DETERMINISTIC PLATFORM SOFTWARE FOR HARD REAL-TIME
SYSTEMS USING MULTI-CORE COTS

Sylvain Girbal, Xavier Jean, Jimmy Le Rhun,
Daniel Gracia Pérez, Thales Research & Technology, Palaiseau, France
Marc Gatti, Thales Avionics, Vélizy-Villacoublay, France

Abstract

Future generations of avionic equipments are
expected to embed multi-core processors. Using Com-
ponents Off-The-Shelf (COTS) processors is consid-
ered both by the industrial and academic commu-
nities, as well as certification authorities. However,
in the safety-critical domain, a common issue with
COTS multi-core processors is their lack of pre-
dictability, directly linked to the difficulty to foresee
and manage inter-core interferences due to shared
hardware resources.

A possible solution consists in defining a Usage
Domain that constrains the use of shared resources
down to a level for which interference situations are
known and their impact on software execution time is
acceptable. Nevertheless, COTS processors have not
been designed to see their behavior restricted by such
usage domains, and do not provide dedicated mecha-
nisms for that purpose. Hence the usage domains are
enforced by more complex mechanisms implemented
in dedicated pieces of software running below the
applicative level. We call them Deterministic Platform
Software (DPS).

The objective of this paper is to propose an
overview of existing DPS solutions, and propose cri-
teria leading to a uniform classification. Additionally,
we propose a mapping of these solutions to a selection
of avionic use cases.

1. Introduction

Multi-core processors usage in avionic equip-
ments has been a topic of interest for several
years [1]-[3]. That technology offers today the best
computing performance for a reasonable size, weight
and power. Moreover, the demand of cheaper equip-
ments [4] makes the choice of Off-The-Shelf (COTS)
processors seducing.

A common issue associated to COTS multi-core
processor is their lack of predictability [S], [6]. This

is mostly due to inter-core interferences [7]: Various
pieces of software will be executed on different cores
at the same time. Even when they do not rely on each
other to execute correctly, they compete electronically
to use shared hardware resources on the chip. Concur-
rent accesses are arbitrated by hardware mechanisms,
which often entail extra jitters to individual accesses.
This is especially the case for the main memory and
high-speed busses, e.g. PCle.

Time critical applications must fulfill their ex-
ecution before statically defined deadlines. A usual
way to provide such guarantees is to evaluate a Worst
Case Execution Time (WCET) [8], [9]. However, a
significant impact of interferences on execution time
distribution has been observed [2]. That hardens the
evaluation of interferences impact on WCET with a
sufficient level of confidence, and without oversizing
the whole avionic equipment.

On multi-core COTS processors, general ap-
proaches that target unrestricted configurations, e.g.
initiator-target model [10], involve an exponential
number of test cases according to the number of
cores and the number of shared harwdware resources,
and do not provide rationale to ensure that a test
case has been correctly covered. Alternative methods
require either a closed set of tasks to compute a
global interferences penalty, for instance with the
isSWCET [11] (interferences sentitive WCET) method,
or a Usage Domain [12], [13] that explicitly restricts
the way shared resources can be used concurrently
by cores. This paper deals with the second class of
approaches. Enforcing a Usage Domain within shared
resources introduces two high-level problems:

o How to define it to ensure interferences master-
ing?
o How to make sure it is correctly enforced?

The first question has answers in the litera-
ture. For instance, projects dealing with deterministic

Work for this paper was executed within the SAFURE project. The project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 644080.

processors, e.g. Merasa [14], PRET [15] or Comp-
Soc [16] have proposed interference-free solutions.
These projects have lead to predictable processors that
may be synthesized. Their leading idea consists in
enforcing timing isolation between each core’s com-
munications to shared resources. That is reached with
specific hardware mechanisms implementing time-
triggered arbitration policies, often named TDMA
(Time Division Multiple Access). Similar concepts
have been successfully applied on COTS proces-
sors [17] at applicative level. Alternatives based on
budget allocation and interferences penalties based on
these budgets have also been proposed [18].

The second question has been tackled on COTS
processors with dedicated pieces of software, that we
regroup under the name of “Deterministic Platform
Software” (DPS). We define them more precisely
as pieces of software that bring no functionality by
themselves, but are in charge of enforcing Usage
Domains over shared resources.

The objective of this paper is to propose criteria
to compare DPS solutions relevance in an industrial
context (Section 2), give an overview of DPS so-
lutions available in the state-of-the-art and compare
them according to the previous criteria (Section 3),
and finally to consider these solutions on three case
studies that cover different needs in avionic equip-
ment (Section 4).

2. Stakes

Next generation avionic applications will face
some performance requirement issues [19]-[21].
Multi-core COTS architectures possess the required
inherent performance level, but bring some pre-
dictability issues [5], [6] that may endanger the cer-
tification processes in avionics.

In this section we will refine interesting prop-
erties that such DPS needs to provide to be able to
exploit the required performance level of the multi-
core COTS architecture, while minimizing the impact
on the certification processes and costs.

For each property, we will define several levels of
assessment from not fulfilled to completely fulfilled.
A subset of existing DPS solutions, presented in
section 3, will be evaluated against these properties.

A. Support for Legacy Applications

Supporting already certified single-core legacy
code in multi-core COTS enable the avionic industry

to reduce the overall certification costs.

Table 1. Support for Legacy Assessment Levels

0 No legacy support, application needs to be
redeveloped from scratch for the platform soft-
ware.

1 The platform software requires some deep
modifications of the source code of the appli-
cation.

2 The platform software requires the recompila-
tion of the source code, including very light
modifications.

3 The platform software is able to run pre-
existing unmodified certified binaries.

In Table I we quantified the different effort level
associated with the solutions presented in Section 3.
The more the legacy software will require to be mod-
ified, the more the certification costs will increase, as
we will be forced to re-apply the certification process.

The lowest legacy support level (0) means no
support for legacy at all, with a complete need to
rewrite the software. This is for instance usually the
case when you try to parallelize an application at loop
nest level.

For a low legacy support level (1), a deep un-
derstanding of the application behavior is required to
perform some significant modifications. This is for in-
stance the case when altering task orders, identifying
behavioral phases at the application level.

A better legacy support level (2), requires light
modification of the source code, forcing the applica-
tion to be recompiled, thus not allowing to reuse a
pre-compiled certified binary.

The highest legacy support level (3) is charac-
terized by the ability to run existing, already certified
and already compiled binaries, allowing a black-box
usage of existing applications.

B. Efficiency of the Proposed Platform Soft-
ware Solutions

Compared to single-core architectures, multi-
core architectures provide us the opportunity for more
performance through more parallelism with several
execution threads running in parallel on different
cores on the system. As presented in Section 1, this
property is critical for the next generation of avionic
applications that will require much more performance
than today.

The way a DPS solution actually enables par-
allelism exploitation on a multi-core processor is
a dimensioning aspect of the efficiency property.
Another aspect is the detail of hardware resources
and execution time required by a DPS for its own
execution. That may lead to individual slow-down
of each task. In extreme cases, slow-down of tasks
on each core could balance parallelism exploitation,
so that the DPS becomes unrelevant. The efficiency
property measures those two aspects.

The proposed solutions will also be evaluated
against their ability to adapt to different contexts: crit-
icality levels, computation bound vs communication
bound applications, and so on.

Table II. Efficiency Assessment Levels

0 Multi-core is not exploited at all, or individual slow-down
of applications is higher than gain offered by parallelisa-
tion.

1 Balance between parallelism exploitation and individual
slow-down is uncertain or highly variable. Concurrent
execution on the platform may also be conservatively
limited by the platform software to strictly guarantee other
required properties, thus reducing parallelism level and
performance.

2 Balance between parallelism exploitation and individual
slow-down is acceptable in most cases. Concurrent execu-
tion on the platform may also be limited by the platform
software to guarantee other required properties, while still
allowing to significantly exploit parallelism.

3 The platform software does not limit concurrent execution
on the multi-core platform, providing optimal performance
for the software. Additionally its impact on individual tasks
is low.

In Table II we quantified the different effort level
associated with the solutions presented in Section 3.
The higher the ability of the proposed platform soft-
ware to exploit the multi-core architecture, the higher
the efficiency will be.

For lowest efficiency level (0), the proposed
solution is not able to exploit parallelism at all, or
introduce overhead within unreasonable proportion.
This solution will not benefit from the extra perfor-
mance provided by multi-core architectures. This is
typically the case if you run single-core applications
on a multi-core architecture, preventing any other
application to run concurrently to avoid potential
interferences between applications.

A low efficiency level (1) is characterized by
some significant restrictions on parallelism by the

platform software to guarantee other required proper-
ties, or high individual overheads for each tasks. DPS
optimisations must be provided to leverage the risk of
low performances in industrial context. Such restric-
tion may only apply to some part of the application
(such as only for most critical software), but it may
significantly hamper the efficiency if only such kind
of critical software is run on a particular multi-core
COTS platform.

A better efficiency level (2) will restrict con-
current execution when it will actually endanger the
other critical properties, usually using a deeper knowl-
edge of the application. Such solutions will explicitly
identify sections that will be allowed to exploit paral-
lelism. Additionally, balance between parallelisation
and individual overheads will be positive, so that DPS
enables actual performance gains.

The highest efficiency level (3) will provide
full access to the multi-core performance by fully
exploiting all available parallelism with a negligible
or very low individual slow-down. As this will be at
the cost of other properties, it is unlikely for such
a level of efficiency to be reached for safety critical
systems.

C. Robust Partitioning Assessment Complexity

Robust partitioning is a requirement introduced
for IMA [22], [23] systems in a single-core context,
to guarantee both spatial and timing isolation between
the application software running on the same hard-
ware system. Ensuring such a property in a multi-core
context is not easy [1], [24]-[26], as shared hardware
resources come along with arbitration mechanisms
that may break the time isolation property while con-
current accesses to the same resources are performed.

The platform software solutions presented in
Section 3 will be evaluated against their ability to
ensure robust partitioning in a multi-core COTS con-
text.

In Table III we quantified the different effort
level associated with the solutions presented in Sec-
tion 3. The easiest it is for the proposed platform
software to guarantee robust partitioning, the higher
this metric will be.

For the lowest assessment level (0), the platform
software does not help ensuring robust partitioning,
and all the associated guarantees have to be made at
application level. It is very unlikely for such a level

Table II1. Robust Partitioning Assessment Levels

0 The platform software does not provide robust
partitioning guarantees.

1 While the platform software is focusing on
minimizing the inter-partition interference, no
strict partitioning is guaranteed.

2 Robust partitioning is ensured for most critical
part of the application, and relaxed for less
critical ones.

3 The platform software provides robust parti-
tioning by construction.

of assessment to be acceptable in an avionic context.

A low assessment level (1) will not strictly be
able to guarantee timing isolation and thus robust
partitioning, but will be able to bound the impact of
inter-partition interferences, still allowing to compute
a WCET.

A better assessment level (2) will ensure strict
partitioning for most critical applications while re-
laxing this partitioning property for lower criticality
software, with features such as degraded mode.

For the highest efficiency level (3) the platform
software provides strict partitioning as currently re-
quired by the [22] standard. This usually comes at
the cost of lower system performance.

D. Integration into an Industrial Process

The industrial process associated with avionic
applications currently involve several actors. Espe-
cially software components are developed by different
solution providers working under some computing
resource budget constraints, and these solutions are
later put together to build an avionic system by
the integrator. ldeally, if the budget constraints are
respected the integration should be seamless.

For single-core solutions this budget is usually
expressed with timing constraint, like having 100ms
every second to perform the required functionality.
Expressing such a budget for multi-core architecture
can be much more complex: As the major issue
of multi-core is tied to concurrent usage of shared
hardware resources [7], a useful budget information
could be the share of each resource required by each
application. But this is highly architecture-dependent,
at a stage of the development process where the
hardware target has not yet being finalized. It also
forces solution providers to have a deep architectural

knowledge, and to produce architecture-dependent
solution less likely to be reused in future products.

For each platform software solutions presented in
Section 3 we will present a guideline on how complex
it will be to integrate them into such an industrial
process, to avoid the risks defined above.

Table IV. Integration Assessment Levels

0 Cannot be integrated into an existing industrial
process. A completely new process needs to be
developed.

1 Significant changes to the existing industrial
process.

2 Lighter changes to the existing industrial pro-
cess.

3 Already supported by existing industrial pro-
cess.

In Table IV we quantified the different effort lev-
els associated with the solutions presented in Section
3. The easiest it will be for the proposed platform
software to be integrated into a industrial process, the
higher the metric will be.

The lowest integration level (0) means that the
proposed solution cannot be integrated into an exist-
ing industrial process, and that a new one needs to be
developed from scratch.

A low integration level (1) will require signifi-
cant changes into the industrial process, such as the
requirement for software providers to take into ac-
count the other applications that will run concurrently
with their own, or to anticipate multi-core integration
related issues, actually merging the software provider
and the software integrator roles.

A better integration level (2) would allow us
to keep the roles clearly separated. For instance, we
can force the software providers to provide additional
information to the integrator for him to take into
account how co-running application will interfere, or
we need to be able to define more precise computing
budget constraints.

The highest integration level (3) is characterized
by the fact that current industrial processes already
support the proposed solution, indicating a seamless
adoption of the solution.

E. Easiness to Adapt Existing Application to
the Platform Software

When proposing a new platform software, espe-
cially when it comes to certification, the industry only

has to pay the complexity of the platform software
once. However, the cost of the adaptation of every
application is recurring. Therefore an interesting prop-
erty is to keep the adaptation costs low.

This adaptation cost is twofold: First, how easy
it is to perform the modification in the application
software, and second which share of the existing
software require to be modified.

The platform software solutions presented in
Section 3 will be evaluated against their requirements
in term of adaptation of the existing software.

Even though this property is correlated to the
Legacy Support, it is still quite different when it
comes to the impact. A solution can force to sys-
tematically reorganize each task code in a particular
well defined and easily applicable way, while it is
a major concern for legacy as all parts are modified
and need to be certified again. Another solution can
involve very complex changes, but very localized in
the application, leaving most of it untouched which
is better for legacy.

Table V. Easy Adaptation Assessment Levels

0 All applications need to be completely rede-
veloped.

1 Reorganization of the software architecture is
required.

2 Minimal source code alterations are sufficient
to support the platform software.

3 No adaptation of existing software required.

In Table V we quantified the different effort level
associated with the adaptation of existing application
to the platform software solutions presented in Sec-
tion 3. The less the existing application will require
to be modified, the higher this adaptation metric will
be.

For the lowest assessment level (0), the appli-
cations requires to be rewritten from scratch for the
paradigm / platform software to be applied. Such a
solution is very unlikely to be considered.

A low assessment level (1) requires large parts
of the applications to be re-written. It is typically the
case when parallelizing an application at loop-nest
level, as the most suited parallel algorithm is usually
not the same as the most-suited sequential one.

A better assessment level (2), while not requir-
ing some drastic changes in the structure of the
application keeping the same software architecture,

may force us to perform slight modifications such as
reordering the scheduling, or inserting budget-related
information.

The highest efficiency level (3) will require no
modification of the existing software, not involving at
all the solution providers.

F. Complexity and Certifiability of the Platform
Software

Even if it is of lesser importance than the adap-
tation cost of existing software, the complexity and
the certification cost of the platform software itself
also needs to be considered when comparing different
solutions: A platform software performing dynamic
online load balancing may require no modification of
the application, while possibly making the platform
software not predictable enough to be certified.

The platform software solutions presented in
Section 3 will be evaluated against its complexity and
certification requirements.

Table VI. Certifiability Assessment Levels

0 Very complex and unpredictable platform soft-
ware behavior.

1 Complexity of dynamic mechanism not easy to
statically bound.

2 New deterministic mechanisms with identified
static upper bounds.

3 Minimalist platform software with negligible
certification costs.

In Table VI we quantified the complexity and
certifiability levels for the platform software solutions
presented in Section 3. The lowest the complexity
of the platform software will be, the higher the
certifiability metric will be.

For the lowest certifiability level (0), the pro-
posed solution is not likely to be certifiable, e.g. not
providing the guarantees required by the standards.

A low certifiability level (1) of the platform soft-
ware involves mechanisms that are not easy to certify
such as mechanism based on statistic distributions, or
adaptive online mechanisms that can not be statically
proved.

A better certifiability level (2) of the platform
software will propose deterministic mechanisms to be
added. While it requires to certify new mechanisms
(such as additional scheduling mechanisms) this cer-
tification can rely on existing techniques with static
properties.

The highest certifiability level (3) of the platform
software is achieved when this platform software
remains minimalist enough to not alter existing certi-
fication processes. For example control software that
only rely on existing already-certified components.

G. Portability to other Multi-core Platforms

Finally, a platform software developed for a
particular multi-core architecture needs to be eval-
uated against its ability to be easily ported to the
next generation of the same multi-core architecture,
and to a lesser extent to completely different multi-
core architectures, indicating the adherence of the
proposed solution to the considered hardware.

The platform software solutions presented in
Section 3 will be evaluated against its portability to
different multi-core architectures.

Table VII. Portability Assessment Levels

0 The platform software is specific to a particular
multi-core architecture.

1 The platform software is specific to a particular
family of multi-core architecture.

2 Part of the platform software needs to be
adapted to each multi-core family.

3 The platform software has no adherence to the
architecture.

In Table VII we quantified the portability levels
for the platform software presented in Section 3. The
easier it will be to port the platform software to dif-
ferent multi-core processors, the higher the portability
metric will be.

For the lowest portability level (0) the platform
software needs to be re-written from scratch for any
multi-core system, and even for an evolution of a
particular multi-core system.

A low portability level (1) exhibits an adherence
to a particular family of multi-core, requiring some
specific features such as the cache locking mechanism
of PowerPC. A similar DPS exhibited on other multi-
core architectures would require the introduction of
new concepts to meet platform software objectives.
Result of porting a platform software from one archi-
tecture family to another is uncertain.

For a better portability level (2), the platform
software needs to be modified to embed new mecha-
nisms that represent minor analysis and development
effort. However, the correct behavior of the ported
platform software does not represent a significant risk.

The highest portability level (3) does not depend
on architecture specificities, and can be easily ported
from one multi-core processor to another.

H. Evaluating Properties

In this section, we presented a set of properties
that the proposed solutions presented in Section 3
can be evaluated against. Each solution will lead
to a compromise between these properties. In the
following sections we will try to identify which kind
of compromises are relevant, especially for an avionic
usage.

Multi-core
Efficiency

Support Portability to other
for Legacy multi-core systems

Certifiability
of the control
software

Robust
Partitioning

Integration in an Easiness to
industry process port applications

Figure 1. Current Single-Core Solutions Serving
as Baseline

These qualitative results will be presented as
radar charts similar to Figure 1. Each axis of the radar
chart correspond to one of the properties defined in
this section. This figure corresponds to the existing
single-core solutions and will serve as a baseline.

The figure exhibits both the current lack of effi-
ciency of single-core deployments for future avionic
applications, and their ability to be fully mastered by
the industry from a certifiability point of view.

3. Deterministic Platform Software So-
lutions

There are already multiple deterministic software
solutions proposed in the literature, the following
is a selection of the solutions that we consider the
most appropriate for the avionic domain. We classify
them in two categories: (A) control solutions where
determinism is ensured by applying an active con-
trol/sequencing mechanism, and (B) regulation so-
lutions that provide a reactive mechanism to recover
from usage domain violations by applicative software.
The former is further differentiated into solutions that
do and do not require the applications to be aware of
the control mechanism existence.

A. Control Software Paradigm

1) Application Aware Solutions: The goal of
Deterministic Execution Model approaches is to
maintain the processor in a predictable state, by
applying a strict execution model to the software.
More specifically, the deterministic execution models
ensure that concurrent accesses to shared resources
in a multi-core processor, which are prone to inter-
ference, are avoided. The main concept involved in
[17], [27]-[29] is to identify several execution phases
of application tasks, and to distinguish those which in-
volve accesses to shared resources (including memory
hierarchy and internal communication infrastructure)
and those which do not.

The AER execution model, described in [17],
distinguishes three execution phases :

o Acquisition, during which fresh data are copied
from central memory or IO into private memory;
« Execution, performing calculation on the data in
isolation within the private memory;
o Restitution, when results are copied back into
central memory or I10.
By applying a global scheduling policy to all ac-
quisition and restitution phases, one can ensure that
no interference occurs, while still allowing execution
phases to happen in parallel, therefore exploiting
the performance advantage of multi-core processors.
This scheduling is illustrated in Figure 2, exhibiting
the exclusion of concurrent shared resource accesses
while allowing the parallel execution of isolated com-
putations. As described in [7], this technique works
best with a distributed-memory architecture, where
execution phases benefit from strict spatial isolation.

repetitive pattern

CORE, [a] & [q] Al € [®

CORE, A E R A E R >
core, A= Tx] A e T« R
CORE, AL W AL W

parallelism 1 2 3 2 1 1 2 3 2 1
#commllllci} 1 Lol 1 11 1) 1 1

Figure 2. AER Execution Model

As shown in Figure 3 deterministic execution
models can be very efficient as execution phases could
be run in parallel. However, this efficiency depends

on the communication versus computation ratio in
the application, as IO-intensive application would run
mostly sequentially.

As the control software consists of a static sched-
ule, a proven technology, its certification should be
straightforward. The support of legacy applications is
limited, but most avionics applications already rely on
explicit communications (such as APEX calls [23] for
inter-partition communications) and identified phases
of central memory accesses (e.g. after a cache flush)
to ensure robust partitioning. The adaptation cost is
therefore minimized, but source codes still need to be
updated.

Multi-core
Efficiency
Support Portability to other
for Legacy multi-core systems
Robust Ee:ifiabilityl
Partitioning of the control

software

Integration in an Easiness to
industry process port applications

Figure 3. Evaluation of Deterministic Execution
Models

Depending on the hardware architecture, further
optimizations are possible. For example, if a network-
on-chip allows several independent transaction at any
given time, that amount of simultaneous communica-
tion phases is allowed while maintaining strict isola-
tion. Conversely, allowing a certain amount of simul-
taneous acquisition or restitution phases on a shared
communication medium, such as a bus, still enables
the computation of an upper bound on interference.
This technique has been implemented in bare-metal
environment, the integration into a RTOS would also
requires to manage code fetch in acquisition phases.

2) Application Unaware Solutions: With Deter-
ministic Adaptive Scheduling, Fischer et al propose
in [30] one of the first commercial and certified im-
plementation of a run-time system for critical systems
that can be used on multi-cores, more concretely up to
SIL 4 on the railway domain. The proposed run-time
allows the designer to securely define which appli-
cations (or partitions) should not suffer interferences,
so they can be executed in isolation on their assigned

time slots. This way, only the core with the critical
application runs while the other cores are forced idle.
Besides, non-critical partitions (or interference-aware
partitions) can be executed concurrently, during their
assigned time slots as shown in Figure 4.

critical timeslot
(no interference)
—_—

non-critical timeslot
(parallelism)
—_—

Non-critical Task*

I
Non-critical Task;
I

Critical Task‘

Critical Task IR

. |
timer

Figure 4. Deterministic Adaptive Scheduling

While suffering of a lack of efficiency when
the system is mainly composed of critical appli-
cations, this technique enables the usage of multi-
core processors and it is easy to certify. Effectively,
when executing the critical application only one core
is used, making existing single-core analysis and
methods applicable. Another advantage is that this
proposal does not require the modification of legacy
software.

Multi-core
Efficiency

Support Portability to other
for Legacy multi-core systems

Certifiability
of the control
software

Robust
Partitioning

Integration in an Easiness to
industry process port applications

Figure 5. Evaluation of Deterministic Adaptive
Scheduling Solution

Jean [25], [31] proposes Marthy, a solution to
potentially make better use of the multi-core capabili-
ties when running concurrently both critical and non-
critical applications in the system. Marthy enables all
the cores to run critical applications, but only one
of them is allowed to access the shared resources
(including main memory) at a given time through
a TDMA scheduling of these resources. Sequential
resource access eliminates interference, thus provid-
ing determinism. To control that a core does not
access the shared resources when it is not in its
assigned TDMA slot, Marthy relies on smart MMU

management and cache locking.

Application | | Application Application
Workload Workload Workload
‘ Control Control -
Software Software § _‘é"
o)]
’ Core ‘ ’ Core ‘ S T:
VA V4 £ e
Caches ‘ Caches ‘ g ©
¥4 ¥ & ¥4 =
19
Interconnect
Y4 Y4
’ Memory Controller ‘ ’ I/O Device Controller ‘

Figure 6. Marthy Deterministic Control Software

As illustrated by Figure 6, when a core tries to
access a memory location that is not mapped in the
cache, Marthy catches the associated interrupt and
blocks the core execution until its assigned TDMA
slot.

Experiments on a 4 core processor [31] have
shown that the performance of a legacy application
can suffer from a x1.3 to x10 slowdown due to the
control overhead added by Marthy and the applica-
tions cache locality. Despite these slowdowns, it is
important to consider that:

o The slowdown is deterministic, i.e. the slowdown
does not depend on the other applications behav-
ior.

o Marthy allows to run multiple critical applica-
tions in parallel.

For example, consider an application that in isola-
tion takes 1 second to execute and suffers a x1.3
slowdown when using Marthy. When executing in
parallel 4 instances of this same critical application,
one on each core of a 4-core processor, the cumula-
tive execution time would only be 1.3 seconds. The
same scenario when using the Deterministic Adaptive
Scheduling approach would require 4 seconds to com-
plete the execution of the four application instances,
as they would have to be executed sequentially. Like-
wise, if the application slowdown when using Marthy
was X 10, the cumulative execution time with Marthy
would be 10 seconds, while the previous approach
would require only 4 seconds to execute them.
Strictly speaking, Marthy does not require legacy
applications to be modified. However, in case of
a significant slowdown, it might me beneficial to

reorganize data access in the application to improve
cache locality.

Multi-core
Efficiency
Support Portability to other
for Legacy multi-core systems
Robust Certifiability
Partitioni of the control
artitioning

software

Integration in an Easiness to
industry process port applications

Figure 7. Evaluation of Marthy

B. Regulation Software Paradigm

Regulation software solutions do not aim at
avoiding interferences, but at managing them so that
critical applications do not miss their critical require-
ments, which typically consist in respecting their
deadlines.

The Single-core Equivalent Virtual Machines
project [32] provides a regulation software solution
with the Memguard mechanism [18]. Memguard
relies in a memory system with caches that are private
or that can be partitioned at the initialization of
the system, to avoid functional interferences at this
level and only managing resource contention at the
interconnect and the memory level. Memguard also
relies on the cores being synchronized. With these
requirements satisfied, Memguard provides regular
time slots of configurable length.

MEMGUARD Reclaim Manager | OPerating System
A A2 Y 4

0.9GB/s 0.1GB/s 0.1GB/s 0.1GB/s
Regulator Regulator Regulator Regulator
A A A A
1 1 1 1
CORE CORE CORE CORE

DRAM Controller Multi-core Platform

Peak Bandwidth: 6.4GB/s
DRAM Guaranteed Bandwidth: 1.2GB/s

Figure 8. Memguard Reservation and Reclaiming
System

Memguard uses the bus access performance
counter, with interrupt generation support, to allocate

to each core timeslot a maximum bandwidth usage,
i.e. maximum number of bus accesses the core can
make in a given timeslot. In order to avoid interfer-
ences, the sum of allocated bandwidths should be less
than the system memory sustainable bandwidth. At
the beginning of a timeslot the performance counter
is reinitialized before the core executes its assigned
application. When the maximum number of accesses
is reached, Memguard stops the core execution until
the beginning of the next slot. For each timeslot,
the system integrator is responsible for allocating
bandwidth to each core, making sure that the total
allocated bandwidth should not exceed the maximum
sustainable bandwidth. Memguard allows to further
enhance the system performance by sharing unused
bandwidth over several timeslots. However, it in-
volves speculation, reducing partitioning guarantees,
as summarized in Figure 9.

Multi-core
Efficiency
Support Portability to other
for Legacy multi-core systems
Robust (f:e:ifiabiliw|
Partitioning of the control

software

Integration in an Easiness to
industry process port applications

Figure 9. Evaluation of Memguard

In [33] Kiritikakou et al. propose a distributed
run-time WCET controller, another regulation soft-
ware solution enabling the user to run a critical appli-
cation at the same time as non-critical applications.

With this approach, critical tasks regularly check
if the interferences due to other tasks can be tolerated.
Otherwise, critical tasks request the WCET controller
to temporarily suspend low criticality tasks as shown
in the scenario presented in Figure 10.

Therefore, support for legacy is not fully sup-
ported as the critical tasks need to be instrumented to
perform the regular checks. Robust partitioning is not
fully ensured, but when detecting a risk of deadline
miss for a critical task the system tries to still match
the deadline by delaying non critical tasks.

Unlike control software solutions, regulation
software solutions allow the execution in multiple
cores that might result in interferences. However,

Non-critical Task

Critical Task

Critical Task

WCET Controller 0 1 0 1 2 1 0

time

Figure 10. Distributed Run-time WCET Controller

Multi-core
Efficiency

Portability to other
multi-core systems

Support
for Legacy

Certifiability
of the control
software

Robust
Partitioning

Integration in an Easiness to
industry process port applications

Figure 11. Evaluation of Distributed Run-time
WCET Controller

these techniques often rely on budgeting. Extra analy-
sis steps are required to accurately compute these bud-
gets without pessimistic over-provisioning. The accu-
rate quantification of the interferences effect remains
an open problem in both regulation techniques.

4. Avionic Case Studies

In this section we present four case studies
composed of avionic equipments and detail their
needs regarding the properties that were introduced
in section 2. As it may impact the priority of these
properties, we selected case studies with different
levels of safety requirements.

For avionic equipments, safety requirements are
expressed as Design Assurance Levels defined rela-
tively to what the effect of a failure might be. DAL are
ranging from DAL-A for most critical subsystems for
which a failure is likely to imply some catastrophic
consequences, down to DAL-E for non-critical appli-
cation for which a failure will have no impact on the
flight.

We are covering the following classes of avionic
systems, their criticality level appearing in Table VIII:

o a DAL-A Full Authority Digital Engine Control
(FADEC) subsystem,

o a DAL-A to DAL-D Integrated Modular Avion-
ics (IMA) subsystem,

¢ a DAL-C to DAL-D Data Server subsystem, and

o a DAL-E In-Flight Entertainment (IFE) subsys-
tem.

Table VIII. Avionics Equipments Needs

FADEC IMA Data Server IFE
DAL-A DAL-A

DAL-B

DAL-C DAL-C

DAL-D DAL-D

DAL-E

A. Characterizing Subsystems / Applications

As for properties defined in Section 2 we eval-
uated these case studies against 7 evaluation axis
organized in radar charts:

« The Performance Requirement axis reflects the
expected requirements in term of performance
for next generations of the case study. It has to
be compared to the multi-core efficiency axis of
each DPS solution.

o The Legacy Requirement axis illustrates the
necessity for legacy support. This is usually tied
to the certification costs and thus the DAL level
of the considered case study.

« The Partitioning Requirement axis indicates
how much the case study relies on robust parti-
tioning.

o The Integration Requirement axis indicates
how much the case study fits into a multi-actor
integration process. It has to be evaluated against
the integration into an industry process property.

« The Application Complexity axis reflects the
complexity of the case study source code. It
has be be checked against the easiness to port
application property associated with each DPS
solution.

o The Certification Costs axis estimates the over-
all cost when certifying the case study. This is
tied both with the DAL level of the application
and its complexity. It has to be compared against
the Certifiability of the DPS.

o The Diversification Requirement reflects the
requirements for replication and diversification.
This criterion as to be checked against the Porta-
bility property.

In the following sections, we will evaluate these
properties for 4 different subsystem case studies,
considering future generation of these subsystems,
likely to run on multi-core processors.

B. FADEC Subsystem

The Full Authority Digital Engine Control
(FADEQC) is a critical subsystem in charge of control-
ling all aspects of the aircraft engine performance. Its
purpose is to provide optimum engine efficiency for
a given flight condition.

The flight crew has usually no means of man-
ually overriding the FADEC engine control, and in
case of a total FADEC failure occurs, the engine fails.
Safety is therefore of prime concern, and redundancy
with diversification is a common practice.

For such a high-critical control-command sys-
tem, the equipment provider manages simultaneously
the development of the hardware platform and the
software applications. In this condition the equipment
designer can introduce mechanisms managing all the
shared resources accesses at the application level.
Therefore proof of determinism for certifiability is
performed at design time.

Performance
Requirement

Legacy Diversification
Requirement Requirement

Partitioning Certification
Requirement Costs

Application
Complexity

Integration
Requirement

Figure 12. FADEC Application Requirements

Figure 12 summarizes the requirements of the
FADEC subsystem with regards to the properties
defined in Section 2. Being a control-command appli-
cation, the application complexity remains low with
average future requirements in performance. How-
ever, the certification costs and the ability to diversify
is of prime concern for a DAL-A subsystem.

The best suited DPS for this case study are
Execution Models, Deterministic Adaptive Schedul-
ing and Marthy. Memguard and Distributed run-time
WCET controller approaches fails to fit the certifica-
tion requirements of a DAL-A subsystem.

C. IMA Subsystem

Integrated Modular Avionics systems were intro-
duced to run several high performance mission com-
puting software on the same hardware component.
IMA subsystems safety requirements can range from
DAL-A down to DAL-D.

Their purpose is to: 1) reduce weight, space and
energy requirements by sharing the same hardware;
2) reduce conception and certification costs with an
incremental certification process; 3) reduce mainte-
nance and upgrade costs during the aircraft lifespan.

The DO-197 standard [22] organizes IMA de-
velopment though three different actors: The platform
supplier developing the hardware platform and kernel
software services, the system integrator performing
shared resource allocation for the different software
functions to integrate, and several application suppli-
ers developing the avionic functions,

IMA modularity simplifies the development pro-
cess of avionics software, enabling concurrent and
independent conception and certification of different
avionic functions.

To deal with resource sharing, IMA subsystems
are strongly relying on robust partitioning, as shown
in Figure 13. Running several software components
on the same hardware also makes it very sensitive to
legacy support.

Performance
Requirement

Legacy Diversification
Requirement Requirement

Partitioning Certification
Requirement Costs

Integration
Requirement

Application
Complexity

Figure 13. IMA Application Requirements

As the robust partitioning property is part of
the definition of IMA standard [22], the best suited
DPS for this case study are Marthy and Execution
Models. The first one will lack some of the perfor-
mance requirement to ensure legacy. The second will
deliver a sufficient level of performance at the cost
of lower legacy support. The Deterministic Adaptive
Scheduling approach will provide a sufficient level for

these two properties, at the cost of a smaller support
for robust partitioning. Finally, the Memguard and
the Distributed run-time WCET controller DPS will
hardly fit this case study due to their poor support of
robust partitioning.

D. Data Server Subsystem

The data server subsystem is in in charge of
the management of the communication with satellites
using SATCOM, of the crew communication and of
the maintenance interface. The associated computing
platform should be capable of hosting communica-
tions management services, performing some network
management, and acting as a network server or file
server. Having less stringent requirements in term
of real-time constraints this subsystem is typically a
DAL-C or a DAL-D application.

For such a case study, throughput performance is
more important than pure computation performance
or memory bandwidth. As a consequence, most of
the multi-core related interferences will occur while
accessing I/Os. Otherwise, all the requirements along
the other identified axises are low to average as
depicted in Figure 14.

Performance

Requirement
Legacy Diversification
Requirement Requirement

Partitioning Certification
Requirement Costs

Application
Complexity

Integration
Requirement

Figure 14. Data Server Application Requirements

The best suited DPS for this case study is
Distributed run-time WCET controller. The Execu-
tion Models approach is also an excellent candidate,
however it will suffer from communication over com-
putation ratio. Marthy and Memguard approaches are
farther away, the first lacking some performance, and
the later having issues with the integration process. Fi-
nally, Deterministic Adaptive Scheduling will hardly
match the case study performance requirements, as
this approach is as conservative for low-criticality
tasks as it is for high-criticality tasks. Extra perfor-
mance is only available for non-critical tasks.

E. In-Flight Entertainment Subsystem

The In-Flight Entertainment subsystem, running
at DAL-E, is dedicated to the passengers’ enter-
tainment with no safety-critical requirements but an
important demand for processing and communication
efficiency.

The IFE subsystem is hosting multimedia appli-
cations that are very demanding in terms of perfor-
mance and that can achieve a high level of complexity.

While not being purely safety-critical, IFE sys-
tems are frequently managed by external content
service providers. Beyond cost efficiency, system
safety and reliability remains a design issue for these
systems: To contain any possible issues, IFE systems
are typically isolated from the other systems of the
aircraft. However such systems usually involves miles
of wiring with added weight and associated risks of
voltage arcing or current leaks.

In recent years, IFE has been expanded to in-
clude Wi-Fi connectivity services through satellite
networking or an air-to-ground networking, encom-
passing new safety / security concerns.

Figure 15 summarizes the requirements of the
IFE subsystem with regards to the properties defined
in Section 2. Involving mostly best-effort applications
similarly to the consumer electronic market, perfor-
mance is a key property. Application complexity can
also be quite high, while the other properties could
be relaxed.

Performance
Requirement

Legacy Diversification
Requirement Requirement

Partitioning Certification
Requirement Costs

Application
Complexity

Integration
Requirement

Figure 15. IFE Application Requirements

The best suited DPS for this case study is Mem-
guard. As their efficiency is increased when dealing
with non-critical tasks, the Deterministic Adaptive
Scheduling and the Distributed run-time WCET con-
troller approaches will also be efficient. Marthy and
Execution Models DPS will hardly fit this case study,

as the first will not match the performance require-
ments, and the complexity of the applications will
make the later requirement to update the application
very costly.

F. Evaluation Summary

We evaluated the presented Deterministic Plat-
form Software solutions versus the four avionic sub-
systems with different level of safety requirements.

Table IX. DPS Behavior Evaluation Summary

good mid bad

Marthy 1 2 1
Execution Models 2 1 1
Memguard 1 1 2
Distributed run-time WCET controller 2 0 2
Deterministic Adaptive Scheduling 2 1 1

Table IX enumerates for each DPS how many
times it was suited for the selected case studies, how
many times it was not completely suited, and how
many times it was failing to handle the case study.

Each of the proposed approaches both succeeds
for at least one of the case study and fails for another
one. So none of the approach clearly outperforms the
others, and the most appropriate solution seems to be
safety-level dependent.

As a consequence, to select the optimal solution,
it is critical to identify the critical properties asso-
ciated with the considered applications. Each of the
proposed case studies has a specific property that can-
not be relaxed: certification costs for FADEC, robust
partitioning for IMA, ...Identifying these properties
allows us to select the most suitable approach.

Finally, in this paper we have not considered
mixed critical systems that could run concurrently
applications of different criticality levels. Some of the
proposed DPS, especially the Deterministic Adaptive
Scheduling and Distributed run-time WCET con-
troller approaches were developed for such a mixed
critical context.

5. Conclusion

In this article, we proposed a survey of a repre-
sentative set of Deterministic Platform Software so-
lutions. These solutions constrain a multi-core COTS
processor within a usage domain that restricts the
use of shared hardware resources, so that inter-core

interferences are either eliminated, or bounded with
a sufficient level of confidence.

We have proposed high-level criteria to compare
these DPS solutions, and to establish a uniform clas-
sification. Those criteria cover several aspects of DPS
relevance for industrial usage, including:

« Efficiency of applicative software

« Support of legacy code

o Extra certification costs for DPS

o Complexity of Robust Partitioning analysis

o Compliance with industrial processes, e.g. IMA
o Portability of DPS to various COTS processors

The comparison of DPS has shown that all solutions
reach a diffrent compromise on these criteria. Particu-
larly, efficiency of applicative software and support of
legacy code seem to be antagonistic. Hence a common
trend for each DPS is to improve the bad criterion
while keeping the good one unchanged. Opportunities
to ease legacy code migration or to perform black-box
optimisations seem promising.

Maturity of DPS solutions is also variable. Some
of them have been developed for well identified
processors, or processor series, and would require
more representative test cases to gain maturity and
robustness for potential industrialization. Other solu-
tions, such as Deterministic Adaptative Scheduling or
Memguard, have already industrial support and seem
to have reached the point where they could be used
in certified products.

Finally, that ecosystem would benefit from a
global support from the industrial community. Hence
future avionic equipments could embed COTS multi-
core processors with confidence in their final certifi-
cation, by using a DPS solution that fits their needs
optimally.

References

[1] L. M. Kinnan, “Use of multicore processors in
avionics systems and its potential impact on imple-
mentation and certification,” in Digital Avionics Sys-
tems Conference, 2009. DASC’09. IEEE/AIAA 28th,
IEEE, 2009, 1-E.

[2] J. Nowotsch and M. Paulitsch, “Leveraging multi-
core computing architectures in avionics,” European
Dependable Computing Conference, pp. 42-52, 2012.

[3] J. Bin, S. Girbal, D. Gracia Pérez, A. Grasset, and
A. Merigot, “Studying co-running avionic real-time
applications on multi-core cots architectures,” in Em-
bedded Real Time Software and Systems conference,
2014.

[4] T. G. Baker, “Lessons learned integrating COTS
into systems,” in Proceedings of the First Interna-
tional Conference on COTS-Based Software Systems,
ser. ICCBSS °02, 2002, pp. 21-30.

[5] R. Kirner and P. Puschner, “Obstacles in worst-
case execution time analysis,” in Proceedings of the
11th IEEE Symposium on Object Oriented Real-Time
Distributed Computing, 2008, pp. 333-339.

[6] E. Mezzetti and T. Vardanega, “On the industrial
fitness of wcet analysis,” in Proceedings of the 11th
International Workshop on Worst Case Execution
Time Analysis (WCET2011), 2011.

[7] S. Girbal, D. G. Pérez, J. L. Rhun, M. Faugere,
C. Pagetti, and G. Durrieu, “A complete toolchain
for an interference-free deployment of avionic ap-
plications on multi-core systems,” in Proceedings of
the 34th Digital Avionics Systems Conference, ser.
DASC’2015, Prague, Czech Republic, 2015.

[8] P. Puschner and A. Burns, “Guest editorial: A
review of worst-case execution-time analysis,” Real-
Time Systems, vol. 18, no. 2/3, pp. 115-128, 2000.
[9] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, 1. Puaut, P.
Puschner, J. Staschulat, and P. Stenstrom, “The worst-
case execution-time problem - overview of methods
and survey of tools,” ACM Trans. Embed. Comput.
Syst., vol. 7, 36:1-36:53, 3 2008.

[10] A. Roger and V. Brindejonc, “Avoidance of
dysfunctional behaviour of complex cots used in an
aeronautical context,” in Lambda-Mu, 2014.

[11] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theil-
ing, S. Wegener, and M. Schmidt, “Multi-core
interference-sensitive wcet analysis leveraging run-
time resource capacity enforcement,” in Real-Time
Systems (ECRTS), 2014 26th Euromicro Conference
on, 2014, pp. 109-118.

[12] CAST-32 Position Paper, Multi-core Processors,
Federal Aviation Administration, European Aviation
Safety Agency, 2014.

[13] X. Jean, M. Gatti, G. Berthon, and M. Fumey,
“MULCORs, The Use of MULticore proCessORS

in Airborne Systems,” European Aviation Safety
Agency, Tech. Rep. EASA 2011.0P.30, 2012.

[14] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat,
Z. Petrov, C. Rochange, E. Quinones, M. Gerdes,
M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili,
M. Houston, F. Kluge, S. Metzlaff, and J. Mische,
“Merasa: Multicore execution of hard real-time ap-
plications supporting analyzability,” IEEE Micro, vol.
30, pp. 66-75, 2010.

[15] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A.
Edwards, and E. A. Lee, “Predictable programming
on a precision timed architecture,” in Proceedings
of the 2008 international conference on Compilers,
architectures and synthesis for embedded systems,
ser. CASES °08, Atlanta, GA, USA: ACM, 2008,
pp- 137-146.

[16] A. Hansson, K. Goossens, M. Bekooij, and J.
Huisken, “Compsoc: A template for composable and
predictable multi-processor system on chips,” ACM
Trans. Des. Autom. Electron. Syst., vol. 14, no. 1,
2:1-2:24, Jan. 2009.

[17] G. Durrieu, M. Faugere, S. Girbal, D. Gracia
Pérez, C. Pagetti, and W. Puffitsch, “Predictable flight
management system implementation on a multicore
processor,” in Embedded Real Time Software and
Systems, ser. ERTS 14, Toulouse, France, 2014.
[18] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and
L. Sha, “Memguard: Memory bandwidth reservation
system for efficient performance isolation in multi-
core platforms,” in Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2013 IEEE
19th, 1IEEE, 2013, pp. 55-64.

[19] E. Bailey, “Study report on avionics systems
for the time frame 2007, 2011 and 2020,” European
Organisation for the Safety of Air Navigation (EOSA),
vol. EUROCONTROL, 2004.

[20] C. Ebert and C. Jones, “Embedded software:
Facts, figures and future,” Computer, vol. 42, no. 4,
pp- 42-52, 2009.

[21] D. Dvorak and M. Lyu, “NASA study on flight
software complexity,” Jet Propulsion, p. 264, 2009.
[22] Radio Technical Commission for Aeronautics
(RTCA) and EURopean Organisation for Civil Avi-
ation Equipment (EUROCAE), Do-297: Software,
electronic, integrated modular avionics (ima) devel-
opment guidance and certification considerations.

[23] ARINC, ARINC Specification 653: Avionics Ap-
plication Software Standard Interface, Aeronautical
Radio INC, 2005.

[24] J. Littlefield-Lawwill and L. Kinnan, “System
considerations for robust time and space partitioning
in integrated modular avionics,” in Digital Avionics
Systems Conference, 2008. DASC 2008. IEEE/AIAA
27th, 1IEEE, 2008, 1-B.

[25] X. Jean, D. Faura, M. Gatti, L. Pautet, and
T. Robert, “Ensuring robust partitioning in multi-
core platforms for ima systems,” in Digital Avionics
Systems Conference (DASC), 2012 IEEE/AIAA 31st,
IEEE, 2012, 7A4-1.

[26] M. Faugere and al, Certainty: Certification of
real time applications designed for mixed criticality,
appropriate multicore usage for mixed-critical system
certification, Press Release, 2014.

[27] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Tim-
ing predictability on multi-processor systems with
shared resources,” in Workshop on Reconciling Per-
formance with Predictability (RePP), 2010, 2009.
[28] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J.
Criswell, M. Caccamo, and R. Kegley, “A predictable
execution model for cots-based embedded systems,”
in Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2011 17th IEEE, 2011,
pp- 269-279.

[29] V. Jegu, B. Triquet, F. Aspro, C. Pagetti, and F.
Boniol, “Method and device for loading and executing

instructions with deterministic cycles in a multicore
avionics system having a bus, the access time of
which is unpredictable,” English, pat. EP 2438528
Al, 2012.

[30] S. Fisher, Certifying Applications in a Multi-
Core Environment: The World’s First Multi-Core
Certification to SIL 4, 2013.

[31] X. Jean, “Hypervisor control of COTS multi-
cores processors in order to enforce determinism
for future avionics equipment,” PhD Thesis, Telecom
ParisTech, 2015.

[32] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim,
M.-K. Yoon, R. Pellizzoni, H. Yun, R. Kegley, D.
Perlman, G. Arundale, et al., “Single Core Equivalent
Virtual Machines for Hard Real-Time Computing
on Multicore Processors,” University of Illinois at
Urbana-Champaign, Tech. Rep., 2014.

[33] A. Kiritikakou, C. Pagetti, C. Rochange, M.

Roy, M. Faugere, S. Girbal, and D. Gracia Pérez,
“Distributed run-time WCET controller for concur-

rent critical tasks in mixed-critical systems,” in Pro-
ceedings of the 22th International Conference on
Real-Time and Network Systems (RTNS’14), 2014,
pp- 139-148.

34th Digital Avionics Systems Conference
September 13—17, 2015

	Introduction
	Stakes
	Support for Legacy Applications
	Efficiency of the Proposed Platform Software Solutions
	Robust Partitioning Assessment Complexity
	Integration into an Industrial Process
	Easiness to Adapt Existing Application to the Platform Software
	Complexity and Certifiability of the Platform Software
	Portability to other Multi-core Platforms
	Evaluating Properties

	Deterministic Platform Software Solutions
	Control Software Paradigm
	Application Aware Solutions
	Application Unaware Solutions

	Regulation Software Paradigm

	Avionic Case Studies
	Characterizing Subsystems / Applications
	FADEC Subsystem
	IMA Subsystem
	Data Server Subsystem
	In-Flight Entertainment Subsystem
	Evaluation Summary

	Conclusion

