
Frequency Modulated Continuous Wave Radar-Based Navigation
Algorithm using Artificial Neural Network for Autonomous Driving

Jakob Valtl1∗# and Vadim Issakov2∗#

Abstract— Autonomous driving is a highly complex task,
which involves the use of numerous sensors and various algo-
rithms. Testing of algorithms is difficult and therefore mostly
done in simulations. Radar technology will play a key part due
to various advantages. In this paper we present a solution to
one aspect of autonomous driving, which is the development of
a detection algorithm on a moving platform, which is capable
of tracking and sending the commands to follow a preceding
object, by means of sensor data from a low power 60 GHz
Frequency Modulated Continuous Wave (FMCW) radar. The
moving platform is based on a miniaturized autonomous vehicle
that is used for data gathering as well as algorithm evaluation.
To the best of the author’s knowledge, this is the first time
that processing of radar data via Deep Convolutional Neural
Networks (DCNN) for navigation purposes is performed in real
time on the edge device operating in a real world environment
and not simulative.

Index Terms— radar applications, artificial neural networks,
edge computing, real-time systems, autonomous vehicles, object
recognition

I. INTRODUCTION

Autonomous mobility and its components are an emerging
research field. Numerous researchers are working currently
on topics related to Artificial Intelligence (AI) as well as
system strategies to enable an affordable, safe and secure
fully-autonomous diving (level 5). Different sensor types
offer various sensor-specific benefits as well as limitations.

Especially radar sensors are of great interest for au-
tonomous driving thanks to their capability to operate even
under bad weather conditions. Radar sensors do not have
mechanically moving parts, unlike other sensors that give a
depth information e.g. LiDAR, thus being physically more
robust. Last but not least, the price advantage of a radar
system in comparison to a LiDAR system might give radar
sensors an advantage in future autonomous vehicles.

Nevertheless, there are still some challenges that need to
be resolved, like the complicated and time consuming data
processing. In this paper we address the aforementioned
challenge by using a fast neural network based approach.
The evaluation of incoming sensor data has to happen in
a predefined period of time to ensure a response of an
autonomous vehicle due to a changing environment. If the
time constrains can not be met, the safety of the vehicle as
well as surrounding pedestrians or other traffic participants
can not be ensured. AI based evaluation methods are one

∗Infineon Technologies AG, Germany
#Technische Universität Braunschweig, Germany
1jakob.valtl@infineon.com
1V.Issakov@tu-braunschweig.de

possibility to deal with the vast amount of data in the required
time constrains.

Mobile data bandwidth limits and latency issues that clash
with the aforementioned time constrains only admit data
processing to run on the edge devices, but do not allow
a centralized data processing solution. To keep processing
demand on the edge devices low, AI algorithms can be ad-
vantageous compared to traditional data processing because
they require less hardware resources as they can easily be
run on specialized hardware. [5]

Challenges that arise from the use of AI components are
their black box behaviour and their vulnerability towards
adversarial attacks. Both can lead to unforeseen reactions of
the vehicle. So far many investigations have been performed
using simulation tools [6], but testing, especially under real
world conditions is crucial for further development.

Therefore, the proposed platform and the navigation algo-
rithm can be used as a foundation for future research. We
focused on a specific use case in the automotive domain,
where we developed a navigation algorithm and tested it
in the field. The use case ”follower” describes a scenario
in which a self driving car follows a preceding car fully
autonomously. The track for data recording and algorithm
evaluation of the ”follower” use case is shown in Fig. 1.

Fig. 1. Layout of the training data track.

Many research efforts have been reported in the visual
domain regarding test environments in the form of reduced
size vehicles. Though other test environments are vision
based, they focus on a variety of aspects like safety, security
or efficiency. An example of reinforcement learning was
implemented by Qi z. et al. [8] on a DonkeyCar [11]
platform. T. Do et al. [10] used Deep Convolutional Neural
Networks (DCNN) on a monocular vision-based prototype.
Both report high accuracy rates on the steering and speed
decision. J. Newman et al. [7] introduced a low budged self

driving model car with the focus of maneuvering through an
indoor race track.

Traditional platooning approaches [12], [4] that are sim-
ilar to the ”follower” use case rely on the communication
between vehicles and use radar sensor input only for the
distance detection, while we also extract the angular infor-
mation of the preceding vehicle, needed for the steering from
the radar data.

Data processing of radar data is a major topic in the
research community with numerous publications for different
purposes, reaching from gesture recognition [5] and air
writing [1] to people counting [3] and human activity clas-
sification [9]. Even small scale movements like vital signs
[2] can be detected by this technology. All these applications
have in common that they are performed indoor in a shielded
environment and with a stationary radar sensor. Installation
in a vehicle adds additional challenges due to an outdoor
environment with a non-stationary sensor. Also the tough
real-time constrains implicate further challenges to the speed
of evaluation.

II. DESIGN OF EXPERIMENT

In the ”follower” use case an autonomous miniaturized
vehicle follows a preceding vehicle by means of an algorithm
described in Section III that evaluates the information coming
only from the radar sensor.

A. Track

The quality of a Neural Network (NN) is, apart from its
architecture, highly dependent on the amount and the quality
of the data it is trained with. In our use case (”follower”),
ideally all possible curvatures to both sides as well as straight
driving have to be learned just as the speed of the vehicle.
On these grounds we designed a track shown in Fig. 1,
which in theory has two curvatures that represent 10 meters
(38.5%) each while the part of the track that goes straight
aggregates to 6 meters (23%). This way both curvatures are
evenly represented in the recorded data set that is used for
training.

The training data is gathered by maneuvering the vehicle
by means of a remote controller various laps through the
track while recording the user input as well as the sensors
signals. The histogram in Fig. 2 shows the distribution of
the human steering input, for various laps through the track.
The steering value ranges from -1 to 1, representing the
deflection of the front wheels. It can be noticed that the
steering is evenly distributed among both curvatures though
the curvatures do not show only one deflection, as could be
assumed due to the fixed curvatures of the turns, but rather
smooth transitions.

The underrepresentation (14% instead of 23%) of straight
driving which is indicated by a steering value of 0.0 is a
result of faster driving during the straight part of the track,
as well as minor corrections in heading during the straight
driving part of the track.

The colors of the lines in Fig. 1 represent the colors of
cones used for indication of the track in reality. Fig. 3 shows

Fig. 2. Histogram of the human controlled steering input during training
over a total of 138 533 frames during 46 laps. Where -1 represents a
maximum deflection of the steering towards the left and 1 towards the right
side.

Fig. 3. Photo of track used for data gathering for the ”follower” use case.

an image of the track with the two miniaturized vehicles.
The cones are not detectable by the radar as their signal is
lower than the general noise. They serve as guide lines for
the human operator during the data gathering and in case of
autonomous operation on a visual base, for the camera as
landmarks.

B. Data Gathering and Evaluation Platform

The autonomous platform used for the data gathering as
well as the algorithm evaluation of the vehicle is described in
detail in [13]. Major changes are the upgrade of the process-
ing unit to a Raspberry Pi 4 and changes in the software.
The radar used in the platform is a Frequency Modulated
Continuous Wave (FMCW) radar with one transmit and three
receive channels with antenna in package, as displayed in
Fig. 4.

Fig. 4. Infineon’s BGT60TR13C shield with antenna configuration.

Only the two horizontal antennas (Rx3 and Rx1), as shown
in Fig. 4 are used. The center frequency is 60 GHz and

the bandwidth is set to 4 GHz. Each frame consists of 64
chirps, while for each chirp 128 samples are recorded at
a sample rate of 2 MHz. The chosen frame rate during the
data recording is 30 Hz for both the radar data recording and
the vehicle’s actuator actualization. During the evaluation of
the DCNN the frame rate is set to 20 Hz due to the extra
processing time required by the neural network for the data
evaluation, computing the action for the actuators.

C. Dataset

With the earlier described platform a dataset is recorded
on the track specified above. A total of 153 648 frames are
recorded during 50 laps. The dataset is split in a validation
(15 115 frames) and a train/test (138 533 frames) subset.
During the recording the radar data as well as the user input
is stored. During the recording the vehicle moves with an
average speed of 253 mm/sec.

III. NAVIGATION ALGORITHM

In order to maneuver the miniaturized vehicle au-
tonomously in the ”follower” use case, we have to extract the
following information from the radar data: distance, speed,
angle and heading of the preceding vehicle. The autonomous
control based on a DCNN navigates the platform by the
output coming from the radar pipeline.

A. Radar Pipeline

The raw radar data gathered with a FMCW-radar is
structured as a three dimensional data cube for each frame,
where the dimensions represent i) the amount of antennas
ii) the amount of chirps per frame and iii) the amount of
samples per chirp.

Traditional approaches for radar processing make use of
the Fast Fourier Transformation (FFT) over the fast time
dimension to get a map of the intensity over the range.
Followed by a second FFT in the slow time dimension,
which results in a Range Doppler Map (RDM) for each
antenna, representing the complex-valued velocity in the
different range bins for each antenna. From the RDMs of
antennas that are oriented in a λ/2 distance horizontally or
vertically the azimuth as well as the elevation of localized
targets can be calculated and thus the Range Angle Map
(RAM) constructed. In our use case we limit the amount of
available targets in the radar’s field of vision to one, being
the preceding vehicle.

The construction of the RAM from the RDMs is described
by the following formulas

resa,k = e(−1)k· j· ∆d
2 ·2π· c

f ·sin(a
ares (amax−amin)+amin), (1)

where resa,k describes a complex-valued array needed for the
construction of RAM as described in Equation 3. The angular
information is represented by a which iterates over possible
angles of the detected targets reaching from a minimum angle
of amin to a maximum angle of amax with a resolution of ares.
The speed of light is c and the center carrier frequency is
f , while ∆d represents the distance of the antennas k. The

imaginary unit is chosen to j and e describes the Euler’s
formula representation.

covr,k,l = ∑
d

RDMk,d,r ·RDMl,d,r , (2)

is a covariance matrix holding the information of the angle
of arrival of the target detected in each range bin. The indices
k and l represent the antennas in question, while d iterates
over the Doppler- and r the range-dimension. The complex-
conjugate of a complex number is described by a line above
the complex number.

RAMa,r = ∑
k

∑
l

resa,k · cov+r,k,l · resa,l , (3)

finally is the Range Angle Map, where the indices follow
the nomenclature of the equations before mentioned. The
only additional operator is +, which represents the Moore-
Penrose pseudo-inverse of a matrix using its singular-value
decomposition.

To reduce the amount of data forwarded to the neural net-
work and increase the processing speed, we do not calculate
the RAM which would be the traditional approach but we
introduce a new method of only considering Im(covr,0,1).

B. Machine Learning Approach

A goal in our work, was to employ a small network topol-
ogy to reduce computational needs and power so that system
can respond with a maximum latency of 50 milliseconds.
Thereby we realized that all the information needed to detect
the preceding vehicle and thus the adequate orders for the
actuators, are already present in one single sub-vector of
cov calculated in Equation 2. In exquisite detail Im(covr,0,1)
is a vector of length r, the range bins (in our case 64),
where its values represent the accumulated angle of arrival of
recognized targets in the range bin. A snippet of the gathered
data including Im(covr,0,1) is shown in Fig. 6 in the results
section. This vector is normalized and then used as an input
for the neural network and will from now on be referred to
as covr. The output of the DCNN are the commands for the
steering and the throttle of the platform.

Fig. 5. Architecture of the deep convolutional neural network.

The selected DCNN design is shown in Fig. 5. The first
layer is a 1D-convolution (conv) layer to cope with the effects
originating from the quantization of the samples for each

Fig. 6. Above: covr from one lap through the track, where the range bins reflect the distance to the preceding vehicle. The color is the visual representation
of the value in each bin, depicting the relative angle of the received radar signal in each bin;
Below: the corresponding input from the human operator during the recording. The correlation between steering and the angle information in the radar
signal, as well as the distance of the main reflection and the throttle is shown.

chirp that result in the range bins. We chose a kernel of
size 5 and a stride of 1. No padding is applied and the
amount of filters is chosen to 64. After the initial convolution
layer its output is flattened. The following fully connected
(fc) layers learn the linkage between the extracted features
from covr and the outputs needed for the autonomous control
of the vehicle. Each layer, be it conv or fc, is followed by
a rectified linear unit activation function. Finally the dense
output layer is performed with a linear activation function.
The hyperparameters chosen for the DCNN are given in the
following table.

TABLE I
HYPERPARAMETERS

hyper parameter value
optimizer adam
loss function mean absolute error
learning rate 5 ·10−4

decay 5 ·10−7

early stopping true
minimum delta 10−10

patience 5
batch size 209
epochs 150

IV. EXPERIMENTAL RESULTS

The evaluation of the dataset described in Section II-C
shows that the values of covr are in the range of [-2 410;
25 792] with a mean of 388 and a median of 0.033. covr
is normalized by applying tanh(covr

10) in order to enhance
the Signal to Noise Ratio (SNR), limit outliers and for the
better interpretability of the DCNN. The division factor of
10 is experimentally determined as it gives the best results
during the DCNN training process.

Fig. 6 shows a series of 4 000 consecutive frames from
the validation subset that represent one entire lap through the

track. In the upper part covr is plotted while in the lower part
the corresponding value of steering and throttle, originating
from the human operator during the recording, is depicted.

The final size of the model (h5 version) with 116 466
trainable parameters is 1.4 MB which is small enough to
be running on the Raspberry Pi under the given timing
constrains. Training of the model with the dataset described
in Section II-C takes about 50 seconds on an office laptop
for each epoch.

The trained model is evaluated on the validation subset
where the networks prediction deviates by 0.038 on average
for the steering and by 0.008 for the throttle. Evaluation of
the model with the demonstrator and not prerecorded data
gives satisfying results.

The trained model reaches its limits if the leading vehicle
operates outside the trained conditions, especially smaller
turns than the 4 meters in diameter lead to unexpected
behaviour of the ”follower”. The utilization of the processors
is on average about 85% at a processing frame rate of 20 Hz.

To benchmark the presented approach we evaluated the
recorded data with a more classical approach where the entire
RAM is calculated. Filtered by a moving target indicator with
a small update rate the constant ground noise is suppressed.
The throttle and steering is directly determined by spotting
the maximum value in the filtered RAM and aplying a linear
mapping.

A third approach is to train a NN with the entire RAM
similar to our proposed approach. This results in a larger
network size and more computation recuses with no notice-
able improvement in deviation reduction. The results of the
benchmarks are given in TABLE II.

V. CONCLUSION

To our knowledge it is the first time that a low power
60 GHz FMCW radar sensor is successfully employed in the
evaluation of the angle of arrival in a moving environment
of a preceding obstacle in real time on an edge device and
enables the car to follow it autonomously. We make use of

TABLE II
BENCHMARK RESULTS

covr RAM RAM
NN NN max value

frame execution 0.037 0.051 0.040
time [seconds]
deviation of 0.038 0.037 0.151
steering
deviation of 0.008 0.009 0.013
throttle
NN size [MB] 1.4 16.6 -

covr, formulated by us, for angular estimation, with the bene-
fit of being a light weight representation of the radar data. We
demonstrate that a AI empowered platooning vehicle can be
build with inexpensive off the shelf components. This brings
us one step closer to a real sized autonomous car with the
”follower” use case being independent of weather sensible
sensors.

VI. FUTURE WORK

The very low deviation of the throttle compared to the
steering can be explained by the fact that during the recording
as well as during testing the speed was always more or less
constant. Starting and stopping as well as accelerations were
not evaluated. Another simplification was a speed invariant
distance control as well as the assumption of exactly one
target being present in the range of the radar. A future
recording will include various different scenarios.

Another task is to further optimize the pre-processing of
the radar data in order to reduce processor utilization. Finally,
the security of the radar data and its evaluation algorithms
will be tested regarding possible threats like adversarial
attacks or jamming, as the radar sensor data is safety critical
in this scenario, especially if applied in a future, real sized
vehicle.

ACKNOWLEDGMENT

This work is a result of a collaboration between the
projects ”KI-Flex” (project number 16ES1027), funded by
the German Federal Ministry of Education and Research
(BMBF) within the founding program Microelectronic from
Germany innovation driver, and the project ”TEACHING”
(project number 871385) founded by the Horizon 2020
program.

REFERENCES

[1] M. Arsalan, A. Santra, and V. Issakov. “Radar
Trajectory-based Air-Writing Recognition using Tem-
poral Convolutional Network”. In: 2020 19th IEEE
International Conference on Machine Learning and
Applications (ICMLA). 2020, pp. 1454–1459. DOI:
10.1109/ICMLA51294.2020.00225.

[2] M. Arsalan, A. Santra, and C. Will. “Improved Con-
tactless Heartbeat Estimation in FMCW Radar via
Kalman Filter Tracking”. In: IEEE Sensors Letters 4.5
(2020), pp. 1–4. DOI: 10.1109/LSENS.2020.
2983706.

[3] Cem Yusuf Aydogdu et al. “Multi-modal cross learn-
ing for improved people counting using short-range
FMCW radar”. In: 2020 IEEE International Radar
Conference (RADAR). IEEE. 2020, pp. 250–255.

[4] Eric Chan. “SARTRE Automated Platooning
Vehicles”. In: June 2016, pp. 137–150.
ISBN: 9781786300270. DOI: 10 . 1002 /
9781119307785.ch10.

[5] Mateusz Chmurski and Mariusz Zubert. “Novel
Radar-based Gesture Recognition System using Op-
timized CNN-LSTM Deep Neural Network for Low-
power Microcomputer Platform”. In: (2021).

[6] Francesco Concas et al. “Validation Frameworks for
Self-Driving Vehicles: A Survey”. In: Smart Cities: A
Data Analytics Perspective. Springer, 2021, pp. 197–
212.

[7] J. Newman, Z. Sun, and D. -J. Lee. “Self-Driving
Cars: A Platform for Learning and Research”. In: 2020
Intermountain Engineering, Technology and Com-
puting (IETC). 2020, pp. 1–5. DOI: 10 . 1109 /
IETC47856.2020.9249142.

[8] Zhang Qi and Du Tao. “Self-driving scale car
trained by Deep reinforcement Learning.” In: ArXiv
abs/1909.03467 (2019).

[9] Michael Stephan et al. “Radar Image Reconstruction
from Raw ADC Data using Parametric Variational
Autoencoder with Domain Adaptation”. In: 25th In-
ternational Conference on Pattern Recognition. IEEE.
2021.

[10] Q. Dang T. Do M. Duong and M. Le. “Real-Time Self-
Driving Car Navigation Using Deep Neural Network”.
In: 2018 4th International Conference on Green Tech-
nology and Sustainable Development (GTSD), Ho Chi
Minh City, 2018 abs/1909.03467 (2018), pp. 7–12.
DOI: 10.1109/GTSD.2018.8595590.

[11] The DonkeyCar Website. (Accessed: 10.03.2021).
URL: https://www.donkeycar.com/.

[12] Sadayuki Tsugawa, Shin Kato, and Keiji Aoki. “An
automated truck platoon for energy saving”. In: 2011
IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2011, pp. 4109–4114. DOI: 10.
1109/IROS.2011.6094549.

[13] J. Valtl et al. “Autonomous Platform based on Small-
Scale Car for Versatile Data Collection and Algorithm
Verification”. In: 2021 25th IEEE International Con-
ference on Pattern Recognition(ICPR). 2020.

