Gefördert durch:

Universität Stuttgart

Stuttgarter Lehrstuhl für Windenergie (SWE) am Institut für Flugzeugbau

aufgrund eines Beschlusses des Deutschen Bundestages

Presentation of the research project "Lidar data correction for sites in complex terrain" (LoTar).

17.11.2021

Presenter: Dr. Tobias Klaas-Witt

Authors:

Dr. Doron Callies, Dr. Tobias Klaas-Witt (Fraunhofer IEE), Martin Hofsäß, Oliver Bischoff (University of Stuttgart)

IEE

Agenda

- Background and Motivation
- Project goals and structure
- Planned project work
- Possibilities to support the project

Background

- In the context of digitalization, there is an increasing need for **standardized and automatable solutions for the data preparation** of wind measurement data.
- There is a need for **common data standards** and semantics for data processing, analysis and exchange.
- Various activities e.g. IEA <u>Task 43</u> Wind Energy Digitalization, <u>OpenOA</u> or <u>brightwind</u> python library provide open tools.
- The LoTar project aims to contribute to **automated lidar data analysis** with focus on two key challenges

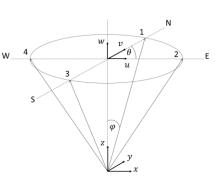
Two key challenges for lidar measurements

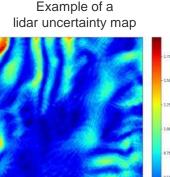
Lidar measurements in complex terrain

- There are corrections for lidar measurements in complex terrain, but their accuracy is unclear. ^[1,2,3,5,6,8]
- There is only a small number of publications comparing lidar and mast measurements in complex terrain, so there is little knowledge about the uncertainties of the corrections of lidar measurements.

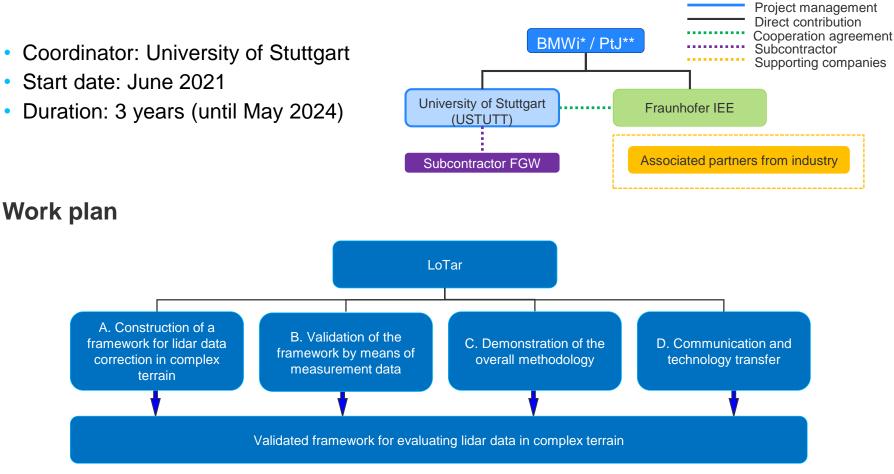
Lidar turbulence measurements

- The accuracy of lidar turbulence measurement is not sufficient. [4,5,6,7]
- The accuracy of turbulence measurement is site dependent.

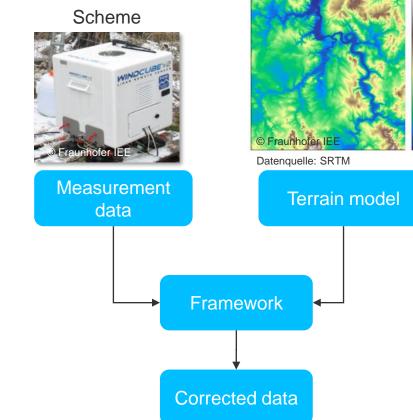

© Fraunhofer IEE


Project goal

Overall project goal:


Develop, test and disseminate an **open framework** for standardized and efficient processing of lidar data in complex terrain

- Better understanding of lidar error uncertainty in complex terrain
- Simplified correction / pre-estimation of lidar errors in complex terrain
- Development of a method for turbulence correction for lidar
- Analysis of geospatial data to identify the relationships between terrain characteristics and measurement errors


Project structure

6

What should the framework do?

- **Open source** (anyone can develop modules)
- Transparent implementation (no black box)
- Python with version management via GitHub
- Modularized data input and output
 - Lidar correction in complex terrain
 - Turbulence correction
 - _
- Consideration of industry requirements

۲

Terrain model

Planned work steps

- **Design of the framework** taking into account user requirements
- Development of a modules
 - for simplified preliminary estimation of lidar error in complex terrain
 - for turbulence correction of lidar measurements based on machine learning techniques
- **GIS analysis** for the classification of terrain characteristics in Germany
- Acquisition of suitable measurement data from existing measurement campaigns and execution of own measurements in complex terrain
- **Technology comparison** measurements with lidar devices of different types
- Round-robin test to determine the quality of the framework
- Stakeholder involvement (workshops) and discussion of the research results

We need data for the framework development

What we do

- Three measurement campaigns are projected
 - 2 Lidars + met mast (Autumn 2021)
 - 5 Lidars + met mast (Spring 2022)
 - 4 Lidars + met mast (Autumn 2022)
- All sites have different characteristics
- Short measurement campaign finished at "Rödeser Berg"
- Windcube V1 and Streamline against 200m met mast

Ways to support the project

What you could do

- **Provide measurements** where a lidar was next to a measurement mast (for at least 1 month).
 - Required data: Time series of lidar and measurement mast (time resolution: 10 minutes, period: as long as possible, at least 1 month), documentation of the measurement setup and (ideally) geodata
 - If necessary, data can also be provided anonymously
- Participate in a measurement campaign and provide a lidar
- Advice on design and participation in the Round Robin test planned by the project to correct lidar measurements in complex terrain
- **Completion of the project planned questionnaire** on the requirements and functional scope for the framework.

Contact

Thank you very much for listening!

- Coordinator University of Stuttgart:
 - Martin Hofsäß
 - Email: hofsaess@IFB.Uni-Stuttgart.de
 - Tel: 0711/68568308
- Fraunhofer IEE:
 - Dr. Doron Callies
 - Email: doron.callies@iee.fraunhofer.de
 - Tel: 0561/7294-236

Universität Stuttgart

Stuttgarter Lehrstuhl für Windenergie (SWE) am Institut für Flugzeugbau

References

- [1] Klaas, Tobias; Emeis, Stefan (2021): The five main influencing factors on lidar errors in complex terrain. https://doi.org/10.5194/wes-2021-26
- [2] Klaas, Tobias; Pauscher, Lukas; Callies, Doron (2015): LiDAR-mast deviations in complex terrain and their simulation using CFD. In: metz. DOI: 10.1127/metz/2015/0637. <u>https://doi.org/10.1127/metz/2015/0637</u>
- [3] Klaas, Tobias; Emeis, Stefan (2021): The five main influencing factors on lidar errors in complex terrain. https://kups.ub.uni-koeln.de/11349/
- Pauscher, Lukas (2017): Measuring and understanding site-specic wind and turbulence characteristics for wind energy applications. Dissertation. University of Bayreuth, Bayreuth. Faculty of Biology, Chemistry and Geosciences. <u>http://nbn-resolving.org/urn:nbn:de:bvb:703-epub-3369-9</u>
- [5] Pauscher, Lukas; Vasiljevic, Nikola; Callies, Doron; Lea, Guillaume; Mann, Jakob; Klaas, Tobias et al. (2016): An Inter-Comparison Study of Multi- and DBS Lidar Measurements in Complex Terrain. In: Remote Sensing 8 (9), S. 782. DOI: 10.3390/rs8090782. https://doi.org/10.3390/rs8090782
- Bradley, Stuart; Strehz, Alexander; Emeis, Stefan (2015): Remote sensing winds in complex terrain a review. In: Meteorologische Zeitschrift (24), S. 547–555. DOI: 10.1127/metz/2015/0640. <u>https://doi.org/10.1127/metz/2015/0640</u>
- Sathe, A.; Mann, J.; Gottschall, J.; Courtney, M. S. (2011): Can Wind Lidars Measure Turbulence? In: J. Atmos. Oceanic Technol. 28 (7), S. 853–868. DOI: 10.1175/JTECH-D-10-05004.1. https://doi.org/10.1175/JTECH-D-10-05004.1
- [8] Hofsäß, Martin; Clifton, Andrew; Cheng, Po (2018): Reducing the Uncertainty of Lidar Measurements in Complex Terrain Using a Linear Model Approach. In: Remote Sensing 10 (9), S. 1465. DOI: 10.3390/rs10091465.
 https://doi.org/10.3390/rs10091465.