Geophysical evolution during rocky planet formation

Lorentz Center Workshop 'The Volatile Content of Planets that Form Early', December 2021

TIM LICHTENBERG

UNIVERSITY OF DXFORD

Geophysical evolution during rocky planet formation

Lichtenberg, Schaefer, Nakajima, Fischer, Protostars & Planets VII

Temporal fragmentation of planet formation

Lichtenberg, Schaefer, Nakajima, Fischer 22, Protostars & Planets VII

Compositional evolution from radiogenic heating

Lichtenberg+ 16a, 18, 19a,b

Radiogenic heating drives thermal evolution

Thermal and compositional evolution highly time sensitive

Lichtenberg, Schaefer, Nakajima, Fischer 22, Protostars & Planets VII

Thermal and compositional evolution highly time sensitive

Planetesimal dehydration

Lichtenberg, Drążkowska+ 21

Compositional bifurcation by radiogenic heating

Compositional bifurcation by radiogenic heating

Iron core formation: meteorites vs. model

Iron core formation: meteorites vs. model

Lichtenberg, Drążkowska+ 21

11

Aqueous alteration: meteorites vs. model

Aqueous alteration: meteorites vs. model

²⁶Al variability across planetary systems

 $\approx 10^2 - 10^8 \times \text{Earth's present-day interior radiogenic heating}$

Lichtenberg+ 16b, Parker+ 14,15,17,20, Gaidos+ 09, Pfalzner+ 15, Kuffmeier+ 16, Fujimoto+18, Lugaro+ 18, Reiter+ 20, Forbes+ 21, Fatuzzo & Adams 21

²⁶Al-heated icy planetesimals forming planets

A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)

²⁶Al shapes exoplanet *water* budget

Leger+ 04, Sotin+ 07, Alibert 14, Noack+ 16/17

Synthetic exoplanet populations

²⁶Al shapes exoplanet water budget

²⁶Al shapes exoplanet carbon fractionation

Final volatile (in this case CO) content of evolved planetesimals can be very different from that of microscopic dust grains at t=0, depending sensitively on radial location & both disk processes and thermal evolution of planetesimals.

Lichtenberg & Krijt (2021), ApJL

Exoplanets as a window into hothouse climates

Kite, Kreidberg+ 21, Eos

Exoplanets as a window into hothouse climates

Kite, Kreidberg+ 21, Eos

From magma- to water oceans

Orbital split between clement and magma worlds

21

Volatile species fractionation

Volatile fractionation controls planet solidification

Cooling of planet via heat loss (W m⁻²)

Magma ocean

Habitable planet

solidify differently

solidify differently

Sub-Neptune opportunity

26

K2-18b

Esa/Hubble, M. Kornmesser

 H_2O

No	Sι	Irfa	се	Cr	้นร	st
he	at	pro	du	ict	io	n
ant	mi	xin	g le	en	gt	h
[Da	rcy	flu	X		0

Redox-controlled climates

Redox state: planet-scale

Wordsworth+ 18, AJ

No	Sι	Irfa	се	Cr	้นร	st
he	at	pro	du	ict	io	n
ant	mi	xin	g le	en	gt	h
[Da	rcy	flu	X		0

Redox-controlled climates

Volatile mixing ratio ($\log_{10} X_i$)

IW: 2(1-x) Fe + O₂ = 2 Fe_{1-x}O

Credit: C. Dorn

Dorn & Lichtenberg 21, ApJL

Water mass fraction x_{H_2O} (wt)

Water mass fraction x_{H_2O} (wt)

Specific planets

Dorn & Lichtenberg 21, ApJL

0.07 % steam atmosphere & 2 % in magma ocean very different from Delrez+2021

magma oceans only possible with additional heating mechanisms water partitioning only marginal

Up to 1 magnitude water budget difference

Dorn & Lichtenberg 21, ApJL

Redox alteration requires reservoir mixing

Iron disproportionation

$$3Fe^{2+} \rightarrow 2Fe^{3+} + Fe^{0}$$

Frost+ 04, Wade & Wood 05, Frost & McCammon 08, Carlson+ 12

Endogenous water production

$$FeO + H_2 \rightarrow H_2O + Fe^0$$

Ikoma & Genda 06, Ikoma+ 18, Olson & Sharp 18, Kite & Schaefer 21

- Mixing: atmosphere-mantle
- Require:
- Mixing: mantle-core

Particle settling in turbulent convection

Metal core

Patočka+ 20, Phys. Rev. Fluids

Non-dimensional

Turbulent convection in sub-Neptunes

Magma ocean depth

Turbulent convection in sub-Neptunes

Expected iron droplet sizes

Rainout quenching in sub-Neptune interiors

Magma circulation affects thermal evolution

 H_2O CO_2 **SO**₂

Oxidised surfaces

Prolongs magma ocean phase

Reduced surfaces

Enhances chances for detection

Prebiotic chemistry on reduced super-Earths?

Rimmer+ 21, ApJL

Exoplanets as a window into climate diversity

Lichtenberg, Schaefer, Nakajima, Fischer 2022, Protostars & Planets VII

Kite, Kreidberg+ 21, Eos

Geophysical evolution during rocky planet formation

- Timing of formation alters geophysics internal processing
- Geophysical evolution leads to order of magnitude fractionation in volatile content
- Magma ocean atmospheres are key to decipher climate diversity

Instellation

