APPENDIX

This online Appendix presents the detailed derivation of the model used by Andréoletti, Zwaans et al, as well as supplementary results and figures. We extend results of Gupta et al. (2020) and Manceau et al. (2021) to piecewise-constant parameters, describe our implementation in the RevBayes software, and give detailed information on all priors used for simulation or inference in our analyses.

A - Method extension to piecewise-constant parameters Notation and outline of the general strategy

We first recall in Figure 51 the notation that we introduced in the main text with the three different sampling (ψ-sampling for sampling of fossils with inclusion in the tree, ω-sampling for occurrences and ρ-sampling at present).

To compute the likelihood of $(\mathcal{T}, \mathcal{O})$ under this process, we slice horizontally our observations and perform a breadth-first traversal of these. We thus introduce now, $\mathcal{T}_{t}{ }^{\uparrow}:=$ the tree \mathcal{T} cut at time t $\mathcal{T}_{t}^{\downarrow}:=$ the collection of trees (or forest) obtained by cutting \mathcal{T} at time t, and considering all subtrees descending from cut lineages
$k_{t}:=$ number of sampled lineages in \mathcal{T} at time t

$$
\begin{aligned}
\mathcal{O}_{t}^{\uparrow} & :=\mathcal{O}_{\mid(t,+\infty)} \\
\mathcal{O}_{t}^{\dagger} & :=\mathcal{O}_{\mid(0, t)}
\end{aligned}
$$

We can now recall the definition of our two key probability densities,

$$
\begin{array}{ll}
\forall i \in \mathbb{N}, & L_{t}^{(i)}:=\mathbb{P}\left(T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid I_{t}=k_{t}+i\right) \\
\forall i \in \mathbb{N}, & M_{t}^{(i)}:=\mathbb{P}\left(T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, I_{t}=k_{t}+i\right) \tag{S2}
\end{array}
$$

These probability densities have been introduced in Manceau et al. (2021) as a way to target the probability distribution K_{t} of the total number of lineages given the data.

Figure S1. General setting of the method. a) the full process with sampling. Pink dots correspond to ω-sampling (sampling through time without sequencing), blue dots correspond to ψ-sampling (sampling through time with sequencing) and yellow dots correspond to ρ-sampling at present. Filled or unfilled dots correspond respectively to sampling with or without removal. b) Total number of lineages through time. c) Record of occurrences. d) Reconstructed tree spanning ψ - and ρ-samples. e) Number of lineages through time in the reconstructed tree (i.e. LTT plot).

Indeed,

$$
\begin{align*}
K_{t}^{(i)} & :=\mathbb{P}\left(I_{t}=k_{t}+i \mid \mathcal{T}, \mathcal{O}\right) \\
& \propto \mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}, T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow}\right) \\
& \propto \mathbb{P}\left(T_{t}^{\downarrow}, \mathcal{O}_{t}^{\downarrow} \mid I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \mathbb{P}\left(I_{t}=k_{t}+i, T_{t}^{\uparrow}, \mathcal{O}_{t}^{\uparrow}\right) \\
& \propto L_{t}^{(i)} M_{t}^{(i)} \tag{S3}
\end{align*}
$$

The general strategy of the methods consists of (i) traversing the data backward in time to compute L_{t}; (ii) traversing the data forward in time to compute M_{t}; (iii) using the results to compute K_{t}. This scheme is illustrated in Figure S2,

Figure S2. Inferring the posterior distribution of the number of lineages $\left(K_{t}\right)$ in the OBDP. The probability distribution of the past number of lineages K_{t} is obtained at each time t by combining the quantity L_{t} obtained from the backward traversal algorithm (left) and the quantity M_{t} obtained from the forward traversal algorithm (right). See Table 1 for notations.

In the rest of this online Appendix section, we present the Master equations governing the evolution of these densities through time in a setup with piecewise-constant parameters.

Temporal setup for piecewise constant parameters

We partition time into two distinct units.
First, we define periods of time with no observations or sampling events, coined epochs, which allow for the basic derivation of Master equations of L_{t} and M_{t}. Epochs are delimited by all n punctual events times (i.e. branching and sampling events) in \mathcal{O} and \mathcal{T} pooled in an ordered list $\left(t_{h}\right)_{h=1}^{n}$. Epoch h is thus defined as the time interval $\left(t_{h}, t_{h+1}\right)$.

Second, we account for all rate shift events, which define constant rate time intervals. If we have m such intervals, we pool all $m+1$ rate shift events in an ordered list $\left(\tau_{l}\right)_{l=0}^{m+1}$, where by convention we consider that $\tau_{0}=0$ and $\tau_{m+1}=t_{o r}$. Rate time interval l
is defined as $\left(\tau_{l}, \tau_{l+1}\right)$, with parameter set $\left(\lambda_{l}, \mu_{l}, \psi_{l}, \omega_{l}, r_{l}\right)$. We illustrate this setup in Figure S 3 below.

Figure S3. Temporal setup of the method.

Master equations governing Lt and Mt
Probability densities L_{t} and M_{t} satisfy different Master equations obtained by studying their evolution through time along any given epoch. These are ordinary differential equations (ODE) that can be approximated numerically. Here, we assume $\tau_{l} \leqslant t<\tau_{l+1}$ meaning that parameters have values $\left(\lambda_{l}, \mu_{l}, \psi_{l}, \omega_{l}, r_{l}\right)$.

First, we can initialize L_{t} and M_{t} respectively at present time 0 and at the time of origin $t_{o r}$. At present, ρ sampling of extant tips yields,

$$
\begin{equation*}
\forall i \in \mathbb{N}, \quad L_{0}^{(i)}=\rho^{k_{0}}(1-\rho)^{i} \tag{S4}
\end{equation*}
$$

while at the time of origin, the process starts with only one lineage $k_{t_{o r}}=1$, which yields,

$$
\begin{equation*}
\forall i \in \mathbb{N}, \quad M_{t_{o r}}^{(i)}=\mathbb{P}\left(I_{t_{o r}}=1+i\right)=\mathbb{1}_{i=0} \tag{S5}
\end{equation*}
$$

We now consider all events happening in an infinitesimal time step δt in the full
underlying process which do not result in observations or samplings. Three scenarios correspond to this case:

1. nothing happened with probability $\left(1-\gamma_{l}(k+i) \delta t\right)$, where $\gamma_{l}=\lambda_{l}+\mu_{l}+\psi_{l}+\omega_{l}$
2. a birth event happened:
(a) among the k sampled lineages in T_{t}^{\downarrow}, and it leads to an extinct or unsampled subtree to the left or to the right with probability $2 \lambda_{l} k \delta t$
(b) among the i other lineages with probability $\lambda_{l} i \delta t$.
3. a death event happened among the i particles, with probability $\mu_{l} i \delta t$

We combine these to write, $\forall i \in \mathbb{N}$,

$$
\begin{equation*}
\left.\left.L_{t+\delta_{t}}^{(i)}=\left(1-\gamma_{l}(k+i) \delta t\right) L_{t}^{(i)}+\lambda_{l}(2 k+i) \delta t\right) L_{t}^{(i+1)}+\mu_{l} i \delta t\right) L_{t}^{(i-1)} \tag{S6}
\end{equation*}
$$

Letting $\delta t \rightarrow 0$ yields the following differential equation for L_{t},

$$
\begin{align*}
\forall i \in \mathbb{N}, \quad L_{0}^{(i)} & =\rho^{k_{0}}(1-\rho)^{i} \tag{S7}\\
\dot{L}_{t}^{(i)} & =-\gamma_{l}(k+i) L_{t}^{(i)}+\lambda_{l}(2 k+i) L_{t}^{(i+1)}+\mu_{l} i L_{t}^{(i-1)} \tag{S8}
\end{align*}
$$

Similarly, M_{t} is the solution of the following ODE,

$$
\begin{align*}
\forall i \in \mathbb{N}, & M_{t_{o r}}^{(i)}=\mathbb{P}\left(I_{\text {tor }}=1+i\right)=\mathbb{1}_{i=0} \tag{S9}\\
& \dot{M}_{t}^{(i)}=-\gamma_{l}(k+i) M_{t}^{(i)}+\lambda_{l}(2 k+i-1) M_{t}^{(i-1)}+\mu_{l}(i+1) M_{t}^{(i+1)} \tag{S10}
\end{align*}
$$

Updates at punctual events

There are 6 types of punctual events in \mathcal{T} and \mathcal{O} that affect the probability densities M_{t} and L_{t}. These correspond to all different sampling options along \mathcal{T} and \mathcal{O} as illustrated in Figure S4. We denote as $M_{t^{-}}$and $L_{t^{-}}$the probability densities immediately prior to the event and $M_{t^{+}}$and $L_{t^{+}}$immediately after each event. We emphasise that the expressions differ when considering the process forward in time for M_{t} or backward in time, for L_{t}. These cases are the following :

Figure S4. Updated sampling scheme of the method.

1. sampling of a leaf:
(a) in $\mathcal{T}_{t}^{\downarrow}, L_{t^{+}}^{(i)}=\psi_{l}\left(1-r_{l}\right) L_{t^{-}}^{(i+1)}$
(b) in $\mathcal{T}_{t}^{\uparrow}, M_{t^{-}}^{(i)}=\psi_{l}\left(1-r_{l}\right) M_{t^{+}}^{(i-1)}$
2. removed sampled leaf:
(a) in $\mathcal{T}_{t}^{\downarrow}, L_{t^{+}}^{(i)}=\psi_{l} r_{l} L_{t^{-}}^{(i)}$
(b) in $\mathcal{T}_{t}^{\uparrow}, M_{t^{-}}^{(i)}=\psi_{l} r_{l} M_{t^{+}}^{(i)}$
3. sampling along a branch:
(a) in $\mathcal{T}_{t}^{\downarrow}, L_{t^{+}}^{(i)}=\psi_{l}\left(1-r_{l}\right) L_{t^{-}}^{(i)}$
(b) in $\mathcal{T}_{t}^{\uparrow}, M_{t^{-}}^{(i)}=\psi_{l}\left(1-r_{l}\right) M_{t^{+}}^{(i)}$
4. occurrence:
(a) in $\mathcal{O}_{t}^{\downarrow}, L_{t^{+}}^{(i)}=(k+i) \omega_{l}\left(1-r_{l}\right) L_{t^{-}}^{(i)}$
(b) in $\mathcal{O}_{t}^{\uparrow}, M_{t^{-}}^{(i)}=(k+i) \omega_{l}\left(1-r_{l}\right) M_{t^{+}}^{(i)}$
5. removed occurrence:
(a) in $\mathcal{O}_{t}^{\downarrow}, L_{t^{+}}^{(i)}=\omega_{l} r_{l} i L_{t^{-}}^{(i-1)}$
(b) in $\mathcal{O}_{t}^{\uparrow}, M_{t^{-}}^{(i)}=\omega_{l} r_{l}(i+1) M_{t^{+}}^{(i+1)}$
6. branching event:
(a) in $\mathcal{T}_{t}^{\downarrow}, L_{t^{+}}^{(i)}=\lambda_{l} L_{t^{-}}^{(i)}$
(b) in $\mathcal{T}_{t}^{\uparrow}, M_{t^{-}}^{(i)}=\lambda_{l} M_{t^{+}}^{(i)}$

Numerical approximation of the ODEs
As described above, for any constant rate time interval where $\tau_{l} \leqslant t<\tau_{l+1}, M_{t}$ and L_{t} are defined along epochs as the solution to systems of differential equations S8 and S10 for $t_{h} \leqslant t<t_{h+1}$. Numerically, the solution to such systems of equations is approximated by truncating the system at a fixed integer N as follows:

$$
\begin{align*}
& L_{t_{h+1}}=e^{A_{l}\left(t-t_{h}\right)} L_{t_{h}} \tag{S11}\\
& M_{t_{h}}=e^{A_{l}^{\prime}\left(t-t_{h+1}\right)} M_{t_{h+1}} \tag{S12}
\end{align*}
$$

Where A_{l} and A_{l}^{\prime} are $N \times N$ tridiagonal matrices with ODE coefficients. When there is a rate shift τ_{l} within an epoch $\left(t_{h}, t_{h+1}\right)$, the epoch is cut in two parts and L_{t} and M_{t} are simply computed as,

$$
\begin{align*}
& L_{t_{h+1}}=e^{A_{l+1}\left(t_{h+1}-\tau_{l}\right)} e^{A_{l}\left(\tau_{l}-t_{h}\right)} L_{t_{h}} \tag{S13}\\
& M_{t_{h}}=e^{A_{l}^{\prime}\left(t_{h}-\tau_{l}\right)} e^{A_{l+1}^{\prime}\left(\tau_{l}-t_{h+1}\right)} M_{t_{h+1}} \tag{S14}
\end{align*}
$$

This can be extended to any number of rate changes within an epoch. This strategy of solving for L_{t} and M_{t} yields the following two algorithms. Because exponential matrices are computationally intensive to calculate, these algorithms are only used in the most general cases, when no other analytical formula is available (i.e. when $\omega \neq 0$ and $r \neq 1$).

Algorithm 1 Computes a numerical approximation of L_{t} for a specific set of times with known rate shift events

Input:

Observed tree and occurrence data $(\mathcal{T}, \mathcal{O})$,
extant sampling probability ρ,
set of times of rate shift events $\left(\tau_{l}\right)_{l=0}^{m+1}$,
and corresponding sets of parameters :
vector $\lambda=\left(\lambda_{l}\right)_{l=0}^{m}$ where λ_{l} is the birth rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $\mu=\left(\mu_{l}\right)_{l=0}^{m}$ where μ_{l} is the death rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $\psi=\left(\psi_{l}\right)_{l=0}^{m}$ where ψ_{l} is the sampling rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $\omega=\left(\omega_{l}\right)_{l=0}^{m}$ where ω_{l} is the rate of occurence sampling in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $r=\left(r_{l}\right)_{l=0}^{m}$ where r_{l} is the removal probability in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
set of time points $\left(d_{j}\right)_{j=1}^{S}$ for which we want to compute the density, and the truncation N setting the accuracy of the algorithm.
Output: A numerical approximation of L_{t} at times $\left(d_{j}\right)_{j=1}^{S},\left(\widetilde{L}_{t}^{(i)}\right)_{\substack{i \in\{0,1, \ldots, N\} \\ j \in\{1,2, \ldots, S\}}}$.
1: Pool all $\left(d_{j}\right)_{j=1}^{S}$, all branching and sampling times of $(\mathcal{T}, \mathcal{O})$ and rate shift times $\left(\tau_{l}\right)_{l=0}^{m+1}$ in an ordered list $\left(t_{h}\right)_{h=1}^{n+m+1}$.
: Set $j=1$ and initialize B as a $S \times N+1$ empty matrix.
Set $l=0$ and $\lambda=\lambda_{0}, \mu=\mu_{0}, \psi=\psi_{0}, \omega=\omega_{0}, r=r_{0}, \gamma_{0}=\lambda_{0}+\mu_{0}+\psi_{0}+\omega_{0}$.
: Set $\forall i \in\{0,1, \ldots, N\}, \widetilde{L}_{0}^{(i)}=\rho^{k_{0}}(1-\rho)^{i}$.
for $h=1,2, \ldots, n+m+1$ do
6: \quad Numerically solve the $\operatorname{ODE} \dot{\widetilde{L}}_{t}=A \widetilde{L}_{t}$ on $\left(t_{h}, t_{h+1}\right)$, where matrix A is a $N \times N$ tridiagonal matrix with entries given by,

$$
\begin{aligned}
& \forall i \in\{0,1, \ldots, N\} \quad A^{(i, i)}=\gamma(k+i) \\
& \forall i \in\{0,1, \ldots, N-1\} \quad A^{(i, i+1)}=\lambda(2 k+i) \\
& \forall i \in\{1,2, \ldots, N\} \quad A^{(i, i-1)}=\mu i
\end{aligned}
$$

7: \quad if $t_{h}=d_{j}$ then
$8:$

9:
Set $B^{(j, i)}=\widetilde{L}_{t_{h}}^{(i)}$ and
Set $j=j+1$.
end if

Algorithm 2 Computes a numerical approximation of M_{t} for a specific set of times with known rate shift events

Input:

Observed tree and occurrence data $(\mathcal{T}, \mathcal{O})$,
parameters $t_{o r}, \rho$
set of times of rate shift events $\left(\tau_{l}\right)_{l=0}^{m+1}$,
and corresponding sets of parameters :
vector $\lambda=\left(\lambda_{l}\right)_{l=0}^{m}$ where λ_{l} is the birth rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $\mu=\left(\mu_{l}\right)_{l=0}^{m}$ where μ_{l} is the death rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $\psi=\left(\psi_{l}\right)_{l=0}^{m}$ where ψ_{l} is the sampling rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $\omega=\left(\omega_{l}\right)_{l=0}^{m}$ where ω_{l} is the rate of occurence sampling in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
vector $r=\left(r_{l}\right)_{l=0}^{m}$ where r_{l} is the removal rate in time interval $\left[\tau_{l}, \tau_{l+1}\right)$
set of time points $\left(d_{j}\right)_{j=1}^{S}$ for which we want to compute the density,
and the truncation N setting the accuracy of the algorithm.
Output: A numerical approximation of M_{t} at times $\left(d_{j}\right)_{j=1}^{S},\left(\widetilde{M}_{t}^{(i)}\right)_{\substack{\begin{subarray}{c}{i \in\{0,1, \ldots, N-1\} \\ j \in\{1,2, \ldots, S\}} }}\end{subarray}}$.
1: Pool all $\left(d_{j}\right)$, rate shift times $\left(\tau_{l}\right)$ and all branching and sampling times of $(\mathcal{T}, \mathcal{O})$ in an ordered list $\left(t_{h}\right)_{h=1}^{n}$.
2: Set $j=S, k=m$ and B^{\prime} as a $S \times N$ empty matrix.
3: Set $\forall i \in\{0,1, \ldots, N-1\}, \widetilde{M}_{t_{n}}^{(i)}=\mathbb{1}_{i=0}$.
: Set $l=m$ and $\lambda=\lambda_{m}, \mu=\mu_{m}, \psi=\psi_{m}, \omega=\omega_{m}, r=r_{m}$.
for $h=n-1, n-2, \ldots, 0$ do
6: \quad Numerically solve the ODE $\dot{\widetilde{M}}_{t}=A^{\prime} \widetilde{M}_{t}$ on $\left(t_{h}, t_{h+1}\right)$, where matrix A^{\prime} is a $N \times N$ tridiagonal matrix with entries given by,

$$
\begin{aligned}
& \forall i \in\{0,1, \ldots, N-1\} \quad A^{\prime(i, i)}=\gamma(k+i) \\
& \forall i \in\{0,1, \ldots, N-2\} \quad A^{\prime(i, i+1)}=-\mu(i+1) \\
& \forall i \in\{1,2, \ldots, N-1\} \quad A^{\prime(i, i-1)}=-\lambda(2 k+i-1)
\end{aligned}
$$

7: \quad if $t_{h}=\tau_{j}$ then
8:
Set $B^{\prime(j, i)}=\widetilde{M}_{t_{h}}^{(i)}$ and $j=j-1$.

end if

10: \quad if $t_{h}=0$ or $t_{h}=\tau_{S}$ then

B - Extension of analytical Results

Here, we aim at extending some analytical results of Gupta et al. (2020) and Manceau et al. (2021) to a piecewise-constant parameter setting. We start with the probability of extinction before time t of a process starting at 0 with one lineage, u_{t}. We then detail p_{t}, the probability that a lineage starting at time 0 leads to one sampled lineage at time t. Finally, we detail what happens to L_{t} and M_{t} for specific subcases, when $\omega=0$ or $r=1$. Note that formulas for u and p with rate shifts can be found in Stadler et al. (2013) as well.

The extinction probability across rate shifts

Let's start slowly with u, one time slice after the other.

On the first time slice We start with some initializing condition, say, $u_{0}=z$.
Then, on $\left(\tau_{0}=0, \tau_{1}\right)$, we have a first set of parameters $\left(\lambda_{0}, \mu_{0}, \gamma_{0}\right)$ and u satisfies the following ODE,

$$
\dot{u}_{s}=\lambda_{0} u_{s}^{2}-\gamma_{0} u_{s}+\mu_{0}
$$

which solution can be written as,

$$
\forall t \in\left(\tau_{0}, \tau_{1}\right), \quad u_{t}=\frac{x_{0}^{(1)}\left(x_{0}^{(2)}-z\right)-x_{0}^{(2)}\left(x_{0}^{(1)}-z\right) e^{-\sqrt{\Delta} t}}{\left(x_{0}^{(2)}-z\right)-\left(x_{0}^{(1)}-z\right) e^{-\sqrt{\Delta} t}}
$$

where $\Delta_{0}=\gamma_{0}^{2}-4 \lambda_{0} \mu_{0}$ and $x_{0}^{(1)}$ and $x_{0}^{(2)}$ are the roots of the polynomial $\lambda_{0} x^{2}-\gamma_{0} x+\mu_{0}$, i.e.,

$$
x_{0}^{(1)}=\frac{\gamma_{0}-\sqrt{\Delta_{0}}}{2 \lambda_{0}} \quad \text { and } \quad x_{0}^{(2)}=\frac{\gamma_{0}+\sqrt{\Delta_{0}}}{2 \lambda_{0}}
$$

At the end of the time slice, we thus get,

$$
u_{\tau_{1}}=\frac{x_{0}^{(1)}\left(x_{0}^{(2)}-z\right)-x_{0}^{(2)}\left(x_{0}^{(1)}-z\right) e^{-\sqrt{\Delta_{0}} \tau_{1}}}{\left(x_{0}^{(2)}-z\right)-\left(x_{0}^{(1)}-z\right) e^{-\sqrt{\Delta_{0}} \tau_{1}}}
$$

On the second time slice We now start with initial condition $u_{\tau_{1}}$.

Then, on $\left(\tau_{1}, \tau_{2}\right)$, we have a second set of parameters $\left(\lambda_{1}, \mu_{1}, \gamma_{1}\right)$ and u satisfies the following ODE with these new parameters:

$$
\dot{u}_{s}=\lambda_{1} u_{s}^{2}-\gamma_{1} u_{s}+\mu_{1}
$$

which solution can be written as,

$$
\forall t \in\left(\tau_{1}, \tau_{2}\right), \quad u_{t}=\frac{x_{1}^{(1)}\left(x_{1}^{(2)}-u_{\tau_{1}}\right)-x_{1}^{(2)}\left(x_{1}^{(1)}-u_{\tau_{1}}\right) e^{-\sqrt{\Delta_{1}}\left(t-\tau_{1}\right)}}{\left(x_{1}^{(2)}-u_{\tau_{1}}\right)-\left(x_{1}^{(1)}-u_{\tau_{1}}\right) e^{-\sqrt{\Delta_{1}}\left(t-\tau_{1}\right)}}
$$

And so on and so forth In doing so, we get that computing u_{t} for a given time t thus requires recursively computing u_{0}, and then $u_{\tau_{1}}, u_{\tau_{2}}, \ldots$ until getting to $u_{\tau_{l}}$, where $\tau_{l} \leqslant t \leqslant \tau_{l+1}$.

$$
\forall t \in\left(\tau_{l}, \tau_{l+1}\right), \quad u_{t}=\frac{x_{l}^{(1)}\left(x_{l}^{(2)}-u_{\tau_{l}}\right)-x_{l}^{(2)}\left(x_{l}^{(1)}-u_{\tau_{l}}\right) e^{-\sqrt{\Delta_{l}\left(t-\tau_{l}\right)}}}{\left(x_{l}^{(2)}-u_{\tau_{l}}\right)-\left(x_{l}^{(1)}-u_{\tau_{l}}\right) e^{-\sqrt{\Delta_{l}}\left(t-\tau_{l}\right)}}
$$

The probability to see one lineage across rate shifts
Let's apply carefully the same method now for p.

On the first time slice We start with some initializing condition $p_{0}=1-z$.
Then on $\left(\tau_{0}, \tau_{1}\right)$, we have a first set of parameters and p satisfies,

$$
\dot{p}_{s}=\left(2 \lambda_{0} u_{s}-\gamma_{0}\right) p_{s}
$$

which solution at first is the same as without skyline changes, i.e.

$$
p_{t}=(1-z) \frac{\Delta_{0}}{\lambda_{0}^{2}}\left(\left(x_{0}^{(2)}-z\right)-\left(x_{0}^{(1)}-z\right) e^{-\sqrt{\Delta_{0}} t}\right)^{-2} e^{-\sqrt{\Delta_{0}} t}
$$

On the second time slice We start now with some initializing condition $p_{\tau_{1}}$ and would like to solve the following ODE on $\left(\tau_{1}, \tau_{2}\right)$,

$$
\dot{p}_{s}=\left(2 \lambda_{1} u_{s}-\gamma_{1}\right) p_{s}
$$

Replacing the expression of u_{s} on this time slice gives us,

$$
\frac{d p_{s}}{p_{s}}=\left(2 \lambda_{1} \frac{x_{1}^{(1)}\left(x_{1}^{(2)}-u_{\tau_{1}}\right)-x_{1}^{(2)}\left(x_{1}^{(1)}-u_{\tau_{1}}\right) e^{-\sqrt{\Delta_{1}}\left(s-\tau_{1}\right)}}{\left(x_{1}^{(2)}-u_{\tau_{1}}\right)-\left(x_{1}^{(1)}-u_{\tau_{1}}\right) e^{-\sqrt{\Delta_{1}}\left(s-\tau_{1}\right)}}-\gamma_{1}\right) d s
$$

We thus end up with
$\forall t \in\left(\tau_{1}, \tau_{2}\right), \quad p_{t}=p_{\tau_{1}} \frac{\Delta_{1}}{\lambda_{1}^{2}}\left(\left(x_{1}^{(2)}-u_{\tau_{1}}\right)-\left(x_{1}^{(1)}-u_{\tau_{1}}\right) e^{-\sqrt{\Delta_{1}}\left(t-\tau_{1}\right)}\right)^{-2} e^{-\sqrt{\Delta_{1}}\left(t-\tau_{1}\right)}$
And so on and so forth This gives us

$$
\forall t \in\left(\tau_{l}, \tau_{l+1}\right), \quad p_{t}=p_{\tau_{l}} \frac{\Delta_{l}}{\lambda_{l}^{2}}\left(\left(x_{l}^{(2)}-u_{\tau_{l}}\right)-\left(x_{l}^{(1)}-u_{\tau_{l}}\right) e^{-\sqrt{\Delta_{l}}\left(t-\tau_{l}\right)}\right)^{-2} e^{-\sqrt{\Delta_{l}}\left(t-\tau_{l}\right)}
$$

Using these for computation of L without occurrences
When $\omega=0$, we can still use the ansatz $L_{t}^{(i)}=u_{t}^{i} W_{t}$ and look for W_{t}. On a given epoch, the ODE on $L_{t}^{(i)}$ translates as $\dot{W}_{t}=\left(2 \lambda u_{t}-\gamma\right) k W_{t}$.

Solving this between time t and t_{h}, on time slice number l, leads us to

$$
\begin{aligned}
W_{t} & =W_{t_{h}}\left(\frac{\left(x_{l}^{(2)}-u_{\tau_{l}}\right)-\left(x_{l}^{(1)}-u_{\tau_{l}}\right) e^{-\sqrt{\Delta_{l}}\left(t-\tau_{l}\right)}}{\left(x_{l}^{(2)}-u_{\tau_{l}}\right)-\left(x_{l}^{(1)}-u_{\tau_{l}}\right) e^{-\sqrt{\Delta_{l}}\left(t_{h}-\tau_{l}\right)}}\right)^{-2 k} e^{-k \sqrt{\Delta_{l}}\left(t-t_{h}\right)} \\
& =W_{t_{h}}\left(\frac{p(t)}{p\left(t_{h}\right)}\right)^{k}
\end{aligned}
$$

With this last equality still holding true, the induction across all epochs remains identical to the what was described in Manceau et al. (2021).

Using these for the computation of M without occurrences
What happens to the PDE solution over successive time slices with different parameters, when $\omega=0$? Let's start slowly again, one time slice after the other.

On the first time slice We assume here that $\left(t_{h-1}, t_{h}\right)$ is an epoch with $t_{h} \leqslant \tau_{1}$, such that we are still in the first time slice with parameters $\left(\lambda_{0}, \mu_{0}, \gamma_{0}\right)$. The PDE is

$$
\begin{aligned}
& \widehat{M}\left(t_{h}, z\right)=F(z) \\
& \partial_{t} \widehat{M}+\left(\lambda_{0} z^{2}-\gamma_{0} z+\mu_{0}\right) \partial_{z} \widehat{M}+k\left(2 \lambda_{0}-\gamma_{0}\right) \widehat{M}=0
\end{aligned}
$$

We use the method of characteristics as for the constant-parameter case, writing
$g(s)=\widehat{M}(t(s), z(s))$ with functions t, z and g satisfying

$$
\begin{aligned}
& \frac{d t}{d s}=1 \\
& \frac{d z}{d s}=\lambda_{0} z^{2}-\gamma_{0} z+\mu_{0} \\
& \frac{d g}{d s}=-k\left(2 \lambda_{0} z-\gamma_{0}\right) g
\end{aligned}
$$

We thus keep $t(s)=t_{h}+s$, i.e. $s=t-t_{h}$.
Then, turning to $z(s)$, we get

$$
z(s)=u_{0}\left(s, z_{0}\right)=\frac{x_{0}^{(1)}\left(x_{0}^{(2)}-z_{0}\right)-x_{0}^{(2)}\left(x_{0}^{(1)}-z_{0}\right) e^{-\sqrt{\Delta_{0}} s}}{\left(x_{0}^{(2)}-z_{0}\right)-\left(x_{0}^{(1)}-z_{0}\right) e^{-\sqrt{\Delta_{0}} s}}
$$

thus leading to $z_{0}=u_{0}\left(t_{h}-t, z\right)$, where u_{0} denotes the above explicitely defined function. Note that on this time slice, $\forall t, t_{h}-t \leqslant \tau_{1}$, so $u_{0}=u$ here. But on successive time slices it will not be the case anymore.

Finally, we get, for g, the following,

$$
\begin{aligned}
g_{s} & =g_{0}\left(\frac{\left(x_{0}^{(2)}-z_{0}\right)-\left(x_{0}^{(1)}-z_{0}\right) e^{-\sqrt{\Delta_{0}} s}}{x_{0}^{(2)}-x_{0}^{(1)}}\right)^{2 k} e^{k \sqrt{\Delta_{0}} s} \\
& =g_{0}\left(\frac{1-z}{p_{0}\left(s, z_{0}\right)}\right)^{k}
\end{aligned}
$$

where we denote here again by p_{0} the function p as in the constant-parameter case with parameters $\left(\lambda_{0}, \mu_{0}, \gamma_{0}\right)$.

As a result, we get

$$
\widehat{M}(t, z)=F\left(u_{0}\left(t_{h}-t, z\right)\right) R_{0}\left(t_{h}-t, z\right)^{k}
$$

And so on and so forth Because nothing really simplifies at this stage, we get the same on following time slices. On time slice l, we only change the indices and consider functions u and R as in the constant-parameter case with parameters $\left(\lambda_{l}, \mu_{l}, \gamma_{l}\right)$,

$$
\widehat{M}(t, z)=F\left(u_{l}\left(t_{h}-t, z\right)\right) R_{l}\left(t_{h}-t, z\right)^{k}
$$

What happens to the induction across epochs We thus hope that simplifications will appear in the induction across epochs. In order to make them appear, we'll define here
functions of three variables instead of only two. We keep the same names, so I hope it'll not be too confusing.

Starting now, we introduce a function of three variables u, where value $u\left(t_{1}, t_{0}, z\right)$ is the probability that one lineage starting at time t_{1} in the past, goes extinct/unsampled before time t_{0}, knowing there is a field of bullets with intensity z at time t_{0}. On a single time slice, this is the solution of the usual ODE driving the evolution of u, but with initial condition $u_{t_{0}}=z$ instead of $u_{0}=z$.

Let's then do the same with function p, defining $p\left(t_{1}, t_{0}, z\right)$ as the probability that one lineage starting at time t_{1} in the past leads to one sampled lineage at time t_{0}, knowing there is a field of bullets of intensity z at time t_{0}. On a single time slice, this is the solution of the usual ODE driving the evolution of p, but with initial condition $p_{t_{0}}=1-z$.

Note now that across time slices, if $t_{2} \geqslant \tau_{l}$ and $t_{0} \leqslant \tau_{l}$, then $u\left(t_{2}, t_{0}, z\right)$ can be computed as the solution of the usual ODE with parameters $\left(\lambda_{l-1}, \gamma_{l-}, \mu_{l-1}\right)$, with initial condition $u_{t_{0}}=z$, until getting $u\left(\tau_{l}, t_{0}, z\right)$. Then the ODE with parameter set $\left(\lambda_{l}, \gamma_{l}, \mu_{l}\right)$ is used, with initial value $u\left(\tau_{l}, t_{0}, z\right)$, until getting $u\left(t_{2}, t_{0}, z\right)$. More explicitly, this gives us,

$$
\begin{aligned}
& u\left(\tau_{l}, t_{0}, z\right)=\frac{x_{l-1}^{(1)}\left(x_{l-1}^{(2)}-z\right)-x_{l-1}^{(2)}\left(x_{l-1}^{(1)}-z\right) e^{-\sqrt{\Delta_{l-1}}\left(\tau_{l}-t_{0}\right)}}{\left(x_{l-1}^{(2)}-z\right)-\left(x_{l-1}^{(1)}-z\right) e^{-\sqrt{\Delta_{l-1}}\left(\tau_{l}-t_{0}\right)}} \\
& u\left(t_{2}, t_{0}, z\right)=\frac{x_{l}^{(1)}\left(x_{l}^{(2)}-u\left(\tau_{l}, t_{0}, z\right)\right)-x_{l}^{(2)}\left(x_{l}^{(1)}-u\left(\tau_{l}, t_{0}, z\right)\right) e^{-\sqrt{\Delta_{l}}\left(t_{2}-\tau_{l}\right)}}{\left(x_{l}^{(2)}-u\left(\tau_{l}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(\tau_{l}, t_{0}, z\right)\right) e^{-\sqrt{\Delta_{l}\left(t_{2}-\tau_{l}\right)}}}
\end{aligned}
$$

To recursively compute $p\left(t_{2}, t_{0}, z\right)$ across time slices, we would need,

$$
\begin{aligned}
& p\left(\tau_{l}, t_{0}, z\right)=(1-z)\left(\frac{\left(x_{l-1}^{(2)}-z\right)-\left(x_{l-1}^{(1)}-z\right) e^{\sqrt{\Delta_{l-1}} \tau_{l}}}{\left(x_{l-1}^{(2)}-z\right)-\left(x_{l-1}^{(1)}-z\right) e^{\sqrt{\Delta_{l-1}} t_{0}}}\right)^{-2} e^{-\sqrt{\Delta_{l-1}}\left(\tau_{l}-t_{0}\right)} \\
& p\left(t_{2}, t_{0}, z\right)=p\left(\tau_{l}, t_{0}, z\right)\left(\frac{\left(x_{l}^{(2)}-u\left(\tau_{l}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(\tau_{l}, t_{0}, z\right)\right) e^{\sqrt{\Delta_{l}} t_{2}}}{\left(x_{l}^{(2)}-u\left(\tau_{l}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(\tau_{l}, t_{0}, z\right)\right) e^{\sqrt{\Delta_{l}} \tau_{l}}}\right)^{-2} e^{-\sqrt{\Delta_{l}\left(t_{2}-\tau_{l}\right)}}
\end{aligned}
$$

We are now especially interested in the property that is at the core of the induction, i.e. formerly,

$$
R\left(t_{o r}-t_{h}, u\left(t_{h}-t, z\right)\right)=\frac{R\left(t_{o r}-t, z\right)}{R\left(t_{h}-t, z\right)}
$$

$$
\begin{aligned}
\frac{p\left(t_{2}, t_{1}, u\left(t_{1}, t_{0}, z\right)\right)}{1-u\left(t_{1}, t_{0}, z\right)} & =\frac{1-u\left(t_{1}, t_{0}, z\right)}{1-u\left(t_{1}, t_{0}, z\right)}\left(\frac{\left(x_{l}^{(2)}-u\left(t_{1}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(t_{1}, t_{0}, z\right)\right) e^{-\sqrt{\Delta_{l}} t_{2}}}{\left(x_{l}^{(2)}-u\left(t_{1}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(t_{1}, t_{0}, z\right)\right) e^{-\sqrt{\Delta_{l}} t_{1}}}\right)^{-2} e^{-\sqrt{\Delta_{l}}\left(t_{2}-t_{1}\right)} \\
& =\frac{p\left(t_{1}, t_{0}, z\right)}{p\left(t_{1}, t_{0}, z\right)}\left(\frac{\left(x_{l}^{(2)}-u\left(t_{1}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(t_{1}, t_{0}, z\right)\right) e^{-\sqrt{\Delta_{l}} t_{2}}}{\left(x_{l}^{(2)}-u\left(t_{1}, t_{0}, z\right)\right)-\left(x_{l}^{(1)}-u\left(t_{1}, t_{0}, z\right)\right) e^{-\sqrt{\Delta_{l}} t_{1}}}\right)^{-2} e^{-\sqrt{\Delta_{l}}\left(t_{2}-t_{1}\right)} \\
& =\frac{p\left(t_{2}, t_{0}, z\right)}{p\left(t_{1}, t_{0}, z\right)}
\end{aligned}
$$

$$
\begin{aligned}
& u\left(t_{2}, t_{1}, u\left(t_{1}, t_{0}, z\right)\right)=u\left(t_{2}, t_{0}, z\right) \\
& \frac{p\left(t_{2}, t_{1}, u\left(t_{1}, t_{0}, z\right)\right)}{1-u\left(t_{1}, t_{0}, z\right)}=\frac{p\left(t_{2}, t_{0}, z\right)}{p\left(t_{1}, t_{0}, z\right)}
\end{aligned}
$$

The first equation seems quite natural, thanks to the semi-group property of solutions of ODEs (or thanks to the probabilistic interpretation of these quantities). For the second one, we can check by calculus that it is correct whether $\left(t_{0}, t_{1}, t_{2}\right)$ are in the same time slice or not.

This property on p thus ensures the equality (S15), which in turn allows us to carry out our induction across epochs in the skyline version as
$\widehat{M}(t, z)=\lambda^{x} \psi^{v+w+y} r^{w}(1-r)^{v+y} \prod_{t_{j} \in \mathcal{X} \cup\left\{t_{o r}\right\}} R\left(t_{j}, t, z\right) \prod_{t_{j} \in \mathcal{W}} R\left(t_{j}, t, z\right)^{-1} \prod_{t_{j} \in \mathcal{Y}} u(t j, t, z)\left(R\left(t_{j}, t, z\right)^{-1}\right.$

C - RevBayes implementation

Core algorithms

To enable great flexibility and ensure fast computation, RevBayes is constructed around a mirror structure (Fig. S5) in which all the core functions coded in $\mathrm{C}++$ are reflected in the revlanguage section that links with the Rev language interface.

Figure S5. Simplified representation of the RevBayes structure. Modified from the RevBayes website, keeping only descriptions of the folders we modified. Note the organizational symmetry between the core directory containing the hard-coded features and the revlanguage directory matching the Rev syntax.

Due the multiple advantages of RevBayes and its increasing use, particularly for macroevolutionary research, we chose this software to implement the OBDP. All our modifications have been carried out in a separate copy of its development branch on GitHub (https://github.com/revbayes/revbayes/tree/dev-cevo-lab), and are aimed to be integrated in a future stable release. They consist in 3 key additions detailed in Table S1.

The necessary first step was to implement the core algorithms responsible for computing the quantities L_{t} and M_{t} through time. The final organisation is as follows: from outside of the ComputeLikelihoodsLtMt.cpp file (see Table S1) the only functions called are ComputeLnProbabilityDensities $O B D P$ - returning L_{t} and M_{t} through time - or ComputeLnLikelihoodOBDP - returning only the final likelihood. Those functions will

Figure S6. A graphical model of the OBDP and its translation into the Rev language. a) Graphical model, modified from the RevBayes FBD tutorial, representing the OBDP parameters - labelled in orange - generating a reconstructed tree \mathcal{T} and a record of occurrences \mathcal{O}. b) Rev script corresponding to this graphical model. Note the distinction between the \sim notation attributing a distribution to a stochastic node and the \leftarrow notation defining a constant node.

In addition, the Occurrence Birth-Death Process and the traversal algorithms not only allow us to perform a MCMC phylogenetic inference incorporating the occurrences, they can also be used to output the probability distribution of the number of lineages

Table S1. Overview of the implementations carried out to incorporate the Occurrence Birth-Death Process and the associated Diversity Inference method into RevBayes. It lists for each of our goals the associated C++ files, along with their assignment in the RevBayes structure.

Objectives	Location	File names	Major new functions
1. Perform Forwards and Backwards traversal algorithms	core/ functions	ComputeLikelihoods LtMt.h ComputeLikelihoods LtMt.cpp	ComputeLnProbability- DensitiesOBDP ComputeLnLikelihoodOBDP PoolEvents ForwardsTraversalMt BackwardsTraversalLt
Enco	core/ distributions	OccurrenceBirthDeath Process.h OccurrenceBirthDeath Process.cpp	OccurrenceBirthDeathProcess computeLnProbabilityDivergenceTimes
distribution	revlanguage/ distributions	Dist_occurrenceBirth DeathProcess.cpp Dist_occurrenceBirth DeathProcess.h	createDistribution getParameterRules
3. Infer past diversity	core/ distributions	InferAncestralPop SizeFunction.h InferAncestralPop SizeFunction.cpp	InferAncestralPopSizeFunction
	revlanguage/ distributions	Func_inferAncestral PopSize.h Func_inferAncestral PopSize.cpp	createFunction getArgumentRules

through time, K_{t}. We introduced this functionality into RevBayes through InferAncestralPopSizeFunction, which can be called directly from the Rev interface. As with the OBDP distribution, we had to design the parameter loading procedure, then call the ComputeLnProbabilityDensitiesOBDP function to get the $\log \left(L_{t}\right)$ and $\left.\log \left(M_{t}\right)\right)$ matrices and finally combine and normalize them to obtain the $\left.\log \left(K_{t}\right)\right)$ matrix.

RevGadgets

The postprocessing step consists in computing the posterior probability of the total number of lineages through time. It can be performed independently of the previous steps,
given that one has at least a tree, a set of parameters and optionally occurrence times. It comprises 2 steps, the first one uses the fnInferAncestralPopSize function, implemented in RevBayes, to obtain the matrix of diversity densities K_{t} for each tree in the MCMC trace. Then, in order to convert K_{t} matrices into a nicely rendered plot we added two functions in the auxiliary R library RevGadgets (Tribble et al., 2021). Starting from the trace of posterior trees, parameters, and K_{t} matrices one first needs to execute the rev.process.nbLineages function that will organize the required information into the Kt_mean data frame. The goal is to incorporate all the uncertainty concerning the inferred parameter values and tree topologies into the diversity trajectory estimation. Afterwards, this averaged Kt_mean is used by the function rev.plot.nbLineages to realize the final plot using ggplot2 Wickham, 2016). Here it is possible to alter most of the display options, such as the types of lineages to be shown (observed, hidden, total), as well as their colours and shapes (see e.g. Fig. S8).

Table S2. Description of two novel RevGadgets functions for visualizing OBDP diversity-through-time estimations. The input objects and display parameters are detailed, those with an asterisk always have to be provided while the others have default values.

Function	Option	Type	Description
rev.process .nbLineages	start_time_trace_file*	character	MCMC trace of the starting times.
	popSize_distribution _matrices_file*	character	Matrices computed with fnInferAncestralPopSize in RevBayes.
	trees_trace_file*	character	MCMC trace of the trees.
	weight_trees_posterior	Boolean	Whether to combine trees uniformly or weighted by their posterior probabilities.
rev.plot .nbLineages	Kt_mean*	data.frame	Processed output for plotting.
	xlab / ylab	character	Label of the x-axis / y-axis.
	line.size / interval.line.size	numeric	Width of the lineage plot / credible interval line.
	col.Hidden / col.Observed / col.Total / col.Hidden.interval / col.Total.interval	character	Color of the hidden / observed / total lineages plot line. Color of the credible interval for hidden / total lineages.
	palette.Hidden / palette.Total	character	Palette of the hidden / total lineages distribution.
	show.Hidden / show.Observed / show.Total / show.intervals / show.densities / show.expectations	Boolean	Whether to show the plot for hidden / observed / total lineages / credible intervals / diversity densities / diversity expectations.
	use.interpolate	Boolean	Whether to interpolate densities.

D - QUALITATIVE VALIDATION: "BLIND TEST" ON SIMULATED DATA

Parameter values used to simulate the two datasets used in the blind test are presented in Table 53. Two trees with occurrences have been simulated under the OBDP (parameters 1-6). For "dataset 1", genetic sequences along the first tree are simulated according to a K80 model of molecular evolution (parameters 7-9) and recorded only for extant taxa. Binary traits are simulated according to a Markov process with symmetrical rates (parameters 10-12) and are recorded for both extant and extinct taxa. This corresponds to a classic macroevolution scenario. For "dataset 2", genetic sequences along the second tree are simulated according to a K80 model of molecular evolution (parameters 7-9) and recorded for extant and extinct individuals. This allows us to have a better resolution of the underlying tree than in the first dataset. Moreover, getting genetic sequences for individuals sampled in the past corresponds more to an epidemiology scenario.

Table S3. Parameter values used to simulate two datasets and test our OBDP inference workflow.

λ	μ	ψ	ω	r	ρ	$m_{n t}$	$\alpha_{n t}$	$\beta_{n t}$	$m_{\text {morpho }}$	q_{01}	q_{10}
1	0.9	0.2	0.3	0	0.8	10000	0.01	0.02	60	0.03	0.03

Two of us, ignorant of the values used for simulation, designed the inference protocol and conducted the analysis, taking as input the occurrences, sequences, and morphological data only. Priors used for inference on "dataset 1" are presented in Table S4 and the general setup for analysis is illustrated in Figure S7. Priors used for inference on "dataset 2 " were very similar, except for the absence of a model of morphological evolution, and they are presented in Table 55.

Figure S7. Modular representation of the graphical models used in the qualitative validation analysis. Modified from Heath et al. (2019). The simulated data, noted in the grey nodes are used to deduce the posterior distributions of all other random variables noted in the white nodes.

Table S4. Prior distributions on the OBDP parameters and models for the "Blind Test" analysis on dataset 1. Notations: \mathcal{U} for the Uniform distribution, \mathcal{E} for Exponential, Dir for Dirichlet, GTR for the General Time Reversible substitution model and $M K$ for the Mk model, the analog of JC69 for an arbitrary number of character

states. Parameter	Prior
λ	$\mathcal{E}(10)$
μ	$\mathcal{E}(10)$
ψ	$\mathcal{E}(10)$
ω	$\mathcal{E}(5)$
ρ	$\mathcal{U}(0,1)$
r	0
$t_{\text {or }}$	$\mathcal{U}(7.7,12)$

Model
Molecular evolution:
$G T R+\Gamma$
Morphological evolution:
$M K+\Gamma$

Prior
Strict clock rate: $\mathcal{E}(10)$ Exchangeability rates: $\operatorname{Dir}(1,1,1,1,1,1)$
Stationary frequencies: $\operatorname{Dir}(1,1,1,1)$ Gamma distribution shape: $\mathcal{E}(1)$

Morphological evolution:
Strict clock rate: $\mathcal{E}(1)$
$M K+\Gamma$
Gamma distribution shape: $\mathcal{E}(1)$

Table S5. Prior distributions of the OBDP parameters and models for the "Blind Test" analysis on dataset 2. Notations: \mathcal{U} for the Uniform distribution, B for the Beta distribution, \mathcal{E} for Exponential, Dir for Dirichlet, $G T R$ for the General Time Reversible substitution model.

Parameter	Prior
λ	$\mathcal{E}(10)$
μ	$\mathcal{E}(10)$
ψ	$\mathcal{E}(10)$
ω	$\mathcal{E}(10)$
ρ	$B(1.0,1.0)$
r	0
$t_{\text {or }}$	$\mathcal{U}(7.7,12)$

Model
Prior
Strict clock rate: $\mathcal{E}(10)$
Molecular evolution: Exchangeability rates: $\operatorname{Dir}(1,1,1,1,1,1)$
$G T R+\Gamma \quad$ Stationary frequencies: $\operatorname{Dir}(1,1,1,1)$
Gamma distribution shape: $\mathcal{E}(1)$

In our blind inferences, we recovered posterior distribution of diversity trajectories (Fig. S8) and trees (Fig. S9) which are very close to the real data from the simulations. The true number of hidden lineages is most of the time near the expectation of the inferred posterior distribution and more importantly always in the 95% posterior credible interval. When looking at the total number of lineages - i.e. species richness in macroevolution or prevalence in epidemiology - the estimates remains very close to the truth and almost always in the 95% credible interval.

Figure S8. Validation of the diversity dynamics inferred by OBDP compared to the true simulated data. a) Posterior probability distribution of the number of hidden lineages through time for "dataset 1 ", plotted with the new RevGadgets utilities. b) Posterior probability distribution of the total number of lineages through time for "dataset 1". c-d) Same as a-b), but for "dataset 2 ". The 95% credible intervals are indicated in dashed lines, the expected number of lineages is in blue or green and the true, simulated, trajectory in red. The black line represents the inferred Lineages Through Time (LTT) plot, note that the total diversity equals the LTT plus the hidden diversity.

Figure S9. Validation of the inferred trees against the true simulated ones. a) Inferred phylogenetic tree for "dataset 1", visualized in FigTree 1.4.4. The node colors refer to their posterior probability. b) Original simulated tree for "dataset 1 ", aligned on the same temporal scale. Note that the topology is well recovered but divergence dates do not always perfectly match. c-d) Same as a-b) but on "dataset 2 ". Due to a greater amount of data in genetic sequences of both past and extant individuals, the divergence dates tend to be better inferred.

E - Macroevolution application: Inferring past cetacean diversity

Preliminary analysis of the cetacean occurrence fossil record

A detailed notebook is available at
https://github.com/Jeremy-Andreoletti/Cetacea_PBDB_Occurrences to follow our exploration of the cetacean dataset. We identified several biases in their fossil record, in particular much more variable occurrence densities - defined as the number of occurrences by unit of time in the stratigraphic range of a clade - than expected from our model (see Figure S10.

Since OBDP assumes that only one individual of a species will be sampled at a time, we subsampled the dataset to aggregate all occurrences of the same taxon found in the same geological formation. This subsampling also reduced the observed discrepancy in occurrence densities. The final subsampled dataset was composed of 968 occurrences.

Figure S10. Occurrence distributions and bias correction, for cetacean species (a) and genera (b). At the top, occurrence distributions are compared before (red) and after (green) aggregating in geological formations. Below, stratigraphic ranges are displayed over time and colored according to the density of occurrences (red dots).

Table S6. Prior distributions for parameters and models of the Cetacea analysis. For each parameter its prior distribution, its initial value at the origin of the MCMC chain (set to speed up convergence) and the references that support these choices are indicated. Notations: \mathcal{U} for the Uniform distribution, \mathcal{E} for Exponential, $\log \mathcal{N}$ for Log-Normal, \mathcal{G} for Gamma, Dir for Dirichlet, $G T R$ for General Time Reversible and JC69 for the Jukes-Cantor 1969.

Component	Prior	Initial	Justification
$t_{\text {or }}$	$\mathcal{U}(\max$ (occurrences), 60)	$\frac{\max +60}{2}$	Origin after the last occurrence. Initialised close to the estimated Whippomorpha root age from McGowen et al. (2020)
μ	$\mathcal{E}(5)$	0.05	Initialized according to estimations by Rabosky 2014
$\lambda-\mu$	$\begin{gathered} \log \mathcal{N}\left(\ln \left[\frac{\ln 41}{t_{o r}}\right],\right. \\ 0.587405) \end{gathered}$	$\frac{\ln 41}{t_{o r}}$	Expected number of species under a Birth-Death process centred around the observed number of genera. Lognormal distribution with 95% prior probability spanning exactly one order of magnitude (Höhna and Heath. 2019)
r	0	0	Removal probability at sampling, irrelevant in macroevolution
$\psi+\omega$	$\mathcal{E}(1)$	0.3	Unknown sampling rate for all fossils (including occurrences)
$\omega /(\psi+\omega)$	$\mathcal{U}(0,1)$	Empirical	Unknown probability that morphological characters are available for a given fossil. Initialized at the empirical proportion of fossils with morphology among all fossils
Sampling bias	Messinian: $\mathcal{G}(2,2)$ Aquitalian: $\mathcal{G}(2,2)$ Rupelian: $\mathcal{G}(2,2)$	$\begin{gathered} 0.75 \\ 0.5 \\ 0.1 \end{gathered}$	Some geological stages are known to have transmitted a scarcer sedimentary record (Marx et al. 2016, thus fossil sampling rates are allowed to be estimated lower in these intervals.
ρ	$\mathcal{U}(0.95,1)$	1	Sequences or morphology is used for the 41 accepted extant cetacean genera, but we allow for some still unknown genera
Fossil age uncertainty	$\mathcal{U}($ min, $\max)$	Minimum age	Moves shifting a fossil age outside of its range are rejected (Heath et al., 2019)
Mean molecular clock rate	Nuclear: $\mathcal{U}(0,0.01)$ Mitochondrial: $\mathcal{U}(0,0.1)$	$\begin{gathered} 0.0 .00075 \\ 0.03 \end{gathered}$	Priors based on rates of molecular evolution for all mammals in Allio et al. 2017. Initialised at an intermediate rate between mysticetes and odontocetes as estimated by Dornburg et al. (2012)
Clock rate relaxation	Uncorrelated: $\mathcal{E}(1 /$ mean $)$	mean	Independent and identically distributed exponential rates are defined for each branch
Molecular substitution model: $G T R+\Gamma$	Exchangeability rates: D Stationary frequencies: Gamma shape:	$\begin{aligned} & 1,1,1,1,1,1) \\ & i r(1,1,1,1) \end{aligned}$ 1)	Sophisticated nucleotide evolution model with rate variation across sites according to a discretized Gamma distribution. The Dirichlet distributions constrain vectors to sum to one (Heath et al. 2019,
Morphological substitution model: JC69	Strict clock rate: $\mathcal{E}(1)$ Gamma shape: $\mathcal{E}(1)$	$\begin{gathered} 0.5 \\ 0.125 \end{gathered}$	Simpler character evolution model. Characters are partitioned according to their number of states Wright, 2020,

We detail in Table 56 all priors used for the inference on the cetacean dataset.

Figure S11. Maximum Clade Credibility phylogeny of the 41 currently accepted extant cetacean genera and 62 fossil genera. The colors of nodes bars reflect posterior probabilities.

F - Epidemiology application: the Diamond Princess SARS-2 COVID-19 OUTBREAK DYNAMICS
 Data acquisition on GISAID

We gratefully acknowledge the following Authors from the Originating laboratories responsible for obtaining the specimens, as well as the Submitting laboratories where the genome data were generated and shared via GISAID, on which this research is based. All Submitters of data may be contacted directly via www.gisaid.org
accession ID EPI_ISL_416565, EPI_ISL_416566, EPI_ISL_416567, EPI_ISL_416568, EPI_ISL_416569, EPI_ISL_416570, EPI_ISL_416571, EPI_ISL_416572, EPI_ISL_416573, EPI_ISL_416574, EPI_ISL_416575, EPI_ISL_416576, EPI_ISL_416577, EPI_ISL_416578, EPI_ISL_416579, EPI_ISL_416580, EPI_ISL_416581, EPI_ISL_416582, EPI_ISL_416583, EPI_ISL_416584, EPI_ISL_416585, EPI_ISL_416586, EPI_ISL_416587, EPI_ISL_416588, EPI_ISL_416589, EPI_ISL_416590, EPI_ISL_416591, EPI_ISL_416592, EPI_ISL_416593, EPI_ISL_416594, EPI_ISL_416595, EPI_ISL_416596, EPI_ISL_416597, EPI_ISL_416598, EPI_ISL_416599, EPI_ISL_416600, EPI_ISL_416601, EPI_ISL_416602, EPI_ISL_416603, EPI_ISL_416604, EPI_ISL_416605, EPI_ISL_416606, EPI_ISL_416607, EPI_ISL_416608, EPI_ISL_416609, EPI_ISL_416610, EPI_ISL_416611, EPI_ISL_416612, EPI_ISL_416613, EPI_ISL_416614, EPI_ISL_416615, EPI_ISL_416616, EPI_ISL_416617, EPI_ISL_416618, EPI_ISL_416619, EPI_ISL_416620, EPI_ISL_416621, EPI_ISL_416622, EPI_ISL_416623, EPI_ISL_416624, EPI_ISL_416625, EPI_ISL_416626, EPI_ISL_416627, EPI_ISL_416628, EPI_ISL_416629, EPI_ISL_416630, EPI_ISL_416631, EPI_ISL_416632, EPI_ISL_416633, EPI_ISL_416634, EPI_ISL_454749

Originating Laboratory Japanese Quarantine Stations

Submitting Laboratory Pathogen Genomics Center, National Institute of Infectious Diseases

Authors Tsuyoshi Sekizuka, Kentaro Itokawa, Rina Tanaka, Masanori Hashino, Tsutomu Kageyama, Shinji Saito, Ikuyo Takayama, Hideki Hasegawa, Takuri Takahashi, Hajime Kamiya, Takuya Yamagishi, Motoi Suzuki, Takaji Wakita, Makoto Kuroda

Figure S12. Genome sequences used, originating and submitting labs generated on GISAID. Content is reproduced above.

Pre-processing the data

All case count and sequencing data were available at a resolution of days.
In order to use the main method described in this article, the case count record had to be pre-processed so that occurrences are spread throughout the days. For a day with a case count of n newly infected individuals, we drew n time points uniformly distributed throughout the day. The resulting dataset is shown in Figure S13.

Figure S13. Pre-processed dataset for the Diamond Princess outbreak analysis. a) Exact dates assigned to occurrences and sequences for the analysis. b) Total case counts and sequences through time.

Figure S14. Detailed parameter estimates obtained from the COVID-19 outbreak analysis. a) Reproductive number estimates. b) Birth rate estimates. c) Total sampling (sequencing and PCR testing) rate estimates.

Detailed priors

We detail in Table S7 all priors used for the inference on the outbreak dataset of COVID-19 aboard the Diamond Princess.

The mean of the prior distribution of $\psi+\omega$ is set up to be the number of tests used on the ship, per day and per passenger, on the two periods.

- Within the first 7 days period, from February 4th to February 11th, there were 439 tests carried out, on 3711 passengers, leading to $\frac{439}{7 \times 3711} \approx 1.7 \times 10^{-2}$ tests per day per passenger.
- on the following 15 days period, from February 11th to February 27th, there were 3622 tests carried out, on 3711 passengers, leading to $\frac{3622}{15 \times 3711} \approx 6.5 \times 10^{-2}$ tests per day per passenger.

Table S7. Prior distributions for parameters and models of the SARS-2 COVID-19 analysis. For each parameter its prior distribution or value and the references that support these choices are indicated.

Component	Prior/Value	Shifts	Justification
$t_{o r}$	38	N/A.	We study the outbreak from the start of the cruise on January 20, until February 27 , when all guests were confirmed to have disembarked the ship, spanning a total period of 38 days. (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/newpage ${ }_{0} 0032 . h t m l$)
μ	$1 / 20$ day $^{-1}$	None.	In the absence of sampling and removal,infected individuals (patients) are assumed to become uninfectious on average 20 days after infection. He et al., 2020
λ	$\begin{aligned} & \mathcal{U}(0,24) \\ & \mathcal{U}(0,10) \end{aligned}$	$t_{m}=(04.02 .2020)$	The upper bound is set to 1 transmission per hour per infected individual before cabin isolation and lowered to 10 individuals after (maximal cabin size), from February 4th onward.
$\psi+\omega$		$t_{m}=(11.02 .2020,04.02 .2020)$	Testing started on February 4th and was intensified from February 11th onward, yielding two periods of 7 days and 15 days each. For each time period, the mean for the LogNormal distribution is set as the number of tests taken per passenger per day. The total numbers of tests carried out throughout the quarantine were communicated in press releases from the japanese Ministry of Health (https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/newpage $\left.0_{0} 0032 . h t m l\right)$
r	1	None.	Quarantine measures are assumed to have minimised contact between guests aboard. Patients testing positive were disembarked from the ship to a separate medical facility.
ρ	0	None.	No samples were sequenced after February 17th.
$\frac{\psi}{\omega+\psi}$	$\frac{71}{328}$	None.	Set to the fraction of the samples testing positive for COVID-19 that were sequenced.
Clock rate	8×10^{-4} substitutions per site per year	N/A.	Following Nexstrain Hadfield et al. 2018
Molecular substitution model: $G T R+\Gamma$	Exchangeability Stationary fre Gamma dist	rates: $\operatorname{Dir}(1,1,1,1,1,1)$ uencies: $\operatorname{Dir}(1,1,1,1)$ ibution shape: $\mathcal{E}(1)$	We allow for site rate heterogeneity, and assume unequal base frequencies and transition/transversion rates.

