of the ML model production pipeline. Increased
domain knowledge, data excellence incentives and improved feedback channels in the
AI data life-cycle are good starting points [4]. However, such goals must be translated
into material actions. In this paper we propose increased documentation of the dataset
generation process as an essential safety practice. This includes the use of dataset-wise
standardised metadata and incorporation of causal relationship information regarding
dataset variables. The former guideline is suited for the particularities of biological
datasets and aimed at easing dataset mixture and comparison. The latter practice would
prevent confounding effects by encoding the assumptions concerning the dataset gen-
eration process. The production of standardised documentation and metadata may not
only ease the data work but also open the door for actionable-metadata and incorpora-
tion of causal relationships during the model training. We believe these strategies will
help mitigating potential risks of ML solutions in real-world scenarios.
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