
Testing and Validation Framework

Document Control Information
Settings Value
Document Identifier: D4.3
Project Title: ExPaNDS
Work Package: WP4
Document Author(s): Jason Brudvik (MAX IV Laboratory), Silvan Schoen (DESY),

Zdenek Matej (MAX IV Laboratory), Anton Barty (DESY)
Document Reviewer(s): Sophie Servan (DESY), Krisztian Pozsa (PSI)
Responsible Partner: MAX IV Laboratory, Lund University
Doc. Issue: 1.0
Dissemination level: Public
Date: 30/11/2021

Abstract
This document presents a framework for testing and validating ExPaNDS services against
reference data sets. The process is demonstrated for the case of Jupyter notebook type
services.

Licence
This work is licensed under the Creative Commons Attribution 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 1 / 14 DOI: 10.5281/zenodo.5718671

http://creativecommons.org/licenses/by/4.0/

1.Executive Summary

Within scientific communities, there is a wide range of scientific software for specific use
cases. Software used for data analysis pipelines in established and accepted research
workflows includes command-line processing, interactive graphical desktop applications,
single-CPU applications and MPI-based multi-node software running on high-performance
computing (HPC) infrastructure. It often requires access to specific hardware or computing
accelerator resources. The purpose of a testing and validation framework is to verify that
software is available and operating as intended on different research infrastructures. Testing
should be ideally performed in an automated manner. This provides a path for delivering
analysis software as a service on shared infrastructure, including but not limited to European
Open Science Cloud (EOSC) and shared HPC resources.

For testing software deployments, ExPaNDS partners have defined a set of nine reference
science cases and related data sets covering several Photon and Neutron (PaN)
experimental techniques, representing real-world data analysis workflows. The reference
cases consist of available experimental data sets, existing software and scientific workflows
from different ExPaNDS sites. The goal of this work is to establish a framework that assures
that data analysis services can be validated against reference data sets.

In this document, we describe a framework for testing and deploying software that is made
available for users across research facilities with heterogeneous compute infrastructures. A
general testing pipeline is described first and then we focus on a particular case of validating
Jupyter notebook services as a concrete example. The framework described herein serves
to make sure that the services are working correctly as different prototypes are adapted by
various partners.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 2 / 14 DOI: 10.5281/zenodo.5718671

Table of Contents

Executive Summary 1

Background 4
ExPaNDS context of the testing framework 4
EOSC Synergy service quality assurance 4
Quality assurance for ExPaNDS services 5

General software testing pipeline 5
Forms of scientific software installations 6

Personal user installations 6
Facility installations 6
Delivery of software through containerization 6

A CI/CD pipeline for application image deployment 7
CI building stage 7
CI testing stage 8

A Specific example for Jupyter-notebooks 8
Jupyter-notebooks 8
Jupyter kernels 9
Jupyter installations 9

Docker and Kubernetes JupyterHub installations 9
HPC JupyterHub installations 9

Testing and validation of jupyter-notebooks services 10
Tools for testing and validation 10
jnbv 10
jupyter-notebook-validation 10
How to test and validate 11

Continuous integration pipeline 12
Reasons to trigger pipeline 12
Pipeline steps 12
Docker and Kubernetes pipeline 12
HPC pipeline 12
Gitlab pipeline output 13
Status of CI pipeline 13

Summary 13

Acknowledgements 14

References 14

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 3 / 14 DOI: 10.5281/zenodo.5718671

1. Background

1.1. ExPaNDS context of the testing framework

ExPaNDS project strategy is defined in the following documents:

• 1) “ExPaNDS General Architecture description in relation to the EOSC services”
• 2) “Guidelines for implementing the national Photon and Neutron RI's analysis services

within the EOSC”
• 3) “Photon and Neutron reference data sets”

The national photon and neutron (PaN) research infrastructures (RI’s) participating in
ExPaNDS operate a heterogeneous set of data storage and computing infrastructures1).
While scientific workflows often share common software elements and facilities generally
share common scientific data management practices2), the operating environment at each
facility is slightly different for largely historical reasons. Moving towards horizontal
infrastructures, therefore, requires an automated testing and validation framework to verify
that shared scientific software can execute properly at other facilities and ensure long term
reliability and sustainability of the service. In ExPaNDS, we develop this infrastructure by
focussing on sharing software required for the reference data sets and by developing
services and related tools that are interoperable between ExPaNDS partners.

ExPaNDS partners have defined a set of 9 reference science cases and related data sets3)

covering several PaN experimental techniques representing real-world data analysis
workflows. The reference cases consist of available experimental data sets, existing
software and scientific workflows available at different ExPaNDS RI’s. The aim of ExPaNDS
work package 4 (WP4) is to make the data analysis workflows related to the reference data
sets available as European Open Science Cloud (EOSC) services. This should improve the
availability of the experimental methods for a wider user community, ensure repeatability of
scientific results with open data and increase PaN community user experience by providing
similar service frontends for users at different RI’s. The purpose of the ExPaNDS testing
framework is to validate that software and services required for executing analysis workflows
function as intended at the partners’ facilities.

1.2. EOSC Synergy service quality assurance

Concerning the broader EOSC environment, ExPaNDS project appreciates that a partner
project “EOSC Synergy” has developed baseline criteria for the software management
lifecycle of EOSC services, including data repositories, and a concept of automated
validation process featuring continuous integration (CI) and continuous delivery (CD)

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 4 / 14 DOI: 10.5281/zenodo.5718671

https://doi.org/10.5281/zenodo.3697704
https://doi.org/10.5281/zenodo.4569421
https://doi.org/10.5281/zenodo.4569421
https://doi.org/10.5281/zenodo.4558708
https://www.eosc-synergy.eu/

pipelines. Two outcomes of the EOSC Synergy project are documents describing these
criteria and guidelines for software and services:

● 4) “A set of Common Software Quality Assurance Baseline Criteria for Research Projects”
● 5) “A set of Common Service Quality Assurance Baseline Criteria for Research Projects”

We draw on these reference documents in developing the ExPaNDS testing framework. It
seems feasible that also software developed within the ExPaNDS project can follow the
EOSC Synergy guidelines described in the document defining baseline criteria for software4).

1.3. Quality assurance for ExPaNDS services
We note that general aspects of service validation for web services, web applications and
platforms which are compositions of multiple services and web applications are already
covered by EOSC Synergy in the second document “A set of Common Service Quality
Assurance Baseline Criteria for Research Projects”5). That document describes the various
performance, security testing, service monitoring, automated deployment, requirements on
documentation, support and policies, among other topics. Additionally, once a service is
onboarded in the EOSC, it will be monitored according to the EOSC-hub specifications6) in
EOSC’s ARGO service7). And so we do not repeat these topics here as they are already
adequately covered elsewhere.
On the other hand, the testing framework introduced here is understood as a set of good
practice guidelines, reference implementations and original software. The last is developed
only when critical tools are not already available.

2.General software testing pipeline

ExPaNDS testing and validation framework introduced in the next paragraphs aims to
present a supporting structure to make sure that ExPanDS analysis services are working
correctly as the different prototypes are adapted by the various partners. It consists of

● general guidelines for testing and validating scientific data analysis workflows,
● references to related available tools, testing, validation and monitoring services,
● a reference example implementation of a continuous validation pipeline.

The framework has to deal with a wide range of software that exists in the scientific
community. It includes software used for data analysis pipelines in established and accepted
research workflows. This software is highly varied, ranging from command-line processing to
interactive graphical desktop applications, from single-CPU applications to MPI-based
multi-node software running on high-performance computing (HPC) infrastructure,
sometimes requiring access to specific hardware or GPU resources. Nevertheless, the same

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 5 / 14 DOI: 10.5281/zenodo.5718671

http://dx.doi.org/10.20350/digitalCSIC/12543
http://dx.doi.org/10.20350/digitalCSIC/12533
http://dx.doi.org/10.20350/digitalCSIC/12533
http://dx.doi.org/10.20350/digitalCSIC/12533
https://wiki.eosc-hub.eu/display/EOSCDOC/Monitoring
https://argo.eosc-portal.eu/

premises and challenges apply across platforms. Later in this document, we describe the
case of Jupyter notebooks in more specific detail by way of an example for a specific class
of application.

In general, the objectives are to:
● Make software readily available to a large scientific audience
● Have the software checked and validated for a wide array of arbitrary hardware and

operating systems; and
● Encourage analyses within publications be fully replicable

The purpose of a testing and validation pipeline is to automate the process of delivery of
scientific software, and ideally provide a path to analysis as a service on shared
infrastructure (including but not limited to EOSC and shared HPC resources). Open
reference datasets3) should provide complex input for this validation process.

2.1. Forms of scientific software installations

2.1.1.Personal user installations
Research software is often developed as open-source projects by the community or within
certain research groups. In many cases distribution of the software is voluntary or performed
alongside the primary function of research, leading to an absence of maintained installation
packages and dependencies that are in practice limited to distinct operating systems or
hardware. Maintaining software distribution packages for multiple environments implies an
ongoing effort over years and is often not within the scope envisaged by the developers who
are under pressure to write the next paper rather than support existing software.

This model of software distribution leads to challenges for the user scientist. Research
software must often be installed personally, frequently with no other option than from source
and possibly without even having root privileges. For the scientist, installing sometimes
incompatible software is a major source of frustration and wasted effort. Being able to
access and use validated packages would be a major advantage.

2.1.2.Facility installations
Some facilities employ staff to install software for the user on infrastructure maintained by
the facility. Here, installation does not pose a problem for the user, however, control over the
specific software or even software version might not be possible. Long term sustainability of
such service also depends on human resources available at different RI’s and reproducibility
of the service on different facilities may not be a simple issue.

2.1.3.Delivery of software through containerization
Delivery of containerized software may present an invaluable tool to meet the defined goals
of distributing validated research software. Application distribution in a containerized fashion
can address the challenges mentioned above. In particular:

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 6 / 14 DOI: 10.5281/zenodo.5718671

● With containers, individual user installation of the software from source or packages
becomes unnecessary.

● It is possible to unambiguously track which container with which software version
was used in a specific use case.

● Additionally, containerized software can be deployed on a wide range of operating
systems.

However, even though the user doesn’t have to install the scientific software itself, it is still
necessary to provide software to execute containerized applications on personal systems
and RI’s computing infrastructure. If facility resources are used, the availability of
containerization software may differ between RI’s as the user rights management is not
trivial. Concerning the choice of container infrastructure, we follow the options of Singularity
and Docker for their distinctive advantages and therefore focus on these technologies.

2.2. A CI/CD pipeline for application image deployment
Containerized application distribution can be combined with modern CI/CD infrastructure to
perform automatic software tests before the software containers are distributed. We chose to
use GitLab for our initial containerized applications. GitLab offers not only a container image
registry but also structures to define CI/CD pipelines for the container images. This enables
both software testing and container deployment in an existing and widely adopted
environment.

In short, we will adopt the use of modern CI/CD software development protocols for scientific
software distribution and analysis workflows identified for ExPaNDS cases, based on GitLab
as an existing, tested and well-accepted platform.

Validating software services for ExPaNDS reference use cases involves two steps:

1. CI building stage
2. CI testing stage

Appropriate CI/CD pipelines can be implemented with the aid of DESY EOSC PaN GitLab
service available at https://eosc-pan-git.desy.de.

2.2.1. CI building stage
In the first step, whenever a new version of the software is available, a new image can be
built in a GitLab pipeline and pushed to its registry (mirroring the images on an alternative
registry is also possible). For the build process, a Docker in Docker solution can be used. A
Docker image is loaded which itself has Docker installed in it. With this approach, a
containerized application image is built from the provided Dockerfile, that contains the
installation from source instructions of the application. Subsequently, the image is pushed to
the local GitLab registry. Importantly, the software is only released publicly once it has
passed the subsequent functionality testing.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 7 / 14 DOI: 10.5281/zenodo.5718671

https://eosc-pan-git.desy.de

2.2.2.CI testing stage
In the second stage, the pre-built image is tested for functionality. The goal is not to test the
software itself, which is expected to be fully operational, but the functionality of the software
which is run within a container. It is verified that the software runs as expected and does not
produce errors on a standard test data set, but not to question or validate the scientific
results themselves. Thus, only End-to-End tests are applicable, which implies that only a
very limited number of input parameters and outputs can be verified. Here, the reference
datasets will be very valuable candidates for providing the inputs of the tests.
The approach for the testing stage is similar to the CI building stage. A Docker in Docker
image can be used to start the containerized application. Arbitrary predefined tests can now
be performed to ensure the functionality of the application within the container.

Beyond the general level described above, details of each CI/CD pipeline will have to be
developed on a case by case basis depending on the particular software and test data set.

3.A Specific example for Jupyter-notebooks
We focused on Jupyter notebook workflows to pursue a concrete example for developing a
testing framework. Jupyter notebooks are an invaluable tool for the reference data sets for
both analysis and data visualization. The jupyter-notebook services were already adopted on
several ExPaNDS sites and it was natural to start implementing common scientific cases
with them. Additionally, this type of service is new to some PaN facilities, PaN RI’s are
developing extensions and tools for jupyter-notebooks services, which also implies
requirements on their testing and validation. And so, whereas the previous section describes
a general testing workflow for validating scientific software deployments using CI/CD
pipelines and reference data sets3, the following section introduces in detail a specific
example of jupyter-notebook service validation against reference data sets and related tools.

3.1. Jupyter-notebooks
Jupyter-notebooks are a useful way of providing a data analysis service, allowing
researchers simple means for accessing and analyzing experimental data.

To allow researchers to focus on data analysis, the infrastructure and analysis tools have
been set up for them as a service which:

• Is accessible via any web browser
• Gives researchers access to all their data
• Has all computing infrastructure setup
• Has all analysis tools pre-installed

Different experiments and analysis techniques require various analysis tools and computing
resources, and these need to be customized for different research interests.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 8 / 14 DOI: 10.5281/zenodo.5718671

3.2. Jupyter kernels
The software environments providing interactive programming in the Jupyter notebooks are
referred to as Jupyter kernels.

These kernels are built upon python environments often created with conda, which is a
package, dependency and environment management system. On HPC clusters, these
environments can also be created with the “lmod” environment module system8).

3.3. Jupyter installations
Using Jupyter notebooks in a multi-tenant environment is tricky, fortunately, JupyterHub
solves the problems. It provides connections to the authorization of users, shared data
storage and shared computing resources.

There are different sorts of JupyterHub installations, some of which will be discussed here.

3.3.1.Docker and Kubernetes JupyterHub installations
One method of setting up a JupyterHub installation is to use docker images.

When a user connects to the service, a docker image is selected, and then a new docker
container is started up from this image just for that user, completely separated from all other
users.

The docker images contain all the necessary system tools and Jupyter kernels needed. The
self-contained nature of docker images means that these images are easily reused on
different computing infrastructures and at different institutions.

There are various options for the orchestration framework used for handling the operation of
the docker containers, user authentication, data access, and compute resource allocation.
Two of the popular options are Docker Swarm and Kubernetes, both of which have been
used in the work for this work package.

3.3.2.HPC JupyterHub installations
With the installation of JupyterHub on an HPC cluster, docker images are generally
unnecessary as much of the necessary software and system tools have already been
installed and made available for research analysis.

The HPC system has the Jupyter kernels preinstalled. When a user connects to JupyterHub
running on an HPC, a batch job is started on a node using a job scheduler, such as SLURM,
as was used in the work for this work package.

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 9 / 14 DOI: 10.5281/zenodo.5718671

https://doi.org/10.1145/2063348.2063360

3.4. Testing and validation of jupyter-notebooks services
With all the various components involved in a JupyterHub installation being dependent upon
one another, it is important to have validation checks so that everything is kept in working
order and that analysis results on a specific dataset can be reproduced a week, a month, or
a year from now.

The work for this work package focused on Jupyter kernels – checking that:
• The Jupyter kernel can be rebuilt with the necessary software modules
• The analysis routines can be executed without errors
• The results of the execution match what was obtained originally

3.4.1.Tools for testing and validation
Two collections of software were produced for this work package, and are publicly available:

• jnbv
◦ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jnbv

• jupyter-notebook-validation
◦ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-notebook-validation

3.4.2.jnbv
jnbv is a python module for testing Jupyter kernel and Jupyter notebooks against each other.

With this module, it is possible to:

1. Execute notebooks in a terminal
2. Execute notebooks non-interactively in a CI pipeline
3. Check execution output for errors
4. Compare the execution output to a known reference output
5. Choose different jupyter kernels to use
6. Log results of notebook executions and tests

jnbv follows EOSC Synergy software quality assurance guidelines4).

jnbv is used here for validating reference Jupyter notebooks and associated data sets versus
Jupyter kernels and vice versa.

3.4.3.jupyter-notebook-validation
jupyter-notebook-validation is a repository (set of tools, example reference notebooks and
configuration files) meant to make use of the python module jnbv for automated validation of
production-ready Jupyter kernels.

The software contained in the jupyter-notebook-validation repository is not strictly needed to
perform a test of Jupyter kernel and notebook compatibility. It encapsulates tools for
configuring an automated continuous validation process for Jupyter notebook based services

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 10 / 14 DOI: 10.5281/zenodo.5718671

https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jnbv
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-notebook-validation

providing a complex set of Jupyter kernels for different scientific use cases. In particular, it
contains:

• Around 50 Jupyter notebooks, that are used for testing particular Jupyter kernels in
use at MAX IV Laboratory and other institutions.

• A Makefile which simplifies the execution of the validation tests via docker images
and slurm batch jobs

• example CI/CD configuration for the validation pipeline

This repository has been set up to run as part of the GitLab CI at MAX IV Laboratory for use
with several installations of JupyterHub:

• Docker Swarm
• Kubernetes
• HPC

The setup is general enough that it could be easily modified to work at other institutions.

Figure 1: An example jupyter-notebook service quality assurance pipeline.

3.4.4.How to test and validate
The python module jnbv is installed and then used to:

• Execute Jupyter notebooks, which:
◦ Load the necessary software
◦ Use reference data sets
◦ Use short data analysis routines
◦ Produce as output a new Jupyter notebook

• Read the execution output
• Test the execution output for errors
• Compare the execution output with the original Jupyter notebook

◦ Checking that analysis calculations are the same
◦ Any images produced are the same

• Save testing and validation output
◦ Log files of test results
◦ Jupyter notebooks from executions

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 11 / 14 DOI: 10.5281/zenodo.5718671

3.5. Continuous integration pipeline
As there can be any number of combinations of infrastructures and data analysis tools, an
automated continuous integration (CI) validation pipeline is very useful.

This allows for the Jupyter kernels to be automatically tested and verified without any
interaction from system maintainers.

The simplified schema of a validation pipeline for Jupyter-notebook service is depicted in
Figure 1.

3.5.1.Reasons to trigger pipeline
There are several common reasons why a CI pipeline would be triggered to run:

• Change in software dependency
• Change in Docker Image or HPC system
• Addition of new data analysis routines or kernels

3.5.2.Pipeline steps
The pipeline steps for any installation of JupyterHub are generally the same, but there are
some differences. An outline of these steps is presented below.

3.5.3.Docker and Kubernetes pipeline
When the CI pipeline is triggered, say for example a new version of the h5py Python module
is installed by modifying the container or conda environment recipe in the git repository, then
the CI is set up to:

• Rebuild all docker images using the container or conda environment recipe
• Recreate the dependent Jupyter kernels
• Push docker images to a docker registry
• Pull docker images from docker registry to JupyterHub server
• Run routines to test & validate kernels
• Deploy the new docker images if testing and verification were passed
• Transfer the testing and validation output files to a central storage system for later

review

3.5.4.HPC pipeline
For an HPC system the steps are similar, with the notable exception of no docker images
being built:

• Recreate the Jupyter kernels relying on this module
• Run routines to test & validate kernels
• Deploy the new kernel if testing and verification were passed
• Transfer the testing and validation output files to a central storage system for later

review

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 12 / 14 DOI: 10.5281/zenodo.5718671

3.5.5.Gitlab pipeline output
For this work, a GitLab CI was used (Figure 1), but there are a number of such tools
available and anything similar would be able to function the same.

When using GitLab, a record of the CI output is kept and is easily available for review or
re-execution if needed, for example in case of temporary network interruptions.

3.5.6.Status of CI pipeline
The CI pipeline described here has been in use for several months in multiple production
JupyterHub installations at MAX IV Laboratory and has been tested at ESRF. These
installations are orchestrated by:

• Docker Swarm
• Kubernetes
• HPC (slurm)

Which make use of several tools:
• docker
• lmod
• GitLab

And depend upon the testing and validation tools developed for this work package:
• jnbv
• jupyter-notebook-validation

4.Summary
We have outlined tools for testing and validation to be used for ExPaNDS services. These
have been developed and delivered into production within the first part of the ExPaNDS
project.

A general GitLab CI/CD pipeline for horizontal infrastructures is available within DESY
EOSC PaN-cloud services:

● EOSC PaN GitLab: https://eosc-pan-git.desy.de

The testing & validation framework for Jupyter notebooks is set up and in use at MAX IV
Laboratory and could be easily configured to work at other ExPaNDS partners'
infrastructures:

● The code repositories are publicly available:
○ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jnbv
○ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-notebook-validation

● As are the docker images mentioned and the code used to produce them:
○ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-docker-stacks/contai

ner_registry

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 13 / 14 DOI: 10.5281/zenodo.5718671

https://eosc-pan-git.desy.de
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jnbv
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-notebook-validation
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-docker-stacks/container_registry
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-docker-stacks/container_registry

○ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-docker-stacks
● The HPC setup used is also available:

○ https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyterhub-hpc

Acknowledgements
ExPaNDS would like to kindly acknowledge EOSC Synergy for their activities in the
development of testing and validation guidelines and tools for EOSC software and services,
and in particular, Isabel Campos and her coworkers for the fruitful discussion around the
validation and testing of the ExPaNDS services. We would like to also acknowledge Loic
Huder (ESRF) for his valuable contribution to jnbv software.

References
1. D. Scardaci, D. Salvat, P. Fuhrmann, A. Barty, A. Ashton, S. Servan: ExPaNDS

General Architecture description in relation to the EOSC services, zeneodo (2020),
doi: 10.5281/zenodo.3697704

2. A. Barty, A. Ashton, P. Fuhrmann, U. Konrad, F. Lang, A. Manzi, Z. Matej,
B. Matthews, M. Ounsy, K. Pozsa, C. Reynolds, D. Salvat, S. Servan: Guidelines for
implementing the national Photon and Neutron RI's analysis services within the
EOSC, zenodo (2021), doi: 10.5281/zenodo.4569421

3. A. Ashton, A. Barty, P. Fuhrmann, U. Konrad, F. Lang, Z. Matej, M. Ounsy,
C. Reynolds, S. Servan: Photon and Neutron reference data sets: zenodo (2021),
doi: 10.5281/zenodo.4558708

4. P. Orviz, G.A. López, D.C. Duma, G. Donvito, M. David, J. Gomes: A set of Common
Software Quality Assurance Baseline Criteria for Research Projects, Digital
CSIC (2020), v3.2, doi: 10.20350/digitalCSIC/12543

5. P. Orviz, M. David, J. Gomes, J. Pina, S. Bernardo, I. Campos, G. Moltó, M. Caballer:
A set of Common Service Quality Assurance Baseline Criteria for Research Projects,
Digital CSIC (2020), doi: 10.20350/digitalCSIC/12533

6. T. Zamani, K. Koumantaros, P. Weber, D. Scardaci, J. Jensen, C. Condurache:
EOSC Hub Technical Specification - Federation Services - Monitoring, EOSC-hub
(2020), link: wiki.eosc-hub.eu/display/EOSCDOC/Monitoring

7. A. Andronidis, M. Tsantekidis, D. Vrcic: EOSC’s ARGO service, EOSC-portal (last
visited Nov, 2021), link: argoeu.github.io, argo.eosc-portal.eu

8. R. McLay, K.W. Schulz, W.L. Barth, T. Minyard: Best practices for the deployment and
management of production HPC clusters, State of the Practice Reports, SC11 (2011),
p. 9, doi: 10.1145/2063348.2063360

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641.

Date: 30/11/2021 14 / 14 DOI: 10.5281/zenodo.5718671

https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyter-docker-stacks
https://gitlab.com/MAXIV-SCISW/JUPYTERHUB/jupyterhub-hpc
https://doi.org/10.5281/zenodo.3697704
https://doi.org/10.5281/zenodo.3697704
https://doi.org/10.5281/zenodo.3697704
https://doi.org/10.5281/zenodo.4569421
https://doi.org/10.5281/zenodo.4569421
https://doi.org/10.5281/zenodo.4569421
https://doi.org/10.5281/zenodo.4569421
https://doi.org/10.5281/zenodo.4558708
https://doi.org/10.5281/zenodo.4558708
http://dx.doi.org/10.20350/digitalCSIC/12543
http://dx.doi.org/10.20350/digitalCSIC/12543
http://dx.doi.org/10.20350/digitalCSIC/12543
http://dx.doi.org/10.20350/digitalCSIC/12533
https://doi.org/10.20350/digitalCSIC/12533
https://wiki.eosc-hub.eu/display/EOSCDOC/Monitoring
https://argo.eosc-portal.eu/
http://argoeu.github.io
https://argo.eosc-portal.eu
https://doi.org/10.1145/2063348.2063360

