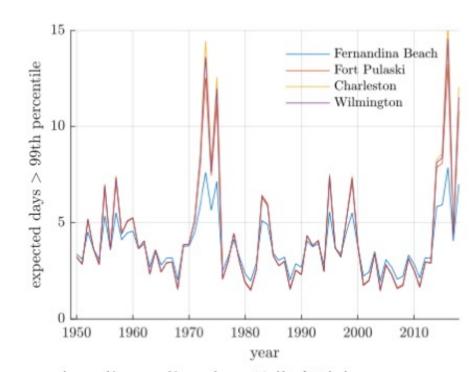
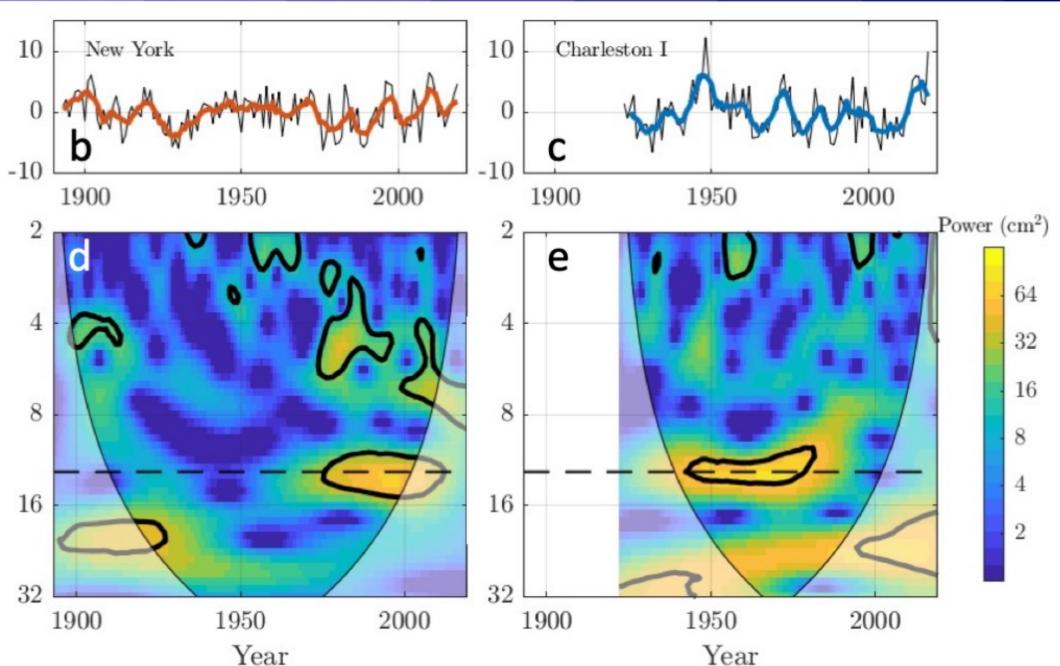

DECADAL SEA LEVEL VARIABILITY ALONG THE UNITED STATES EAST COAST


Christopher Little (clittle@aer.com) (Atmospheric and Environmental Research, Inc)

Summary and Motivation

Interannual to multi-decadal fluctuations in coastal (relative) sea level often overwhelm long-term secular trends, driving changes in the frequency and severity of coastal flooding, saltwater intrusion and coastal erosion, along large sections of coastline (see below for an example along the southeastern United States coast).



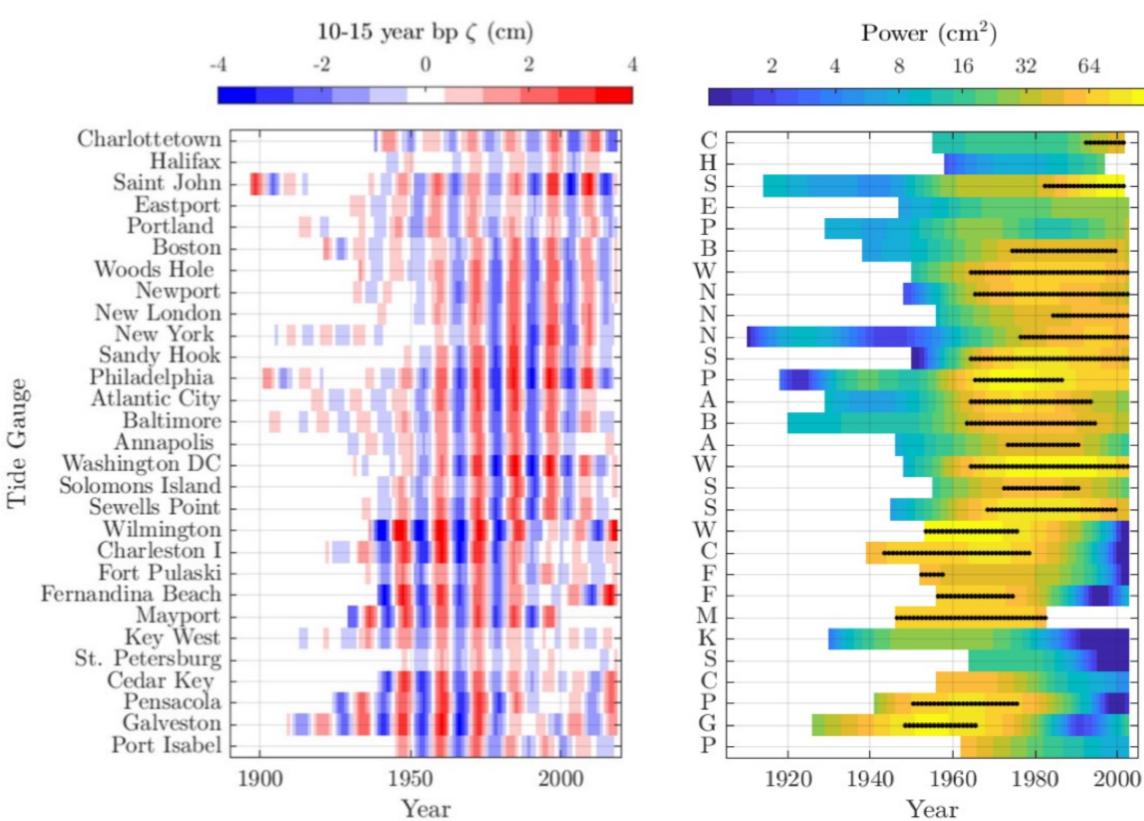
(Left) Detrended relative sea level from four tide gauges along the southeastern United States coast over the 1950-2018 period. (Right) Number of days per year with water levels exceeding the 99th percentile value at each tide gauge location (calculated using data and equation (2) from Buchanan et al., 2017). Data from Permanent Service for Mean Sea Level.

Predictions of large-scale, sustained, sea level anomalies along the densely-populated United States East Coast are thus of considerable societal value. However, robust predictions require additional efforts to: 1) characterize the nature of observed sea level variability; 2) identify key underlying physical processes; and 3) assess the predictability of key processes. This poster summarizes a recent paper (Little et al. 2021) pursuing the first objective. It is intended to inspire discussion of the climate and ocean dynamics underlying sea level variability at this frequency band.

Wavelet spectra at two tide gauges

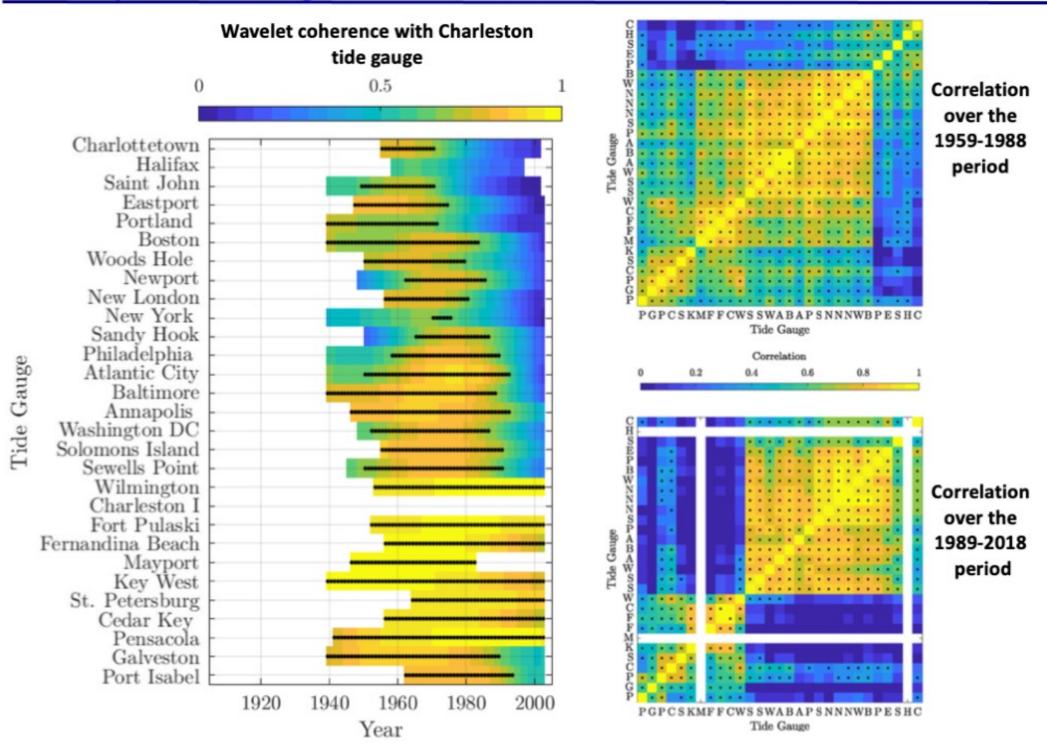
(Top) Detrended, infilled, annual mean relative sea level (in cm) at the Battery (New York City, left) and (right) Charleston, South Carolina tide gauges. 5-year smoothed timeseries at each tide gauge are shown with thick colored lines. (Bottom left) Continuous wavelet power spectra (in cm², on a log_2 scale) of relative sea level at the Battery (left) and (right) Charleston tide gauges. Transparent mask indicates the cone of influence. Solid black lines denote significance at the p < 0.1 level relative to 300 resampled time series with the same AR(1) coefficients. Black dashed line indicates a period of 12.4 years.

Data and Methods


the two highlighted tide gauges

York City, orange).

(Charleston I, blue; the Battery/New


Tide gauge	Latitude	Longitude	First full year	Last full year	 29 tide gauges with
Charlottetown	46.23	-63.12	1938	2018	70+ year records (from
Halifax	44.67	-63.58	1941	2013	Permanent Service for
Saint John, N.B.	45.27	-66.07	1941	2018	Mean Sea Level)
Eastport	44.9	-66.98	1930	2019	Wican Sca Level)
Portland (Maine)	43.66	-70.25	1912	2019	 Linear trends over
Boston	42.35	-71.05	1921	2019	period of record
Woods Hole (Ocean. Inst.)	41.52	-70.67	1933	2019	removed
Newport	41.51	-71.33	1931	2019	
New London	41.36	-72.09	1939	2019	 Uncertainty assessed
New York (The Battery)	40.7	-74.01	1893	2019	using Monte-Carlo
Sandy Hook	40.47	-74.01	1933	2019	techniques and an
Philadelphia (Pier 9N)	39.93	-75.14	1901	2019	AR(1) assumption
Atlantic City	39.35	-74.42	1912	2019	,
Baltimore	39.27	-76.58	1903	2019	
Annapolis (Naval Academy)	38.98	-76.48	1929	2019	
Washington DC	38.87	-77.02	1931	2019	/ =
Solomon's Island (Biol. Lab.)	38.32	-76.45	1938	2019	// \\
Sewells Point, Hampton Roads	36.95	-76.33	1928	2019	
Wilmington	34.23	-77.95	1936	2019	3 N / 3 months (23)
Charleston I	32.78	-79.92	1922	2019	N = IL
Fort Pulaski	32.03	-80.9	1935	2019	
Fernandina Beach	30.67	-81.47	1939	2019	
Mayport	30.39	-81.43	1929	1999	A POS AND
Key West	24.55	-81.81	1913	2019	- Y W - W
St. Petersburg	27.76	-82.63	1947	2019	
Cedar Key II	29.14	-83.03	1939	2019	Liegh Liegh
Pensacola	30.4	-87.21	1924	2019	S ALLE
Galveston II, Pier 21, TX	29.31	-94.79	1909	2019	140
Port Isabel	26.06	-97.22	1945	2019	→

(Left) 10-15 year bandpass filtered detrended relative sea level (in cm) at all tide gauges. (Right) Power centered on a period of 12.4 years for all tide gauges, only shown for times outside the cone of influence. Significance at the p < 0.1 level is shown with stippling.

Time-dependent alongcoast coherence

(Left) Wavelet coherence of east coast tide gauges with the Charleston I tide gauge centered on a period of 12.4 years. (Right) Cross-correlation of detrended relative sea level between pairs of tide gauges over the (top) 1959-1988 and (bottom) 1989-2018 epoch. Significance at the p < 0.1 level is shown with stippling.

Conclusions

- **★** Multidecadal epochs of enhanced (up to ~10 cm) decadal sea level variability, explaining a significant fraction of overall sea level variance, are evident at most tide gauges along the United States East Coast.
- **★** Decadal sea level variability was coherent across Cape Hatteras from approximately 1960 to 1990, but has since been incoherent.
- **★** Previous interpretations of alongcoast covariance, and its underlying physical drivers, are clouded by time- and frequency-dependence.
- **★** This understanding of the spatiotemporal covariance *should* help clarify the relevant mechanisms, and their predictability!

Questions for discussion

- 1. What are the key processes underlying 10-15 year period relative sea level variability, and are they predictable?
- 2. Is the same process responsible for sea level variability in this frequency band in coastal sectors north and south of Cape Hatteras?
- 3. Does the tide gauge record capture a multidecadal-to-centennial modulation or the emergence of a secular trend?
- 4. If it is a modulation, is it related to multidecadal variability (e.g. AMV/AMOC) or closely-spaced "interfering modes" of decadal variability?
- 5. How do longer-term changes influence variability at decadal periods (e.g. stratification, Gulf Stream and/or westerly position)?

Acknowledgments

10.1029/2021GL093675

- NSF grant OCE-1805029
- Permanent Service for Mean Sea Level (http://www.psmsl.org/data/obtaining/).
- Cross-wavelet and wavelet coherence toolbox for MATLAB (http://grinsted.github.io/wavelet-coherence/)
- Christopher Piecuch (WHOI) and Rui Ponte (AER)

Geophysical Research Letters
RESEARCH LETTER

North American East Coast Sea Level Exhibits High Power and Spatiotemporal Complexity on Decadal Timescales

Christopher M. Little¹, Christopher G. Piecuch², and Rui M. Ponte¹