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APPENDIX640

This online Appendix presents the detailed derivation of the model used by1

Andréoletti, Zwaans et al, as well as supplementary results and figures. We extend results2

of Gupta et al. (2020) and Manceau et al. (2021) to piecewise-constant parameters,3

describe our implementation in the RevBayes software, and give detailed information on4

all priors used for simulation or inference in our analyses.5

A – Method extension to piecewise-constant parameters6

Notation and outline of the general strategy7

We first recall in Figure S1 the notation that we introduced in the main text with8

the three di↵erent sampling ( -sampling for sampling of fossils with inclusion in the tree,9

!-sampling for occurrences and ⇢-sampling at present).10

To compute the likelihood of (T ,O) under this process, we slice horizontally our11

observations and perform a breadth-first traversal of these. We thus introduce now,12

T
"
t := the tree T cut at time t

T
#
t := the collection of trees (or forest) obtained by cutting T

at time t, and considering all subtrees descending from cut lineages

kt := number of sampled lineages in T at time t

O
"
t := O|(t,+1)

O
#
t := O|(0,t)

We can now recall the definition of our two key probability densities,13

8i 2 N, L(i)
t := P(T #

t ,O
#
t | It = kt + i) (S1)

8i 2 N, M (i)
t := P(T "

t ,O
"
t , It = kt + i) (S2)

These probability densities have been introduced in Manceau et al. (2021) as a way14

to target the probability distribution Kt of the total number of lineages given the data.15
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Figure S1. General setting of the method. a) the full process with sampling. Pink dots correspond to !-sampling
(sampling through time without sequencing), blue dots correspond to  -sampling (sampling through time with
sequencing) and yellow dots correspond to ⇢-sampling at present. Filled or unfilled dots correspond respectively to
sampling with or without removal. b) Total number of lineages through time. c) Record of occurrences. d)
Reconstructed tree spanning  - and ⇢-samples. e) Number of lineages through time in the reconstructed tree (i.e.
LTT plot).

Indeed,16

K(i)
t := P(It = kt + i | T ,O)

/ P(It = kt + i, T "
t ,O

"
t , T

#
t ,O

#
t )

/ P(T #
t ,O

#
t | It = kt + i, T "

t ,O
"
t )P(It = kt + i, T "

t ,O
"
t )

/ L(i)
t M (i)

t (S3)

The general strategy of the methods consists of (i) traversing the data backward in17

time to compute Lt; (ii) traversing the data forward in time to compute Mt; (iii) using the18

results to compute Kt. This scheme is illustrated in Figure S2.19
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Figure S2. Inferring the posterior distribution of the number of lineages (Kt) in the OBDP. The probability
distribution of the past number of lineages Kt is obtained at each time t by combining the quantity Lt obtained
from the backward traversal algorithm (left) and the quantity Mt obtained from the forward traversal algorithm
(right). See Table 1 for notations.

In the rest of this online Appendix section, we present the Master equations20

governing the evolution of these densities through time in a setup with piecewise-constant21

parameters.22

Temporal setup for piecewise constant parameters23

We partition time into two distinct units.24

First, we define periods of time with no observations or sampling events, coined25

epochs, which allow for the basic derivation of Master equations of Lt and Mt. Epochs are26

delimited by all n punctual events times (i.e. branching and sampling events) in O and T27

pooled in an ordered list (th)nh=1. Epoch h is thus defined as the time interval (th, th+1).28

Second, we account for all rate shift events, which define constant rate time29

intervals. If we have m such intervals, we pool all m+ 1 rate shift events in an ordered list30

(⌧l)
m+1
l=0 , where by convention we consider that ⌧0 = 0 and ⌧m+1 = tor. Rate time interval l31
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is defined as (⌧l, ⌧l+1), with parameter set (�l, µl, l,!l, rl). We illustrate this setup in32

Figure S3 below.33

Figure S3. Temporal setup of the method.

Master equations governing Lt and Mt34

Probability densities Lt and Mt satisfy di↵erent Master equations obtained by35

studying their evolution through time along any given epoch. These are ordinary36

di↵erential equations (ODE) that can be approximated numerically. Here, we assume37

⌧l 6 t < ⌧l+1 meaning that parameters have values (�l, µl, l,!l, rl).38

First, we can initialize Lt and Mt respectively at present time 0 and at the time of39

origin tor. At present, ⇢ sampling of extant tips yields,40

8i 2 N, L(i)
0 = ⇢k0(1� ⇢)i (S4)

while at the time of origin, the process starts with only one lineage ktor = 1, which yields,41

8i 2 N, M (i)
tor = P(Itor = 1 + i) = i=0 (S5)

We now consider all events happening in an infinitesimal time step �t in the full42
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underlying process which do not result in observations or samplings. Three scenarios43

correspond to this case:44

1. nothing happened with probability (1� �l(k + i)�t), where �l = �l + µl +  l + !l45

2. a birth event happened :46

(a) among the k sampled lineages in T #
t , and it leads to an extinct or unsampled47

subtree to the left or to the right with probability 2�lk�t48

(b) among the i other lineages with probability �li�t.49

3. a death event happened among the i particles, with probability µli�t50

We combine these to write, 8i 2 N,51

L(i)
t+�t

= (1� �l(k + i)�t)L(i)
t + �l(2k + i)�t)L(i+1)

t + µli�t)L
(i�1)
t (S6)

Letting �t ! 0 yields the following di↵erential equation for Lt,52

8i 2 N, L(i)
0 = ⇢k0(1� ⇢)i (S7)

L̇(i)
t = ��l(k + i)L(i)

t + �l(2k + i)L(i+1)
t + µliL

(i�1)
t (S8)

Similarly, Mt is the solution of the following ODE,53

8i 2 N, M (i)
tor = P(Itor = 1 + i) = i=0 (S9)

Ṁ (i)
t = ��l(k + i)M (i)

t + �l(2k + i� 1)M (i�1)
t + µl(i+ 1)M (i+1)

t (S10)

Updates at punctual events54

There are 6 types of punctual events in T and O that a↵ect the probability55

densities Mt and Lt. These correspond to all di↵erent sampling options along T and O as56

illustrated in Figure S4. We denote as Mt� and Lt� the probability densities immediately57

prior to the event and Mt+ and Lt+ immediately after each event. We emphasise that the58

expressions di↵er when considering the process forward in time for Mt or backward in59

time, for Lt. These cases are the following :60
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Figure S4. Updated sampling scheme of the method.

1. sampling of a leaf:61

(a) in T
#
t , L

(i)
t+ =  l(1� rl)L

(i+1)
t�62

(b) in T
"
t , M

(i)
t� =  l(1� rl)M

(i�1)
t+63

2. removed sampled leaf:64

(a) in T
#
t , L

(i)
t+ =  lrlL

(i)
t�65

(b) in T
"
t , M

(i)
t� =  lrlM

(i)
t+66

3. sampling along a branch:67

(a) in T
#
t , L

(i)
t+ =  l(1� rl)L

(i)
t�68

(b) in T
"
t , M

(i)
t� =  l(1� rl)M

(i)
t+69

4. occurrence:70

(a) in O
#
t , L

(i)
t+ = (k + i)!l(1� rl)L

(i)
t�71

(b) in O
"
t , M

(i)
t� = (k + i)!l(1� rl)M

(i)
t+72
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5. removed occurrence:73

(a) in O
#
t , L

(i)
t+ = !lrliL

(i�1)
t�74

(b) in O
"
t , M

(i)
t� = !lrl(i+ 1)M (i+1)

t+75

6. branching event:76

(a) in T
#
t , L

(i)
t+ = �lL

(i)
t�77

(b) in T
"
t , M

(i)
t� = �lM

(i)
t+78

Numerical approximation of the ODEs79

As described above, for any constant rate time interval where ⌧l 6 t < ⌧l+1, Mt and80

Lt are defined along epochs as the solution to systems of di↵erential equations S8 and S1081

for th 6 t < th+1. Numerically, the solution to such systems of equations is approximated82

by truncating the system at a fixed integer N as follows:83

Lth+1
= eAl(t�th)Lth (S11)

Mth = eA
0
l(t�th+1)Mth+1

(S12)

Where Al and A0
l are N ⇥N tridiagonal matrices with ODE coe�cients. When84

there is a rate shift ⌧l within an epoch (th, th+1), the epoch is cut in two parts and Lt and85

Mt are simply computed as,86

Lth+1
= eAl+1(th+1�⌧l)eAl(⌧l�th)Lth (S13)

Mth = eA
0
l(th�⌧l)eA

0
l+1

(⌧l�th+1)Mth+1
(S14)

This can be extended to any number of rate changes within an epoch. This strategy87

of solving for Lt and Mt yields the following two algorithms. Because exponential matrices88

are computationally intensive to calculate, these algorithms are only used in the most89

general cases, when no other analytical formula is available (i.e. when ! 6= 0 and r 6= 1).90
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Algorithm 1 Computes a numerical approximation of Lt for a specific set of times with
known rate shift events

Input:

Observed tree and occurrence data (T ,O),

extant sampling probability ⇢,

set of times of rate shift events (⌧l)
m+1
l=0 ,

and corresponding sets of parameters :

vector � = (�l)ml=0 where �l is the birth rate in time interval [⌧l, ⌧l+1)

vector µ = (µl)ml=0 where µl is the death rate in time interval [⌧l, ⌧l+1)

vector  = ( l)ml=0 where  l is the sampling rate in time interval [⌧l, ⌧l+1)

vector ! = (!l)ml=0 where !l is the rate of occurence sampling in time interval [⌧l, ⌧l+1)

vector r = (rl)ml=0 where rl is the removal probability in time interval [⌧l, ⌧l+1)

set of time points (dj)Sj=1 for which we want to compute the density, and

the truncation N setting the accuracy of the algorithm.

Output: A numerical approximation of Lt at times (dj)Sj=1, (eL
(i)
t )i2{0,1,...,N}

j2{1,2,...,S}
.

1: Pool all (dj)Sj=1, all branching and sampling times of (T ,O) and rate shift times (⌧l)
m+1
l=0

in an ordered list (th)
n+m+1
h=1 .

2: Set j = 1 and initialize B as a S ⇥N + 1 empty matrix.

3: Set l = 0 and � = �0, µ = µ0,  =  0, ! = !0, r = r0, �0 = �0 + µ0 +  0 + !0.

4: Set 8i 2 {0, 1, . . . , N}, eL(i)
0 = ⇢k0(1� ⇢)i.

5: for h = 1, 2, . . . , n+m+ 1 do

6: Numerically solve the ODE ėLt = AeLt on (th, th+1), where matrix A is a N ⇥ N

tridiagonal matrix with entries given by,

8i 2 {0, 1, . . . , N} A(i,i) = �(k + i)

8i 2 {0, 1, . . . , N � 1} A(i,i+1) = �(2k + i)

8i 2 {1, 2, . . . , N} A(i,i�1) = µi

7: if th = dj then

8: Set B(j,i) = eL(i)
th and

9: Set j = j + 1.

10: end if

11: if th = tor or th = dS then

12: return B

13: else if th = ⌧l then

14: Set � = �l, µ = µl,  =  l, ! = !l, r = rl, �l = �l + µl +  l + !l

15: Set l = l + 1

16: else if th is a removed leaf then

17: Set eLt+h
=  reLt�h

18: else if th is a non-removed leaf then

19: Set 8i < N, eL(i)

t+h
=  (1� r)eL(i+1)

t�h
and eL(N)

t+h
= 0

20: else if th is a sampled ancestor then

21: Set eLt+h
=  (1� r)eLt�h

22: else if th is a removed occurrence then

23: Set 8i > 0, eL(i)

t+h
= !rieL(i�1)

t�h
and eL(0)

t�h
= 0.

24: else if th is a non-removed occurrence then

25: Set eL(i)

t+h
= !(1� r)(k + i)eL(i)

t�h

26: else th is a branching event

27: Setet+h = �eLt�h

28: end if

29: end for
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Algorithm 2 Computes a numerical approximation of Mt for a specific set of times with
known rate shift events

Input:

Observed tree and occurrence data (T ,O),

parameters tor, ⇢

set of times of rate shift events (⌧l)
m+1
l=0 ,

and corresponding sets of parameters :

vector � = (�l)ml=0 where �l is the birth rate in time interval [⌧l, ⌧l+1)

vector µ = (µl)ml=0 where µl is the death rate in time interval [⌧l, ⌧l+1)

vector  = ( l)ml=0 where  l is the sampling rate in time interval [⌧l, ⌧l+1)

vector ! = (!l)ml=0 where !l is the rate of occurence sampling in time interval [⌧l, ⌧l+1)

vector r = (rl)ml=0 where rl is the removal rate in time interval [⌧l, ⌧l+1)

set of time points (dj)Sj=1 for which we want to compute the density,

and the truncation N setting the accuracy of the algorithm.

Output: A numerical approximation of Mt at times (dj)Sj=1, (fM
(i)
t )i2{0,1,...,N�1}

j2{1,2,...,S}
.

1: Pool all (dj), rate shift times (⌧l) and all branching and sampling times of (T ,O) in an

ordered list (th)nh=1.

2: Set j = S, k = m and B0 as a S ⇥N empty matrix.

3: Set 8i 2 {0, 1, . . . , N � 1}, fM (i)
tn = 1i=0.

4: Set l = m and � = �m, µ = µm,  =  m, ! = !m, r = rm.

5: for h = n� 1, n� 2, . . . , 0 do

6: Numerically solve the ODE ḟM t = A0fMt on (th, th+1), where matrix A0 is a N ⇥ N

tridiagonal matrix with entries given by,

8i 2 {0, 1, . . . , N � 1} A0(i,i) = �(k + i)

8i 2 {0, 1, . . . , N � 2} A0(i,i+1) = �µ(i+ 1)

8i 2 {1, 2, . . . , N � 1} A0(i,i�1) = ��(2k + i� 1)

7: if th = ⌧j then

8: Set B0(j,i) = fM (i)
th and j = j � 1.

9: end if

10: if th = 0 or th = ⌧S then

11: return B0

12: else if th = ⌧l then

13: Set � = �k, µ = µk,  =  k, ! = !k, r = rk, �l = �l + µl +  l + !l

14: Set l = l � 1

15: else if th is a removed leaf then

16: Set fMt�h
=  rfMt+h

17: else if th is a non-removed leaf then

18: Set 8i 2 {1, 2, . . . , N � 1},fM (i)

t�h
=  (1� r)fM (i�1)

t+h
and fM (0)

t�h
= 0

19: else if th is a sampled ancestor then

20: Set fMt�h
=  (1� r)fMt+h

21: else if th is a removed occurrence then

22: Set 8i 2 {0, 1, . . . , N � 2},fM (i)

t�h
= !r(i+ 1)fM (i+1)

t+h
and fM (N�1)

t�h
= 0.

23: else if th is a non-removed occurrence then

24: Set fM (i)

t�h
= !(1� r)(k + i)fM (i)

t+h

25: else th is a branching event

26: Set fMt�h
= �fMt+h

27: end if

28: end for
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B – Extension of analytical results91

Here, we aim at extending some analytical results of Gupta et al. (2020) and92

Manceau et al. (2021) to a piecewise-constant parameter setting. We start with the93

probability of extinction before time t of a process starting at 0 with one lineage, ut. We94

then detail pt, the probability that a lineage starting at time 0 leads to one sampled95

lineage at time t. Finally, we detail what happens to Lt and Mt for specific subcases, when96

! = 0 or r = 1. Note that formulas for u and p with rate shifts can be found in Stadler97

et al. (2013) as well.98

The extinction probability across rate shifts99

Let’s start slowly with u, one time slice after the other.100

On the first time slice We start with some initializing condition, say, u0 = z.101

Then, on (⌧0 = 0, ⌧1), we have a first set of parameters (�0, µ0, �0) and u satisfies the102

following ODE,103

u̇s = �0u
2
s � �0us + µ0

which solution can be written as,104

8t 2 (⌧0, ⌧1), ut =
x(1)
0 (x(2)

0 � z)� x(2)
0 (x(1)

0 � z)e�
p
�t

(x(2)
0 � z)� (x(1)

0 � z)e�
p
�t

where �0 = �20 � 4�0µ0 and x(1)
0 and x(2)

0 are the roots of the polynomial105

�0x2
� �0x+ µ0, i.e.,106

x(1)
0 =

�0 �
p
�0

2�0
and x(2)

0 =
�0 +

p
�0

2�0

At the end of the time slice, we thus get,107

u⌧1 =
x(1)
0 (x(2)

0 � z)� x(2)
0 (x(1)

0 � z)e�
p
�0⌧1

(x(2)
0 � z)� (x(1)

0 � z)e�
p
�0⌧1

On the second time slice We now start with initial condition u⌧1 .108
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Then, on (⌧1, ⌧2), we have a second set of parameters (�1, µ1, �1) and u satisfies the109

following ODE with these new parameters:110

u̇s = �1u
2
s � �1us + µ1

which solution can be written as,111

8t 2 (⌧1, ⌧2), ut =
x(1)
1 (x(2)

1 � u⌧1)� x(2)
1 (x(1)

1 � u⌧1)e
�
p
�1(t�⌧1)

(x(2)
1 � u⌧1)� (x(1)

1 � u⌧1)e�
p
�1(t�⌧1)

And so on and so forth In doing so, we get that computing ut for a given time t thus112

requires recursively computing u0, and then u⌧1 , u⌧2 , ... until getting to u⌧l , where113

⌧l 6 t 6 ⌧l+1.114

8t 2 (⌧l, ⌧l+1), ut =
x(1)
l (x(2)

l � u⌧l)� x(2)
l (x(1)

l � u⌧l)e
�
p
�l(t�⌧l)

(x(2)
l � u⌧l)� (x(1)

l � u⌧l)e
�
p
�l(t�⌧l)

The probability to see one lineage across rate shifts115

Let’s apply carefully the same method now for p.116

On the first time slice We start with some initializing condition p0 = 1� z.117

Then on (⌧0, ⌧1), we have a first set of parameters and p satisfies,118

ṗs = (2�0us � �0)ps

which solution at first is the same as without skyline changes, i.e.119

pt = (1� z)
�0

�20

⇣
(x(2)

0 � z)� (x(1)
0 � z)e�

p
�0t
⌘�2

e�
p
�0t

On the second time slice We start now with some initializing condition p⌧1 and would like120

to solve the following ODE on (⌧1, ⌧2),121

ṗs = (2�1us � �1)ps

Replacing the expression of us on this time slice gives us,122

dps
ps

=

 
2�1

x(1)
1 (x(2)

1 � u⌧1)� x(2)
1 (x(1)

1 � u⌧1)e
�
p
�1(s�⌧1)

(x(2)
1 � u⌧1)� (x(1)

1 � u⌧1)e�
p
�1(s�⌧1)

� �1

!
ds
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We thus end up with123

8t 2 (⌧1, ⌧2), pt = p⌧1
�1

�21

⇣
(x(2)

1 � u⌧1)� (x(1)
1 � u⌧1)e

�
p
�1(t�⌧1)

⌘�2

e�
p
�1(t�⌧1)

And so on and so forth This gives us124

8t 2 (⌧l, ⌧l+1), pt = p⌧l
�l

�2l

⇣
(x(2)

l � u⌧l)� (x(1)
l � u⌧l)e

�
p
�l(t�⌧l)

⌘�2

e�
p
�l(t�⌧l)

Using these for computation of L without occurrences125

When ! = 0, we can still use the ansatz L(i)
t = ui

tWt and look for Wt. On a given126

epoch, the ODE on L(i)
t translates as Ẇt = (2�ut � �)kWt.127

Solving this between time t and th, on time slice number l, leads us to128

Wt = Wth

 
(x(2)

l � u⌧l)� (x(1)
l � u⌧l)e

�
p
�l(t�⌧l)

(x(2)
l � u⌧l)� (x(1)

l � u⌧l)e
�
p
�l(th�⌧l)

!�2k

e�k
p
�l(t�th)

= Wth

✓
p(t)

p(th)

◆k

With this last equality still holding true, the induction across all epochs remains129

identical to the what was described in Manceau et al. (2021).130

Using these for the computation of M without occurrences131

What happens to the PDE solution over successive time slices with di↵erent132

parameters, when ! = 0 ? Let’s start slowly again, one time slice after the other.133

On the first time slice We assume here that (th�1, th) is an epoch with th 6 ⌧1, such that134

we are still in the first time slice with parameters (�0, µ0, �0). The PDE is135

cM(th, z) = F (z)

@tcM + (�0z
2
� �0z + µ0)@zcM + k(2�0 � �0)cM = 0

We use the method of characteristics as for the constant-parameter case, writing136
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g(s) = cM(t(s), z(s)) with functions t, z and g satisfying137

dt

ds
= 1

dz

ds
= �0z

2
� �0z + µ0

dg

ds
= �k(2�0z � �0)g

We thus keep t(s) = th + s, i.e. s = t� th.138

Then, turning to z(s), we get139

z(s) = u0(s, z0) =
x(1)
0 (x(2)

0 � z0)� x(2)
0 (x(1)

0 � z0)e�
p
�0s

(x(2)
0 � z0)� (x(1)

0 � z0)e�
p
�0s

thus leading to z0 = u0(th � t, z), where u0 denotes the above explicitely defined function.140

Note that on this time slice, 8t, th � t 6 ⌧1, so u0 = u here. But on successive time slices141

it will not be the case anymore.142

Finally, we get, for g, the following,143

gs = g0

 
(x(2)

0 � z0)� (x(1)
0 � z0)e�

p
�0s

x(2)
0 � x(1)

0

!2k

ek
p
�0s

= g0

✓
1� z

p0(s, z0)

◆k

where we denote here again by p0 the function p as in the constant-parameter case with144

parameters (�0, µ0, �0).145

As a result, we get146

cM(t, z) = F (u0(th � t, z))R0(th � t, z)k

And so on and so forth Because nothing really simplifies at this stage, we get the same on147

following time slices. On time slice l, we only change the indices and consider functions u148

and R as in the constant-parameter case with parameters (�l, µl, �l),149

cM(t, z) = F (ul(th � t, z))Rl(th � t, z)k

What happens to the induction across epochs We thus hope that simplifications will150

appear in the induction across epochs. In order to make them appear, we’ll define here151



14 ANDRÉOLETTI, ZWAANS ET AL.

functions of three variables instead of only two. We keep the same names, so I hope it’ll152

not be too confusing.153

Starting now, we introduce a function of three variables u, where value u(t1, t0, z) is154

the probability that one lineage starting at time t1 in the past, goes extinct/unsampled155

before time t0, knowing there is a field of bullets with intensity z at time t0. On a single156

time slice, this is the solution of the usual ODE driving the evolution of u, but with initial157

condition ut0 = z instead of u0 = z.158

Let’s then do the same with function p, defining p(t1, t0, z) as the probability that159

one lineage starting at time t1 in the past leads to one sampled lineage at time t0, knowing160

there is a field of bullets of intensity z at time t0. On a single time slice, this is the solution161

of the usual ODE driving the evolution of p, but with initial condition pt0 = 1� z.162

Note now that across time slices, if t2 > ⌧l and t0 6 ⌧l, then u(t2, t0, z) can be163

computed as the solution of the usual ODE with parameters (�l�1, �l�, µl�1), with initial164

condition ut0 = z, until getting u(⌧l, t0, z). Then the ODE with parameter set (�l, �l, µl) is165

used, with initial value u(⌧l, t0, z), until getting u(t2, t0, z). More explicitly, this gives us,166

u(⌧l, t0, z) =
x(1)
l�1(x

(2)
l�1 � z)� x(2)

l�1(x
(1)
l�1 � z)e�

p
�l�1(⌧l�t0)

(x(2)
l�1 � z)� (x(1)

l�1 � z)e�
p

�l�1(⌧l�t0)

u(t2, t0, z) =
x(1)
l (x(2)

l � u(⌧l, t0, z))� x(2)
l (x(1)

l � u(⌧l, t0, z))e�
p
�l(t2�⌧l)

(x(2)
l � u(⌧l, t0, z))� (x(1)

l � u(⌧l, t0, z))e�
p
�l(t2�⌧l)

To recursively compute p(t2, t0, z) across time slices, we would need,167

p(⌧l, t0, z) = (1� z)

 
(x(2)

l�1 � z)� (x(1)
l�1 � z)e

p
�l�1⌧l

(x(2)
l�1 � z)� (x(1)

l�1 � z)e
p

�l�1t0

!�2

e�
p

�l�1(⌧l�t0)

p(t2, t0, z) = p(⌧l, t0, z)

 
(x(2)

l � u(⌧l, t0, z))� (x(1)
l � u(⌧l, t0, z))e

p
�lt2

(x(2)
l � u(⌧l, t0, z))� (x(1)

l � u(⌧l, t0, z))e
p
�l⌧l

!�2

e�
p
�l(t2�⌧l)

We are now especially interested in the property that is at the core of the induction,168

i.e. formerly,169

R(tor � th, u(th � t, z)) =
R(tor � t, z)

R(th � t, z)
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which we would like to extend as,170

R(tor, th, u(th, t, z)) =
R(tor, t, z)

R(th, t, z)
(S15)

We first need to show that171

u(t2, t1, u(t1, t0, z)) = u(t2, t0, z)

p(t2, t1, u(t1, t0, z))

1� u(t1, t0, z)
=

p(t2, t0, z)

p(t1, t0, z)

The first equation seems quite natural, thanks to the semi-group property of172

solutions of ODEs (or thanks to the probabilistic interpretation of these quantities). For173

the second one, we can check by calculus that it is correct whether (t0, t1, t2) are in the174

same time slice or not.175

p(t2, t1, u(t1, t0, z))

1� u(t1, t0, z)
=

1� u(t1, t0, z)

1� u(t1, t0, z)

 
(x(2)

l � u(t1, t0, z))� (x(1)
l � u(t1, t0, z))e�

p
�lt2

(x(2)
l � u(t1, t0, z))� (x(1)

l � u(t1, t0, z))e�
p
�lt1

!�2

e�
p
�l(t2�t1)

=
p(t1, t0, z)

p(t1, t0, z)

 
(x(2)

l � u(t1, t0, z))� (x(1)
l � u(t1, t0, z))e�

p
�lt2

(x(2)
l � u(t1, t0, z))� (x(1)

l � u(t1, t0, z))e�
p
�lt1

!�2

e�
p
�l(t2�t1)

=
p(t2, t0, z)

p(t1, t0, z)

This property on p thus ensures the equality (S15), which in turn allows us to carry176

out our induction across epochs in the skyline version as177

cM(t, z) = �x v+w+yrw(1� r)v+y
Y

tj2X[{tor}

R(tj, t, z)
Y

tj2W

R(tj, t, z)
�1
Y

tj2Y

u(tj, t, z)(R(tj, t, z)
�1

(S16)
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C – RevBayes implementation178

Core algorithms179

To enable great flexibility and ensure fast computation, RevBayes is constructed180

around a mirror structure (Fig. S5) in which all the core functions coded in C++ are181

reflected in the revlanguage section that links with the Rev language interface.182

Figure S5. Simplified representation of the RevBayes structure. Modified from the RevBayes website, keeping only
descriptions of the folders we modified. Note the organizational symmetry between the core directory containing
the hard-coded features and the revlanguage directory matching the Rev syntax.

Due the multiple advantages of RevBayes and its increasing use, particularly for183

macroevolutionary research, we chose this software to implement the OBDP. All our184

modifications have been carried out in a separate copy of its development branch on185

GitHub (https://github.com/revbayes/revbayes/tree/dev-cevo-lab), and are aimed186

to be integrated in a future stable release. They consist in 3 key additions detailed in Table187

S1.188

The necessary first step was to implement the core algorithms responsible for189

computing the quantities Lt and Mt through time. The final organisation is as follows:190

from outside of the ComputeLikelihoodsLtMt.cpp file (see Table S1) the only functions191

called are ComputeLnProbabilityDensitiesOBDP – returning Lt and Mt through time – or192

ComputeLnLikelihoodOBDP – returning only the final likelihood. Those functions will193

https://revbayes.github.io/developer/architecture/
https://github.com/revbayes/revbayes/tree/dev-cevo-lab
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themselves call the appropriate internal function (ForwardsTraversalMt or194

BackwardsTraversalLt) with the correct parameters. Those rely on a key function,195

PoolEvents, the role of which is to construct the vector containing all the events that will196

be browsed by the traversal algorithms, namely branching times,  - and !-sampling times,197

and time points for which we want to store the probability distribution.198

Because the densities computed during the traversals very quickly reached199

excessively small or elevated values, to the point of exceeding the maximum number of200

recorded decimals, a correction term is added at each step to bring the densities closer to201

1. At the end of the traversal, the recorded correction terms plus the factorizable factors202

are added to the log-transformed densities.203

a) b)

Figure S6. A graphical model of the OBDP and its translation into the Rev language. a) Graphical model, modified
from the RevBayes FBD tutorial, representing the OBDP parameters – labelled in orange – generating a
reconstructed tree T and a record of occurrences O. b) Rev script corresponding to this graphical model. Note the
distinction between the ⇠ notation attributing a distribution to a stochastic node and the  notation defining a
constant node.

In addition, the Occurrence Birth-Death Process and the traversal algorithms not204

only allow us to perform a MCMC phylogenetic inference incorporating the occurrences,205

they can also be used to output the probability distribution of the number of lineages206



18 ANDRÉOLETTI, ZWAANS ET AL.

Table S1. Overview of the implementations carried out to incorporate the Occurrence Birth-Death Process and the
associated Diversity Inference method into RevBayes. It lists for each of our goals the associated C++ files, along
with their assignment in the RevBayes structure.

Objectives Location File names Major new functions

1. Perform
Forwards and
Backwards
traversal
algorithms

core/
functions

ComputeLikelihoods
LtMt.h

ComputeLikelihoods
LtMt.cpp

ComputeLnProbability-
DensitiesOBDP

ComputeLnLikelihoodOBDP
PoolEvents

ForwardsTraversalMt
BackwardsTraversalLt

2. Encode
the OBDP
distribution

core/
distributions

revlanguage/
distributions

OccurrenceBirthDeath
Process.h

OccurrenceBirthDeath
Process.cpp

Dist occurrenceBirth
DeathProcess.cpp

Dist occurrenceBirth
DeathProcess.h

OccurrenceBirthDeathProcess
computeLnProbability-

DivergenceTimes

createDistribution
getParameterRules

3. Infer past
diversity

core/
distributions

revlanguage/
distributions

InferAncestralPop
SizeFunction.h

InferAncestralPop
SizeFunction.cpp

Func inferAncestral
PopSize.h

Func inferAncestral
PopSize.cpp

InferAncestralPopSizeFunction

createFunction
getArgumentRules

through time, Kt. We introduced this functionality into RevBayes through207

InferAncestralPopSizeFunction, which can be called directly from the Rev interface. As208

with the OBDP distribution, we had to design the parameter loading procedure, then call209

the ComputeLnProbabilityDensitiesOBDP function to get the log(Lt) and log(Mt))210

matrices and finally combine and normalize them to obtain the log(Kt)) matrix.211

RevGadgets212

The postprocessing step consists in computing the posterior probability of the total213

number of lineages through time. It can be performed independently of the previous steps,214
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given that one has at least a tree, a set of parameters and optionally occurrence times. It215

comprises 2 steps, the first one uses the fnInferAncestralPopSize function, implemented in216

RevBayes, to obtain the matrix of diversity densities Kt for each tree in the MCMC trace.217

Then, in order to convert Kt matrices into a nicely rendered plot we added two functions218

in the auxiliary R library RevGadgets (Tribble et al., 2021). Starting from the trace of219

posterior trees, parameters, and Kt matrices one first needs to execute the220

rev.process.nbLineages function that will organize the required information into the221

Kt mean data frame. The goal is to incorporate all the uncertainty concerning the inferred222

parameter values and tree topologies into the diversity trajectory estimation. Afterwards,223

this averaged Kt mean is used by the function rev.plot.nbLineages to realize the final plot224

using ggplot2 (Wickham, 2016). Here it is possible to alter most of the display options,225

such as the types of lineages to be shown (observed, hidden, total), as well as their colours226

and shapes (see e.g. Fig. S8).227



20 ANDRÉOLETTI, ZWAANS ET AL.

Table S2. Description of two novel RevGadgets functions for visualizing OBDP diversity-through-time estimations.
The input objects and display parameters are detailed, those with an asterisk always have to be provided while the
others have default values.
Function Option Type Description

rev.process
.nbLineages

start time trace file*

popSize distribution
matrices file*

trees trace file*

weight trees posterior

character

character

character

Boolean

MCMC trace of the starting times.

Matrices computed with
fnInferAncestralPopSize in RevBayes.

MCMC trace of the trees.

Whether to combine trees uniformly
or weighted by their posterior probabilities.

rev.plot
.nbLineages

Kt mean*

xlab / ylab

line.size / interval.line.size

col.Hidden / col.Observed /
col.Total / col.Hidden.interval /

col.Total.interval

palette.Hidden / palette.Total

show.Hidden / show.Observed /
show.Total / show.intervals /

show.densities / show.expectations

use.interpolate

data.frame

character

numeric

character

character

Boolean

Boolean

Processed output for plotting.

Label of the x-axis / y-axis.

Width of the lineage plot / credible interval line.

Color of the hidden / observed / total
lineages plot line. Color of the credible
interval for hidden / total lineages.

Palette of the hidden / total lineages distribution.

Whether to show the plot for hidden /
observed / total lineages / credible intervals /
diversity densities / diversity expectations.

Whether to interpolate densities.
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D – Qualitative validation: “blind test” on simulated data228

Parameter values used to simulate the two datasets used in the blind test are229

presented in Table S3. Two trees with occurrences have been simulated under the OBDP230

(parameters 1-6). For “dataset 1”, genetic sequences along the first tree are simulated231

according to a K80 model of molecular evolution (parameters 7-9) and recorded only for232

extant taxa. Binary traits are simulated according to a Markov process with symmetrical233

rates (parameters 10-12) and are recorded for both extant and extinct taxa. This234

corresponds to a classic macroevolution scenario. For “dataset 2”, genetic sequences along235

the second tree are simulated according to a K80 model of molecular evolution (parameters236

7-9) and recorded for extant and extinct individuals. This allows us to have a better237

resolution of the underlying tree than in the first dataset. Moreover, getting genetic238

sequences for individuals sampled in the past corresponds more to an epidemiology239

scenario.240

Table S3. Parameter values used to simulate two datasets and test our OBDP inference workflow.

� µ  ! r ⇢ mnt ↵nt �nt mmorpho q01 q10
1 0.9 0.2 0.3 0 0.8 10000 0.01 0.02 60 0.03 0.03

Two of us, ignorant of the values used for simulation, designed the inference241

protocol and conducted the analysis, taking as input the occurrences, sequences, and242

morphological data only. Priors used for inference on “dataset 1” are presented in Table S4243

and the general setup for analysis is illustrated in Figure S7. Priors used for inference on244

“dataset 2” were very similar, except for the absence of a model of morphological245

evolution, and they are presented in Table S5.246
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Figure S7. Modular representation of the graphical models used in the qualitative validation analysis. Modified
from Heath et al. (2019). The simulated data, noted in the grey nodes are used to deduce the posterior
distributions of all other random variables noted in the white nodes.

Table S4. Prior distributions on the OBDP parameters and models for the “Blind Test” analysis on dataset 1.
Notations: U for the Uniform distribution, E for Exponential, Dir for Dirichlet, GTR for the General Time
Reversible substitution model and MK for the Mk model, the analog of JC69 for an arbitrary number of character
states.
Parameter Prior Model Prior

� E(10)
µ E(10)
 E(10)
! E(5)

Molecular evolution:
GTR + �

Strict clock rate: E(10)
Exchangeability rates: Dir(1, 1, 1, 1, 1, 1)
Stationary frequencies: Dir(1, 1, 1, 1)
Gamma distribution shape: E(1)

⇢ U(0, 1)
r 0
tor U(7.7, 12)

Morphological evolution:
MK + �

Strict clock rate: E(1)
Gamma distribution shape: E(1)

Table S5. Prior distributions of the OBDP parameters and models for the “Blind Test” analysis on dataset 2.
Notations: U for the Uniform distribution, B for the Beta distribution, E for Exponential, Dir for Dirichlet, GTR
for the General Time Reversible substitution model.
Parameter Prior Model Prior

� E(10)
µ E(10)
 E(10)
! E(10)

Molecular evolution:
GTR + �

Strict clock rate: E(10)
Exchangeability rates: Dir(1, 1, 1, 1, 1, 1)
Stationary frequencies: Dir(1, 1, 1, 1)
Gamma distribution shape: E(1)

⇢ B(1.0, 1.0)
r 0
tor U(7.7, 12)
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In our blind inferences, we recovered posterior distribution of diversity trajectories247

(Fig. S8) and trees (Fig. S9) which are very close to the real data from the simulations.248

The true number of hidden lineages is most of the time near the expectation of the inferred249

posterior distribution and more importantly always in the 95% posterior credible interval.250

When looking at the total number of lineages – i.e. species richness in macroevolution or251

prevalence in epidemiology – the estimates remains very close to the truth and almost252

always in the 95% credible interval.253

a) b)

c) d)

Figure S8. Validation of the diversity dynamics inferred by OBDP compared to the true simulated data. a) Posterior
probability distribution of the number of hidden lineages through time for “dataset 1”, plotted with the new
RevGadgets utilities. b) Posterior probability distribution of the total number of lineages through time for “dataset
1”. c-d) Same as a-b), but for “dataset 2”. The 95% credible intervals are indicated in dashed lines, the expected
number of lineages is in blue or green and the true, simulated, trajectory in red. The black line represents the
inferred Lineages Through Time (LTT) plot, note that the total diversity equals the LTT plus the hidden diversity.
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Figure S9. Validation of the inferred trees against the true simulated ones. a) Inferred phylogenetic tree for
“dataset 1”, visualized in FigTree 1.4.4. The node colors refer to their posterior probability. b) Original simulated
tree for “dataset 1”, aligned on the same temporal scale. Note that the topology is well recovered but divergence
dates do not always perfectly match. c-d) Same as a-b) but on “dataset 2”. Due to a greater amount of data in
genetic sequences of both past and extant individuals, the divergence dates tend to be better inferred.
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E – Macroevolution application: Inferring past cetacean diversity254

Preliminary analysis of the cetacean occurrence fossil record255

A detailed notebook is available at256

https://github.com/Jeremy-Andreoletti/Cetacea_PBDB_Occurrences to follow our257

exploration of the cetacean dataset. We identified several biases in their fossil record, in258

particular much more variable occurrence densities – defined as the number of occurrences259

by unit of time in the stratigraphic range of a clade – than expected from our model (see260

Figure S10).261

Since OBDP assumes that only one individual of a species will be sampled at a262

time, we subsampled the dataset to aggregate all occurrences of the same taxon found in263

the same geological formation. This subsampling also reduced the observed discrepancy in264

occurrence densities. The final subsampled dataset was composed of 968 occurrences.265

Figure S10. Occurrence distributions and bias correction, for cetacean species (a) and genera (b). At the top,
occurrence distributions are compared before (red) and after (green) aggregating in geological formations. Below,
stratigraphic ranges are displayed over time and colored according to the density of occurrences (red dots).

https://github.com/Jeremy-Andreoletti/Cetacea_PBDB_Occurrences
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Table S6. Prior distributions for parameters and models of the Cetacea analysis. For each parameter its prior
distribution, its initial value at the origin of the MCMC chain (set to speed up convergence) and the references that
support these choices are indicated. Notations: U for the Uniform distribution, E for Exponential, LogN for
Log-Normal, G for Gamma, Dir for Dirichlet, GTR for General Time Reversible and JC69 for the Jukes-Cantor
1969.
Component Prior Initial Justification

tor U(max(occurrences), 60) max+60
2

Origin after the last occurrence. Initialised close to the
estimated Whippomorpha root age from McGowen et al. (2020)

µ E(5) 0.05 Initialized according to estimations by Rabosky (2014)

�� µ
LogN (ln[ ln 41

tor
],

0.587405)
ln 41
tor

Expected number of species under a Birth-Death process
centred around the observed number of genera. Lognormal
distribution with 95% prior probability spanning exactly one

order of magnitude (Höhna and Heath, 2019)
r 0 0 Removal probability at sampling, irrelevant in macroevolution

 + ! E(1) 0.3 Unknown sampling rate for all fossils (including occurrences)

!/( + !) U(0, 1) Empirical
Unknown probability that morphological characters are available

for a given fossil. Initialized at the empirical proportion of
fossils with morphology among all fossils

Sampling
bias

Messinian: G(2, 2)
Aquitalian: G(2, 2)
Rupelian: G(2, 2)

0.75
0.5
0.1

Some geological stages are known to have transmitted a scarcer
sedimentary record (Marx et al., 2016), thus fossil sampling rates

are allowed to be estimated lower in these intervals.

⇢ U(0.95, 1) 1
Sequences or morphology is used for the 41 accepted extant
cetacean genera, but we allow for some still unknown genera

Fossil age
uncertainty

U(min,max) Minimum age
Moves shifting a fossil age outside of its range are rejected

(Heath et al., 2019)
Mean

molecular
clock rate

Nuclear: U(0, 0.01)
Mitochondrial: U(0, 0.1)

0.0.00075
0.03

Priors based on rates of molecular evolution for all mammals
in Allio et al. (2017). Initialised at an intermediate rate between

mysticetes and odontocetes as estimated by Dornburg et al. (2012).
Clock rate
relaxation

Uncorrelated:
E(1/mean)

mean
Independent and identically distributed exponential rates are

defined for each branch
Molecular
substitution

model:
GTR + �

Exchangeability rates: Dir(1, 1, 1, 1, 1, 1)
Stationary frequencies: Dir(1, 1, 1, 1)

Gamma shape: E(1)

Sophisticated nucleotide evolution model with rate
variation across sites according to a discretized
Gamma distribution. The Dirichlet distributions

constrain vectors to sum to one (Heath et al., 2019)
Morphological
substitution

model:
JC69

Strict clock rate: E(1)
Gamma shape: E(1)

0.5
0.125

Simpler character evolution model. Characters are
partitioned according to their number of states

(Wright, 2020)

Detailed priors used for Bayesian inference266

We detail in Table S6 all priors used for the inference on the cetacean dataset.267

Cetacean genera phylogeny268

The Maximum Clade Credibility phylogeny was computed with RevBayes (Höhna269

et al., 2016), and plotted with Rstudio (RStudio Team, 2020) and the RevGadgets library270

(Tribble et al., 2021).271
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Figure S11. Maximum Clade Credibility phylogeny of the 41 currently accepted extant cetacean genera and 62
fossil genera. The colors of nodes bars reflect posterior probabilities.
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F – Epidemiology application: the Diamond Princess SARS-2 COVID-19272

outbreak dynamics273

Data acquisition on GISAID274

We gratefully acknowledge the following Authors from the Originating laboratories275

responsible for obtaining the specimens, as well as the Submitting laboratories where the276

genome data were generated and shared via GISAID, on which this research is based. All277

Submitters of data may be contacted directly via www.gisaid.org278
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Figure S12. Genome sequences used, originating and submitting labs generated on GISAID. Content is reproduced
above.

Pre-processing the data304

All case count and sequencing data were available at a resolution of days.305

In order to use the main method described in this article, the case count record had306

to be pre-processed so that occurrences are spread throughout the days. For a day with a307

case count of n newly infected individuals, we drew n time points uniformly distributed308

throughout the day. The resulting dataset is shown in Figure S13.309
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Figure S13. Pre-processed dataset for the Diamond Princess outbreak analysis. a) Exact dates assigned to
occurrences and sequences for the analysis. b) Total case counts and sequences through time.
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Figure S14. Detailed parameter estimates obtained from the COVID-19 outbreak analysis. a) Reproductive number
estimates. b) Birth rate estimates. c) Total sampling (sequencing and PCR testing) rate estimates.



32 ANDRÉOLETTI, ZWAANS ET AL.

Detailed priors310

We detail in Table S7 all priors used for the inference on the outbreak dataset of311

COVID-19 aboard the Diamond Princess.312

The mean of the prior distribution of  + ! is set up to be the number of tests used313

on the ship, per day and per passenger, on the two periods.314

• Within the first 7 days period, from February 4th to February 11th, there were 439315

tests carried out, on 3711 passengers, leading to 439
7⇥3711 ⇡ 1.7⇥ 10�2 tests per day per316

passenger.317

• on the following 15 days period, from February 11th to February 27th, there were318

3622 tests carried out, on 3711 passengers, leading to 3622
15⇥3711 ⇡ 6.5⇥ 10�2 tests per319

day per passenger.320
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Table S7. Prior distributions for parameters and models of the SARS-2 COVID-19 analysis. For each parameter its
prior distribution or value and the references that support these choices are indicated.
Component Prior/Value Shifts Justification

tor 38 N/A.

We study the outbreak from the start of the cruise
on January 20, until February 27, when all

guests were confirmed to have disembarked the ship,
spanning a total period of 38 days.

(https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/newpage00032.html)

µ 1/20 day�1 None.
In the absence of sampling and removal,infected
individuals (patients) are assumed to become

uninfectious on average 20 days after infection. (He et al., 2020)

�
U(0, 24)
U(0, 10)

tm = (04.02.2020)

The upper bound is set to 1 transmission
per hour per infected individual before

cabin isolation and lowered
to 10 individuals after (maximal cabin size),

from February 4th onward.

 + !
LogN

�
3622

15⇤3711 , 0.5
�

LogN
�

439
7⇤3711 , 0.5

� tm = (11.02.2020, 04.02.2020)

Testing started on February 4th and was intensified
from February 11th onward, yielding two

periods of 7 days and 15 days each.
For each time period, the mean for the LogNormal distribution

is set as the number of tests taken per passenger per day.
The total numbers of tests

carried out throughout the quarantine were communicated
in press releases from the japanese Ministry of Health

( https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/newpage00032.html)

r 1 None.

Quarantine measures are assumed to have
minimised contact between guests aboard.
Patients testing positive were disembarked
from the ship to a separate medical facility.

⇢ 0 None. No samples were sequenced after February 17th.

 
!+ 

71
328 None.

Set to the fraction of the samples testing
positive for COVID-19 that were sequenced.

Clock rate
8⇥ 10�4 substitutions

per site per year
N/A. Following Nexstrain (Hadfield et al., 2018).

Molecular
substitution

model:
GTR + �

Exchangeability rates: Dir(1, 1, 1, 1, 1, 1)
Stationary frequencies: Dir(1, 1, 1, 1)
Gamma distribution shape: E(1)

We allow for site rate heterogeneity, and
assume unequal base frequencies and

transition/transversion rates.
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