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Abstract

Over-The-Air Software Updates (OTASU) are gaining popularity on the safety-critical domain. The moti-
vation behind this trend is twofold. On the one hand, the ability of adding new functionality and services to
the system without a complete redesign makes product makers more competitive and improves user experi-
ence. On the other hand, the increasing connectivity of emerging embedded devices makes OTASU a crucial
cyber-security demand to keep the system up-to-date with latest security patches. However, the application
of OTASU in the safety-critical domain is not straightforward, as they are not contemplated by current func-
tional safety standards. The UP2DATE European H2020 project, seeks to provide solutions to cope with
the challenging requirements of safety and security standards with respect to software updates. This paper
gives an overview of UP2DATE, its foundations and the initial description of its safe and secure architecture
that builds around composability and modularity on heterogeneous high-performance platforms.
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1. Introduction and Background

During the last decades, the safety-critical in-
dustry has been immersed in a process of con-
tinuous transformation. As a result, the number
of critical functions realized by software is grow-
ing in conjunction with features that make systems
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more intelligent and autonomous [1, 2, 3]. How-
ever, this evolution calls for a dramatic paradigm
change that replaces traditional simple, predictable
and isolated proven-in-use safety-critical systems by
complex and inter-connected solutions with higher
computing power. This tendency brings several
challenges for assuring the safety and security of
the system. On the one hand, it gets increasingly
harder to provide full evidence of the lack of resid-
ual faults in the system, due to uncertainties of the
testing process and the unfeasibility to test all pos-
sible scenarios that may arise at system operation.
On the other hand, the extended connectivity also
brings potential threats that become cyber-security
of utmost importance.

Current trends forecast that Over-The-Air Soft-
ware Updates (OTASU) will play an important role
for overcoming these challenges [4] by enabling the
execution of regular remote updates for bug fixing,
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adding new functionality and solving security vul-
nerabilities [5, 3, 6]. The automotive domain is a
clear example of this trend, where over-the-air up-
dates are being currently adopted for non-critical
parts like the entertainment system [7, 8]. The next
natural step is to extend OTASU to the whole vehi-
cle, including safety-critical software, an area where
for the moment most mainstream manufacturers
stand aside. This is due to the potential severe con-
sequences of their malfunction and the strict certi-
fication requirements of such systems [7, 6].
The UP2DATE project seeks to address the main

dependability challenges brought by OTASU to the
critical domain, with special focus on safety, secu-
rity, availability, maintainability, and the increas-
ing platform complexity of emerging heterogeneous
Multiprocessor System on a Chip (MPSoC) devices.
This paper is an extension of a previous confer-

ence paper that summarizes the UP2DATE project
(i.e., [9]) and adds details on its status and de-
scription of the architecture. The rest of this pa-
per is organized as follows. Section 2 defines the
project mission and its objectives. Section 3 de-
scribes the main innovations and concepts that have
been extensively extended with the definition of an
update cycle and its steps. Section 4 (completely
new) details previous UP2DATE architecture def-
inition and lists main safety and security features.
Section 5 presents the industrial use-cases for the
evaluation of the project and Section 6 (completely
new) presents the project implementation details.
Finally, the paper concludes with a summary of the
project in Section 7.

2. Project mission and objectives

The mission of UP2DATE is bringing to-
gether the trend towards OTASU and heteroge-
neous computing platforms in Mixed Criticality
Cyber-Physical Systems (MCCPS). To this end,
UP2DATE has the technical objectives and the
expected results explained below and represented
in Figure 1. These objectives and results are
related to three main components that comprise
the UP2DATE architecture: a server, a mixed-
criticality gateway and several end-devices.

O.1 Safety and Security (SASE) of complex
platforms.

The first objective of the project is to lay the
basis for the safe and secure integration of mixed-
criticality applications on heterogeneous MPSoC
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and updates
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Update

Monitor

Update Monitor

SASE Cer��ability 

assessment

Figure 1: Main UP2DATE building blocks and results.

platforms. To this end, during the initial stages
of the project, we analysed the safety and secu-
rity design methods for such computing platforms.
The activities related to this objective resulted
in the definition of countermeasures according to
safety and security standards and their evaluation
on candidate project platforms like the Zynq Ul-
traScale [10] or NVIDIA JETSON [11] (R1 in Fig-
ure 1). As outcome of these activities, the publi-
cation in [12] presents the evaluation and rationale
behind platform selection and a second publication
that is currently under review describes the safety
and security analysis framework and results [13].

O.2 Design-by-contracts for modularity and
composability.

The second objective rests in designing an up-
date concept based on modularity and composabil-
ity. This will allow doing partial software updates,
while guaranteeing independence among multiple
software components. To this end, UP2DATE will
use the concept of design-by-contracts [14] (R2 in
Figure 1), further explained in Section 3.1.1. Con-
tracts will be part of the project update cycle (Sec-
tion 3) and will serve to ensure that software com-
ponents can be updated (i) without incurring un-
affordable validation and verification costs; and (ii)
ensuring that the SASE properties of the already
integrated mixed-criticality software are preserved.
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O.3 Observability, controllability and feed-
back strategies.

The project has the objective to develop observ-
ability and controllability solutions (R3 in Figure 1)
that provide support for updates while ensuring
safety and security for mixed-criticality tasks. On
the one hand, observability will be implemented
through event monitors present in most modern
architectures [15], which will be compared against
the specification and safe design thresholds. This
information will be additionally examined to con-
tinuously improve the design. On the other hand,
controlability seeks to adapt hardware and software
configuration to the needs of the new update. On
the initial project phase, we have started with the
definition of the overall monitoring strategy, later
presented in Section 3.3.

O.4 UP2DATE software architecture.

This objective seeks to implement previous con-
cepts in the UP2DATE architecture (R5 in Fig-
ure 1). This architecture shall implement the re-
quired services to support the entire update cycle
(R8 in Figure 1) together with best safety and se-
curity practices and requirements from standards,
such as secure communications (R4 in Figure 1).
The current project progress includes a high-level
definition of this architecture, which is later pre-
sented in Section 4.

O.5 Industrial use-cases.

The fifth objective of UP2DATE is to evaluate
the architecture and contributions in two real-world
case-studies: railway and automotive (R6 and R7
respectively in Figure 1). A description of these
use-case applications is given in Section 5.

O.6 Future safety and security certifiability.

The final technical objective of UP2DATE is to
work with certification authorities towards the fu-
ture certifiability of main UP2DATE concepts, ar-
chitecture and solutions. Where needed, the project
will propose updates to current standards or certi-
fication processes.

3. Concept and approach

This section, defines the overall UP2DATE con-
cept and approach by defining an update cycle that
has been conceived with the purpose of achieving
previous objectives. This update cycle, depicted in

Figure 2(a), is comprised of 10 steps classified into
three main phases: (i) Design and release of up-
dates, (ii) Update deployment phase and (iii) Run-
time phase. In addition, Figure 2 shows how this
update cycle is aligned with the IEC 62443-2-3 [16]
technical report, entitled Patch management in the
IACS environment, which defines the patch lifecy-
cle model of Figure 2(b) [5, 17].

Next subsections will explain each of these
phases, with special focus on the following key tech-
nological innovations that UP2DATE seeks to in-
troduce to current OTASU approaches: (i) Safety
and security contracts concept on the design phase
(Section 3.1), (ii) Software update continuum for
the deployment (Section 3.2), and (iii) Monitoring
on the runtime phase (Section 3.3).

3.1. Design and release of updates

The UP2DATE project will advocate for modu-
larity as the design method to facilitate software
modifications in line with the recommendations of
functional safety standards such as IEC 61508-3,
clause 7.4.2.4 [18]. To this end, UP2DATE will
adopt the design-by-contracts concept [14], where
a set of SASE properties will be used to specify the
dependencies of software components.

3.1.1. Step 1: Development of new functions and
updates

The development of new functions and updates
shall include the definition of Safety and Secu-
rity properties associated to the different software
components. These properties will be then im-
plemented by contracts and compatibility checks
that play an important role on the OTASU strat-
egy, specially during the compatibility and inte-
gration checking step (Section 3.2.1) and runtime
monitoring (Section 3.3). Until now, contracts re-
mained in the realm of software, between two enti-
ties only, and static (i.e., used at design time and
never changed during system life time). In con-
trast to common design-by-contracts approaches,
in UP2DATE, contracts will be complemented with
hardware resource requirements and safety and se-
curity constraints and their definition will evolve
during system lifetime with new software updates.
UP2DATE will integrate the definition of two types
of SASE properties (see Figure 3):

� Horizontal cover the dependencies between
connected software components (e.g., timing
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(b) IEC 62443 Patch lifecycle model [5, 17].

Figure 2: UP2DATE cycle relation with IEC 62443 patch model.

and causality properties in a chain of software
components).

� Vertical define the interfaces with the under-
lying system software and hardware (i.e., re-
source assignment). This is critical to ensure
that there exists at least one acceptable config-
uration and environment to accommodate the
new update, without causing unexpected inter-
ferences on the rest of the system.

3.1.2. Step 2: Design-time checks

As illustrated in the IEC 62443 process of Fig-
ure 2(b), all available software updates shall be
subject to test before they are approved for release.
Following the modularity approach, the project will
assume that each software component, before being
available for update, has been subject to strict ver-

So�ware 

Module
SASE INPUTS

(requirements)
SASEOUTPUTS

PLATFORM

Horizontal 

SASE

proper�es

Ver�cal

SASE

proper�es

- Timing requirements

- Security requirements

- SW cri�cality

- Resource usage

- Power / Energy /

Temperature

Figure 3: Horizontal and vertical SASE properties.

ification and validation according to the lifecycle
requirements defined by safety and security stan-
dards. The update cycle will then focus on evalu-
ating the dependencies of the new software compo-
nent with the rest of the system, both in terms of
software and hardware dependencies as previously
explained. It shall also be ensured that the up-
date does not introduce regressions in the system
[16]. In this step, an additional check, where the
applicability to the update for the specific target
platform and its configuration is evaluated, shall
be performed. If passed, it will result in update
approval or, otherwise, in an update rejection.

3.1.3. Step 3: Update release

Once the update is tested and approved, it shall
be released for download to the target devices. For
the software update release and distribution, the
project considers two alternative approaches:

1. Polling: the gateway regularly asks to the
server if new software is available (e.g., once
a day).

2. On request: the server sends a notification to
the gateway informing that a new update has
been created and is ready for release. The gate-
way downloads and installs such update.

Commonly, the first approach is adopted as its
implementation is usually simpler. Nevertheless,
this approach presents scalability issues, including
communication overheads and bandwidth waste. In
line with this, a much more detailed and precise
software update distribution control is possible fol-
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lowing the second approach. In this case, the dis-
tribution and installation of the update can be ac-
curately managed. To this end, a Software Up-
dates Management System (SUMS) is commonly
used, which may decide (also upon user request)
which device will be updated with which specific
software version and at which time instance. This
method makes possible, for example, organizing up-
dates according to the geographical location or mar-
ket needs as well as simultaneous update downloads
and upgrades of dependent systems.

3.2. Update deployment

In contrast to best security practices, regular
software updates are not considered by current
safety standards. Given that, the project will fol-
low an incremental strategy for their deployment,
covering a grey scale from simple to more complex
software updates. This incremental strategy spans
a design space defined over the three different axes
of Figure 4:

� Criticality refers to whether the software el-
ement to update does have functional safety
implications and security relevance. As a start-
ing point, the project will consider non-critical
software updates. In this case, the main chal-
lenge rests on guaranteeing that the update
does not adversely impact to the critical func-
tionality of the system. Then, the approach
will be extended to critical software, consider-
ing additional mechanisms in the update cycle
to demonstrate that the whole procedure is safe
and secure.

� Dynamicity relates to the fact that updates
can take place at different system states. In the
simplest scenario, the update can be deployed
when the system is not in operation (i.e., in
a safe state). At the other end is the case for
dynamic updates that take place while the sys-
tem is under operation without the need of a
halt and restart [19], improving overall system
availability. Dynamicity has a direct impact on
the update verification and activation steps of
the update cycle of Figure 2(a), which for this
reason, are represented in a different colour.
In the first case, the verification and activation
steps correspond to the deployment phase of
the cycle. However, for dynamic updates, these
two steps are effected at the runtime phase. At
the end of this section, Table 1 defines the main

Figure 4: Software Update Continuum.

differences of the update deployment phase de-
pending on this dynamicity.

� Domain specificity has to do with the ab-
straction of the update architecture. On its
initial phases, the project will focus on domain-
independent approaches and the technical im-
plementations will be tested through bench-
marks and example applications. In final
phases of the project the concepts will be then
tailored to the automotive and railway do-
mains through the case-studies of Section 5.

3.2.1. Step 4: Compatibility and integration check

According to IEC 62443-2-3, the update release
shall be followed by internal tests performed by
the asset owner before authorizing the update for
installation (Figure 2(b)). In this step, it is re-
quired to confirm the compatibility of the new soft-
ware with the running system and its configura-
tion [20]. For this, the gateway will implement a
self-aware integration checking service. This ser-
vice will compare the SASE properties (e.g., tim-
ing, performance, resource assignment, energy con-
sumption and criticality) of any new update against
the current status of the MCCPS load before apply-
ing it. This check will guarantee system indepen-
dence and composability, avoiding the need to test
the whole system but just the updated component
and its interfaces and dependencies with the rest of
the system.

3.2.2. Step 5: Download

The download step relates to all required activi-
ties for the transfer of required software, data and
files from the server to the gateway and from the
gateway to the end-devices. In this process, security
is of paramount relevance. Initially, the server and
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gateway shall stablish a secure connection chan-
nel. To this end, a secure communication protocol,
based on Transport Layer Security (TLS), shall be
used, such as FTPS or HTTPS. In the handshake
process, both the gateway and the server shall mu-
tually be authenticated, for example, by means of
digital certificates. Once the secure channel is es-
tablished, the software update is downloaded into
the gateway.

3.2.3. Step 6: Installation

After secure download, the installation process
will store the received files in the reprogrammable
program memory. This shall be complemented with
a controllability service responsible of setting up the
system to accommodate the new software (e.g., as-
signing new resources to the software component).
The installation can be done either by placing the
software image in a temporary memory location
and then copying it to the corresponding address
space at the later activation step or by creating a
new location from where the new software will run
after activation. Depending on the update sever-
ity and confidentiality, the information contained in
the update package shall also be protected within
the gateway, by means of encryption.

3.2.4. Step 7: Verification

At this point, the gateway checks the correctness
of the new software installation and configuration
before its activation. The verification will be real-
ized in two flavours:

1. Dynamic online checks with rollback: The up-
dated function is stimulated with test data to
check pre-defined corner cases on the target
platform, similar to built-in-self-tests. This
check belongs to the deployment phase of the
update cycle of Figure 2(a).

2. Parallel and monitored operation in quarantine
mode: The “old” and the updated software
components are executed in parallel for a pre-
defined amount of time (i.e., in a quarantine
mode) until it has been approved to be work-
ing correctly according to a predefined confi-
dence level. This check will be performed at
run-time.

3.2.5. Step 8: Activation

The activation is the last step to start running
the newly installed software update. This step in-
volves invalidating and storing a backup of previous

software version and activating the new one. The
activation can be done either at deployment phase
or at runtime phase:

� Offline activation: the new image is copied to
the target location replacing previous software
image and it is activated through a reboot.
This approach is usually quite slow due to the
overhead required for copying the image and
as it requires a reboot, this approach is only
valid for offline updates where the system shall
be in a safe-state.

� Run-time activation: in this case, software up-
dates are dynamically triggered while the sys-
tem is in use, without interrupting or stopping
the program execution while the update is in
progress. To this end, the new binary is stored
and instantiated in a new memory location
during the installation phase. For this purpose,
state information transferring procedures are
executed. The update manager just swaps the
old image by the new one, once the quarantine
period of the verification ends [21, 22].

The following Table 1 provides a summary of the
main differences between the static and dynamic
update deployment strategies for the affected steps.

Table 1: Differences on static vs dynamic update deployment

Step Static Dynamic

Installation Temporary mem-
ory

Directly in Pro-
gram memory
(executing state
transformations)

Verification Dynamic on-
line checks with
rollback (at de-
ployment)

Parallel and moni-
tored operation in
quarantine-mode
(at runtime)

Activation Offline:

1. Store old soft-
ware

2. Copy new
software

3. Reboot

Runtime: Swap to
new program

3.3. Runtime monitoring

Monitoring is an useful approach that relies on
observing the runtime execution behaviour of a
target system in its final environment with differ-
ent potential applications. In UP2DATE, runtime
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monitoring will be used with the following 4 pur-
poses:

1. Update validation: to get evidence that the
updating procedure was successful and that it
does not introduce regressions or affect on the
operation or safety of the overall system.

2. Continuous safety monitoring: for preventing
the system from entering an unsafe state, i.e.,
guaranteeing that it is operating within safe
bounds (e.g., checking that the resource usage
of a given software component is below a pre-
defined safe upper-bound).

3. Continuous security monitoring: for identi-
fying unexpected and unusual system pat-
terns (i.e., anomaly detection) that could be
caused by security attacks. In addition, for
preventing from these attacks, these monitor-
ing will include periodic vulnerability assess-
ments through automated vulnerability check-
ing tools.

4. Design optimization: to improve the design
based on runtime information that serves to
gain evidence on the real system behaviour and
resource usage.

The overall strategy to accomplish previous mon-
itoring goals is shown in Figure 5 and rests on ob-
serving internal system events and interactions for
each software component at runtime and deriving
the required SASE metrics out of them, which could
be then evaluated either in real-time during the ex-
ecution (i.e., online monitoring) or later on through
offline monitoring depending on which of the afore-
mentioned purpose is being accomplished.

HW

System 

SW

App SW

Event recorder

HW events

OS events

App. events

Security 

Fingerprin�ng

(o�ine)

Run�me

Veri�ca�on

(online)
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op�miza�on

(o�ine)

O�ine Monitoring

Online Monitoring

Figure 5: Monitoring strategy.

3.3.1. Step 9: Online Monitoring

The first two objectives of the monitoring, that is,
update validation and continuous safety monitor-

ing, require the runtime detection of faults in real-
time, to perform dangerous fault detection and re-
action before causing a hazardous event. Therefore,
the runtime verification of Figure 5 will implement
online monitoring to verify, based on runtime infor-
mation, that the system meets its specification and
that previously obtained SASE metrics are within
their safe and secure range before, during and after
an update.

3.3.2. Step 10: Offline monitoring

For security monitoring and design optimization
instead, the runtime information will be sent to a
remote server for offline automatic or manual in-
spection. For the former, the server will integrate
existing monitoring tools from the security domain.
For the latter, design optimization, the data will be
made available to the system developer for an op-
timized system redesign.

4. UP2DATE Architecture

This section presents a high-level reference archi-
tecture that implements the previously described
update cycle and its concepts. The overall archi-
tecture is comprised of the three main subsystems
of Figure 6: a server, a MCCPS gateway and one or
several end-devices that are logically separated into
different network zones, in line with well-known se-
curity practices and standards. The numbers shown
on Figure 6 refer to the update cycle steps of previ-
ous Figure 2(a). The definition of security zones is
further explained in next Subsection 4.1, followed
by a description of the three aforementioned sub-
systems.

4.1. Establishing zones and conduits

The overall system architecture is based on a
defence-in-depth strategy, which is based on defin-
ing different security layers and protection mea-
sures. These protection barriers provide multiple,
usually concatenated, security protections, with the
aim of preventing and delaying any cyber-attack.
To this end, assets are allocated into different secu-
rity zones (depending on the required risk level and
protection) and conduits are used to connect such
zones. In addition, a target security level is assigned
to each zone and conduit. The assignment of zones
is the result of an initial cyber-security risk analysis
for the reference architecture, which should be later
tailored and detailed for specific use-cases. Those

7



MCCPS Gateway

Server

End-devices

Repository Tester
Monitoring 

pla�orm

Update Middleware
Monitoring

Middleware

Simpli�ed 

Update

manager

Monitoring 

data

collec�on

Applica�on
Simpli�ed 

Update

manager

Monitoring 

data

collec�on

Applica�on

Bootloader Monitoring Applica�on

Applica�on 

par��onsApplica�on 

par��onsApplica�on 

par��ons

Contracts

New func�ons 

and updates

SUMS

Management

Control

SL1

End-devices

SL0

SL2

Figure 6: High-level update architecture.

assets within a zone share common security require-
ments and enable the implementation of common
security countermeasures to mitigate the identified
risks. In the scope of UP2DATE, the following ref-
erence zones, shown in Figure 6, have been defined
based on IEC 62443 requirements:

� Management: industrial plant management
services are included. In the scope of this
project, it will include software update spe-
cific services such as the update and monitor-
ing servers.

� Control: high-level industrial control and su-
pervisory systems are included in this logical
segment (i.e., the MCCPS gateway). The sub-
systems in this zone may execute both safety-
related and non-safety-related functions and
services.

� End-devices: safety-related I/O and low-level
control devices (such as sensors, actuators, and
programmable controllers) are included.

It shall be noted that for accesses to an exter-
nal untrusted network (such as the internet) an
additional zone that provides an isolated network
layer between the Internet and the industrial net-
work (i.e., the management zone) shall be set. This
zone is often known as De-Militarized Zone (DMZ)
and it is left out of project scope.

All zone boundaries are supervised and managed
through firewalls, in which a security policy is en-
forced. In these security policies (in each firewall)
all network traffic shall be denied by default, and
only legitimate and required communications al-
lowed. Within each zone, the corresponding com-
munication protocols should be authorized.

4.2. Server

The UP2DATE architecture will integrate an up-
date server and a monitoring server, which can be
both integrated in the same device with a virtual-
ized environment. The update server will be mainly
controlled by the SUMS, which will integrate the
necessary services to check available software up-
dates on a repository, and execute the required de-
sign time checks before releasing them. The mon-
itoring server instead, will collect continuous feed-
back information from the different gateways and
make this data available for automatic or manual
examination.

An important aspect of the server is its secure
communication with the gateways or other net-
works. As defined in previous subsystem, the server
and gateway are assigned to different security zones
and their boundaries supervised. A secure com-
munication should be established among such el-
ements, which shall ensure at least the following
security properties:

� Authenticity: ensure that the identity of both
the gateway and the server are proved.

� Confidentiality: guarantee that the informa-
tion sent is kept confidential by using encryp-
tion mechanisms.

� Integrity: detect any data manipulation during
its transmission.

4.3. MCCPS Gateway

The MCCPS Gateway is the central element of
the UP2DATE architecture for two main reasons:

1. It implements the update and monitoring mid-
dlewares, which are the main responsible to
manage and run update specific services on
multiple system devices. The gateway handles
the connection with the server and connects to
the system bus where multiple control devices
are connected.
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2. It integrates multiple mixed-criticality applica-
tions that in the past have been deployed into
separate control units. This reduces the overall
number of control units present in the system
and brings several benefits such as improved
integrity, scalability and flexibility [23].

In this section we present the high-level design
practices and associated safety and security mecha-
nisms adopted to combine mixed-criticality require-
ments together with the architectural needs of the
update cycle.

4.3.1. Reference Gateway Architecture

Integrated mixed-criticality architectures usually
have some common features, such as the integration
of different system applications on top of a virtual-
ization layer. Based on this approach, the gateway
architecture depicted in Figure 7 has three main
building blocks:

1. At the bottom of the architecture, the
MCCPS gateway is based on emerging high-
performance heterogeneous platforms that
combine multicore CPUs with accelerators
such as GPUs, FPGA or dedicated accelera-
tors providing orders of magnitude higher per-
formance than conventional control units.

2. In the middle, a separation kernel with virtu-
alization features (i.e., hypervisor) will provide
functional separation among mixed-criticality

applications through virtual partitions. In ad-
dition, it allows the execution of multiple dif-
ferent operating systems on the same platform.

3. The different services that compose the con-
ceptual update and monitoring middlewares of
Figure 6 are allocated into different partitions
(see Subsection 4.3.2). These partitions will
command the hypervisor to provide the update
and monitoring services to user applications.

The criticality level specified in Figure 7 refers
to the target level (SIL-T /SL-T) of the UP2DATE
gateway architecture, i.e., the maximum level sup-
ported by the system design. While the SIL and
SL of each partition will depend on the final usage
of the system and are application dependent, hard-
ware layer and the hypervisor are shared among
all partitions and the independence and incremen-
tal certification guarantees rely on them. Thus, the
hypervisor and the platform inherit the maximum
safety integrity and security level of the partitions
present on the gateway.

4.3.2. Partitions

Partitioning is a key aspect for enabling the in-
dependent safety and security assessment and eval-
uation of each software component according to its
associated safety-integrity and security level. This
significantly reduces the impact of partial software
updates on the system. From a safety point of view,
partitioning confines the effects of design faults to
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the partition where it originates and prevents their
propagation to other partitioned applications by
guaranteeing separation and design fault contain-
ment [24]. For security, partitioning is a common
mechanism used to implement a Multiple Indepen-
dent Levels of Security (MILS) architecture, where,
if a partition gets compromised, its effects are re-
stricted to the partition boundaries [21]. The pur-
pose of each of the partitions of Figure 7 is the
following:

� P0 - Update Manager : This partition is the re-
sponsible of managing the communication with
the server and deploying software updates in
the gateway itself according to the update-
cycle steps, including system reconfiguration
to adapt to the update. Therefore, this par-
tition shall have higher privilege rights than
other partitions. For this reason, this parti-
tion has the highest target integrity level of the
system (SIL 3) and SL 1 due to its connection
interface with the server (see Section 4.3.4).

� P1 - Ext-Update Manager : This partition
manages and controls software updates on the
end-devices. The inclusion of this partition be-
tween the update manager and the end-devices
provides additional security ensuring that no
partition has access to both server and end-
device connection networks. As in the previous
case, the target SIL of this partition is SIL 3
and regarding security SL 0 because it is sepa-
rated from server side connections.

� P2 - Offline Monitoring : The main purpose
of this partition is to transmit monitoring in-
formation from the gateway to the server. To
this end, a monitoring client will be installed
on the partition. The transmission of this data
does not have a direct impact on system safety
and therefore this partition is non-safety re-
lated (SIL 0). Regarding security, as it is con-
nected to the server, its target level is SL 1.

� P3 - Online Monitoring : This partition will
perform real-time fault detection by comparing
the monitoring information with respect to the
specification. For this reason, this partition is
of highest target integrity level on the system
(SIL 3) and SL 0 as its external interfaces are
restricted to the connection with end-devices.

� P4..N - Application Partitions: These are op-
tional user applications. For security, these

partitions shall not be connected to the server
network and their integrity level will be appli-
cation dependant, considering SIL 3 and SL 1
as the maximum supported level.

For implementing the monitoring strategy of pre-
vious Figure 5, each partition and the virtualiza-
tion layer integrate an event recorder. These event
recorders will observe and transmit hardware, op-
erating system and application events to the on-
line monitoring partition (P3 ). With these data,
P3 will compute the SASE metrics for their eval-
uation through the online and offline monitoring
approaches.

4.3.3. Resource allocation

Resource assignment and their usage are crucial
to achieve the separation required by standards.
This resource allocation is defined at design time
and implemented through the configuration file of
the hypervisor. Then, each software update shall
be accompanied by the vertical SASE properties
that specify the resource requirements of each com-
ponent and by a new pre-defined configuration file.
In order to detect failures in the resource alloca-
tion or usage, UP2DATE will implement multiple
compatibility checks:

� Pre-update: for each resource used by a par-
tition, it shall be ensured that the configured
resource budget is sufficient to meet with the
component’s resource requirements. Moreover,
it will be confirmed that the sum of every par-
titions’ resource budgets does not exceed sys-
tem’s resource capacity for each resource.

� During and Post-update: At runtime, the re-
source usage of all partitions (including update
and monitoring related partitions) will be mon-
itored to guarantee that no partition exceeds
its resource budget and that it fulfils its re-
source requirements.

Through this partitioning and resource alloca-
tion, the system provides resilience against resource
exhaustion failures and attacks (e.g., (distributed)
Denial of Service attacks) and is able to maintain
essential services (e.g., safety functions).

4.3.4. Interfaces

The interfaces of the mixed-criticality gateway,
depicted in Figure 7, can be classified into External
Interfaces (EIF) and internal interfaces (referred as
inter-partition communication (IPC)).
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� External interfaces will connect the gateway
with the server (EIF SRV xx), with the end-
devices (EIF ED xx) and optionally with ad-
ditional user-specific networks (EIF xx). As
illustrated in Figure 7, update and monitoring
related partitions of the gateway already re-
quire a number of external interfaces to trans-
mit the update packages and monitoring data.

� Internal interfaces (inter-partition commu-
nication (IPC)) channels will allow data trans-
mission between different partitions. These
channels shall be defined by the system inte-
grator and managed by the hypervisor. The
hypervisor shall deny all communication at-
tempts on not configured IPC channels and
control the access rights of each partition (e.g.,
read or write). The update and monitoring
related partitions of the gateway already re-
quire a number of internal interfaces to share
the update packages and monitoring observa-
tions. These internal interfaces, their purpose,
associated partition (part.) and communica-
tion direction (dir.) are listed in Table 2.

Table 2: Partition connectivity table
Interface Purpose Part. Dir.
IPC UM Update package P0

to end-devices P1
B

IPC MON1 Monitoring information P3 S
to update manager P0 D

IPC MON2 Monitoring information P3 S
to Ext.-update manager P1 D

IPC MON3 Monitoring information P3 S
to the server P2 D

IPC MONP0 P0 events P0 S
for monitoring P3 D

IPC MONP1 P1 events P1 S
for monitoring P3 D

IPC MONP3 P2 events P2 S
for monitoring P3 D

IPC MONP4 P4..N events P4..N S
IPC MONPN for monitoring P3 D

B = Bidirectional; S = Source; D = Destination;

4.3.5. Hardware access and privilege operations

The hypervisor is usually executed with higher
privilege rights and manages the execution of
privileged operations requested by the partitions.
Therefore, in the same way as inter-partition com-
munication interfaces, the hypervisor controls all
accesses to the system hardware resources and pre-
vents partitions from manipulating restricted regis-
ters. The hypervisor shall integrate a user control
scheme to grant privileges only to users or parti-
tions necessary to perform the intended operations.

In the case of UP2DATE, the ‘P0 – Update man-
ager’ partition needs higher privilege rights than
other partitions to have the ability to control other
partitions (e.g., stop, start, restart). Some commer-
cial hypervisors already differentiate between “Sys-
tem Partition” and “user partition” with these dif-
ferent control rights.

4.4. End-devices

End-devices are a set of distributed embedded
control subsystems or Electronic Control Units
(ECUs) connected to the gateway. The gateway
acts as the central distribution point for end-device
updating. The execution of software updates on the
end-devices brings a number of particularities that
were not considered in the gateway update service,
like the simultaneous update of several devices, the
need to guarantee coherence among the different
update files and versions and restricted amount of
resources and stringent energy consumption and
temperature requirements.

Nowadays, most ECUs already have some repro-
gramming capability, which is done in-situ by an
operator commonly with dedicated tools to access
the flash bootloader. UP2DATE will follow same
strategy, with end-devices integrating a bootloader
that will be addressed via gateway communications.
In addition to the bootloader, the end-devices will
also integrate monitoring services to send to the
gateway the required information for update vali-
dation.

5. Use-case applications

The project outcomes will be evaluated in two in-
dustrial use-cases from the railway and automotive
domains.

5.1. Railway use-case

The railway use-case sets its focus on the rail-
way signalling product range. The end-device is a
Safety Detector Manager (SDM), that gets infor-
mation from several sensors along the railway line
(lateral wind detectors and falling object detectors
for instance), processes this information and sends
it as consolidated data to the railway interlocking.
The railway interlocking uses that information to
protect the train routes in case any of the detectors
raises an alarm.
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5.1.1. Current update solution

In the installation phase of a Signalling System, it
is frequently necessary to modify operating param-
eters or even some software functionalities. Such
changes usually affect multiple devices (with dif-
ferent levels of criticality) along the trackside sig-
nalling and communication system. The update of
such devices usually requires a team of specialized
technicians to physically access them, which results
in a costly and time-consuming procedure. When
updating safety related devices, the physical pres-
ence of a member from the railway administration
infrastructure manager is required. Moreover, the
update procedure of safety related devices includes,
besides upgrading devices, performing conformance
tests and managing the corresponding documenta-
tion.
During the maintenance phase, uploads are less

frequent, but given that the system is under opera-
tion, the impact is even greater. The update must
be performed when the train service is suspended,
late at night or during scheduled track maintenance
cycles. When the update is performed at night, it
might require several successive nights, where mul-
tiple coordinated teams simultaneously download
test versions on every system device, carry out the
tests and restore the previous approved version to
re-establish normal operation. The estimated cost
of loading one version is equivalent to 15 specialized
technicians working during a whole night.

5.1.2. UP2DATE objectives

The UP2DATE architecture instantiation pro-
posed for the SDM can bring great savings in the
installation and maintenance phases of railway sig-
nalling devices. In fact, the main objective is to
achieve a 50% long term cost reduction during the
whole product life cycle. All in all, the integration
of the UP2DATE platform in the railway signalling
system will:

� Automatize this both costly and time-
consuming updating procedure, especially in
safety critical systems where the update pro-
cedure itself gets even more complicated.

� Reduce the team of technicians that usually
work simultaneously in order to reduce the
time needed for the update (thus maximizing
testing time each night).

� Provide means to collect maintenance and per-
formance information of the signalling devices

to be able to monitor the operation of the sys-
tem after an update.

5.1.3. UP2DATE railway architecture

The UP2DATE architecture instantiation pro-
posed for the railway use case (see Figure 8) is based
on the introduction of a gateway device that cen-
tralizes the update of all the individual devices of
the signalling system without the need to physi-
cally access them. The gateway will communicate
with a central server, located together with the cur-
rent Traffic Management System (Control Centre),
where operators schedule updates in a centralized
manner.

Figure 8: UP2DATE railway use-case architecture.

The UP2DATE railway architecture will inte-
grate a simplified subset of the SDM. On the one
hand, the gateway will integrate a simplified ver-
sion of the safety detector manager together with
the required update and monitoring services, and
the end-device will implement a second instance of
it. The simplified SDM includes safety critical and
not safety critical software, which is integrated in
the gateway.

5.2. Automotive use-case

The automotive industrial demonstrator takes
place in the context of the next generation of con-
nected automotive in-car computing architectures.
The number of computerized ECUs, which is over
a hundred in nowadays cars, is increasing with ev-
ery new car generation, since every new function
requires a new ECU, e.g., engine control, infotain-
ment, driving assistance. The UP2DATE gateway
seeks to reduce this amount of ECUs by centralizing
them on a more powerful platform. Regarding the
end-device, it is based on a Vehicle Domain Control
Module (VDCM), an integrated platform for Pow-
ertrain and Vehicle dynamic control. The VDCM
system is compliant with the ISO 26262 standard
for Road Vehicle Functional Safety requirements.
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5.2.1. Current update solution

As the quantity of code governing car functions
increases, so does the need and frequency to up-
date such code. In the post production and service
phases a software update implies asking the user to
go to a service point where a specialized technician
updates the device in situ. This is clearly a costly
and lengthy procedure which has a huge impact on
the post-production and maintenance cost. In the
case of safety related software, the effort and associ-
ated costs are even greater, since artefacts showing
evidence of correct update must be produced and
stored. Moreover, often recalls concerning safety
features have a negative impact on car brand’s im-
age and can impact the market share of an auto-
maker and even other auto-makers.

5.2.2. UP2DATE objectives

UP2DATE aims at reducing post production and
maintenance costs by allowing remote updates. The
long-term objective is to reduce the number of re-
calls and service campaigns up to 90% by enabling
OTASU. To this end, the integration of UP2DATE
technology in the automotive use-case will:

� Enable automatic updating operations in safe
conditions without driving to a service point.

� Guarantee the fulfilment of safety and security
requirements during remote software updates,
even when updating safety related functions.

5.2.3. UP2DATE automotive architecture

As a solution, in the automotive use-case ar-
chitecture presented in Figure 9, each vehicle is
equipped with an UP2DATE gateway connected
to a remote UP2DATE server. This automotive
Centralized Computing Platform (CCP), manages
updates and integrates several features of the ve-
hicle (e.g., safety and/or non-safety critical func-
tions classically placed in separated ECUs) in a cen-
tralized platform with high-computational power.
Whenever an update is issued, the gateway dis-
tributes the information in a safe and secure way
through the in-vehicle network to the correspond-
ing end-devices.

6. Implementation

The work structure and responsibilities of
UP2DATE are distributed into Work Packages
(WPs) and a multidisciplinary consortium will en-
sure the achievement of the UP2DATE goals.

Figure 9: UP2DATE automotive use-case architecture

6.1. Work plan – Work packages

UP2DATE comprises 5 scientific and technologi-
cal WPs and 2 other WPs devoted to management,
dissemination and exploitation. The technological
WPs cover from the UP2DATE concept definition
up to its validation:

� WP1 ensures an efficient and smooth project
development and implementation according to
the European Commission rules.

� WP2 covers a detailed definition of the project
requirements as well as the selection of the
baseline platform on which the project will be
implemented and evaluated, supported by an
initial safety and security analysis of MCCPS
on high-performance heterogeneous platforms.

� WP3 develops the safety and security infras-
tructures, in accordance with the requirements
coming from WP2, and covers the SASE as-
sessment of the software update concepts by
an external certification authority.

� WP4 defines and implements the overall
UPDATE OTASU middleware that includes

Figure 10: WP Structure.
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contract-based services and defines the com-
patibility checks and integration testing to be
carried out in each OTASU.

� WP5 provides support to WP3 and WP4 in
terms of observability, monitoring, controlla-
bility of the hardware configurations, security
fingerprinting and budget optimization.

� WP6 evaluates UP2DATE ecosystem through
both, railway and automotive, industrial use-
cases.

� WP7 defines and implements an impact-
driven, multi-stakeholder and multi-channel
Communication and Dissemination strategy
and develops an overall roadmap to the market
to assess the exploitation plans of all partners.

6.2. Consortium as a whole

UP2DATE consortium consists of a multidisci-
plinary team of 7 partners from 4 EU countries
(i.e., Spain, Germany, Austria and Italy), provid-
ing a multi-stakeholder approach to the project and
covering the whole value chain through a combina-
tion of 3 Research and Technology Centres and 4
Companies.

Figure 11: UP2DATE partners geographical.

In particular, the consortium counts with:

� Information and Communication Technology
experts in the different project technological
areas. Knowledge generators (i.e., IKERLAN,
BSC, OFFIS) will address the research ques-
tions in terms of safety and security, design-by-
contracts and monitoring of the software up-
dates.

� Technology integrators (i.e., TTTechAuto,
IAV) are developers of products and services
to improve safety and reliability of electronic
systems in the industrial and transportation
sectors.

� End users (i.e., Marelli and CAF) will con-
tribute to the validation of the technology in
a real controlled environment proposing real
world use-cases from the automotive and rail-
way domain.

7. Conclusions

This paper has provided an overview of the
UP2DATE H2020 project, which has the main goal
of designing and implementing a reference architec-
ture for the safe and secure execution of over-the-
air updates on mixed-criticality MPSoC. At the
time of writing, the project is in its concept defini-
tion phase, which has been the main focus of this
paper. Based on current safety and security stan-
dards, the paper has described the update cycle and
the architecture that will be implemented as a so-
lution for enabling the safe and secure execution
of software updates. As a summary, this architec-
ture will rely on the design-by-contracts approach
for checking the validity of an update before, during
and after its execution. To this end, it will be com-
plemented with runtime monitoring strategies that,
apart from validating the update, will also serve to
optimize system design after its deployment follow-
ing an iterative development process.

UP2DATE will bring the OTASU technology
closer to critical domains in two ways: first by
evaluating the project outcomes in representative
industrial scenarios from the railway and automo-
tive domains and second by conducting a review of
the main project concepts and design solutions with
certification authorities.
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