
Exhaustive Property Oriented Model-based
Testing With Symbolic Finite State Machines

Technical Report ?

Niklas Krafczyk1[0000−0003−0475−4128] and Jan Peleska1[0000−0003−3667−9775]

{niklas,peleska}@uni-bremen.de
University of Bremen

Department of Mathematics and Computer Science
Bremen, Germany

Abstract. This technical report is an extended version of a paper with
the same title, accepted for publication at the SEFM 2021 conference
https://sefm-conference.github.io.
We present new contributions to property oriented testing (POT) against
Symbolic Finite State Machine (SFSM) models. While several POT ap-
proaches are known, only some of these are exhaustive in the sense that
every implementation violating the property is uncovered by a given test
suite under certain hypotheses. On the other hand, numerous exhaustive
theories for testing against models specified in various formalisms exist,
but only for conformance testing. Since a hybrid approach using both
models and properties seems to be preferred in industry, we present an
approach to close this gap. For given properties that are at the same
time represented in a reference model, we present a test suite derivation
procedure and prove its exhaustiveness.
The technical report extends the conference paper by full proofs for the
lemmas and theorems stated there, and it discusses examples regarding
the test case reduction achievable when testing for specific properties
instead of checking full model conformance.

1 Introduction

Background: property-oriented testing and model-based testing. In
the field of testing, two main directions have been investigated for quite a long
time. In property-oriented testing (POT) [4,12], test data is created with the
objective to check whether an implementation fulfils or violates a given property
which may be specified by Boolean expressions (invariants, pre-/post-conditions)
or more complex temporal formulae [12]. In model-based testing (MBT) [19], a
reference model expressing the desired behaviour of an implementation is used
for generating the test data and for checking the implementation behaviour
observed during test executions. In the research community, the objective of

? Funded by the Deutsche Forschungsgemeinschaft (DFG) – project number
407708394.



MBT is usually to investigate whether an implementation conforms to the model
according to some pre-defined equivalence or refinement relation.

In industry, however, testing of cyber-physical systems is usually performed
by a hybrid approach, involving both properties and models. Requirements are
specified as properties, and models are used as starting points of system and
software design [13,14]. It is checked by review or by model checking that the
models reflect the given properties in the correct way. Due to the complexity
of large embedded systems like railway and avionic control systems, testing for
model conformance only happens on sub-system or even module level, while test-
ing on system integration level or system level is property-based, though models
are available. In particular during regression testing, test cases are selected to
check specific requirements, and hardly ever to establish full model conformance.

Problem statement. The objective of this technical report is to establish a
sufficient black-box test condition for an implementation to satisfy an LTL safety
property.1 Reference models specifying the desired behaviour are represented as
symbolic finite state machines (SFSMs) extending finite state machines (FSMs)
in Mealy format by input and output variables, guard conditions, and output
expressions. Recently, SFSMs have become quite popular in model-based testing
(MBT) [16,18], because they can specify more complex data types than FSMs
and can be regarded as a simplified variant of UML/SysML state machines.
Also, they are easier to analyse than the more general Kripke structures which
have been investigated in model checking [3], as well as in the context of MBT,
for example in [7,8]. In contrast to Kripke structures, SFSMs only allow for a
finite state space. This fact can be leveraged in test generation algorithms by
enumerating all states and performing more efficient operations on this set of
states instead of a potentially infinite one.

The existence of a model in addition to the property to be verified is exploited
to guide the test case generation process. Moreover, the model is used as a test
oracle which checks more than just the given property: if another violation of
the expected implementation behaviour is detected while testing whether the
property is fulfilled, this is a “welcome side effect”. This approach deliberately
deviates from the “standard approach” to check only for formula violations using,
for example, the finite LTL encoding presented in [2] or observers based on some
variant of automaton [5].

Main Contributions. The main contributions of this technical report are as
follows. (1) We present a test case generation procedure which inputs an LTL
safety property to be checked and an SFSM as reference model to guide the gen-
eration process and serve as a test oracle. (2) A theorem is presented, proven,
and explained, stating that test suites generated by this procedure are exhaus-
tive in the sense that every implementation violating the given property will

1 Safety properties are the only formulae to be investigated effectively by testing, since
their violation by a system under test can be detected on a finite sequence of states
or input/output traces, respectively [21].



fail at least one test case, provided that the true implementation behaviour is
reflected by another SFSM contained in a well-defined fault-domain. This hy-
pothesis is necessary in black-box testing, because hidden internal states cannot
be monitored [17,20].

To the best of our knowledge, this mixed property-based and model-based
approach to POT has not been investigated before outside the field of finite
state machines. Only for the latter, strategies for testing simpler properties with
additional FSM models have been treated by the authors in [10,9]. While the
approach presented here is related to the one presented in [10], we will elabo-
rate here how to derive test cases for properties on non-deterministic reference
models. Furthermore, our approach is distinguished from [10,9] by operating on
SFSMs and by using LTL formulae as the specification formalism for properties.
SFSMs are considerably more expressive than FSMs for modelling complex reac-
tive systems. Specifying properties in LTL is more general, intuitive, and elegant
than the FSM-specific restricted specification style used in [10,9].

Overview In Section 2, FSMs and SFSMs are defined, and existing results
about model simulations, equivalence classes, and abstractions to FSMs are re-
viewed and illustrated by examples. These (mostly well-known) facts are needed
to prove the exhaustiveness of the test generation strategy described in Sec-
tion 3. In Section 3, fault domains are introduced and a sufficient condition for
exhaustive test suites for property verification is presented and proven. For im-
plementing test suite generators, we can refer to algorithms already published
elsewhere. Section 4 contains conclusions and sketches future work.

Throughout this technical report, we refer to related work where appropriate.

2 Symbolic Finite State Machines, Simulations,
Equivalence Classes, and FSM Abstractions

Basic Facts About FSMs Since the symbolic finite state machines to be
introduced below will be abstracted later on to “ordinary” finite state machines
(FSMs), we begin by introducing several basic facts about the latter before
defining their symbolic extension.2

An FSM is a 5-tuple M = (S, s0, ΣI , ΣO, h) with finite state space S, initial
state s0 ∈ S, finite input and output alphabets ΣI , ΣO, and transition relation
h ⊆ S ×ΣI ×ΣO × S. An FSM is completely specified if for every pair (s, x) ∈
S×ΣI , at least one output y and target state s′ exist, such that (s, x, y, s′) ∈ h.
Otherwise, the FSM is called partial. An FSM is deterministic (abbreviated as
DFSM), if for every pair (s, x) ∈ S×ΣI at most one output y and target state s′

satisfying (s, x, y, s′) ∈ h exist. Otherwise the FSM is nondeterministic. An FSM
is observable if for every triple (s, x, y) ∈ S×ΣI ×ΣO, at most one target states

2 The well-known definitions and facts about FSMs presented here have been taken
verbatim from an introductory section in [1].



s′ satisfying (s, x, y, s′) ∈ h exists. An FSM is initially connected if every state of
it can be reached from the initial state via a sequence of successive transitions.

For an input trace x = x1.x2 . . . xk ∈ Σ∗I , the expression s-after-x denotes
the set of all states reachable in M , when starting from state s and successively
applying the transition relation to inputs x1, x2, . . . . If M is partial, s-after-x de-
notes the set of states reachable via maximal prefixes of x that are defined in M .
If M is deterministic, then x uniquely defines a target state to be reached by (a
maximal prefix of) x. If M is nondeterministic but observable, any input/output
trace x/y ∈ (ΣI × ΣO)∗ uniquely determines the target node reachable under
this trace. (If x/y 6∈ L(M) then the target node is the initial state s0.) Therefore,
we extend the -after- operator to input/output traces as right operands, as in
s-after-(x/y).

A trace of an FSM M is a finite sequence of input/output pairs, such that
this sequence can be produced by M , starting in the initial state and successively
applying the transition relation. The language L(M) of an FSM M is the set
of its traces. Given an input sequence x = x1 . . . xk, we say that M produces
trace τ = x1/y1 . . . xk/yk as reaction to input sequence x, if τ is in L(M).
For nondeterministic FSMs, M may produce several different traces in reaction
to x. An FSM M ′ defined over the same alphabets as M is equivalent to M if
L(M ′) = L(M) holds. An FSM is minimal if no equivalent observable FSM with
fewer states exists. An observable, minimal FSM is called a prime machine [15].
If L(M ′) ⊆ L(M) is satisfied, M ′ is called a reduction of M .

The language equivalence and reduction are called conformance relations
between FSMs. A fault domain D(m) for given input and output alphabets
ΣI , ΣO is the set of all FSMs over the same alphabets that have at most m
states. Depending on the test generation method, the fault domains are further
restricted to deterministic, observable or completely specified FSMs. Given a
reference FSM M and a conformance relation ≤, a test suite is complete with
respect to (M,≤,D(m)) if and only if (a) every FSM M ′ satisfying M ′ ≤ M
passes every test of the suite (soundness), and (b) every FSM M ′ violating the
conformance relation will fail at least one test case, provided that M ′ ∈ D(m)
(exhaustiveness).

Definition of Symbolic Finite State Machines. A Symbolic Finite State
Machine (SFSM) is a tuple M = (S, s0, R, VI , VO, D,ΣI , ΣO). Finite set S de-
notes the state space, and s0 ∈ S is the initial state. Finite set VI contains input
variable symbols, and finite set VO output variable symbols. The sets VI and VO
must be disjoint. We use V to abbreviate VI ∪VO. We assume that the variables
are typed, and infinite domains like reals or unlimited integers are admissible.
Set D denotes the union over all variable type domains. The input alphabet ΣI
consists of finitely many guard conditions, each guard being a quantifier-free
first-order expression over input variables. The finite output alphabet ΣO con-
sists of output expressions; these are quantifier-free first-order expressions over
(optional) input variables and at least one output variable. We admit constants,
function symbols, and arithmetic expressions in these expressions but require



that they can be solved based on some decision theory, for example, by an SMT
solver. Furthermore, we assume that there are no equivalent expressions in the
set of output expressions which can be checked using an applicable decision
theory. Set R ⊆ S ×ΣI ×ΣO × S denotes the transition relation.

This definition of SFSMs is consistent with the definition of ‘symbolic in-
put/output finite state machines (SIOFSM)’ introduced in [16], but is slightly
more general: SIOFSMs allow only assignments on output variables, while our
definition admits general quantifier-free first-order expressions. This is useful for
specifying nondeterministic outputs and – of particular importance in this paper
– for performing data abstraction, as introduced below. Also, note that [16] only
considers conformance testing, but not property-based testing.

Following [16], faulty behaviour of implementations is captured in a finite set
of mutant SFSMs whose behaviour may deviate from that of the reference SFSM
by (a) faulty or interchanged guard conditions, (b) faulty or interchanged output
expressions, (c) transfer faults consisting of additional, lost, or misdirected tran-
sitions, and (d) added or lost states (always involving transfer faults as well). To
handle mutants and reference models in the same context, we require that (a)
the faulty guards are also contained in the input alphabet, and (b) the faulty
output expressions are also contained in the output alphabet, (without occurring
anywhere in the reference model).

A valuation function σ : V −→ D associates each variable symbol v ∈ V
with a type-conforming value σ(v). Given a first-order expression φ over variable
symbols from V , we write σ |= φ and say that σ is a model for φ if, after
replacing every variable symbol v in φ by its value σ(v), the resulting Boolean
expression evaluates to true. Only SFSMs that are well-formed are considered in
this technical report: this means that for every pair (φ, ψ) ∈ ΣI ×ΣO occurring
in some transition (s, φ, ψ, s′) ∈ R, at least one model σ |= φ ∧ ψ exists for
the conjunction φ ∧ ψ of guard and output expression. An SFSM with integer
variables x ∈ VI and y ∈ VO and a transition (s, x < 0, y2 < x, s′), for example,
would not be well-formed, since x < 0 ∧ y2 < x has no solution for integer
variables x, y.

Example 1. The SFSM in Fig. 1 describes a simple alarm indication system
which inputs a sensor value x ∈ R and raises an alarm (y = A) if x exceeds the
threshold value max. After an alarm has been raised, the system remains in state
s2 until x drops below the value max−δ, whereafter a transition to initial state
s0 is performed, accompanied by output y = O (“value is OK”). If the threshold
value max has been reached but not yet overstepped, a warning y = W may
or may not be issued (nondeterministic decision). If the warning is given, the
system transits to state s1 and stays there until x < max is fulfilled or an alarm
needs to be raised because x exceeds the threshold. Output values O,W,A are
typed by an enumeration and the relationship O < W < A holds.

Note that in this example, outputs could simply be specified by assignments,
so the system could also be modelled as an SIOFSM. Example 4 below shows
where the first-order representation is needed.



s0 s1

s2

x = max /y = W

x < max /y = O

x
>

m
ax
/y

=
A

x
<

m
ax
−δ
/y

=
O

x
>

m
ax /y

=
A

x ≤ max /y = O x = max /y = W

max−δ ≤ x/y = A

Fig. 1. Simple alarm system M (O=OK, W=warning, A=alarm, O < W < A).

For a sequence γ = t1 . . . tn, we denote the ith element of γ as γ(i), i.e.
γ(i) ≡ ti.

A symbolic trace of SFSM M is a finite sequence

τ = (φ1/ψ1) . . . (φn/ψn) ∈ (ΣI ×ΣO)∗

satisfying (recall that s0 is the initial state)

∃s1, . . . , sn ∈ S : ∀i ∈ {1, . . . , n} : (si−1, φi, ψi, si) ∈ R.

This means that there exists a state sequence starting from the initial state, such
that each pair (si−1, si) of states is linked by a transition labelled with (φi, ψi).
We use the intuitive notation (φi/ψi) inherited from Mealy machines for these
predicate pairs, since φi specifies inputs and ψi outputs.

A concrete trace (also called computation) of M is a finite sequence of valu-
ation functions

κ = σ1 . . . σn ∈ (V −→ D)∗

such that a symbolic trace τ = (φ1/ψ1) . . . (φn/ψn) of M exists satisfying

(σ1 |= φ1 ∧ ψ1) ∧ · · · ∧ (σn |= φn ∧ ψn).

If this condition is fulfilled, κ is called a witness of τ , and we use the abbreviated
notation κ |= τ . This interpretation of SFSM computations corresponds to the
synchronous interpretation of state machine inputs and outputs, as discussed
in [22]: inputs and outputs occur simultaneously, that is, in the same computation
step κ(i).

An SFSM is deterministic if a sequence of input tuples already determines the
sequence of associated outputs in a unique way. More formally, two computations



κ = σ1 . . . σn and κ′ = σ′1 . . . σ
′
n satisfying σi|VI

= σ′i|VI
for all i = 1, . . . , n fulfil

κ = κ′ if they are computations of the same deterministic SFSM3.
As usual in the field of modelling formalisms for reactive systems, the be-

haviour of an SFSM is defined by the set of its computations. Two SFSMs are
equivalent if and only if they have the same set of computations.

Example 2. The alarm system specified in Example 1 has a symbolic trace

τ = (x ≤ max /y = O).(x ≤ max /y = O).

(x = max /y = W ).(x > max /y = A).(x < max−δ/y = O)

With constants max = 100, δ = 10, the concrete trace

κ = {x 7→ 100, y 7→ O}.{x 7→ 50, y 7→ O}.
{x 7→ 100, y 7→W}.{x 7→ 110, y 7→ A}.{x 7→ 89, y 7→ O}

is a witness of τ . The alarm system is nondeterministic, since it also has symbolic
trace

τ ′ = (x = max /y = W ).(x ≤ max /y = O).

(x = max /y = W ).(x > max /y = A).(x < max−δ/y = O)

for which

κ′ = {x 7→ 100, y 7→W}.{x 7→ 50, y 7→ O}.
{x 7→ 100, y 7→W}.{x 7→ 110, y 7→ A}.{x 7→ 89, y 7→ O}

is a witness. The input sequences of κ and κ′ are identical, but the computations
differ.

Testability Assumptions. To ensure testability, the following pragmatic as-
sumptions and restrictions are made. (1) When testing nondeterministic imple-
mentations, it may be necessary to apply the input trace several times to reach
a specific internal state, since the input trace may nondeterministically reach
different states. As is usual in nondeterministic systems testing, we adopt the
complete testing assumption, that there is some known k ∈ N such that, if an
input sequence is applied k times, then all possible responses are observed [6],
and all states reachable by means of this sequence have been visited.
(2) SFSMs serving as reference models must be output deterministic. This means
that all output expressions from ΣO are either constant assignments to output
variables, or the assignments to output variables are given by functions over input
variables. Therefore, any kind of nondeterminism in reference models must be
encoded in the transitions. Note that abstracted SFSMs and SFSMs representing
erroneous implementation behaviour need not be output deterministic.

3 For valuation functions σ, we denote their projection on the input variables by σ|VI .



(3) SFMS are required to be weakly observable. This means that for any pair of
states s1, s2 that are connected by a computation segment τ to be applied first
at s1 and ending at s2, there exists a computation segment τ ′ from s1 to s2,
such that s2 is uniquely determined by τ ′, if the start state s1 is known.
(4) It is required that the output expressions in ΣO are pairwise distinguishable
by finitely many input values. This enables us to check the correctness of output
expressions with finitely many test cases. Note that this is not a very hard
restriction, since for many function classes with infinite domain and image, its
members are uniquely determined by a finite number of arguments. For example,
linear expressions y = a · x + b can be pairwise distinguished by two different
values of x; and this fact can be generalised to polynomials of a fixed degree in
several variables x1, . . . , xk. Note that this restriction is vacuous for the alarm
system modelled in Fig. 1, since its output expressions do not contain input x.

Property specifications in LTL. To state behavioural properties of a given
SFSM M , we use linear temporal logic LTL [3] with formulae over variable
symbols from V = VI ∪ VO. The syntax of LTL formulae ϕ used in this paper is
given by grammar

ϕ ::= φ | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | Fϕ | Gϕ,

where φ denotes atomic propositions written as quantifier-free first-order expres-
sions over symbols from V . The semantics of LTL formulae is defined over con-
crete traces κ of M by the following valuation rules, where φ is some quantifier-
free first order expression and ϕ,ϕ′ are arbitrary LTL formulae.

κi |= φ ≡ κ(i) |= φ

κi |= ¬ϕ ≡ κi 6|= ϕ

κi |= ϕ ∧ ϕ′ ≡ κi |= ϕ and κi |= ϕ′

κi |= Xϕ ≡ i < #κ− 1 and κi+1 |= ϕ

κi |= ϕUϕ′ ≡ ∃i ≤ j < #κ : κj |= ϕ′

and ∀i ≤ k < j : κk |= ϕ

κ |= ϕ ≡ κ0 |= ϕ

Here κi denotes the trace segment κ(i).κ(i+1).κ(i+2) . . . . The semantics of path
operators F and G is defined via equivalences Fϕ ≡ (trueUϕ) and Gϕ ≡ ¬F¬ϕ.

Example 3. Consider the property

R1. If the value of x never exceeds threshold max, then an alarm will
never be raised.

This property is expressed by LTL formula (recall the ordering O < W < A of
output values)

Φ1 ≡ G(x ≤ max) =⇒ G(y < A).



Simulation construction. Given an SFSM M , any set of atomic first-order
expressions with free variables in V induces a simulation M sim. Here, this well-
known concept is only explained in an intuitive way, for a detailed introduction
readers are referred to [3]. It will be shown below how abstracted SFSMs also
facilitate property-oriented testing.

Any set of atomic first-order expressions over V can be separated into expres-
sions f1, . . . , fk containing free variables from VI only and expressions g1, . . . , g`
each containing at least one free variable from VO.

As a first step, this leads to a refinement M ′ of the model SFSM M by means
of the following steps. (1) A transition (s, φ, ψ, s′) is replaced by transitions
(s, φ∧α,ψ ∧ β, s′), such that each α is a conjunction of all f1, . . . , fk in positive
or negated form, and expression β is a conjunction of all g1, . . . , g` in positive
or negated form. (2) Only the transitions (s, φ∧α,ψ ∧ β, s′) possessing a model
σ : V −→ D for φ ∧ α ∧ ψ ∧ β are added in this replacement.

Then a new SFSM M sim is created as follows. (1) The states and the initial
state of M sim are those of M . (2) The transitions of M sim are all (s, φ∧α, β, s′),
where there exists an output expression ψ such that (s, φ ∧ α,ψ ∧ β, s′) is a
transition of the refined SFSM M ′.

An SFSM M sim constructed according to this recipe is a simulation of M ′

in the following sense: For every computation κ = σ1 . . . σn of M ′, there exists a
symbolic trace τ sim = (φ1/ψ1) . . . (φn/ψn) of M sim, such that (a) κ is witness of
τ sim, and (2) any conjunction of positive and negated f1, . . . , fk and g1, . . . , g`
for which σi is a model is also an implication of (φi ∧ ψi).

s0 s1

s2

· · · ∧ x ≤ max / · · · ∧ y < A

x < max∧x ≤ max /y = O ∧ y < A

· · ·
∧ ¬

(x
≤ m

ax
)/
· · ·
∧ ¬

(y
<
A)

· · ·
∧ x
≤ m

ax
/ ·
· · ∧

y
<
A

· · · ∧ ¬(x ≤
m

ax)/ · · · ∧ ¬(y
<
A)

x ≤ max /y = O ∧ y < A

· · · ∧ x ≤ max / · · · ∧ ¬(y < A) · · · ∧ ¬(x ≤ max)/ · · · ∧ ¬(y < A)

· · · ∧ x ≤ max / · · · ∧ y < A

Fig. 2. Refinement M ′ of the simple alarm system from Fig. 1 with respect to atomic
propositions x ≤ max and y < A. Here, the ellipses represent the original guard or
output condition, respectively. The transition from s1 to s0 shows an actual example.



s0 s1

s2

· · · ∧ x ≤ max /y < A

x < max∧x ≤ max /y < A

· · ·
∧ ¬

(x
≤ m

ax
)/
¬(y

<
A)

· · ·
∧ x
≤ m

ax
/y
<
A

· · · ∧ ¬(x ≤
m

ax)/¬(y
<
A)

x ≤ max /y < A

· · · ∧ x ≤ max /¬(y < A) · · · ∧ ¬(x ≤ max)/¬(y < A)

· · · ∧ x ≤ max /y < A

Fig. 3. Simulation M sim of the simple alarm system from Fig. 1 with respect to atomic
propositions x ≤ max and y < A.

Example 4. From property Φ1 ≡ G(x ≤ max) =⇒ G(y < A) discussed in
Example 3 the atomic propositions f ≡ (x ≤ max) and g ≡ (y < A) are
extracted. The rules for creating a refined machine result in the machine shown
in Fig. 2.

Applying the construction rules for the SFSM abstracted from the alarm
system with respect to f, g,¬f,¬g results in the machine shown in Fig. 3. As an
example of a concrete trace of the alarm system, we take again

κ = {x 7→ 100, y 7→ O}.{x 7→ 50, y 7→ O}.
{x 7→ 100, y 7→W}.{x 7→ 110, y 7→ A}.{x 7→ 89, y 7→ O}

This is a witness of the symbolic trace (we omit the other conjuncts besides
x ≤ max and its negation)

τ sim = (· · · ∧ x ≤ max /y < A).(· · · ∧ x ≤ max /y < A).(· · · ∧ x ≤ max /y < A).

(· · · ∧ ¬(x ≤ max)/¬(y < A)).(· · · ∧ x ≤ max /y < A)

of the abstracted SFSM.

Input equivalence classes and FSM abstraction. For the actual test suite
construction, the reference SFSM and its simulation will be abstracted to finite
states machines. Then it will be shown that the exhaustiveness properties of the
FSM test suite are preserved when the suite is executed against the SUT whose
true behaviour is expressed by some (unknown) SFSM. The approach presented
here is inspired by the more general theoretic investigations of model abstractions



and test suite translations presented in [7,8]. In this technical report, however,
the general theory is not required, and all lemmas and theorems about exhaustive
POT for SFSM models are explicitly proven, to keep this report self-contained.

The FSM abstraction is performed according to the following steps.

Step 1. The refined reference model M ′ constructed above with the atomic
propositions of the LTL formula under consideration is further refined by creat-
ing input equivalence classes. The classes are constructed by building all conjunc-
tions of positive and negated guard conditions contained in the input alphabet.
As before, expressions without a model are dropped. Recall that the input al-
phabet also contains the possible faulty guards. This further refinement of M ′

is denoted by M ′c.

The effect of this construction is as follows. A symbolic input sequence ι =
φ1 . . . φk consisting of quantifier-free first-order input class expressions φi refining
the original guards of M ′ determines finitely many possible symbolic traces in the
reference model M ′c and in any possible SFSM over the same alphabet, specifying
the true behaviour of a (correct or faulty) implementation. In the deterministic
case, this symbolic trace is already uniquely determined by ι.

Step 2. From each refined input class, sufficiently many inputs are selected
so that the output expressions that are expected when applying an input from
this class in any state can be distinguished from any other output expression
contained in ΣO which would be faulty for inputs from this class.

Note that is some situations, an input class X is so small that the distinc-
tion between all output expressions is no longer possible. In this case, however,
different output expressions would be admissible for the implementation, if their
restrictions to X coincide. For example, if X only contains the input value x = 0,
and ΣO = {y = 3, y = 0, y = 3 · x}, then output expressions y = 0 and y = 3 · x
are indistinguishable on X. If output y = 0 is expected for input x = 0 in
the given state, then both expressions would be acceptable in an implementa-
tion. The concrete input selections are represented again as valuation functions
sx : VI −→ D.

Furthermore, all input valuations sx needed to identify target states reached
by a computation fragment are added to this collection of inputs. This kind of
sx exists because we assume that the SFSMs involved are weakly observable.

The collected concrete inputs sx selected above are used to define the (finite)
input alphabet AI of the FSM abstraction constructed by means of the recipe
introduced here.

Step 3. Applying the finite number of inputs from each class to every possible
output expression (including their anticipated mutants) associated with this class
yields a finite number of values from the possibly infinite output domain. This
holds because we assume that the reference SFSM M is output deterministic.
These values are written as valuation functions sy : VO −→ D and used as the
output alphabet AO of the FSM under construction.

Step 4. The state space and initial state of the FSM is identical to the state
space and initial state of M ′, respectively.



Step 5. The transition relation of the FSM is defined by including (s, sx, sy, s
′)

in the relation if and only if there exists a transition (s, φ, ψ, s′) in M ′c such that
sx ∈ AI ∧ sy ∈ AO ∧ (sx ∪ sy) |= φ ∧ ψ.

The observable, minimised FSM abstraction constructed in these 5 steps is
denoted as F (M ′c). The construction recipe above is illustrated in the following
example.

Example 5. For the refined alarm system M ′ shown in Fig. 2, let us assume that
the possibly faulty implementations may only mix up guard conditions, but do
not mutate them. Then the input equivalence classes calculated according to the
recipe described above are listed in the following table. Recall that the constants
have been fixed as δ = 10, max = 100.

Since the output expressions do not refer to input variable x, a single repre-
sentative from each input class can be chosen to create the FSM abstraction: the
output expressions of M ′c can always be distinguished by their concrete values.

Class Specified by Concrete input sx for AI

c0 x < max−δ {x 7→ 50}
c1 max−δ ≤ x < max {x 7→ 95}
c2 x = max {x 7→ 100}
c3 max < x {x 7→ 110}

The SFSM M ′c further refining M ′ by means of these input classes is shown in
Fig. 4. We use a short-hand notation where one transition arrow can be labelled
by several guards if the output expression is the same in each transition. The
abstraction FSM F (M ′c) constructed according to the five steps described above
is shown in Fig. 5.

The simulation M sim of the alarm system is also refined by the same input
equivalence classes. This results in the SFSM shown in Fig. 6. For this SFSM’s
abstracting FSM, we define output symbols

Symbol Output Expression

e0 y < A
e1 ¬(y < A)

Then we use the same concrete input alphabet as for F (M ′c). The resulting
FSM is shown in Fig. 7.

After having made this FSM observable and minimal, the resulting prime
machine F (M sim

c ) has the structure shown in Fig. 8.
We now introduce two SFSM models representing faulty implementations.

The first one behaves just like the reference model with the exception of the
output produced when transitioning from s1 to s2, where W is produced instead
of A. This means that an implementation described by this mutant of the refer-
ence model would behave just like the reference model but would not produce
an alarm when the input is set to a value greater than max while the system
is in the warning state s1. This model is depicted in Figure 9. Obviously, if the



s0 s1

s2

x = max /y = W ∧ y < A

x < max−δ, max−δ ≤ x < max /y = O ∧ y < A

m
ax
<
x/
y

=
A
∧ ¬

(y
<
A)

x
<

m
ax
−δ
/y

=
O
∧ y

<
A

x
>

m
ax /y

=
A ∧ ¬(y

<
A)

x < max−δ, max−δ ≤ x < max, x = max /y = O ∧ y < A

max−δ ≤ x < max, x = max, max < x/y = A ∧ ¬(y < A)

x = max /y = W ∧ y < A

Fig. 4. Alarm system refinement M ′
c resulting from application of input equivalence

classes to M ′ from Fig. 2. For brevity, we have consolidated multiple transitions back
into one for this figure, if the beginning and end states of these were the same as well as
their output condition. This is signified by commas in their input condition, separating
the input conditions of individual transitions.

input stays above max−δ at least one more input, this mutant would produce
the correct output A due to the self-loop on state s2, so this could be seen as a
timing error, where the correct output is produced too late, which is a common
error mode in practice.

The second SFSM model shown in Figure 10 representing a faulty implemen-
tation always transitions from s0 to s1 if and only if the input applied in state
s0 satisfies x = max.

Admissible Simulations. To specify precisely which types of simulationsM sim
c

are admissible, we introduce the concept of output abstractions for FSMs. Let
ω : AO −→ A′O be a function between output alphabets. Then any FSM F =
(S, s0, T, AI , AO) with alphabet (AI , AO), state space S, initial state s0, and
transition relation T ⊆ S×AI ×AO×S can be mapped to an FSM ω(F ) which
is constructed by creating FSM (S, s0, T

′, AI , A
′
O) with transition relation

T ′ = {(s, a, ω(b), s′) | (s, a, b, s′) ∈ T},

and constructing the prime machine (i.e. the observable and reduced FSM) of
(S, s0, T

′, AI , A
′
O). The FSM ω(F ) is called the output abstraction of F with

respect to ω. The mapping ω is called state-preserving for F , if ω(F ) maps traces
leading to the same state in F to traces leading to the same state in ω(F ) as
well. More formally, ω is state-preserving for F , if and only if any pair of traces



s0 s1

s2

100/W

50, 95/O

11
0/
A

50
/O

110/A

50, 95, 100/O

95, 100, 110/A

100/W

Fig. 5. Finite state machine F (M ′
c) abstracting the SFSM M ′

c from Fig. 4. Input
valuations {x 7→ value} are abbreviated by ‘value’, output valuations {y 7→ value} by
‘value’.

(x1/y1), (x2/y2) ∈ L(F ) satisfying

s0-after-(x1/y1) = s0-after-(x2/y2)

is mapped by ω to trace pair (x1/ω(y1)), (x2/ω(y2)) ∈ L(ω(F )) satisfying

s0-after-(x1/ω(y1)) = s0-after-(x2/ω(y2))

in ω(F ).
It is easy to see that the prime machine F (M sim

c ) shown in Fig. 8 has been
created from F (M ′c) in Fig 5 by means of the output abstraction ω = {O 7→
e0,W 7→ e0, A 7→ e1}. Comparison of F (M ′c) in Fig 5 and Fig. 8 shows that this
ω is state-preserving.

For deterministic FSMs, every output abstraction is state-preserving, but this
is not always the case for nondeterministic FSMs. The exhaustive test suite gen-
eration procedure for property checking introduced in the next section requires
that simulations are constructed by means of state-preserving output abstrac-
tions.

The following property of state-preserving output abstractions is trivial to
understand, because it just states the contraposition of the definition. It has,
however, an important consequence. Therefore it is explicitly stated.

Lemma 1. Let F be a prime FSM as introduced above and ω a state-preserving
output abstraction for F . Let s0-after-(x1/z1) and s0-after-(x2/z2) be two dis-
tinguishable states in ω(F ) with (x1/z1), (x2/z2) ∈ L(ω(F )). Then

s0-after-(x1/y1) 6= s0-after-(x2/y2)

in F for every y1, y2 ∈ A∗O satisfying (x1/y1), (x2/y2) ∈ L(F ) and ω(y1) = z1

and ω(y2) = z2.



s0 s1

s2

x = max /y < A

x < max−δ, max−δ ≤ x < max /y < A

m
ax
<
x/
¬(y

<
A)

x
<

m
ax
−δ
/y
<
A

x
>

m
ax /¬(y

<
A)

x < max−δ, max−δ ≤ x < max, x = max /y < A

max−δ ≤ x < max, x = max, max < x/¬(y < A)

x = max /y < A

Fig. 6. Alarm system simulation M sim
c from Fig. 3 – further refined by input equiva-

lence classes.

3 An Exhaustive Property-based Testing Strategy

Prerequisites. Throughout this section, M = (S, s0, R, VI , VO, D,ΣI , ΣO) de-
notes an output deterministic, weakly observable SFSM reference model spec-
ifying the required behaviour of some implementation whose true behaviour is
represented by some (possibly non-equivalent) SFSM I, defined over the same
alphabet, as explained in Section 2. Set P denotes a finite set of atomic quantifier-
free first-order expressions with free variables in V . The properties to be tested
are all contained in the set of LTL formulae over atomic expressions from P .
As introduced in Section 2, the SFSM M ′c has been created from M by refining
the guards and the output expressions according to the atomic expressions in P
and the input equivalence classes induced by ΣI . The FSM associated with M ′c
is denoted by F (M ′c). It is assumed that F (M ′c) is a prime machine. We assume
that F (M ′c) has n > 1 states.4 The simulation SFSM M sim

c has the same in-
put alphabet as M ′c, but a (usually smaller) output alphabet containing output
expressions of P only. The prime machine associated with M sim

c is denoted by
F (M sim

c ). The input alphabet of F (M ′c) and F (M sim
c ) (i.e. the concrete valua-

tions selected from each input class) is denoted by AI , the output alphabet of
F (M ′c) by AO, and that of F (M sim

c ) by Asim
O .

4 If F (M ′
c) had only one state, we would not have to consider SFSMs, since M could

be represented by a stateless function.



s0 s1

s2

100/e0

50, 95/e0

11
0/
e1

50
/e

0

110/e
1

50, 95, 100/e0

95, 100, 110/e1

100/e0

Fig. 7. Finite state machine abstracting the SFSM M sim
c from Fig. 6.

{s0, s1} s2

110/e1

50/e0

50, 95, 100/e0

95, 100, 110/e1

Fig. 8. Prime machine F (M sim
c ) (observable, minimised FSM constructed from the

FSM in Fig. 7).

Fault domains. In black-box testing, fault domains5 are introduced to con-
strain the possibilities of faulty behaviours of implementations. Without these
constraints, it is impossible to guarantee exhaustiveness with finite test suites:
the existence of hidden internal states leading to faulty behaviour after a trace
that is longer than the ones considered in a finite test suite cannot be checked in
black-box testing. In the context of this paper, a fault domain is a set of SFSMs,
always containing the reference model (usually in refined form) representing the
intended behaviour. It is assumed that the implementation’s true behaviour is
reflected by one of the SFSM models in the fault domain.

Now the fault domain D(M ′c,m) contains all SFSMs possessing the same
input alphabet and output alphabet as M ′c, such that their abstractions to prime
machines constructed in analogy to F (M ′c) do not have more than m states.

5 The term ‘fault domain’ is slightly misleading, since its members do not all represent
faulty behaviour. The term, however, is well-established [17], so we adopt it here as
well.



s0 s1

s2

x = max /y = W

x < max /y = O

x
>

m
ax
/y

=
A

x
<

m
ax
−δ
/y

=
O

x
>

m
ax /y

=
W

x ≤ max /y = O x = max /y = W

max−δ ≤ x/y = A

Fig. 9. Faulty implementation of the simple alarm system from Fig. 1. Here, the output
on the transition from s1 to s2 is changed to W .

Property-related exhaustiveness. Given the set P of quantifier-free atomic
first-order expressions over variables from V , a test suite is P-exhaustive for a
given fault domain D(M ′c,m), if every SFSM I ∈ D(M ′c,m) representing an im-
plementation behaviour fails at least one test whenever I contains a computation
κI that is not a witness for any symbolic trace of M sim

c .

Example 6. Consider again the alarm system M from Fig. 1 and the property
Φ1 ≡ G(x ≤ max) =⇒ G(y < A). Then, with the guard refinements introduced
for M ′c and M sim

c , the atomic expressions to consider are

P = {x < max−δ,max−δ ≤ x < max, x = max, y < A}.

Expressed in terms of P -elements, property Φ1 can be equivalently expressed as

Φ1 ≡ G(x < max−δ ∨max−δ ≤ x < max∨x = max) =⇒ G(y < A).

Now consider an implementation whose behaviour I differs from that of M
only by the mutated guard in the transition from s0 −→ s2, where we assume
that I’s guard is x ≥ max instead of x > max, as specified in M . With this
guard mutation as the only fault, I is in the fault domain D(M ′c,m) of the
alarm system M . Then, for example, I has a computation (it is assumed again
that max = 100 and δ = 10)

κI = {x 7→ 50, y 7→ O}.{x 7→ 100, y 7→ A}.

Abstracted to a symbolic trace over P , this results in

τI = (x < max−δ/y < A).(x = max /¬(y < A)).

Obviously, this is not a symbolic trace of M sim
c , as depicted in Fig. 6. Therefore,

any P-exhaustive test suite should fail for I.



s0 s1

s2

x = max /y = O ∨ y = W

x < max /y = O

x
>

m
ax
/y

=
A

x
<

m
ax
−δ
/y

=
O

x
>

m
ax /y

=
A

x < max /y = O x = max /y = W

max−δ ≤ x/y = A

Fig. 10. Faulty implementation of the simple alarm system from Fig. 1. Here, if the
input satisfies x = max in state s0, the target state always is s1 instead of s0, while
everything else is as specified by the reference model.

Test suite generation procedure. In preparation of the test generation,
SFSMs M ′c and M sim

c are created for the given set P of quantifier-free atomic
first-order expressions over variables from V , as explained in Section 2. Then
their FSM abstractions are constructed (also according to the recipe explained
in Section 2), and their prime machines are constructed, as described in [15],
resulting in FSMs F (M ′c) and F (M sim

c ), respectively. It is required that F (M sim
c )

has been created from F (M ′c) by means of a state-preserving output abstraction.

Example 7. The prime machine of the FSM in Fig. 5 abstracting M ′c is un-
changed, because it is already observable and minimal. This is easily checked,
because its states are pairwise distinguishable by input c2 which produces a dif-
ferent output in each state. The prime machine of the FSM abstracting M sim

c

only has two states; it is shown in Fig. 8. We have already seen that the output
abstraction ω transforming F (M ′c) into F (M sim

c ) is state-preserving.

The rationale behind deriving these FSMs is as follows. FSM F (M ′c) contains
sufficiently detailed information to derive tests suitable for detecting any viola-
tion of observational equivalence. While the proof for this fact is quite technical,
it is fairly intuitive to understand: By construction, F (M ′c) uses concrete input
values from every input equivalence class of any implementation whose true be-
haviour is reflected by an SFSM I in the fault domain D(M ′c,m). It is possible
to derive a collection of input sequences from F (M ′c), so that every input class
of I is exercised from every state of I. To ensure this, the assumption that I’s
FSM abstraction does not have more than m states is essential. Moreover, the
input alphabet of F (M ′c) has been constructed in such a way that sufficiently
many values of each input class are exercised on the implementation, such that
every output expression error will be revealed.



Next, we realise that testing for observational equivalence is actually more
than we really need. So we wish to relax the test requirements in such a way that
the test focus is to check whether the satisfaction for atomic properties from P
along any computation of I conforms to that of M ′c. For this purpose, F (M sim

c )
is needed. Typically, F (M sim

c ) has fewer states than F (M ′c) and I. Therefore,
we cannot completely forget about F (M ′c), because this machine influences the
length of the traces used to test I. If tests were constructed from F (M sim

c ), we
would either use traces of insufficient length or use too many traces of adequate
length, since F (M sim

c ) does not provide any information about which traces of
maximal length are relevant. These intuitive considerations lead to the test suite
generation procedure described next.

We create an FSM test suite HP ⊆ A∗I from F (M ′c) and F (M sim
c ) as follows.

Let V ⊆ Σ∗I be a minimal state cover of F (M ′c) containing the empty trace ε. A
state cover is a set of input traces, such that for each state s of M ′c, there exists a
trace from V reaching s. Define auxiliary sets (AiI denotes the set of FSM input
traces of length i).

A = V × V B = V ×
(
V.

m−n+1⋃
i=1

AiI
)

C = {(ν.γ′, ν.γ) | ν ∈ V ∧ γ ∈
(m−n+1⋃

i=1

AiI
)
∧ γ′ ∈ Pref(γ)− {ε}}

Then define a set D of input trace pairs such that D contains (a) all trace pairs
from A leading to different states in the FSM state space of F (M ′c) , (b) every
trace pair of B and C leading to different states in F (M sim

c ).
Let function ∆ : D −→ P(A∗I) map trace pairs (α, β) leading to one or more

pairs of distinguishable states (s1, s2) to input traces γ, each trace distinguishing
at least one pair of these (s1, s2). Now define FSM test suite HP by removing
all true prefixes from the test case set

V.Am−n+1
I ∪

⋃
(α,β)∈D

(
α.∆(α, β) ∪ β.∆(α, β)

)
Remarks on the FSM test suite HP . The PASS criterion for FSM test cases
from HP is simply given by F (M ′c) which acts as test oracle for the FSM-level
test suite: Suppose that an FSM F over alphabet (AI , AO) is tested by suite
HP . Then F passes HP if and only if the input/output traces observed when
running the input traces of HP against F are all contained in the traces created
by F (M ′c). Observe that passing the suite does not prove that F is input/output
equivalent to F (M ′c). This would require to also use F (M ′c) instead of F (M sim

c ),
when selecting distinguishing traces for distinguishable states reached by traces
(α, β) from sets B and C defined above. Since F (M sim

c ) is an abstraction of
F (M ′c), it often distinguishes fewer states than F (M ′c), and therefore, the suite
cannot be used to show equivalence between F and F (M ′c). However, as will be



shown in the lemmas and theorem below, the test suite suffices to uncover every
violation of the language of F (M sim

c ), when abstracting the input/output traces
observed during the test to traces of F (M sim

c ).
From Lemma 1, we can conclude that the test suite HP defined above never

contains more test cases than the corresponding test suite constructed by the
H-Method for testing observational equivalence.

Corollary 1. If ω is a state-preserving output abstraction for F (M ′c), then the
test suite HP defined above never contains more test cases than the test suite cre-
ated by means of the H-Method, testing for language equivalence between F (M ′c)
and an SUT.

Proof. For the H-Method, the same auxiliary sets A,B,C of input trace pairs
are used, as defined above for HP . Recall that for the construction of HP , only
those pairs of traces from B and C are considered to be entered into set D whose
target states are distinguishable in F (Msim

c ) = ω(F (M ′c)). When applying the
H-Method, however, the pairs from B and C are added to D if their target states
are distinguishable in F (M ′c). Since Lemma 1 states that all target states of trace
pairs distinguishable in F (Msim

c ) are also distinguishable in F (M ′c), the set D
created according to the H-Method contains at least all the trace pairs created
for D according to the construction recipe introduced above. This implies that
our test suite construction will never lead to more test cases than needed when
applying the H-Method.

Proving P-exhaustiveness. The following Lemma shows that M sim
c is crucial

for deciding whether an implementation satisfies an LTL formula over atomic
expressions from P . It follows directly from the construction rules for M sim

c in
Section 2.

Lemma 2. Suppose that the true behaviour of an implementation is given by
SFSM I ∈ D(M ′c,m). Suppose further that every computation of I is also a
witness of a symbolic trace in M sim

c . Then I satisfies every LTL formula over
first-order expressions from P which is satisfied by the reference SFSM M .

Proof. Suppose that Φ is an LTL formula over atomic first-order expressions
from P which is satisfied by all traces of M , but not by all traces of I. Then
I has a computation κI which is not a model for Φ. Since κI is a witness for a
symbolic trace of M sim

c by assumption, this symbolic trace consists of a sequence
of positive or negated P -expressions violating Φ. By construction, however, M sim

c

contains exactly the same symbolic traces in P -expressions as M . Consequently,
M also has a computation violating Φ. This is a contradiction.

The following main theorem states the exhaustiveness of the test suite gen-
eration procedure described above.

Theorem 1. With the notation introduced above, assume that F (Msim
c ) is cre-

ated from F (M ′c) by means of a state-preserving output abstraction. Then the



test suite HP constructed above is P -exhaustive for all implementations whose
true behaviour is specified by one of the SFSMs contained in the fault domain
D(M ′c,m) specified above.

Proof overview. The proof of the theorem is performed along the following lines.
In a first step, the exhaustiveness of the FSM test suite which is created as
part of the generation procedure is proven. This has some similarities to the
proof presented in [10, Theorem 2], but operates here with a different FSM
abstraction F (M sim

c ) that may also be nondeterministic. It is essential for this
proof that simulations have been generated by means of state-preserving output
abstractions.

A second step shows that the selection of concrete input values from input
equivalence classes described in the previous section is adequate to uncover every
deviation of the implementation behaviour from the specified behaviour. For the
proof of this theorem, it is essential that all possible guard mutations and output
expression mutations are already contained in the input and output alphabets,
respectively. Moreover, it is exploited that sufficiently many concrete values have
been selected from the input classes to distinguish faulty output expressions from
correct ones.

Detailed proof steps. The detailed proof will now be broken down into several
lemmas. The following lemma about state covers has been proven for nondeter-
ministic FSMs in [15, Lemma 4.2].

Lemma 3. Let F be an FSM over input alphabet AI and output alphabet AO.
Let V ⊆ A∗I a finite set of input traces containing the empty trace ε. Then either

1. the traces of V reach all states in F , or
2. the trace set (V ∪ V.AI) reaches at least one additional state of F .

Lemma 4. The FSM test suite HP specified above is exhaustive in the following
sense.

Let ω : AO −→ Asim
O be the output abstraction used in the creation of

F (M sim
c ) from F (M ′c), and suppose that ω is state-preserving for F (M ′c). Then

every prime FSM F over alphabets (AI , AO) with at most m states will fail at
least one test case of HP , if its output abstraction ω(F ) produces a trace which
is not contained in the traces of F (M sim

c ).

Proof. Suppose that prime FSM F passes the test cases of suite HP . As a first
step, it will be shown that V.

⋃m−n
i=0 AiI is a state cover of F (recall that V is

a state cover of F (M ′c) containing the empty trace ε). Since V is a state cover
of prime machine F (M ′c), the traces from set α.∆(α, β) ∪ β.∆(α, β) distinguish
n states of F (M ′c), and, by construction, this set of traces is contained in test
suite HP . Since F passes HP , these traces also distinguish n states of F . This
shows that F has at least n states. By assumption, F has at most m states. By
construction, HP also contains all input traces from V.Am−n+1

I . We observe that

all traces from
⋃m−n
i=1 AiI are prefixes of some trace in Am−n+1

I . Thus Lemma 3



can be applied m−n times to conclude that HP distinguishes all m = n+m−n
states of F , if the machine has that many distinguishable states. This shows that
V.
⋃m−n
i=0 AiI is a state cover of F .

Recall that for deterministic FSMs, every input trace reaches exactly one
state, producing exactly one output trace. For nondeterministic FSMs, however,
an input trace may lead to a set of many states, each time accompanied by
different output sequences, because we assume that the FSM is observable [15,
Section 3.2]. To handle nondeterministic situations, we introduce the set

Π = {vi/ui | i = 1, . . . , n},

where {v1, . . . , vn} = V , and ui ∈ A∗O, such that Π ⊆ L(F (M ′c)), and the n
traces vi/ui reach all n states of F (M ′c). Observe that one of the vi/ui is the
empty trace, since ε ∈ V . Further observe that two vi, vj are not necessarily
distinct for i 6= j, because in the nondeterministic case one input trace may lead
to different states. However, it is ensured that vi/ui 6= vj/uj for i 6= j, since the
n elements of Π reach different states of F (M ′c), and this FSM is observable.

Suppose now that F passes the test cases of suite HP , but ω(F ) produces
a trace which is not contained in the traces of F (M sim

c ). This leads to a con-
tradiction, as will be demonstrated in the remainder of the proof. Let τω =
(x1/y1) . . . (xk/yk) ∈ (AI × AO)∗ be a trace of F whose output abstraction
(x1/ω(y1)) . . . (xk/ω(yk)) ∈ (AI × Asim

O ) is not contained in the input/output
traces of F (M sim

c ). Then, by construction of M sim
c , τω cannot be a trace of

F (M ′c), because all traces of computations of M ′c are also computations of M sim
c ,

so all traces of F (M ′c), when abstracted by ω, must be traces of F (M sim
c ). In

particular, τω cannot be contained in the transition cover Π, since all elements
of Π are traces of F (M ′c).

Therefore, since Π contains the empty trace, we can always partition τω into
τω = π.τ , such that π ∈ Π and π.τ ′ 6∈ Π for every non-empty prefix τ ′ of τ .
Among all erroneous traces τω, we select one which has minimal length outside
Π. This means that no other erroneous trace can be found that is partitioned
into π′.ξ with π′ ∈ Π and ξ shorter than τ .

We observe that, since the input traces of V.
⋃m−n+1
i=0 AiI are contained as

prefixes in the traces of HP , the length |τ | of τ must be longer than m− n+ 1:
otherwise the whole input trace6 τω|AI

would have been executed in the test
suite. Due to the complete testing assumption, this test case would have failed
at least once, since τω would have been produced at least once, and this is not
a trace of F (M ′c).

Given τω, partitioned into τω = π.τ as explained above, we denote the pre-
fixes of τ with length i, 1 ≤ i ≤ |τ | by τi. Trivially, π.τi 6= π.τj holds for i 6= j.
By construction, Π contains exactly n traces {π1 = v1/u1, . . . , πn = vn/un}, and
one of these, say π` with ` ∈ {1, . . . , n}, equals π. Suppose πi = π.τj = π`.τj for
some πi ∈ Π with i 6= ` and 1 ≤ j ≤ m−n+1. Choose trace ι such that τj .ι = τ .
Then ι is non-empty, since the input trace (π.τj)|AI

is still contained (possibly

6 For input/output traces ξ, we denote their projection on the input trace by ξ|AI .



as prefix of another trace) in HP , but (π.τ)|AI
is not. Now we calculate

τω = π.τ = π.τj .ι = πi.ι

and conclude that, since 1 ≤ |τj |, ι fulfils 1 ≤ |ι| < |τ |. This contradicts the
assumption that τ is a shortest trace such that π.τ with π ∈ Π is not a trace of
F (M sim

c ). These consideration imply that the set

U = {π1, . . . , πn, π.τ1, . . . , π.τm−n+1}

contains n+m− n+ 1 = m+ 1 input/output traces.
Since F has at most m states, there must be at least 2 traces α 6= β ∈ U

reaching the same state of F . Our next objective is to show that with input traces
of α and β, the machine F (M sim

c ) must also reach the same state. Assume the
contrary, so that F (M sim

c ) reaches state s1 with α|AI
and state s2 with β|AI

,
and s1 6= s2. Now F (M sim

c ) has been constructed by means of a state-preserving
output abstraction ω. Therefore, the states reached after α and β in F (M ′c) must
be distinguishable as well. Therefore, since the input traces associated with U
are contained as prefixes in V.Am−n+1

I , there exists also a distinguishing input
trace γ, so that (α|AI

).γ and (β|AI
).γ are contained (possibly as prefixes) in HP .

Then at least one of these two test cases would fail for F , since the same state is
reached in F under α and β, and, consequently, the application of γ after α and
β, respectively, produces the same outputs, but γ would lead to different outputs
in F (M ′c), since it distinguishes s1 and s2. This contradiction proves that α and
β also lead to the same state in F (M sim

c ).
Moreover, it is not the case that both α and β are contained on Π: all traces in

Π reach different states of F (M ′c), and distinguishing input traces γ are included
in HP for all pairs of non-equal states in the state cover. Consequently, the
following two cases still need to be considered:

1. α = πi ∧ β = π.τj ∧ 1 ≤ j ≤ (m− n+ 1)
2. α = π.τi ∧ β = π.τj ∧ 1 ≤ i < j ≤ (m− n+ 1)

Let ι be the trace fragment such that τj .ι = τ (for the case j = m − n + 1,
fragment ι is empty). By construction, β.ι = π.τj .ι = π.τ . The length of ι is
less than that of τ , because τj has positive length. Since α and β reach the
same state, α.ι is also a trace of F , with the faulty behaviour of F revealed by
trace fragment ι. In Case 1 above, this implies that there exists α ∈ Π such that
α.ι, when abstracted by ω, is not a trace of F (M sim

c ), but ι is shorter than τ .
In Case 2, we have α.ι = π.τi.ι, and τi.ι is shorter than τ because i < j and,
therefore, |τi.ι| < |τj .ι| = |τ |. Again, we have found a shorter trace τi.ι revealing
the error. Thus, both cases imply the existence of a shorter trace revealing the
error, and this contradicts the assumption that τ already is a shortest trace.
This concludes the proof.

Lemma 5. The SFSM test suite HP defined above is P-exhaustive for fault
domain D(M ′c,m).



Proof. Assume that an SFSM I ∈ D(M ′c,m) representing the true behaviour of
an SUT possesses a computation

κ0 = σ0
1 . . . σ

0
p

which is not a witness of any trace of Msim
c . We will show that I fails at least

one test case of the test suite HP .
Without loss of generality we may assume that every proper prefix of κ0 still

has a witness trace in Msim
c . Note that this witness trace is not always uniquely

determined, since several output expressions ψ in the output alphabet of Msim
c

(which is a subset of P ) may match with the concrete output valuations σ0
i |VO

.
We just select one of these traces, so that

σ0
1 . . . σ

0
p−1 |= (φ1/ψ1) . . . (φp−1/ψp−1) ∈ L(Msim

c ),

but
σ0
p 6|= (φp/ψp)

for all (φp/ψp) satisfying

(φ1/ψ1) . . . (φp−1/ψp−1).(φp/ψp) ∈ L(Msim
c ).

Since I is in the fault domain D(M ′c,m), it is an SFSM over the refined SFSM
input alphabet containing (refinements of) correct guards as well as faulty ones.
Therefore, there exists another computation

κ1 = σ1
1 . . . σ

1
p

of I, such that each input valuation σ1
i |VI

in this computation lies in the same
input equivalence class of I as the corresponding original σ0

i |VI
from computation

κ0. Thus, the same output expressions are applied by I when running through κ1
as when running through κ0. Each input valuation σ1

i |VI
, however, is contained

in the finite input alphabet of F (M ′c) which is not guaranteed for the input
valuations of the original computation κ0.

Without loss of generality we assume that

σ1
1 . . . σ

1
p−1 |= (φ1/ψ1) . . . (φp−1/ψp−1) ∈ L(Msim

c ),

but
σ1
p 6|= (φp/ψp)

for all (φp/ψp) satisfying

(φ1/ψ1) . . . (φp−1/ψp−1).(φp/ψp) ∈ L(Msim
c ).

If this were not the case, we would apply the subsequent argument for a prefix
of κ1. Note that the same output expressions ψi are referenced here as for κ0
above. This holds because the refinement steps explained in Section 2 ensure
that different representatives from the same refined input class result in the



same positive and negated output expressions, including outputs abstractions,
to be applied.

Summarising, we have constructed an input trace σ1
1 |VI

. . . σ1
p|VI
∈ A∗I , such

that the I/O-trace κ1 of I is not a witness for any trace in the FSM F (Msim
c ).

Now Lemma 4 guarantees that the FSM abstraction F (I) to input alphabet AI
will fail at least one test case in HP . This test case I will also be failed by I, since
the same expected outputs are checked on the SFSM level, as on the FSM level,
and F (I) produces the same outputs as I on sequences of A∗I . This completes
the proof.

Example 8. We now generate a test suite as described above for the running
example of the alarm system. This test suite shall be P-exhaustive for all imple-
mentations with at most m = 3 states. The state count of the reference model
is n = 3.

First, we pick a minimal state cover as V = {ε, 100, 110}. We then determine
the auxiliary sets A,B and C and remove duplicate entries and entries that lead
to indistinguishable states. Afterwards, they are as follows:

A ={(ε, 100), (ε, 110), (100, 110)},
B ={(ε, 100.110), (ε, 110.95), (ε, 110.100), (ε, 110.110),

(100, ε.110), (100, 100.110), (100, 110.95), (100, 110.100),

(100, 110.110), (110, ε.50), (110, ε.95), (110, ε.100),

(110, 100.50), (110, 100.95), (110, 100.100), (110, 110.50)},
C ={}

. All states can be distinguished by the input 100, such that we can simply
extend all trace pairs in A,B and C by 100 to distinguish the reached states.
This results in a test suite

HP ={100.110.100, 110.95.100, 110.100.100, 110.110.100, 50.100,

95.100, 100.50.100, 100.95.100, 100.100.100, 110.50.100}

This test suite detects the output fault of the faulty implementation whose
behaviour is described by the SFSM shown in Figure 9. The trace 100.110.100
in HP is expected to produce the output traces {W.A.A,O.A.A} as specified
by F (M ′c) but produces {W.W.A,O.A.A} on the faulty implementation. The
transition fault in an implementation whose behaviour is represented by the
SFSM shown in Figure 10 is detected by the input trace 100.100.100 with the
expected output sequences {O.O.O,O.O.W,O.W.W,W.W.W}, while the faulty
implementation only produces the output sequences {O.W.W,W.W.W}.

Discussion of Fault Domains. In practice, it often cannot be decided whether
an implementation regarded as a black-box is represented by an SFSM I inside a
given fault domain D(M ′c,m) or not. For guaranteed exhaustiveness, a grey-box
approach performing preliminary static analyses on the implementation code



would be required in order to prove that an implementation behaviour modelled
by some SFSM I is inside the fault domain. If this cannot be achieved, it is
reassuring to know that test suites constructed according to the generation pro-
cedure above have significantly higher test strength than naive random testing,
even if I lies outside the fault domain. This has been evaluated in [11].

4 Conclusion

In this paper, an exhaustive test suite for testing LTL properties has been pre-
sented. It is based on both a symbolic finite state machine model describing the
expected behaviour and the formula. By using simulation and abstraction tech-
niques, a test suite generation procedure has been presented which guarantees
to uncover every property violation, while possibly finding additional violations
of observational equivalence, provided that the implementation’s true behaviour
is captured by an element of the fault domain. The simulations and abstrac-
tions used frequently allow for test suites that are significantly smaller than
those testing for equivalence between model and implementation. For a specific
variant of properties which is less expressive than LTL, this has already been
shown in [10]. We expect similar reductions for the full LTL property check-
ing described here. This will be investigated in the near future, where we will
implement the method proposed here as well as improvements upon it in the
libfsmtest [1] software library.

Acknowledgements

The authors would like to thank Wen-ling Huang for her valuable inputs con-
cerning the main theorem of this paper.

5 Supplementary material

The alarm system model that served as a running example in the previous parts
of this technical report does not show any test suite size reduction, unfortunately.
This is due to the fact that for every case where during test suite construction
there is a pair of traces that reaches states in the simulation that are not distin-
guishable and thus are potential candidates to not be included in the test suite,
there is a pairing of these traces with a trace leading to a state that needs to
be distinguished from the reached states. In this case, for each pair of traces
reaching the states s0 and s1, each of the traces also appears in a pair with a
trace leading to s2, from which both states have to be distinguished. To show
that significant reductions in test suite size are possible, we introduce a modi-
fied, more complex version of the alarm system presented above. The modified
system introduces two more alarm states for higher severity of alarm conditions.
These are triggered when the input rises to 150% and 200% of the basic alarm
condition, respectively, i.e. are triggered at 1.5 max and 2 max. The alarm states



are differentiated by different alarm outputs A1, A2 and A3. Furthermore, this
system does not automatically reset the alarm if the input signal falls below a
certain threshold. Thus, to reset the alarm, the system has to be turned off and
on again. The corresponding SFSM is shown in Figure 11.

s0 s1

s2

s3

s4

x = max /y = W

x < max /y = O

x >
max /y

= A1

x > max /y = A
1

1.5 max ≤ x/y = A2 x < 1.5 max /y = A1

2 max ≤ x/y = A3 x < 2 max /y = A2

x ≤ max /y = O x = max /y = W

x < 1.5 max /y = A
1

1.5 max ≤ x < 2 max /y = A2

2 max ≤ x/y = A3

Fig. 11. Alarm system with more states and outputs. When the threshold max is
surpassed by 50% or more, a different alarm state from the usual one is entered. From
this state, a further, even higher alarm state may be entered if the input exceeds max
by 100%. The alarm outputs are now A1, A2 and A3 with A1 < A2 < A3.

For this bigger alarm system, the following input equivalence classes are
calculated:

Class Specified by

c1 x < max
c2 x = max
c3 max < x < 1.5 max
c4 1.5 max ≤ x < 2 max
c5 2 max ≤ x

To abstract the SFSM to a finite state machine, we introduce the symbols
d0, . . . , d4 for output expressions as follows.



Symbol Output Expression

d0 y = O ∧ y < A1

d1 y = W ∧ y < A1

d2 y = A1 ∧ ¬(y < A1)
d3 y = A2 ∧ ¬(y < A1)
d4 y = A3 ∧ ¬(y < A1)

The FSM abstraction of the system shown in Figure 11 is shown in Figure
12.

s0 s1

s2

s3

s4

c2/d1

c1/d0

c3,
c4,
c5/
d2

c3 , c4 , c5/d2

c4, c5/d3 c1, c2, c3/d2

c5/d4 c1, c2, c3, c4/d3

c1/d0 c2/d1

c1 , c2 , c3/d2

c4/d3

c5/d4

Fig. 12. FSM abstraction of the system shown in Figure 11.

The outputs of the simulation with respect to the property are unchanged
and as follows:

Symbol Output Expression

e0 y < A1

e1 ¬(y < A1)

This results in a mapping of output symbols given as follows:



Symbol Output Expression Mapped To Output Expression

d0 y = O ∧ y < A1 e0 y < A1

d1 y = W ∧ y < A1 e0 y < A1

d2 y = A1 ∧ ¬(y < A1) e1 ¬(y < A1)
d3 y = A2 ∧ ¬(y < A1) e1 ¬(y < A1)
d4 y = A3 ∧ ¬(y < A1) e1 ¬(y < A1)

The FSM abstraction of the simulation is shown in Figure 13.

{s0, s1} {s2, s3, s4}

c1, c2/e0

c3, c4, c5/e1

c1, c2, c3, c4, c5/e1

Fig. 13. FSM abstraction of the simulation of the SFSM in Figure 11.

As the simulation features significantly fewer states than the original SFSM,
there are many cases in the test suite generation process where the reached
states, that are distinguishable in the original SFSM are not distinguishable
in the simulation which is why there does not need to be a pair of sequences
α.∆(α, β), β.∆(α, β) in the test suite, where ∆(α, β) distinguishes the two states.

For comparison, we also generate a test suite for equivalence using the H-
method. We evaluate the test suite size reduction, i.e. the ratio of the number
of test cases generated for each method, assuming a number a ∈ {0, 1, 2, 3} of
additional states.

a = 0 a = 1 a = 2 a = 3

|HP | 17 85 425 2125
H-method test suite size 23 111 575 2875

Ratio 0.73 0.77 0.74 0.74

The reduction of test suite sizes ranges from 20 to 25% in this example
which is advantageous in the testing process as this reduces the cost for testing
significantly.

By adding more states to the SFSM shown in 11, repeating the pattern of the
states s2, s3 and s4, where there are successive threshold values for the input x,
leading the SFSM into higher states s5, . . . , sn that collapse to one state under
abstraction, we can construct systems with even higher test suite size reduction,
showing that our method has the potential to achieve significant improvements



regarding testing costs. For example, extending the system until some state s7,
i.e. by 3 additional states, a test suite size comparison as performed above looks
as follows, showing test suite size reductions of 29 to 31%:

a = 0 a = 1 a = 2 a = 3

|HP | 50 400 3200 25600
H-method test suite size 70 572 4560 37008

Ratio 0.71 0.70 0.70 0.69

References

1. Moritz Bergenthal, Niklas Krafczyk, Jan Peleska, and Robert Sachtleben. libf-
smtest – An Open Source Library for FSM-based Testing. In Anna Cavalli and
Héctir D. Menéndez, editors, Testing Software and Systems – Proceedings of the
IFIP-ICTSS 2021, Lecture Notes in Computer Science. Springer, Cham, 2021. to
appear.

2. Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schuppan.
Linear encodings of bounded LTL model checking. Logical Methods in Computer
Science, 2(5), November 2006. arXiv: cs/0611029.

3. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

4. Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon. Property Oriented
Test Case Generation. In Alexandre Petrenko and Andreas Ulrich, editors, Formal
Approaches to Software Testing, pages 147–163, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

5. Dimitra Giannakopoulou and Klaus Havelund. Automata-based verification of
temporal properties on running programs. In Proceedings 16th Annual Interna-
tional Conference on Automated Software Engineering (ASE 2001), pages 412–416,
San Diego, CA, USA, 2001. IEEE Comput. Soc.

6. R. M. Hierons. Testing from a nondeterministic finite state machine using adap-
tive state counting. IEEE Transactions on Computers, 53(10):1330–1342, October
2004.

7. Wen-ling Huang and Jan Peleska. Complete model-based equivalence class testing.
Software Tools for Technology Transfer, 18(3):265–283, 2016.

8. Wen-ling Huang and Jan Peleska. Complete model-based equivalence class testing
for nondeterministic systems. Formal Aspects of Computing, 29(2):335–364, March
2017.

9. Wen-ling Huang and Jan Peleska. Complete requirements-based testing with finite
state machines. CoRR, abs/2105.11786, 2021.

10. Wen-ling Huang, Sadik Özoguz, and Jan Peleska. Safety-complete test suites.
Software Quality Journal, October 2018.

11. Felix Hübner, Wen-ling Huang, and Jan Peleska. Experimental evaluation of a
novel equivalence class partition testing strategy. Software & Systems Modeling,
pages 1–21, March 2017.

12. Patricia D. L. Machado, Daniel A. Silva, and Alexandre C. Mota. Towards Property
Oriented Testing. Electronic Notes in Theoretical Computer Science, 184(Supple-
ment C):3–19, July 2007.



13. Jan Peleska. Model-based avionic systems testing for the airbus family. In 23rd
IEEE European Test Symposium, ETS 2018, Bremen, Germany, May 28 - June
1, 2018, pages 1–10. IEEE, 2018.

14. Jan Peleska, Jörg Brauer, and Wen-ling Huang. Model-based testing for avionic
systems proven benefits and further challenges. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification and Vali-
dation. Industrial Practice - 8th International Symposium, ISoLA 2018, Limassol,
Cyprus, November 5-9, 2018, Proceedings, Part IV, volume 11247 of Lecture Notes
in Computer Science, pages 82–103. Springer, 2018.

15. Jan Peleska and Wen-ling Huang. Test Automation - Foundations
and Applications of Model-based Testing. University of Bremen, Jan-
uary 2017. Lecture notes, available under http://www.informatik.uni-
bremen.de/agbs/jp/papers/test-automation-huang-peleska.pdf.

16. A. Petrenko. Checking Experiments for Symbolic Input/Output Finite State Ma-
chines. In 2016 IEEE Ninth International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW), pages 229–237, April 2016.

17. A. Petrenko, N. Yevtushenko, and G. v. Bochmann. Fault models for testing in
context. In Reinhard Gotzhein and Jan Bredereke, editors, Formal Description
Techniques IX – Theory, application and tools, pages 163–177. Chapman&Hall,
1996.

18. Alexandre Petrenko. Toward testing from finite state machines with symbolic
inputs and outputs. Softw. Syst. Model., 18(2):825–835, 2019.

19. Alexandre Petrenko, Adenilso Simao, and José Carlos Maldonado. Model-based
testing of software and systems: Recent advances and challenges. Int. J. Softw.
Tools Technol. Transf., 14(4):383–386, August 2012.

20. Alexander Pretschner. Defect-based testing. In Maximilian Irlbeck, Doron A.
Peled, and Alexander Pretschner, editors, Dependable Software Systems Engineer-
ing, volume 40 of NATO Science for Peace and Security Series, D: Information
and Communication Security, pages 224–245. IOS Press, 2015.

21. A Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6(5):495–511, 1994.

22. Jaco van de Pol and Jeroen Meijer. Synchronous or alternating? - LTL black-
box checking of mealy machines by combining the learnlib and ltsmin. In Tiziana
Margaria, Susanne Graf, and Kim G. Larsen, editors, Models, Mindsets, Meta:
The What, the How, and the Why Not? - Essays Dedicated to Bernhard Steffen
on the Occasion of His 60th Birthday, volume 11200 of Lecture Notes in Computer
Science, pages 417–430. Springer, 2018.


