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1. Overview

A hybrid nonlinear-Kalman ensemble transform filter for data assimilation
in systems with different degrees of nonlinearity
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2. Linear and Nonlinear Filters

The nonlinear filter NETF (Nonlinear Ensemble
Transform Filter) is combined with Local Ensemble
Transform Kalman Filter (LETKF) to build a hybrid
filter algorithm. This LKNETF filter combines the
stability of the LETKF with the nonlinear properties of
the NETF to obtain improved assimilation results for
small ensemble sizes. Both filter components are
localized in a consistent way so that the filter can be
applied with high-dimensional models.

The degree of filter nonlinearity is defined by a
hybrid weight which shifts the analysis between the
LETKF and NETF. Since the NETF is more sensitive to
sampling errors than the LETKF, the LETKF should be
preferred in linear Gaussian cases. Accordingly the
adaptive hybrid weight is defined based on the
nonlinearity of the system so that the adaptivity
yields a good filter performance in linear and
nonlinear situations.

6. Hybrid Weight y

Here, we define different rules to compute the hybrid
weight y adaptively.
A) Using the effective sample size Nejp = > (w')™2:
Yo Choose y, so that N is as small as possible
while fulfilling @ > N.ss/N [see 3].
New alternative linear dependence
Viin Yin =1 — Negs /N
Note: It is known that particle filters do not work well
if Neyy is close to 1. However, this does not imply that
a PF or NETF is better than the LETKF for higher Nej ;.
B) Using absolute mean skewness and kurtosis of the
observed ensemble:
Kalman filters assume that distributions are Gaussian.
In this case the LETKF is preferable. We use the mean
absolute skewness (skew) & kurtosis (kurt) of the
observed ensemble to quantify the non-Gaussianity.
In general, skew and kurt are not bounded.
However, we can normalize them by
skew' = skew/\/k kurt’ = kurt/r
where V& =~ N Now we define
sk = min(1 — |kurt’|, 1 — |skew'|)
To avoid too low Ness we define combined rules
Vsk,lin — Yskiin = maz[Ysk, Yiin]

Vsk,o

Ysk,ao = MAT[Ysk, Val
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3. NETF

The transformation of the ensemble mean and
ensemble perturbations for ensemble size N can be
written in the generic form:

x¢ =% + X%
X' = X""wW
Ensemble Kalman & nonlinear filters just use
different definitions of the
* weight vector W (dimension/V')

« Transform matrix W' (dimension N x NN)

4. LETKF

The NETF [1, 2] is a second-order exact particle filter.
We compute the normalized weight vector
w=(wh, ... ,w(N))/Zw(’) using likelihood
weights. For Gaussian observation errors this is
w' ~ exp (—0.5(y — Hx{)TRfl(y - Hxlf))
The weights are also used for the transform matrix
. ~ -~ 1/2

W = /N [diag(W) — ww | A
Here, A is the identity or a mean preserving random
matrix that can be applied to stabilize the filter.

7. Experiments
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5. Hybrid Filter LKNETF_____

In the LETKF we compute a local update of the
ensemble mean and perturbations. The weight
vector is computed according to the Kalman filter,
which always assumes that the errors are Gaussian.
Using the transform matrix
A7t = p(N - DI+ (HXHTRIHX'

that results from the equations of the Kalman filter
and always assumes Gaussian errors we have:

W = AHX/)TR! (y - HF)
W=VvN_-1A'Y?A

Lorenz-63

For the Lorenz-63 model, the default parameters are
used. All 3 state variables are observed. The
nonlinearity increases with the forecast length.

Fig. 1: CRPS for 3 different nonlinearities (NL). The
ETKF shows little dependence on N. The NETF yields
decreasing errors for growing N. The HNK filter yields
the smallest errors. The effect of the hybridization is
particularly large for small ensembles.
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Fig. 2: CRPS for ETKF, NETF, and the hybrid filter
variant HNK for different choices of y and N=25. The
nonlinearity is varied. y;, leads to the smallest
errors with an error reduction of up to 32%
compared to the ETKF.
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Lorenz-96

The results for the Lorenz-96 model (40 grid points,
F=8) are shown for a forecast duration of 8 time
steps. Each second grid point is observed.
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Fig. 4: CRPS in dependence on localization radius
and ensemble inflation for LETKF and LKNETF-HNK.
The hybrid filter yields smaller errors.

Fig. 3: The hybrid filter needs to use at each analysis
a ‘good’ value of y. Shown is the probability of some
value of y over the course of the experiment for
HNK and different hybrid rules. Similar CRPS are
obtained for different distributions (solid lines). The
rule y, with @=0.8 (dashed) yields a larger error.
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Table 1: Maximum error reduction in % compared to
the LETKF for the different hybrid filter variants and y
rules for the Lorenz-96 model. The smallest errors are
obtained for the variant HNK and Y., OF Yain. The
variant HKN shows the smallest effects.
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Fig 5: CRPS in dependence of a and k for different
y-rules for HNK. Minimum CRPS is obtained for x=10.

_ References

Since NETF and ETKF are very similar one can easily
combine both filters into a hybrid analysis step.
Different hybrid schemes can be formulated:

1-step update (HSync)

~7f
Xsyne = X + (1 =7)AXNprF +7AXBTKF
Here the analysis increments AX of both filters are

computed and then a weighted average of both is
used.

2-step updates (HNK and HKN)

In the 2-step update we can compute the NETF first
followed by the ETKF, both with increased
observation errors according to the hybrid weight
(Variant HNK):

Stepl:  Xfyx = X§preXS, (1— 7R
XYnx = Xorrcr[Xinve, TR

Alternatively, we can compute the ETKF update
before the NETF (Variant HKN).

Step 2:

8. Summary

The hybrid ensemble filter LKNETF combines the
stable LETKF with the nonlinear filter NETF. Different
variants of the hybrid filter are introduced.

The assimilation experiments for both models are
implemented using PDAF [4,5] so that identical filter
implementations are used. The lowest estimation
errors are obtained using the hybrid variant HNK that
applies the NETF first followed by the LETKF. The
hybrid rules utilizing skewness and kurtosis (y . and
Yexin) Yield very stable results and the lowest errors.

Yet unknown is which realistic problems have
sufficient nonlinearity so that the hybrid filter can
yield improved results. In initial twin experiments
with the ocean model NEMO at a resolution of 0.25°,
the LKNETF-HNK leads to error reductions of up to
3%. Here, the nonlinearity (or non-Gaussianity) is not
sufficient to yield a larger effect.
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